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Abstract. — Masonry systems made of interlocking square-cut stones have long been studied by

mathematicians and architects. It so happens that, under appropriate boundary conditions, ashlars

interlock, and a stable structure results. Recently, the idea that new masonry-like materials can be
designed on the basis of this archetypal principle has been put forward and applications have been

proposed under the name of topological interlocking materials.
In this paper, a mathematical model is proposed, that describes these materials as a special class

of continua with microstructure. The system is viewed as a continuous body, the material elements
of which are ashlar blocks endowed with an interaction structure based, to within certain approxi-

mations, on their interlocking geometry. The case of rigid ashlars with purely plastic interactions is
developed in detail.
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1. Introduction

An interlocking structural system is a set of distinct elements that lock each other
with unilateral contacts. Thanks to both the shape and the arrangement of the
elements, this locking is more e¤ective than in a stack or in other traditional
masonry bonding that depends on gravity and thrust.

Systems enjoying the interlocking property have been named nexorades (from
Latin nexus [2, 1]). They can be made of parts that can be beam-like, plate-like,
or three-dimensional solids. Here we focus on systems the parts of which are all
of the last type; on adopting the usual nomenclature for stone structures, we
call such parts ashlars. Nexorades made of beams have long been known by the-
orists and practicians, often under the name of reciprocal frames. Sketches of
a timber nexorade floor are due to Villard de Honnecourt, Leonardo da Vinci,
and Sebastiano Serlio. Nexorades have received even more attention recently,
as they provide a field for the application of numerical tools to the design
of structures. The particular case of interlocking ashlars, connected as is to the
17th and 18th century developments of projective geometry for stone cutting (or
stereotomy), has lately given birth to the idea of topological interlocking mate-
rials [10, 11, 12, 14, 15, 18, 19].



Examples of bonding of fragmented lintels go back to the Middle Ages: they
are found in the castle of Esztergom (Hungary, 12th century), in Saint-Michel
cathedral at Alba Iulia (Romania, 13th century), in the church of Brateiu
(Romania), and in the cathedrals of Arezzo and Prato (Italy, 14th century). Their
common interlocking system was represented in a sketch by Leonardo da Vinci
(who did not mention these examples, see Figure 1).

Later, the first plate-like structure conceived as an interlocking system was
Joseph Abeille’s flat vault. It was made of identical ashlar blocks and patented
as an invention by the French Academy of Sciences in 1699 [16] (see Figure 2).
Only one vault of this type remains today, in Lugo’s cathedral (Spain, 18th cen-
tury, [21]). However, several structures based on Abeille’s bond have recently
been studied and built by the team of the GSA laboratory [5, 7, 22].

Generalising Abeille’s result, an interlocking plate can be built with ashlar
blocks shaped as convex polyhedra. A particularly elegant case is that of systems
made of regular polyhedra, the cross sections of which tile a plane: tetrahedra
pave the plane with squares; cubes, octahedra, and dodecahedra, pave it with
hexagones [12]. An even larger generality can be achieved with the use of numer-
ical tools: e.g., in [23] interlocking bondings based on regular, semi-regular and
non-regular surface tessellations are proposed. Furthermore, any plate-forming
assembly can be adapted so as to compose a shell, by way of fit transformations
preserving its interlocking bonding. For instance, the cases of a spherical dome

Figure 1. The sketch of a cross-joined lintel from Leonardo’s Codex Atlanticus f.0091 v
[9]: ‘‘I due triangoli ano a essere appiccati insieme e d’un pezzo’’.

Figure 2. Joseph Abeille’s 1699 flat vault [16].
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and of a saddle vault have been considered, and some sample structures of these
types have been built (see Figure 3, [6, 20]).

When the size of ashlars is much smaller than the characteristic length of the
structure they compose, one can conceive a continuous model of the interlocking
structural system, where only the fundamental traits of the local interactions are
preserved.

As is the rule when defining a continuum model for a discrete system, several
options exist. Our present proposal starts from the idea that an interlocking struc-
tural system can be modelled as a sort of continuum with microstructure. Thus
we apply general methods presented in [8]. Some passages dealing with micro-
inertia issues have already be discussed in [4].

In the next section, we give an idealised description of the masonry system we
study and lay down our geometric and kinematic modelling assumptions. The
idea that ashlars are boxed by their neighbours in a way that depends on their
shape and on the shape of the boxing system suggests us to include in the model
two distinct, though interacting, kinematics: that of the ashlars and that of the
boxes, the latter inducing a confinement for the motions of the former. In the
third section, following [17], we call upon the principle of virtual powers to write
balance laws that are consistent with the previously introduced kinematic descrip-
tion of the system. As a consequence, we obtain point-wise balance laws and
boundary conditions for the translational and rotational momenta, both of the
ashlars and of the boxes. The fourth and last section deals with constitutive as-
sumptions and is governed by the idea that the internal state of individual ashlars
has no consequences on the whole of the system: only the interactions between
adjacent ashlars and between adjacent boxes need be modelled, and such interac-
tions are unilateral contacts among rigid bodies.

