Rend. Lincei Mat. Appl. 29 (2018), 93-107
DOI 10.4171/RLM/795

Functional Analysis — Compactness and s-numbers for polynomials, by ERHAN
CaLiskAN and PiLAR RUEDA, communicated on April 21, 2017.

Dedicated to the memory of Jorge Mujica (1946-2017)

ABSTRACT. — We extend the measure of non compactness notion to the polynomial setting by
means of Approximation, Kolmogorov and Gelfand numbers, that are introduced for homogeneous
polynomials. As an application, we study diagonal polynomials between sequence spaces.
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1. INTRODUCTION

A. Pietsch [19] introduced an axiomatic theory of s-numbers as a tool for the
study of linear operators between Banach spaces. The theory of s-numbers of
multilinear operators has been recently developed by D. L. Fernandez, M.
Mastylo and E. B. da Silva [11] (see also [28]), by extending linear techniques to
the multilinear case. However, the theory for homogeneous polynomials has
not been checked as far as it should have been. We mention only the particular
case by A. Brauns, H. Junek and E. Plewnia [3] and the unpublished [4]. Tensor
products are intrinsically related to polynomials, and approximation numbers of
tensor product operators have been also considered (see e.g. [26, 27)).

Our aim is to give a hint of the theory for homogeneous polynomials and
to show how to deal with non-linear techniques, that will provide shorter proofs
than those coming from the classical theory. The relation of both, linear and
polynomial theories are well stated in Section 3. Section 4 contains the essen-
tials of the n-th approximation number a,(P) of an homogeneous polynomial
P. Kuratowski and Hausdorff measures are treated in that section. As an at-
tempt to quantify the non compactness of a polynomial, we study the polyno-
mial notion of Kolmogorov numbers d, and the polynomial m-lifting property
in Section 5. In particular we prove that d,(P) = d,(P.), where P, is the lin-
earization of P defined on a Banach space X. In the last section we provide con-
crete examples of s-numbers sequences, including approximation, Kolmogorov
and Gelfand numbers of diagonal homogeneous polynomials between sequence
spaces.
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2. NOTATION AND PRELIMINARIES

The symbol K represents the field of all real or complex numbers, and N all pos-
itive integers. The letters X, Y, W and Z will always represent (real or complex)
Banach spaces. The open unit ball of X is By and By is the closed unit ball.
As usual, X* is the dual of X, and «y is the canonical embedding of X into the
bidual X** of X. Let ['(C) denote the closed balanced convex hull of a subset
ccX.

Given a continuous m-linear mapping 4: X X ---x X — Y, the map
P: X — Y, defined by P(x) = A(x,...,x) forevery x € X, is said to be a contin-

m times

uous m-homogeneous polynomial. Z(™X; Y) will denote the vector space of all
continuous /m-homogeneous polynomials from X into Y, which is a Banach space
with the norm ||P|| = sup{||P(x)| : ||x|| < 1}. When Y = [ we will write (" X)
instead of 2("X;K) and when m =1, Z(X;Y):= 2(1X;Y) is the space of
all continuous linear operators from X to Y. Let 2" :=]J, , Z("X;Y), that
is, 2™ is the class of all m-homogeneous polynomials defined between Banach
spaces. Denote by 2 :=J,, 2™ the class of all continuous homogeneous polyno-
mials defined between Banach spaces. When m = 1, & := 2! = 2 is the class of
all continuous linear operators.

Let P e 2("X;Y). We define the rank of P as the dimension of the linear
span of P(X) in Y.

Given a Banach space X, ®,’f1 ;X will denote the completed m-fold symmetric
tensor product of X endowed with the projective s-tensor norm r,, which is
defined as (see [12, p. 164])

o0

my(z) = inf{z il I 22 =4 @ Xj}
=

j=1

forze ®% X, where ®,,x :=x®---Qx.If T e L(X;Y), let ®,,, T : ®% X
’ ﬁ,—/ ’ ’
— ®;§ , Y be the continuous linear rﬁ,ggﬁ given by ®,, , T(®,, x) = ®,, T(x).

