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In memory of Professor Giuseppe Grioli

Abstract. — An abridged but faithful exposition of Professor Grioli’s version of the theory of

microstructured continua of Cosserat type is given, so as to reformulate and discuss the title ques-
tion. This exposition prompts some reflections on how to bridge by the use of continuum theories the

gap between microscopic and macroscopic mathematical descriptions of matter.
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1. Introduction

In [1], his last journal papers appeared in 2003, Professor Giuseppe Grioli o¤ered
his own answer to a riddle that he had repeatedly proposed to the attention of the
continuum mechanics community (see the literature quoted in [1], especially [2]).
Here is how he makes his case in the introduction of [1].

To begin with, he spells out the di‰culties he has with the standard theories of
microstructured continua.

‘‘As is well known, Cauchy’s field and boundary equations, together with the
initial conditions, are at the basis of Continuum Mechanics. Nevertheless, they
are not su‰cient for the study of many questions. More complex mathematical
models are necessary, such as microstructures and, in particular, Cosserat’s
theory. But the analytical problem of microstructures demands more numerous
data on the boundary and in the initial instant than Cauchy’s theory. This is a
very important point. In my opinion, it is in general very di‰cult to express the
action that the external world exerts on a body through its boundary by means of
physically significant known functions of its points, unlike what happens in the
classical theory of Cauchy. For example, in Cosserat’s microstructures it is neces-
sary to give on the boundary the distribution of the external couples or, alterna-
tively, some surface constraints, for example, to specify the local rotations.

In my opinion, the inconvenience is due to the procedure for setting the gen-
eral equations, because it requires the introduction of concepts of dubious physi-
cal meaning as couple stress, hyperstress and so on. Consequently, according to



the action-and-reaction principle, this would mean the attribution of special
properties to the external world. I think that it is very di‰cult (indeed impos-
sible) to give concrete examples in which the external couples due to the external
world are known on the boundary. I think that the microstructure theory must
be assumed to be a refinement of the classical theory of Cauchy, and that phys-
ical meaning must be given only to the traditional Cauchy stress, possibly not
symmetric.’’

He then delineates how those di‰culties can be radically removed.
‘‘The mathematical model of a microstructure must be obtained using as little

as possible the concept of force, whose physical definition, according to Hertz
ideas, is very di‰cult. This happens especially for internal forces and on the
boundary. On the contrary, it is easier and more significant to operate starting
from the mathematical concept of deformation, keeping in mind the corpuscular
hypothesis on the matter of modern Physics.

I will show that it is possible to invent a theory of the microstructures that on
the boundary demands only the knowledge of the data required by the classical
Cauchy theory. The same happens for the initial conditions in the evolutive prob-
lems. Therefore, the microstructure’s mathematical model will appear as a refine-
ment of Cauchy theory, that must be considered as the general basis of all Con-
tinuum Mechanics.’’

I have a couple of considerations to o¤er, prompted by the above quoted
passages.

Firstly, Grioli’s concern for ‘physically significant’ body-environment inter-
actions points to situations where a mathematically consistent theory is tested
experimentally for an ultimate indispensable validation of its predictions. Now,
mathematically legal boundary conditions, both ‘hard’ and ‘soft’, may be di‰cult
to realise in the laboratory, even when the adopted model is Cauchy’s. If, for
example, certain theoretically prescribable point-wise boundary displacements
turn out di‰cult to induce in practice, one might be tempted to replace them by
looser, and hence easier to realise, confinement conditions. But, such a measure
would most probably entail unsurmountable analytic di‰culties in establishing,
say, the well-posedness of the modified mathematical problem. Secondly, it seems
to me that Grioli’s preoccupations with conventional models of microstructured
continua had and have the merit, among others, to point out the need of making
explicit the modeler’s scale-bridging choices.

This paper is a late follow-up of an invited talk with identical title I gave dur-
ing the conference ‘‘New Frontiers in Continuum Mechanics’’, held in Rome
on June 21–22, 2016, at the Accademia Nazionale dei Lincei. In Section 2, I re-
capitulate briefly how Grioli solved his own modelling riddle. Then, in Section 3,
I elaborate on the subject, in the light of some reflections on how to bridge the
gap between microscopic and macroscopic mathematical descriptions of matter.