2. Geometry and kinematics

2.1. Physical description

We consider a body made of distinct ashlars that interlock each others. To
be more specific, when needed, we will take ashlars shaped as cubes and as-

Figure 3. Pictures of a saddle vault with Abeille’s bonding built in Troyes (France), 2013
[20].
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sembled as in Figure 4, in a single layer, thus making an interlocking plate-like
structure.

It is assumed that ashlars interact through their surfaces, either directly, with
contact actions, or indirectly – if a mortar or any other soft material fills the
interfaces, with linkage actions. The case of unilateral contacts will receive more
attention here, as it contains some interesting traits.

In experiments, the observed overall deformation of ashlars is usually much
smaller than the local e¤ects of contact or linkage actions (such as indentation,
slip, dilatancy, separation, etc.), so that a model with rigid ashlars and soft uni-
lateral interfaces can be reasonably proposed.

There is an ideal, reference, configuration, where all contacts happen be-
tween faces of neighbouring ashlars, with gaps that are uniform on each con-
tact and equal throughout the system. In some cases (as, e.g., the quoted Abeille’s
flat vault or the system of Figure 4) the system is periodic in this reference
configuration.

In any other configuration, there might be not only face-on-face contacts,
but also edge-on-face or vertex-on-face ones. At first, it seems reasonable to ex-
clude contact cases such as edge-on-edge, vertex-on-edge, and vertex-on-vertex, as
seldom visited.

Let us consider the following simplified model:

• ashlars are rigid convex polyhedra, endowed with a uniformly distributed mass,
they exchange forces only with their neighbours, seen as a ‘‘box’’ enclosing
them (see Figure 5);

Figure 4. Sketch and picture of the interlocking system of cubes used as a reference
example.

Figure 5. Sketch of a cube, with the contact surfaces occurring in the interlocking system
of Figure 4 painted in black and, on the right, the ‘‘box’’ enclosing it.
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• boxes are deformable polyhedric surfaces (with deformations allowed in a
special class, we need to define), they have no mass and compose a continuous
network;

• in the reference configuration the set of boxes is made of given parts of the sur-
faces of the ashlars;

• ashlars and boxes have a permanent identity throughout the process.

2.2. Modelling assumptions

Let us look at ashlars as continuously distributed material points endowed with a
given mass and shape and the ensuing inertia tensor. The position of their centre
of mass is a variable x a E (E the Euclidean space, VGR3, in the following, its
translation space). In the reference placement we call x� a E the coordinates of
these material points. The transformation

x� ! x

is a first unknown field; let us call F its gradient:

F : x� ! Grad x a GLðVÞ:

The rotation of the ashlars is a second unknown field:

Q : x� ! Q a SOð3Þ;

which gives the present axes of the ashlars, bðiÞ, starting from their reference
values, b

ðiÞ
� (the application to the case of interlocking cubes of the next and the

following equations is given in §2.3):

bðiÞ ¼ QbðiÞ� ; i ¼ 1; . . . ; 3:

A box is defined by the taken of the same reference point x� a E than the
ashlar it encloses and by a reference shape, S�, which we suppose be the same
for all boxes. To extend the model to cases with more than one ashlar type, one
needs to remove this assumption.

To define the shape S�, we need to identify all faces of the box and accept
some approximation in this process. There are many possible options, among
which we chose to take two vectors per face, one giving the position of the centre
of the face with respect to the reference point of the box and the other giving the
direction normal to that face and a characteristic length of it.

Let us call s
ðiÞ
� the vectors giving the position of the centre of the face in the

reference configuration and m
ðiÞ
� the surface vectors of the contacts in the same

configuration, with i ¼ 1; . . . ; n and n the number of contact faces of the ashlar.
sðiÞ and mðiÞ are the corresponding images in the reference configuration.

To begin disregarding information, we live aside the possible extension/
contraction of the box’ faces and assume that only the directions of the surface
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vectors count. We thus disregard information carried by the length of the surface
vectors and take all m

ðiÞ
� and mðiÞ as unit vectors.

Furthermore, in some cases – such as that of cubes, a symmetry can be
observed in many deformation processes, that allows one halving the number of

independent position vectors sðiÞ, taking the position of opposite faces simply as
opposite vectors, in the reference configuration and in any other setting. An even
greater simplification is made here, assuming:

sðiÞ ¼ GsðiÞ� þ r Ei ¼ 1; . . . ; n; G a GLðVÞ

with G, a double vector and r a vector in the present configuration. G, represent-
ing perhaps the average of n such entities (one per position vector sðiÞ), defines
an ellipsoid that corresponds, within the accepted approximation, to the domain
were an ashlar is confined by its box. r is the relative placement of the centre of
the box with respect to the centre of the ashlar it contains; it is null in the refer-
ence configuration and defined as

rðx�Þ ¼ yðx�Þ � xðx�Þ;

where the transformation

x� ! y

gives the present position of the centre of the box and is an unknown field, di¤er-
ing in general from x (present position of the centre of the ashlar), see Figure 6.