For Pe 2("X;Y), let P, denote the linearization of P, that is the unique
continuous linear operator P : ®7 X — Y such that P(x) = P.(®,,x). The
correspondence P < P; determines an isometric isomorphism — denoted by
Iny y — between 2("X;Y) and g(@,’;{SX; Y) (see [12, Proposition, p. 163]).
Let I, : 2" — &% and I : 2 — & be the correspondences whose restriction to
each component (" X;Y)is Iny y.

Let 2 be a metric space. The Kuratowski measure o(A) of non-compactness
of a bounded set A C % is defined by

a(A4) = inf{e > 0 : A may be covered by finitely many sets of diameter < ¢}.

In case that we consider just finitely many balls of radius < ¢ to cover 4, the
infimum is called the Hausdorff ball measure }(A) of non-compactness of A,
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that is
p(A) = inf{e > 0 : A may be covered by finitely many balls of radius < ¢}.

For every bounded set 4 we have that f(A4) < a(A) < 2p(A4).

Let X and Y be Banach spaces. Since continuous m-homogeneous polyno-
mials are bounded on bounded sets, we can extend the Kuratowski, and the
Hausdorff measure of non-compactness of linear operators to polynomials in a
natural way: for any P € Z(™X;Y) the Kuratowski and the Hausdorff measure,
respectively, of non-compactness of P is defined by

y(P) :=a(P(By)) and §(P):=p(P(Bx))

Note that P is compact if and only if 7(P) = y(P) = 0.

3. 5-NUMBER SEQUENCES FOR HOMOGENEOUS POLYNOMIALS

In a natural way, we introduce the notion of an m-s-number sequence for
m-homogeneous continuous polynomials. Let m € N and for each n e N et
syt P — [0,00) be a mapping. The sequence s = (s,,) is called an m-s-number
sequence if the following conditions are satisfied for any n, k € N:

(S1) Monotonicity: For every P € 2("X;Y),
1P| =s1(P) 2 52(P) = - 20,
(S2) Additivity: For every P,Q € 2("X;Y),
Stn—1 (P + Q) < 5i(P) + 5(Q)-
(S3) Ideal-property: For every P € 2("X;Y), Se X(Y;Z), T € L(W;X)
5u(So PoT) < |IS]s(P)|ITI|"
(S4) Rank-property: Let P € 2("X; Y).
rank(P) < n = s,(P) =0.

Furthermore, if m = 1 the following condition has to be added:
(SS) Norming-property: s,(Id : /) — /') =1, n e N, where Id is the identity
mapping on the n-dimensional Hilbert space 7;'.

If (s,) is an m — s-number sequence for each m € N, then (s,) is called an
s-number sequence.

Note that this notion coincides with the usual notion of s-number sequence for
linear operators, introduced in [21], whenever m = 1.

Our first interest is to relate the linear and the polynomial notions of s-number
sequences.
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PROPOSITION 3.1. If the mapping s = (s,) : & — [0,0)" is an s-number se-
quence (in the linear sense) then, s o I,, : ?™ — [0, oo)N is an m-s-number sequence.

ProOOF. We will pay attention just to the ideal property. This property follows
from the fact that (So PoT), =SoPro®,, T and ||®,,, T| = ||T||", for all
Pe?("X;Y), TeX(W;X)and S e L (Y;Z). O

The theory of ideals of homogeneous polynomials between Banach spaces has
been developed in the last decades by several authors, so the extension of the dual
procedure to polynomial ideals is a natural step. In this paper we provide many
results on homogeneous polynomials in connection with their adjoint concerning
measure of non-compactness and s-numbers. First we need the definition of the
adjoint of a continuous homogeneous polynomial.

DEFINITION 3.2 (Aron—Schottenloher [1]). Given P € Z("X; Y), the adjoint of
P is the following continuous linear operator:

P Y = 2("X),  P(p)(x) = p(P(x)).
It is clear that |P*|| = || P||.

After this definition by R. Aron and M. Schottenloher, and after the works of
R. Ryan [22, 24], the adjoint of a polynomial became a standard tool in the study
of spaces of homogeneous polynomials and in infinite dimensional holomorphy
(see, e.g. [6, 7, 17] and references therein).

REMARK 3.3. If P e 2("X;Y) has finite rank then P, has finite rank. Since
PL(®,; ; X) coincides with the linear hull of P(X), we have rank(P) = rank(Pp)
=rank((Pr)") = rank(Iny i o P*) = rank(P*).