2. Grioli’s argument

I hereafter give an abridged but faithful exposition of the argument o¤ered by
Grioli in [2] and, with more detail, in [1], in order to show that ‘microstructures
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[should be seen] as a refinement of Cauchy theory’. For easier reference, I use
a notation as close to his as possible for most of the objects that have central
importance in his developments, e.g., for the referential and current position vec-
tors of material points and for the stress measures; however, on indulging to an
idiosyncrasy of mine and contrary to what he did, I make no use of Cartesian
coordinates.

2.1. Deformation

Grioli denotes by C and C 0 the reference and current configurations of a three-
dimensional continuous body; he also denotes by C 00 a varied configuration
‘very close to C 0’. In his views, in the case of a microstructured material body of
Cosserat type, the matter comprising C consists of sizeable elementary particles,
modeled as rigid bodies of diameter h, whose placement in the reference space
is specified by a (mass center, rotation) pair ðG;RÞ and whose typical point is
denoted by P. Points and particles in the current and varied configurations are
decorated by superscript primes, one or two, respectively.

In a deformation of C into C 0, the displacement of P is u ¼ PP 0: the deforma-
tion gradient is denoted by F ; the deformation measure is Cauchy–Green’s:

~EE ¼ 1=2ð1� F TFÞ:

For c and c1 two elementary particles respectively centred at G and G1, and for
P a c and P1 a c1, let

GP ¼: h ¼: h~hh; G1P1 ¼: h1 ¼: h~hh1 and GG1 ¼: x;

so that

PP1 ¼ �hþ xþ h1 ¼ xþ hð~hh1 � ~hhÞ;

the dilatation coe‰cient d at point P in the direction of PP1 is:

ð1þ dÞ2ðP;PP1Þ :¼
jP 0P 0

1j
2

jPP1j2
:

Implicitly in [1] and explicitly in [2], Grioli assumes that jxj > 0 whatever the
value of the scale parameter h; again more or less explicitly, he suggests that the
kinematics of Cauchy continua is recovered in the ðh ! 0Þ-limit, in the sense that
both

lim
h!0

PP1 ¼ GG1

and

lim
h!0

ð1þ dÞ2ðP;PP1Þ ¼ ð1þ dÞ2ðG;GG1Þ

¼ F TðGÞFðGÞ � x

jxj n
x

jxj ¼ ð1� 2 ~EEðGÞÞ � x

jxj n
x

jxj :
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Here is the supporting argument he sketches. Given that

P 0P 0
1 ¼ G 0G 0

1 � G 0P 0 þ G 0
1P

0
1;

he sets:

G 0G 0
1 ¼ Fx; G 0P 0 ¼ Rh ¼ hðR~hhÞ; G 0

1P
0
1 ¼ R1h1 ¼ hðR1~hh1Þ;

so that

P 0P 0
1 ¼ Fxþ hðR1~hh1 � R~hhÞ;

and hence, as an easy computation shows,

ð1þ dÞ2ðP;PP1Þ ¼ ð1þ dÞ2ðG;GG1Þ þOðhÞ:

2.2. Balance laws

The basic balance laws are given by Grioli the following point-wise expressions:
In C,

DivðF ~TTÞ þ d f ¼ 0; DivðF ~PPÞ þ e½F ~TTF T � þ dc ¼ 0;ð1Þ

In qC, the boundary of region C,

F ~TTn ¼ cf ; F ~PPn ¼ cc:ð2Þ

Here ~TT is the Cosserat stress and ~PP is the couple stress, two second-order tensors;
the vectors d f , dc and cf , cc denote, respectively, volume and area densities of dis-
tance and contact forces and couples; e is the Ricci symbol, whose representation
in terms of the three orthonormal vectors ei is:

e :¼ ei nWi; Wi ¼ �eiþ1 n eiþ2 þ eiþ2 n eiþ1 ðmodulo 3; no sumÞ;

whence

e½A� ¼ ðWi � AÞei ¼ ðWi � skwAÞei;

equation ð1Þ2 can be equivalently written as

DivðF ~PPÞ þ e½Fðskw ~TTÞF T � þ dc ¼ 0 in C:ð3Þ

Recall that the Cosserat stress ~TT is symmetric if and only if the Cauchy stress T
is, because T :¼ ðdetFÞ�1F ~TTF T ; and that F ~TT is the stress measure introduced by
Piola.
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Systems ð1Þ1-ð2Þ1 and ð3Þ-ð2Þ2 correspond, respectively, to systems (39) and
(40) in [1].