We consider the following kinematic constraint between y and G:

G ¼ Grad y;

which presumes y having the usual di¤erential properties of x.
The information content of the evolution of the n unit vectors giving the ori-

entation of the faces of a box can also be simplified assuming some average for
them. An embedding of directions into R5 can be taken of the kind used for nem-

Figure 6. Sketch of the transformation of ashlars and boxes, in the case of cubes.
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atics (see [13, 3]), and the following average considered:

M ðiÞ ¼ kmðiÞ
� k�2

mðiÞ nmðiÞ � 1

3
I ; M ¼ 1

n

Xn

i¼1

M ðiÞ

(I the unit of second order tensors). Thus a symmetric traceless tensor M can be
taken to represent any arrangement of the mðiÞ.

Notice that, in the reference configuration:

M� ¼ 0:

The principal axes of M correspond to the appearing directions of contact
on the box. If an eigenvalue prevails, then the box opposes motions of the ashlar
in the direction of the corresponding eigenvector more ‘‘e¤ectively’’ than in the
others (we need to precise the extent of this e¤ect). If, as in the reference configu-
ration, no direction prevails, the ashlar is equally confined from everywhere by
the box.

We can assume Q be di¤erentiable and consider the following approximation
for the direction of any face of the box (i.e. that face rotates following the linear
approximation of the field Q in the neighbourhood of x�):

mðiÞQQmðiÞ
� þ ðGradQÞðmðiÞ

� n sðiÞ� Þ:

Let us then compute M ðiÞ accordingly and take the result as a kinematic con-
straint for M (remember that M� ¼ 0):

M ¼ 2 symðQa�ðGradQÞTÞ þGradQA�ðGradQÞT Q2 symðQa�ðGradQÞTÞ;

where the second order term can be disregarded within the given approximation
and (when not otherwise imposed by parentheses, priority is given to the right-
hand side of operators):

a� ¼
1

n

Xn

i¼1

kmðiÞ
� k�2

mðiÞ
� n sðiÞ� nmðiÞ

� :

It is then possible to compute the time derivative of M in terms of Q:

_MM ¼ 2 symðWQa�ðGradQÞT þQa�ðW GradQÞT þQa�ðððgradWÞF Þ tQÞ tÞ;

where

W ¼ _QQQT a Skw;

the exponent t denotes the transposition of two indices on the side where it
appears, and grad denotes the gradient with respect to x (i.e. gradW ¼
ðGradW ÞF�1).
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To shorten notations, let us introduce the second order operator B and the
third order operator b, such that:

_MM ¼ BW þ b gradW ; B a GLðSkw; SymÞ; b a GLðGLðV; SkwÞ; SymÞ:

2.3. Application to plates made of interlocking cubes

The bonding depicted in Figure 4 is composed of ashlars of one single type,
shaped as cubes, and can be repeated at will to make structures like plates or
flat vaults. Some of the quoted experiments on topological interlocking materials
were made on systems of this kind. For this reason, we will use this bonding as an
example to make some of the previous equations more specific.

In the case of cubes of side s, taking

bðiÞ� ¼ s

2
eðiÞ; i ¼ 1; 2; 3;

where

eð1Þ ¼
1

0

0

2
64

3
75; eð2Þ ¼

0

1

0

2
64

3
75; eð3Þ ¼

0

0

1

2
64

3
75;

we have:

Q ¼
�2
s

�2
bðiÞ n bðiÞ� ;

To describe the boxes, we can take 6 pairs made of a position vector s
ð jÞ
� and a

surface vector m
ð jÞ
� . The positions, relative to the centre of the cube, are:

sð1Þ� ¼ s
ffiffiffi
3

p

2
ffiffiffi
2

p

ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
6

p

�1=
ffiffiffi
6

p

2
64

3
75; sð2Þ� ¼ s

ffiffiffi
3

p

2
ffiffiffi
2

p
1=

ffiffiffi
6

pffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
6

p

2
64

3
75; sð3Þ� ¼ s

ffiffiffi
3

p

2
ffiffiffi
2

p
�1=

ffiffiffi
6

p

1=
ffiffiffi
6

pffiffiffiffiffiffiffiffi
2=3

p
2
64

3
75;

and s
ðiþ3Þ
� ¼ �s

ðiÞ
� for i ¼ 1; 2; 3. The surface vectors are

mðiÞ
� ¼ s2

4
eðiÞ;

and m
ðiþ3Þ
� ¼ �m

ðiÞ
� for i ¼ 1; 2; 3. Then

M ðiÞ ¼
�2
s

�4
mðiÞ nmðiÞ � 1

3
I ; M ¼ 1

6

X6

i¼1

M ðiÞ
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and:

a� ¼
1

6

�2
s

�4 X6

i¼1

mðiÞ
� n sðiÞ� nmðiÞ

� ¼ 1

3

�2
s

�4 X3

i¼1

mðiÞ
� n sðiÞ� nmðiÞ

�

¼ s3

24

eð1Þ 1
2 e

ð1Þ � 1
2 e

ð1Þ

1
2 e

ð2Þ eð2Þ 1
2 e

ð2Þ

� 1
2 e

ð3Þ 1
2 e

ð3Þ eð3Þ

2
664

3
775:

2.4. Survey of the kinematics

With the kinematic fields introduced above, we can adopt a Lagrangian or an
Eulerian description of the motion of the interlocking structural system, where
two continua coexist.