We refer to [6] or [16] for the properties of polynomials in infinite dimensional
spaces, to [15] for the theory of Banach spaces, and to [5], [12] and [25] for tensor
products of Banach spaces.

4. APPROXIMATION NUMBERS AND COMPACTNESS OF POLYNOMIALS

Similarly to the linear case we define the n-th approximation number a,(P) of any
homogeneous polynomial P € Z2("X; Y) by

a,(P) :==1inf{||P— Q| : 0 e 2("X;Y), rank(Q) < n}.

If we denote a,(T) :=inf{||T — L||: Le #(X;Y), rank(L) <n}, T € L(X;Y),
then by Remark 3.3 we see that a,(P) = a,(Pp).

If a = (a,) is an s-number sequence on ., Proposition 3.1 gives that a =
ao I, is an m — s-number sequence on £". Therefore, @ = a o [ is an s-number
sequence.
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PROPOSITION 4.1. Let (s,): 2("X;Y) — [0,0)" be an s-number sequence.
Then

(i) Forall P e 2("X;Y) we have s,(P) < a,(P), n e N.
(i) Forall Se L(Y;Z),Pe 2("X;Y) and all k,n € N we have s, 1(So P) <
51(8)a,(P) and Sjyn-1(S o P) < a(S)s,(P).

PrOOF. (i) Let P € 2("X;Y). Then for any R € (" X; Y) with rank(R) < n,
we have s,(P) <s1(P—R)+s,(R)=|P—R|+s,(R)=|P—R|. Hence,
sp(P) < ay(P).

(ii) Let R e 2(™X;Y) with rank(R) < n. Since rank(S o R) < n, it follows
that

Sten 1(S 0 P) < 5u(S(P = R)) +5,(S 0 R) = s(S(P — R))
< [Sllsi(P = R)|Lx|™ < [ISl|si (P — R) = [IS]| |7 - RIL.

Therefore sg,1(S o P) < 51(S)a,(P).
The proof of the second inequality can be obtained in a similar way. O

It is worth mentioning that our use of polynomial techniques allows us to
reduce many proofs to the linear case instead of adapting all calculations to the
new setting.

PROPOSITION 4.2. Let m > 2 and let X and Y be Banach spaces.

(a) For every polynomial P € 2("X;Y) we have a,(P*) < a,(P), n e N. Fur-
thermore, if there exists a linear projection © of norm 1 from Y** onto
ky(Y) then, for every P € Z(™X;Y) we have that a,(P*) = a,(P) for every
neN.

(b) If Pe 2("X;Y) is a compact polynomial, then a,(P*) = a,(P) for every
ne N

PrOOF. (a) Since I»y i is an isometric isomorphism, it follows from, e.g., [20,
p. 152, 11.7.3. Proposition] that a,(P*) = a,(Inx k o P*) = a,((PL)") < an(PL)
= a,(P).

For the second assertion, we use the analogous property for linear operators
[11, Proposition 3.3] to get that a,(P) = a,(Pr) = a,((PL)") = ay(Inx i o P*) =
an(P*).

(b) This equality follows from the well known fact that P is compact if and
only if P, is compact (see [22]) and the corresponding property for linear opera-
tors (see, e.g., [20, 11.7.4 Theorem|), that is, a,(P) = a,(Pr) = a,((Pr)") =
ay(I o P*) = a,(P*), for all n € N. O

REMARK 4.3. The technique we have used in this section makes use of the lin-
earization of continuous homogeneous polynomials. A similar technique works
for continuous m-linear mappings. For each integer m e N, let Z(X1,..., Xn; ¥)
be the Banach space of all continuous m-linear mappings A4 : X; X --- X X}, —
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Y endowed with the sup norm |[[A]| = sup{||A(x1,..., x| : x| <1, i=

mp I T e Z(Xy,..., X; Y) there is a unique continuous linear operator
TL € ,9”()(1 ® ® Xu; Y) such that Ty (x ® -+ - ® x,) = T(x1,...,X4), and
the correspondence T «— T; determines an isometric isomorphism between
ZL(X1,...,Xm; Y) and £ (X ®y Dy Xon: Y). This yields alternative proofs to
those given in [11] based in the well-known linear case.