2.3. Scaling assumptions

Although Grioli restricts his attention to materials with a hyperelastic response,
such a constitutive specification is irrelevant to purposes like his. It su‰ces to
assume, as he did, that the stress measures of Piola type scale as follows:

F ~TT ¼ ðF ~TTÞ0 þ hðF ~TTÞ1 þ oðhÞ; F ~PP ¼ hðF ~PPÞ1 þ oðhÞ:ð4Þ

It is also convenient to record here the postulated dependence of external distance
and contact loads on the scale parameter h:

d f ¼ ðd f Þ0 þ hðd f Þ1 þ oðhÞ; etc::ð5Þ

2.4. Hierarchy of field and boundary equations

A hierarchical h-sequence of field and boundary equations ensues from a formal
combination of the balance laws (1)–(2) with the scaling assumptions (4)–(5)
about external loads, namely,

DivðF ~TTÞ0 þ ðd f Þ0 ¼ 0 in C;

e½ðF ~TTÞ0F T � þ ðdcÞ0 ¼ 0 in C;

ðF ~TTÞ0n ¼ ðcf Þ0 and 0 ¼ ðccÞ0 in qC;

9>=
>;

ð6Þ

DivðF ~TTÞ1 þ ðd f Þ1 ¼ 0 in C;

DivðF ~PPÞ1 þ e½ðF ~TTÞ1F T � þ ðdcÞ1 ¼ 0 in C;

ðF ~TTÞ1n ¼ ðcf Þ1 and ðF ~PPÞ1n ¼ ðccÞ1 in qC;

9>=
>;

ð7Þ

etc..
As to the zero-order system (6), note that it comes to coincide with the Cauchy

system of field and boundary equations – that is, with system (4.34)–(4.35) of [2]
– whenever the zero-order couple loads ðdcÞ0 and ðccÞ0 are both null; in particu-
lar, condition ðdcÞ0C 0 is satisfied if and only if the Cosserat stress field ð ~TTÞ0 is
symmetric-valued. Both in [2] and in [1], Grioli questions the general ‘physical
concreteness’ of non-null couple loads of order zero; in [2], he mentions the exam-
ple of magnetic dipoles in a magnetic field to argue that generally lim

h!0
dc should

be null; and he reasons that a body can only match null zero-order contact cou-
ples at its boundary, because ð4Þ2 implies that lim

h!0
ðF ~PPÞn ¼ 0.

Under the assumption that ðccÞ0C 0, Grioli regards system (6)–(7) as a first
‘refinement of the classic theory of Cauchy’, a refinement where only the zero-
order stress ð ~TTÞ0 (possibly asymmetric in case ðdcÞ0A 0) is physically significant,
whereas ð ~TTÞ1 and ð ~PPÞ1 (as well as all higher-order stress-like constructs) need not
be given any ‘physical meaning’ [1].
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2.5. On the model’s physical concreteness

Irrespectively of the value of the scale parameter h, let the contact fields

ĉcf ðX ; nÞ :¼ ðF ~TTÞðX Þn; ĉccðX ; nÞ :¼ ðF ~PPÞðXÞnð8Þ

be defined at each point X a C for n the normal to each oriented plane through
that point. Then, as is the case for Cauchy continua, it would be possible to
induce from relations ð8Þ that the information content of the stress field F ~TTðX Þ
[F ~PPðXÞ] is the same as that of the contact field ĉcf ðX ; �Þ [ĉccðX ; �Þ]; granted this, at
each point X a qC and for nðX Þ the normal to qC at that point, the boundary
conditions (2) would read:

ĉcf ðX ; nðXÞÞ ¼ cf ðX Þ; ĉccðX ; nðXÞÞ ¼ ccðXÞ:ð9Þ

Thus, within the mathematical model considered by Grioli in [1, 2], the ‘physical
concreteness’ ([1], p. 446) of the stress fields F ~TT and F ~PP is the same as that of the
contact actions realizable at boundary points and of the contact interactions detect-
able at interior points.

3. Continuum theories intended to bridge the micro!macro gap

What in [1] Grioli calls the Cauchy theory, aka the theory of simple continua, is
a one-velocity and one-gradient field theory, that is to say, a theory where the
first partial derivatives with respect to time and space of the only unknown, a
time-dependent deformation field over a space region, su‰ce for a macroscopic
description of the mechanical vicissitudes of that region.