Lagrangian description

• The continuum of ashlars, the motion of which is given by:
– placement of the ashlar centre xðx�; tÞ (all fields depend on x� and t, which

will be omitted in the following lines), with gradient F ;
– rotation of the ashlars’ axes, Q;

• The continuum of boxes, given by:
– placement of their centre, relative to the ashlar, r, or absolute, y;
– ellipsoid of the box G ¼ Grad y;
– hem of the box M ¼ 2 symðQa�ðGradQÞTÞ;

Eulerian description

• The continuum of ashlars, with:
– velocity of the centre of the ashlars uðx; tÞ (all fields depend on x and t,

omitted in the following lines), with gradient grad u ¼ _FFF �1;
– absolute spin of the ashlars about their centre W ;

• The continuum of boxes, with:
– velocity of the centre of the boxes v;
– ellipsoid’s rate of change grad v ¼ _GGF�1;
– hem’s velocity _MM ¼ BW þ b gradW .

2.5. Consequences

Volume element. A reference volume element is dðvol�Þ, its mass is that of the
ashlars; i.e., if r

ðaÞ
� is the mass of the material the ashlars are made of, taken per

unit volume of the structure they compose, the mass element is r
ðaÞ
� dðvol�Þ, in the

reference and in any other placement throughout all processes.
Hence, if i is the Jacobian determinant of the transformation x, we have an

apparent density of the continuum rðcÞ that changes following the rule:

rðaÞ� dðvol�Þ ¼ rðcÞ dðvolÞ , irðcÞ ¼ rðaÞ� :
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We can introduce a volume fraction of ashlars, n, with reference value n� ¼ 1,
that changes as

in ¼ n� ¼ 1 i:e: n ¼ i�1

Notice that we are restricted to processes where ib 1, or na 1, with strict
inequality if any deformation appears.

Relative and entrainement rotation of ashlars. There is both a relative rotation
and a relative spin of any ashlar with respect to its box and both a relative rota-
tion and a relative spin of any ashlar with respect to the continuum of ashlars.

The relative rotation of ashlars with respect to boxes can be defined starting
from the entrainement rotation of the axes of an ashlar due to G (which is not nec-
essarily the rotation of the principal directions of G). In the following equations,
‘‘aeb’’ will shorten ‘‘ashlar entrained by box’’ and ‘‘arb’’ ‘‘ashlar relative to box’’:

Qaeb ¼
Gb

ðiÞ
�

kGbðiÞ� k
n

b
ðiÞ
�

kbðiÞ� k
and taking

Q ¼ QarbQaeb , Qarb ¼ QQT
aeb ¼

bðiÞ

kbðiÞ� k
n

Gb
ðiÞ
�

jGbðiÞ� j
:

The relative and entrainment rotation of ashlars with respect to the continuum
of ashlars can be defined, starting from F and b

ðiÞ
� , on the same principle than in

the previous case. ‘‘aec’’ denotes ‘‘ashlar entrained by the continuum’’ and ‘‘arc’’
‘‘ashlar relative to continuum’’:

Qaec ¼
Fb

ðiÞ
�

jFbðiÞ� j
n

b
ðiÞ
�

kbðiÞ� k
; Qarc ¼ QQT

aec ¼
bðiÞ

kbðiÞ� k
n

Fb
ðiÞ
�

jFbðiÞ� j
:

Relative and entrainement spin of ashlars. The spin vector of an ashlar is (e is
Ricci’s permutation tensor):

w ¼ � 1

2
e _QQQT ¼ � 1

2
eð _QQarbQ

T
arb þQarb

_QQaebQ
T
aebQ

T
arbÞ

¼ warb þQarbwaeb ¼ warb þQQT
aebwaeb;

where

warb ¼ � 1

2
e _QQarbQ

T
arb; waeb ¼ � 1

2
e _QQaebQ

T
aeb:

Notice that, in the last line of equations, the continuum of ashlars can be
taken as a reference for the motion of an ashlar (instead than taking its box as
a reference); formally, in this case change ‘‘b’’ into ‘‘c’’ as the last letter of the
index.
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Entrainment rotation and spin of ashlars. Consider the velocity gradient of boxes
and the spin associated with it

� 1

2
rot _yy ¼ � 1

2
e grad _yy;

we can write the entrainment spin of the three orthogonal axes bðiÞ as (see [4])

waeb ¼ � 1

2
ðeþ hT

G Þ grad _yy;

where

hG ¼ �2 sym
� Gb

ðiÞ
�

jGbðiÞ� j
n e

Gb
ðiÞ
�

jGbðiÞ� j

�
hG a GLðSym;R3Þ;

is the operator giving the spin of three mutually orthogonal vectors b
ðiÞ
� (given in

the reference configuration) for any deformation rate.
Similarly, we can proceed when the continuum is taken as a reference for the

motion of ashlars, replacing G with F and y with x.