An important notion used to determine the compactness of a polynomial (in
particular, of an operator) is the measure of non-compactness which is closely
related to s-number sequences. Here we consider Kuratowski and Hausdorff
measures of polynomials which will be useful to determine compactness of a
polynomial and to obtain some basic inequalities in connection with s-numbers.
First let us state a basic result.

PROPOSITION 4.4 (see, e.g., [14, Lemma 2.6]). Let X be a Banach space. Then
B(C) = B(T(C)) for any bounded subset C C X. In particular, B(T(P(By))) =
7(P).

The following theorem can also be proved with similar techniques to the ones
given in [11, Theorem 2.1]. However, we will show how to use polynomial tech-
niques related to tensor products to show that the polynomial case admits shorter
proofs.

THEOREM 4.5. Let m > 2 and let X and Y be Banach spaces. Then for every
Pe?("MX;Y) we have

(1) p(P) < 7(P") and y(P*) < j(P),
(2) 37(P) < y(P*) < 2y(P) and 35(P) < j(P*) < 2j(P).

PRrROOF. (1) Since Pr(Bgr, x) = PL(T(®y s Bx)) = T(PL(®,,, Bx)) = T(P(By)),

we obtain y(Pr) = a(PL(Bgr. x)) = a(P(Bx)) = y(P). Then, by [9, Theorem
1.2.9]

P(P) < p(PrL) < 9((Pr)") = §(Inx,ic 0 (PL)") = J(P7),

where the first equality follows from being /.y i an isometric isomorphism. Now
[9, Theorem 1.2.9] and Proposition 4.4 give that

p(P) = y(Inx 0 (Pr)") = p((PL)") < 7(PL) = B(PL(Bgy, x))
= B(T(P(By))) = 7(P).

(2) By using part (1),
37(P) < 33(P*) = 1 B(P"(By-) <

< j(P) = B(P(Bx)) < a(P(Bx)) < 2y(P),
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and
1. 1 — 1 _ 1 1., .,
S3(P) = 3 B(P(Bx) < 5a(P(Bx) = 57(P) < 37(P")
< f(P*(By-)) < a(P*(By-)) = y(P*) < 2j(P). O

As a consequence, we get the result by R. Aron and M. Schottenloher on com-
pactness of polynomials:

COROLLARY 4.6 ([1, Proposition 3.6]). Let m > 2 and let X and Y be Banach
spaces. Then for every homogeneous polynomial P € ("X ;Y) we have that P is
compact if and only if its adjoint P* is compact.

COROLLARY 4.7. For every Pe 2Z("X;Y) we have that a,(P) < 5a,(P*),
ne N.

Proor. By [10, Proposition 2| we get a,(Pr) < 5a,(P;), so that a,(P)=
ay(Pr) < Say(P;) = Sa,(Iny,k o P*) = 5a,(P*). 0

REMARK 4.8. For any polynomial P € Z2(™X;Y) by [10, Proposition 2| we
have

an(P) < a,((PL)"™) +25(PL) = an((Inx 1 0 P*)") +25(P) = a,(P™) + 2j(P),

as occurs in the linear case, where the first equality can be taken from the proof
of Theorem 4.5 part (1). On the other hand, since a,(P*™) < a,(P*) (see, e.g., [20,
p. 152, 11.7.3. Proposition]), now if P is compact then y(P) = 0 and hence, by
these two inequalities and Proposition 4.2(a), we obtain a,(P) = a,(P*), which
recovers Proposition 4.2(b).

REMARK 4.9. Given Pe 2("X;Y), let a(P):= lim a,(P) > 0. If we con-

sider the approximation property (AP for short) "on Y, then any compact
m-homogeneous polynomial P € (" X;Y) can be approximated by finite-rank
m-homogeneous polynomials (see [2, Proposition 2.5]). Hence, similar to the
(multi)linear case, if the space Y has the AP, then P € (" X;Y) is compact if
and only if a(P) = 0. However, by [1, Proposition 3.3] (see also [17, Theorem
4.3]) we know that 2(”X) has the AP if and only if, for every Banach space
Y, the space of all finite-rank polynomials #y(”X;Y) is norm-dense in the
space of all compact polynomials 2, (" X;Y), or equivalently, any compact
m-homogeneous polynomial P € (" X;Y) can be approximated by finite-rank
m-homogeneous polynomials. Therefore if the space 2(™X) has the AP, then
Pe2("X;Y) is compact if and only if a(P) = 0. Let us remark that there is a
reflexive separable Banach space X with basis such that 2(2X) does not have the
AP (see [1]). Hence, for this space X, which has the AP, there is a Banach space
Y such that there is a compact polynomial P : X — Y which cannot be approxi-
mated by finite-rank polynomials. (Note that it turns out that this space Y also
cannot have the AP by [2, Proposition 2.5].)
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5. KOLMOGOROV NUMBERS