All theories of non-simple (aka complex) continua are either multivelocity or
multigradient, or both [3]; all attempt to bridge, somehow and to some judicious
extent, the micro!macro gap. For example, Grioli’s hierarchical theory of
microstructures considered in the previous section is multivelocity, while the
theories of second-gradient materials considered in [4, 5] contemplate only one
velocity field; and, provided temperature is regarded as the time rate of the ther-
mal displacement [6, 7], thermomechanics is indeed a multivelocity theory, with
temperature the additional velocity-like variable.

Multigradient theories are meant to account for nonlocality in the material re-
sponse, a challenge that the community studying fractional mechanics has taken
up in a systematical manner. Intrinsically nonlocal theories have been considered
since long by Edelen [8] and Eringen [9] and, more recently, by Silling and others
[10]; consideration of such theories falls beyond the scope of this paper.

As to multivelocity theories, whatever the physical interpretations of the
‘velocities’ listed in addition to the time rate of mechanical displacement, their
true nature is mesoscopic, in that the role of the additional velocities is to enrich
a purely mechanical macroscopic description of a target physical phenomenology
by accounting for certain collective characters of the microscopic individual
motions. In fact, in such continuum mechanical theories some of the state vari-
ables are meant to carry gross information about a large collection of ‘substates’.
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For example, in classical thermoelasticity, temperature has a psychological status
di¤erent from displacement gradient: the latter measures macroscopic local
changes in shape, volume, or orientation, the former is meant to account for infi-
nitely many, grossly equivalent substates of microscopic agitation. Order parame-
ters have a role not di¤erent from that of temperature, in that they also account
for certain substate changes that we do envisage as physically relevant and yet
we can not, and at times we choose not to describe in greater detail. However,
as the modifier ‘order’ suggests, the relative substate changes are rather in micro-
scopic organization than in microscopic agitation: think, for example, of the order
parameter in Allen–Cahn’s theory of phase segregation.

Be they multivelocity or multigradient, all theories of complex continua may
be given a Virtual Power format; Grioli’s theory in [1, 2] is no exception. Power
expenditures, no matter if e¤ective or virtual, are scalar quantities and hence can
be added up whatever the space scale at which they occur. The nature of VP state-
ments is pre-variational, in that their formulation may be, but need not be, inter-
preted as an integral form of the Euler-Lagrange stationarity condition associated
with the minimization of some energy functional. Just as for the choice of a class
of test functions in the calculus of variations of a functional, the crucial step in
the formulation of a VP principle is the choice of a class of virtual velocities, a
properly invariant and properly inclusive class, consistent with the ‘hard’ (aka
‘Dirichlet’) boundary conditions, if any (in [1], virtual velocities are denoted by
ðdu; dRÞ; for examples of invariance and inclusiveness requirements, see [4, 5]);
ultimately, as is well-known, a VP principle consists in the assertion that two
linear and continuous functionals over the collection of virtual velocities, one
for the internal the other for the external power expenditure, take equal values
at the same velocity field. The predictive power of VP statements depends on
their part-wise quantification: it is maximal when they are assumed to hold for
all space-time parts of a chosen Cartesian product of a material body and a time
interval. In this instance, a VP approach produces consistent sets of evolution equa-
tions and initial/boundary conditions.

To exemplify the results of this approach, a modicum of technicalities is in-
evitable. We let P denote the open and bounded space region with complete
boundary qP occupied at some initial time tin by a typical subbody, and we let
I denote a typical open time interval, whose boundary qI consists of its end
points tin and tfin; moreover, we let the boundary of the space-time part P� I
be the union of the sets qP�I and P� qI; finally, we let qhP� I and
P� ftfing the ‘hard’ parts of the boundary of P� I , where virtual velocity fields
must be taken identically null. With this, exploitation of a VP approach simulta-
neously produces evolution equations holding in P� I , as many as the gradients
of the independent velocity-like variables needed to characterise the deforma-
tional vicissitudes of the material body under study; ‘soft’ boundary conditions
holding on qsP� I (qsP ¼ qPnqhP); and velocity initial conditions holding on
P� fting. I reckon that such evolution equations, boundary conditions, and ini-
tial conditions, in that they all follow from one and the same mathematical state-
ment, have one and the same collective physical concreteness in the sense of
Grioli [1].
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