Relative and entrainement rotation of boxes. There is a relative rotation of any
box with respect to the continuum of ashlars, Qbrc, deriving from the fact that
the spin of the continuum is not necessarily the same than that of the box.

Boxes in the reference placement have, by assumption, no preferred directions,
their anisotropy being exclusively due to deformations and thus generated by the
process. Hence, the quoted relative rotation must be evaluated comparing, in
the present configuration, the principal axes of strain of the box with those of
the continuum.

Let us take a polar decomposition of F and of G:

F ¼ RðcÞU ðcÞ ¼ V ðcÞRðcÞ; G ¼ RðbÞU ðbÞ ¼ V ðbÞRðbÞ;

and define:

Qbrc ¼ RðcÞTRðbÞ:

Inertia. The Euler and inertia tensor of ashlars are, respectively, E
ðaÞ
� and:

J ðaÞ
� ¼ ðtrE ðaÞ

� ÞI � E ðaÞ
� :

In the case of cubes, the inertia tensor is

J ðaÞ
� ¼ s5

6

1 0 0

0 1 0

0 0 1

2
64

3
75;

and J ðaÞ ¼ J
ðaÞ
� does not depend on the particular placement.

73a continuum model of interlocking structural systems



Kinetic energy. The kinetic energy of ashlars has a translational and a non trans-
lational term (recall that boxes have no mass). The first is

ku ¼
1

2
s3u2 ) rðcÞ _kku ¼ rðcÞs3 _uu � u

with u ¼ _xx the velocity field of ashlars in the present configuration; the second is
due to the rotations of the ashlars, with mass density:

ko ¼ 1

2
Jo2

where o is the spin velocity of _QQQT (or the norm of w) and J is the moment of
inertia about the centre of the ashlar for a given spin axis n ðJ ¼ n � J ðaÞnÞ.

In the case of cubes, the latter is independent on the spin axis ðnÞ and on the
particular placement:

J ¼ 1

2
s5;

hence the kinetic energy is in this case:

rc _kko ¼ 1

2
rcs5w � I _ww ¼ 1

2
rcs5 _ooo:

3. Balance laws

We express the balance laws of dynamics through the principle of virtual powers.

Principle of virtual powers. In any configuration and for any part of the body:

Pext þPint ¼ Pacc

for all virtual velocity field, and

Pint ¼ 0

for all virtual rigid body velocity.
To make the statement operative in deriving the local balance laws and

boundary conditions fit to our problem, we first need to define the set of virtual
velocities and the expressions of the virtual powers of the external actions, of the
internal actions and of the accelerations (respectively Pext, Pint and Pacc).

3.1. Virtual velocities

We consider, in the present configuration:

74 m. brocato



• ûu the virtual velocity of ashlars, with gradient grad ûu;

• ŵw the virtual spin of ashlars;

• v̂v the virtual velocity of boxes, with gradient grad v̂v;

• the virtual rate of change of the boxes’ ellipsoid, constrained to grad v̂v;

• the virtual rate of change of the boxes’ hem, constrained to ŵw and grad ŵw;

In a rigid motion these velocities take a particular form, as all of them are
perfectly entrained by the macro-motion:

• ûurigid ¼ ûuo þ ŴWoðx� oÞ (velocity of the continuum of ashlars);

• ŵwrigid ¼ Qarcŵwbec rigid ¼ � 1
2QarcðeŴWoÞ or ŴWrigid ¼ QarcŴWoQ

T
arc (spin of ashlars);

• v̂vrigid ¼ ûuo þQbrcŴWoQ
T
brcðy� oÞ (velocity of the continuum of boxes);

• grad ûurigid ¼ ŴWo;

• grad v̂vrigid ¼

ðgradQbrcÞ tŴWoQ
T
brcðy� oÞ þQbrcŴWoðgradQT

brcÞ
tðy� oÞ þQbrcŴWoQ

T
brcðI þ grad rÞ;

• D̂DM rigid ¼ BðQarcŴWoQ
T
arcÞ;

where the symbol D̂DM denotes a virtual velocity of M, Qarc is the relative rotation
of the ashlar with respect to the continuum of ashlars in the present configuration
(where the rigid velocities belong) and Qbrc is the relative rotation of the box with
respect to the continuum of ashlars.