The spirit of Kolmogorov numbers is to measure how far a polynomial is from
being compact. We define the n-th Kolmogorov number d,(P) of a polynomial
Pe2("X;Y) by

d,(P) :=inf{e > 0: P(By) C N, +¢By, N, C Y, dim(N,) < n}.
For P:=T € £ (X;Y) we write d,(T) := d,(P).
PROPOSITION 5.1. Given P € 2("X; Y), d,(P) = d,(Pp).

PrOOF. Clearly d,(P) <d,(P.). On the other hand, if P(By)C N,+¢By
then P, (Bgm x) C ['(P(By)) C I'(N,+¢By) = N, +eBy C Ny + (¢ +6)By for
all 0 > 0. Hence, d,(P;) <&+ 0 for all o > 0 and so, d,(P.) < d,(P). O

As in the linear case, P € 2("X; Y) is compact if and only if d(P) := hm d,(P)

= 0. Also it is obvious that d,(P) = 0 whenever rank(P) < n. Proposmons 3.1
and 5.1 imp}y that d, = d, oI forms an s-number sequence. Proposition 4.1
implies that d,(P) < a,(P), for every n € N.

Kolmogorov numbers are related to approximation numbers via the equality
d(T)=0a,(ToQ),neN, T e £(X;Y), where Q is the canonical metric sur-
jection from /(By) onto X, defined by Q({A:}) = > 5 A, {4} € i(By)
(see [20, p. 150—151], and for the multilinear case see [11, Theorem 4.1].) We do
not know if the polynomial version of this result holds. But the following result,
which gives a characterization of the polynomial (metric) lifting property in terms
of (metric) lifting property, may be of some use in this connection. Before giving
the result let us recall the definition of the lifting property for polynomials intro-
duced by Gonzélez and Gutiérrez [13]. Let m € N. We say that X has the poly-
nomial m-lifting property if, for every continuous m-homogenous polynomial
P from X to any quotient space Y /N, there is P e 2("X;Y) such that P =
oY o P, where QY denotes the canonical map of Y onto the quotient space
Y/N. We say that X has the polynomial metric m-lifting property if, for every
¢ > 0 and every continuous m-homogenous polynomial P from X to any quotient
space Y /N, thereis P € 2("™X; Y) such that P = Q) o Pand ||P|| < (1 +¢)||P|.

PROPOSITION 5.2. Let m € N. A Banach space X has the polynomial (metric)
m-lifting property if, and only if, ®: X has the (respectively, metric) lifting
property.

PROOF. Assume first that X has the polynomial m-lifting property. Let 7" be a
continuous linear operator from ®m ;X into some quotient space Y /N.Let P e
P(MX; Y/N) be such that P, = T. By assumption, there is P € (" X; Y) such
that Q) o P = P. Since QN (P ) ody = P, where 5)( is the m-homogeneous
polynom1a1 from X to ®m X given by dx(x) =x® --- ®x (see [22]), then
QN (P ) . =P =T and ®,’fg ;X has the lifting property.
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We now assume that ®,’,11‘SX has the lifting property. Let P € (" X; Y/N).
Then P, € g(@,’f;AX Y/N) By assumption, there is Py € 3(@,’7‘;3 X;Y) such
that QY o P, = P;. Then P := P, 05y satisfies P = QYo P.

The metric case follows from the fact that ||P|| = || PL]|. O

As a consequence, if X has the polynomial metric m-lifting property, then by
[20, 11.6.3] for every P € 2("X;Y) we have d,(P) = d,(PL) = a,(PL) = @,(P),
foralln e N.

It was shown in [13, Theorem 1] that /;(I") has the polynomial lifting property
(see also [23] and [8]), which is the Banach space of summable number families
{4y}, cr over an arbitrary index set. Moreover, by a modification of the proof of
[21, C.3.6. Proposition, p. 34] one can see that if X = /;(I"), then, given ¢ > 0 and
a continuous m-homogenous polynomial P from X to any quotient space Y /N,

there is P e ;?(’”X; Y) such that P = Q) o P and ||P|| < (1 + 8),:;' (for the

coeflicient m' , see, e.g., [16, Theorem 2.2]). Accordingly we get the following
result.

THEOREM 5.3. Letm > 2 and let X and Y be Banach spaces. Let P € (" X;Y),
and let Q be the canonical metric surjection from I, (By) onto X. Then we have that

ay(Po Q) <

mm -
o d,(P), neN.

PROOF. By [13, Theorem 1] 7 (By) has the polynomial lifting property, and so
it follows by the above remark that for each n e N, @,(Po Q) < %TCNI,,(P o Q).
Using that (d,,) is surjective (see [20, Definition 11.6.4 and Theorem 11.6.5]), we
get a,(Po Q) < ’Z: d,(P), n e N. 0

We remark that we do not know if 7 (By) has the polynomial metric lifting
property. If that were the case, then as a consequence of Propositions 5.1 and
5.2, we would obtain the equality a,(P o Q) = d,(P), for every n e N and P ¢
2("X;Y).

We end this section with another variant of s-number of homogeneous poly-
nomials, namely, Gelfand numbers, from which we will get alternative character-
izations of compactness of homogeneous polynomials. Motivated by [20, 11.5.1.
Proposition] we define the Gelfand numbers ¢,(P) of an m-homogeneous poly-
nomial P € 2("X;Y) by

¢n(P) = ay(kyP).
Clearly (é,) is an s-number sequence since (a,) is an s-number sequence, and

for each n € N we have that ¢,(P) < a,(P). We will just write ¢,(T) := ¢,(P)
whenever P =T € #(X;Y). Note that ¢,(P) = ¢,(Pr) for any P € 2("X;Y).
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Considering the function ¢ : 2(”X;Y) — [0, 00) given by ¢(P) := lim é,(P),
n—0o0
we have that ¢(P) = ¢(Pr). Now, as a polynomial counterpart of 11, Proposition
5.1] compactness of homogeneous polynomials can be quantified by means ¢ and
¢ as follows.

PROPOSITION 5.4. Let m > 2 and let X and Y be Banach spaces. The following
statements for a polynomial P € ("X ;Y) are equivalent.

(i) P is compact.
(ii) ¢(P) =0.
(iit) ¢(P*) =0.

PrOOF. We know that P is compact if and only if P, is compact (see [22]), and
P is compact if and only if P* is compact (see [1] or Corollary 4.4). Combining
these facts with [21, 2.4.11] we get the implications (i) < (ii), and (i) < (iii).

O

Following the proof of [11, Theorem 5.1] we get the following result, which
gives the relation between Gelfand and Kolmogorov numbers of polynomials.

THEOREM 5.5. Let m > 2 and let X and Y be Banach spaces. Then, for every
polynomial P € ("X ;Y) and n € N we have that

6. S-NUMBERS OF DIAGONAL POLYNOMIALS

In [20, p. 158], the asymptotic behavior of (a,), (¢,), and (d,) as n — oo for
diagonal operators between sequence spaces /, is determined. Extending the tech-
niques to the polynomial setting, we now calculate the corresponding numbers
a,(P), ¢,(P), and give lower and upper estimates for the number d,(P) of a diag-
onal polynomial P defined between sequence spaces. As usual, (e;),—, denotes
the unit vector basis.

THEOREM 6.1. Let m > 2 and1<v<u£oo be such that 0 < u—mv < uv

1 1
and let r be given by — = — — — If (0k)j—y € I is such that |oy| = |o2] >+ >0
roow

then, the diagonal polymomial P & ("L 1,) given by P(x) = YL, i &l'r, x =
(ék);il € 1, satisfies

o0

d,,(P):En(P):<Z|Gk|) " _2fmm(2| k|)

k=n
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PrOOF. The proof is modeled on [20, p. 158, Theorem], although it has to
overcome difficulties that come when dealing with polynomials, as the lack in
our context of [20, Theorem 11.5.6]. We include the details for the sake of
completeness.