3.2. Virtual powers

Objectivity of the internal actions. Let us write the virtual power of the internal
actions in the following form (let B be any volume element of the body; the
exponent a refers to ashlars, b to boxes):

Pint ¼
Z
B

�
f ðaÞ � ûuþ f ðbÞ � v̂v� 1

2
mðaÞ � eŴW � T � grad v̂vð1Þ

� S � ðBŴW þ b grad ŴW Þ
�
dðvolÞ:

We apply the axiom of rigid velocities to insure the objectivity of the internal
actions:

P
ðrigidÞ
int ¼

Z
B

�
f ðaÞ � ðûuo þ ŴWoðx� oÞÞ þ f ðbÞ � ðûuo þQbrcŴWoQ

T
brcðy� oÞÞð2Þ

� 1

2
mðaÞ �QarcðeŴWoÞ � T � ððgradQbrcÞ tŴWoQ

T
brcðy� oÞ

þQbrcŴWoðgradQT
brcÞ

tðy� oÞ þQbrcŴWoQ
T
brcðI þ grad rÞÞ

� S � ðBðQarcŴWoQ
T
arcÞÞ � 2bðQarcŴWo gradQ

T
arcÞ

�
dðvolÞ

¼ 0 Eûuo a V; ŴWo a Skw
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where we used:

b grad ŴWrigid ¼ bðQarcŴW
T
o gradQT

arcÞ þ b tðQarcŴWo gradQ
T
arcÞð3Þ

¼ �bðQarcŴWo gradQ
T
arcÞ þ b tðQarcŴWo gradQ

T
arcÞ

¼ �2bðQarcŴWo gradQ
T
arcÞ:

Taking ŴWo ¼ 0 and an arbitrary ûuo, we get the translational equilibrium of the
internal forces on ashlars and boxes:

f ðaÞ þ f ðbÞ ¼ 0:ð4Þ

Taking then an arbitrary ŴWo ¼ 0, we get the rotational equilibrium of the
same generalised forces:

f ðaÞ n ðx� oÞ þQT
brc f

ðbÞ n ðy� oÞQbrcð5Þ

� 1

2
eðQT

arcm
ðaÞÞ � ððgradQT

brc � TÞn ðQT
brcðy� oÞÞ

þQT
brcTðgradQbrcÞTðy� oÞ þQT

brcTQbrc þQT
brcTðgrad rÞTQbrcÞ

�QT
arcB

TSQarc � 2ðgradQT
arcS

Tb tÞQarc a Sym;

which, in the reference configuration, becomes:

skwðT � BTSÞ � 1

2
emðaÞ ¼ 0:ð6Þ

(4) and (5) are relations among components of the internal actions, that
must be identically satisfied by the constitutive assignments to insure their
objectivity.

Equations of motion. Let us write the virtual power of the external actions
as:

Pext ¼
Z
B

�
f ðextÞ � ûu� 1

2
mðextÞ � eŴW

�
dðvolÞ

þ
Z
qB

�
f ðextÞ � ûu� 1

2
mðextÞ � eŴW

�
dðareaÞ;

where, contrary to common use, we have not introduced a di¤erent notation for
the external forces and moment applied on the unit volume or on the unit surface,
thus reducing the number of symbols, because they will always appear in separate
contexts, with explicit reference to their support.

Notice that the surface qB is the part of the whole surface of the body where
velocities are not prescribed.
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Let us write the virtual power of the accelerations as:

Pacc ¼
Z
B

�
rcs3 _uu � ûuþ 1

2
rcs5 _WW � ŴW

�
dðvolÞ;

which ensures that, in a real motion, the kinetic energy theorem applies.
The equations of motions derive from the application of the axiom of balance

of the virtual powers:Z
B

�
f ðextÞ � ûu� 1

2
mðextÞ � eŴW

�
dðvolÞ þ

Z
qB

�
f ðextÞ � ûu� 1

2
mðextÞ � eŴW

�
dðareaÞ

þ
Z
B

�
f ðaÞ � ðûu� v̂vÞ � 1

2
mðaÞ � eŴW � T � grad v̂v

� S � ðBŴW þ b grad ŴWÞ
�
dðvolÞ

¼
Z
B

�
rcs3 _uu � ûuþ 1

2
rcs5 _WW � ŴW

�
dðvolÞ Eûu; v̂v a V; ŴW a Skw;

henceZ
B

�
ð f ðextÞ þ f ðaÞ � rcs3 _uuÞ � ûu

þ
�
� 1

2
eðmðextÞ þmðaÞÞ � BTS þ divðbTSÞ � 1

2
rcs5 _WW

�
� ŴW

þ ðdivT � f ðaÞÞ � v̂v
�
dðvolÞ

þ
Z
qB

�
f ðextÞ � ûu�

�1
2
emðextÞ þ bTSn

�
� ŴW � TTn � v̂v

�
dðareaÞ ¼ 0

Eûu; v̂v a V; ŴW a Skw:

The following balance equations and boundary conditions ensue:

• In B:

f ðaÞ þ f ðextÞ ¼ rcs3 _uu

divT ¼ f ðaÞ

divðbTSÞ � BTS � 1
2 eðmðextÞ þmðaÞÞ ¼ 1

2 r
cs5 _WW

8><
>:

• On qB:

– If uA v is allowed:

f ðextÞ ¼ 0

TTn ¼ 0

bTSn ¼ � 1
2 em

ðextÞ

8><
>: ;
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– if not:
TTn ¼ f ðextÞ

bTSn ¼ � 1
2 em

ðextÞ

(

Remarks. The thus obtained system of equations has a peculiarity: the internal
force f ðaÞ, associated with the translation of ashlars, equals, on the basis of a
balance law, the divergence of a stress-like field T , associated with the defor-
mation of the boxes, but appears otherwise as a constitutive variable. One can
proceed eliminating f ðaÞ from the set of principal unknowns of the problem, i.e.
taking

divT þ f ðextÞ ¼ rcs3 _uu in B

and

TTn ¼ f ðextÞ on qB

and excluding any contribution of f ðaÞ to the constitutive statements, but this is
not the only available option. In the following section, we will propose an alter-
native path.

4. Constitutive statements

4.1. Constitutive variables and their rôles

The constitutive variables are of two kinds

• acting on ashlars:
– the internal force f ðaÞ;
– the internal moment mðaÞ;

• acting on boxes:
– the stress dual to the box ellipsoid rate of change, named T ;
– the stress dual to the box hem rate of change, named S.

The first two are of the kind of material forces, the second two of configura-
tional forces.

4.2. Configurational constitutive statements

A configurational change is the result of an evolution of the boxes that is not an
entrainment of them by the continuum of ashlars. In particular, two such mis-
match can be relevant: that of the box ellipsoid and of the box hem.

Let us introduce the following measure of the mismatch between the con-
tinuum of ashlars and the box ellipsoid:

H ¼ GF�1 � I
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H ¼ 0 means that boxes move as material elements do (i.e. G ¼ F ); when not so,
configurational changes occur in the system, that are measured by H and must be
related to the configurational stresses.

A measure of the mismatch between the continuum of ashlars and the box
hem can be obtained comparing M with:

Maec ¼ 2 symðQaeca�ðGradQaecÞTÞ

namely:

Marc ¼ M �Maec;

this tensor represents a second family of configurational changes and can thus be
related to the configurational stresses.

To write the constitutive statements for the configurational stresses, we pro-
pose starting from the idea that a convex domain fðT ;SÞ exists in the Cartesian
product of the spaces of these stresses, such that

fa 0 &
_HH ¼ lH

qf
qT

& lH b 0 & lHf ¼ 0

_MMarc ¼ lM
qf
qS

& lM b 0 & lMf ¼ 0

(

4.3. Material constitutive statements

Constitutive statements for f ðaÞ. The translational mobility of ashlars within
boxes must be represented in the model by a relationship between the relative dis-
placement r, the box ellipsoid G and the ashlar’s rotation Q. To obtain it, we
write the condition that the ‘‘contact’’ points on the ashlar (as defined by the s

ðiÞ
� ,

i ¼ 1; . . . ; n) are not external to the ellipsoid defined by G and r, i.e.:

dðiÞ ¼ ðsðiÞ� Þ2
X3

j¼1

ðsð jÞ� � GTðQs
ðiÞ
� � rÞÞ2

ðGsðiÞ� Þ4
a 1 Ei a f1; . . . ; ngð7Þ

The internal force acting on ashlars can be related to the dðiÞ measure of the
position of the ashlar within the box through a sort of Signorini condition of uni-
lateral contact (see Fig. 7).

Figure 7. Signorini condition for the contacts of ashlars and boxes.
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Let us take the components of f ðaÞ on the actual directions of the ‘‘contact’’
points of the ashlar (take all n such points):

jðiÞ ¼ ksðiÞ� k f ðaÞ � ðQsðiÞ� � rÞ; i a f1; . . . ; ng:

The unilateral contact condition is

ðdðiÞ � 1ÞjðiÞ ¼ 0 & dðiÞ a 1 & jðiÞ
a 0 Ei a f1; . . . ; ng:

At a contact, the value of jðiÞ can be taken as inversely proportional to the
tightness of the box enclosing the ashlar: the larger the norm of G and/or r, the
looser the interaction.

Furthermore, one can assume that the box parameters (G and r) yield under
such action. Yielding can be described by a law of the form:

_ddðiÞjðiÞ ¼ 0 E _ddðiÞ or
dðiÞ ¼ 1 & jðiÞ < 0 ) _ddðiÞ ¼ 0

dðiÞ ¼ 1 & jðiÞ ¼ 0 ) _ddðiÞ < 0

�

Straining by:

jðiÞ ¼ 0 if dðiÞ < 1

jðiÞ ¼ jðdetG; krk; sðiÞ� ; . . .Þ if dðiÞ ¼ 1

�

with j a decreasing function of the first two arguments.
We can then write

f ðaÞ ¼ 1

ksðiÞ� k

X6

i¼1

jðiÞðQsðiÞ� � rÞ

(no more than three non null terms will contribute to the sum, unless G ¼ I and
r ¼ 0).