(i) First we deal with the case 1 < v < u < co. For each n € N consider the
linear operators J, : 1! — 1, Q, : [, — I and P, : [, — [, given by

Ju(&ry. o 8) = (&4,...,6,,0,0,.00),
Qn((én);lil) = (él? ce- 7én)7

and

Pn((én)nwzl) = (élv cee 7én70707 . )

Let Q:=PoP,y, so that Q e #("l,;1,) with rank(Q) < n. Hence, using
Holder’s inequality we have

an(P)

IA

[P =Qll=[IP=PoPuall=sup [l(ox&"),ll,

(&l <1

< s [(Zw ) (Z & )] < (Ml

)il <1 k=n k=n

that s,

) a(P) < (ki o).

We now show the reverse inequality. Suppose that |o,| >0 for some

s >n. Then define a one-to-one operator D: [ — IS by D((,...,<¢)) =
(lot|7"7"&r, . o 77 E,). By [20, p. 158, Lemma 1] for every subspace M of
¥ with codimension codim(M) < n there is e = (e1,...,&) € D(M) such that

||e|\OC =1 and card(K) > s —n+ 1, where K = {k : |8k| = 1} and card(K) is the
cardinality of the set K.

Next write Ry = Qg0 P o J; and denote the 1nc1u51on map from M into [ by
irr. Now, if we define x := D~le = (|a1|""e1, . .., |os|""e,) then

Ryoiy(x) =050 PolJy((|lo1]" e, ... |os|""e))

_ (|0‘ |1+ Im_ m I+m m)

el gl

= (lo1e"s . ol el

Therefore || Ry o in ()|, = (Xiey |ek|m”|ak|")%, and consequently it follows from
[20, p. 158, Lemma 2] that
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i 1
1Ry ing ()l _ (ks lexl ™ ol )’
7 (z;‘:l x| “loel )

IRy o inm

vV

1 S

> CraalelTlol) F= (D) = ()

(ZkeK |8k| |J/| keK k=n

This implies that

(2) inf{||Ry 0 ipg|| : M C I5, codim(M <n}><Z|0k|>

k=n

Now we claim that
(3) Cu(Ry) = Inf{||Ry 0 iy : M C I, codim(M) < n}.

In fact, given any subspace M C [; with codim(M) < n if we take any Q €
P("M; 1) with rank(Q) < n then, since

[Rs 0 inl| = [|rcsy o Ry 0 ing|| < [lrcsy © Ry 0 iag — Ol + (| Q]
we get that

| Ry 0 ipr|| < inf{||xss 0 Ryoipr — Ol : Q € 2("M; 1)), rank(Q) < n}

= dn(’c/; oR;o lM)
or,

IRy 0 ing]| < En(Rs 0 ing) < En(Ry),

from which we obtain the inequality (3). Therefore from (2) and (3) we have that
en(Ry) = (34, lok|") for all s > n. It follows that

(4) &n(P) = é( (Z|O'k| )

for all s > n. Now, combining (1) and (4) we get

(Z|ak|)<cn ) < an(P) < (Z|ak|')’

and, applying Theorem 5.5, we get the desired inequalities stated in the
theorem.
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(i) To prove the case 1 < v =r <u = oo, we need to include some minor
modifications to the above. We keep the notation used in the part (i). We first
note that

an(P) < [|P = Qll = [[P— Po Pyl
1

[e¢]
= s @l < (X lodl”)
k=n

i, <1

Conversely, assume that |o,| > 0 for some s > n. Note that D is now the iden-
tity map and x = e. Then,

1
v

S
IR 0wl = R0 i), = (Dl ™ol
k=1

1 N 1
> (3 lal™lonl”) = (3 lol”)”
k=n

keK
Hence, ¢,(Ry) > (3., |ak|”)% for all s > n. Therefore

S 1

a(P) = &0(P) = &(Ry) = (Y loul”)

k=n
for all s > n, and the result follows as in the part (i). O

Note that for any m > 2 and for the diagonal polynomial P € 2("l,;1,) given
in the above theorem we have that a(P) = ¢(P) = d(P) = 0, as expected since
this polynomial is compact (see, [18]).
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