In the case of cubes, the ‘‘contact’’ condition (7) becomes:

dðiÞ ¼ 3s2

8

X3

j¼1

ðsð jÞ� � GTðQs
ðiÞ
� � rÞÞ2

ðGsðiÞ� Þ4
a 1 Ei a f1; . . . ; 6g

and then:

jðiÞ ¼ s
ffiffiffi
3

p

2
ffiffiffi
2

p f ðaÞ � ðQsðiÞ� � rÞ; i a f1; . . . ; 6g:

Constitutive statement for mðaÞ. The internal force dual to the rotational mobility
of ashlars within boxes can be represented in the model by a law depending on
the present value of Q and M.

The eigenvectors of M represent the normals to the apparent faces of the box,
whose rôle in this issue is to be defined.
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The following cases can be taken into account:

1. M has three equal eigenvalues: Q is equally framed on all directions, it has no
preferred axis;

2. M has two equal eigenvalues and
(a) the third prevails on them: Q’s axis is rather parallel to the prevailing

eigenvector, as rotations about it are less blocked than about other
directions;

(b) the third is below them: for a similar reason, Q’s axis is rather orthogonal
to the smaller eigenvector;

3. M has three distinct eigenvalues: Q’s axis is related to the direction of least
e¤ort, which must be defined introducing some average.

To define a kinematic variable describing the interaction of Q and M, we can
take the axial vector of the former and the spectral decomposition of the latter:

Q ¼ e�yeq; y a ½0; 2p½; q a V; kqk ¼ 1;

M ¼ PdmicPT ; P a SOð3Þ; mi a R; i a ½1; . . . ; 3�

where dmic is the diagonal matrix of the eigenvalues of M and P the orthogonal
tensor whose columns are the eigenvectors of M.

Let pðiÞ be an eigenvector of M, normalised to kpðiÞk ¼ 1:

mi p
ðiÞ ¼ MpðiÞ; pðiÞ � pð jÞ ¼ dij Ei; j a ½1; 2; 3�:

We take the following measure of the e¤ect of M on Q:

k ¼ max
pð1Þ;pð2Þ;pð3Þ

X3

i¼1

mikpðiÞ � qk

where the max is to be taken among all triples of eigenvectors when such a triple
is not unique, and assume

mðaÞ ¼ cðk; y; detG; krk; sðiÞ� ; . . .Þq

with c an homogeneous and increasing (possibly linear) function of the first two
arguments and a decreasing function of the next two.

5. Conclusion

A continuum model of structural systems made of interlocking ashlars has been
proposed, based on assumptions of observational origin, aiming to reduce as
much as possible the system to a set of rigid bodies with unilateral contacts.

Ashlar interlocking is introduced in the model by way of two constitutive
assumptions about the material force and the material moment acting on each
ashlar. These assumptions depend on the geometric information conveyed by
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the ‘‘box’’ enclosing each ashlar; in turn, the specification of each box is the out-
come of a configurational problem involving the kinematics of ashlars. Thus, an
ashlar structural system is seen as the superposition of two continua with micro-
structure: a continuum of ashlars, endowed with translational and rotational
mobilities, and a continuum of boxes accounting for the mutual interlocking of
ashlars. The latter continuum is endowed with a rather complex kinematics,
which is partly dictated by the kinematics of ashlars. Since the dynamics of the
continuum of ashlars is governed by balance laws where inertial terms appear,
its role is to model material elements. On the other hand, the continuum of boxes
can be regarded as providing a configurational setting for the continuum of
ashlars, because its velocity fields are not directly bounded by inertia (though
they depend constitutively on material velocities).

A complete set of motion equations is furnished, with constitutive laws under
form of flow rules associated with convexity criteria.
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léonard, in L’architrave, le plancher, la plate-forme. Nouvelle histoire de la construc-
tion / R. Gargiani (ed.), Presses polytechniques et universitaires romandes, Lausanne,
2012, pp. 188–193.

[10] A. Dyskin - Y. Estrin - A. Kanel-Belov - E. Pasternak, A new concept in design

of materials and structures: assemblies of interlocked tetrahedron-shaped elements,
Scripta Mater., 44 (2001), pp. 2689–2694.

[11] A. Dyskin - Y. Estrin - A. Kanel-Belov - E. Pasternak, A new principle in

design of composite materials: reinforcement by interlocked elements, Compos. Sci.
Technol., 63 (2003), pp. 483–491.

82 m. brocato



[12] A. Dyskin - Y. Estrin - A. Kanel-Belov - E. Pasternak, Topological interlock-

ing of platonic solids: away to new materials and structures, Philos. Mag. Lett., 83
(2003), pp. 197–203.

[13] J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rat. Mech.
Anal., 113 (1991), pp. 97–120.

[14] Y. Estrin - A. Dyskin - E. Pasternak, Topological interlocking as a material design

concept, Mater. Sci. Eng., C, 31 (2011), pp. 1189–1194.

[15] Y. Estrin - A. Dyskin - E. Pasternak - S. Schaare - S. Stanchits - A. Kanel-

Belov, Negative sti¤ness of a layer with topologically interlocked elements, Scripta
Mater., 50 (2004), pp. 291–294.

[16] J.-G. Gallon, Machines et inventions approuvés par l’Académie Royale des Sciences,
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