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1. Introduction

A. Pietsch [19] introduced an axiomatic theory of s-numbers as a tool for the
study of linear operators between Banach spaces. The theory of s-numbers of
multilinear operators has been recently developed by D. L. Fernandez, M.
Mastylo and E. B. da Silva [11] (see also [28]), by extending linear techniques to
the multilinear case. However, the theory for homogeneous polynomials has
not been checked as far as it should have been. We mention only the particular
case by A. Brauns, H. Junek and E. Plewnia [3] and the unpublished [4]. Tensor
products are intrinsically related to polynomials, and approximation numbers of
tensor product operators have been also considered (see e.g. [26, 27]).

Our aim is to give a hint of the theory for homogeneous polynomials and
to show how to deal with non-linear techniques, that will provide shorter proofs
than those coming from the classical theory. The relation of both, linear and
polynomial theories are well stated in Section 3. Section 4 contains the essen-
tials of the n-th approximation number ~aanðPÞ of an homogeneous polynomial
P. Kuratowski and Hausdor¤ measures are treated in that section. As an at-
tempt to quantify the non compactness of a polynomial, we study the polyno-
mial notion of Kolmogorov numbers ~ddn and the polynomial m-lifting property
in Section 5. In particular we prove that ~ddnðPÞ ¼ ~ddnðPLÞ, where PL is the lin-
earization of P defined on a Banach space X . In the last section we provide con-
crete examples of s-numbers sequences, including approximation, Kolmogorov
and Gelfand numbers of diagonal homogeneous polynomials between sequence
spaces.



2. Notation and preliminaries

The symbol K represents the field of all real or complex numbers, and N all pos-
itive integers. The letters X , Y , W and Z will always represent (real or complex)
Banach spaces. The open unit ball of X is BX and BX is the closed unit ball.
As usual, X � is the dual of X , and kX is the canonical embedding of X into the
bidual X �� of X . Let GðCÞ denote the closed balanced convex hull of a subset
C � X .

Given a continuous m-linear mapping A : X � � � � � X ! Y , the map
P : X ! Y , defined by PðxÞ ¼ Aðx; . . . ; x|fflfflfflffl{zfflfflfflffl}

m times

Þ for every x a X , is said to be a contin-

uous m-homogeneous polynomial. PðmX ;Y Þ will denote the vector space of all
continuous m-homogeneous polynomials from X into Y , which is a Banach space
with the norm kPk ¼ supfkPðxÞk : kxka 1g. When Y ¼ K we will write PðmXÞ
instead of PðmX ;KÞ and when m ¼ 1, LðX ;Y Þ :¼ Pð1X ;YÞ is the space of
all continuous linear operators from X to Y . Let Pm :¼

S
X ;Y PðmX ;Y Þ, that

is, Pm is the class of all m-homogeneous polynomials defined between Banach
spaces. Denote by P :¼

S
m Pm the class of all continuous homogeneous polyno-

mials defined between Banach spaces. When m ¼ 1, L :¼ P1CP is the class of
all continuous linear operators.

Let P a PðmX ;YÞ. We define the rank of P as the dimension of the linear
span of PðX Þ in Y .

Given a Banach space X , n̂nps
m; s X will denote the completed m-fold symmetric

tensor product of X endowed with the projective s-tensor norm ps, which is
defined as (see [12, p. 164])

psðzÞ ¼ inf
Xl
j¼1

jljj kxjkm : z ¼
Xl
j¼1

lj nm xj

( )

for z a n̂nps
m; s X , wherenm x :¼ xn � � �n x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m-times

. If T a LðX ;Y Þ, letnm; s T : n̂nps
m; s X

! n̂nps
m; s Y be the continuous linear map given bynm; s Tðnm xÞ ¼nm TðxÞ.

For P a PðmX ;Y Þ, let PL denote the linearization of P, that is the unique
continuous linear operator PL : n̂nps

m; s X ! Y such that PðxÞ ¼ PLðnm xÞ. The
correspondence P $ PL determines an isometric isomorphism – denoted by
ImX ;Y – between PðmX ;Y Þ and Lðn̂nps

m; s X ;YÞ (see [12, Proposition, p. 163]).
Let Im : Pm ! L and I : P ! L be the correspondences whose restriction to
each component PðmX ;Y Þ is ImX ;Y .

Let X be a metric space. The Kuratowski measure aðAÞ of non-compactness
of a bounded set A � X is defined by

aðAÞ ¼ inffe > 0 : A may be covered by finitely many sets of diametera eg:

In case that we consider just finitely many balls of radiusa e to cover A, the
infimum is called the Hausdor¤ ball measure bðAÞ of non-compactness of A,
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that is

bðAÞ ¼ inffe > 0 : A may be covered by finitely many balls of radiusa eg:

For every bounded set A we have that bðAÞa aðAÞa 2bðAÞ.
Let X and Y be Banach spaces. Since continuous m-homogeneous polyno-

mials are bounded on bounded sets, we can extend the Kuratowski, and the
Hausdor¤ measure of non-compactness of linear operators to polynomials in a
natural way: for any P a PðmX ;Y Þ the Kuratowski and the Hausdor¤ measure,
respectively, of non-compactness of P is defined by

gðPÞ :¼ aðPðBX ÞÞ and ~ggðPÞ :¼ bðPðBX ÞÞ

Note that P is compact if and only if ~ggðPÞ ¼ gðPÞ ¼ 0.

3. s-number sequences for homogeneous polynomials

In a natural way, we introduce the notion of an m-s-number sequence for
m-homogeneous continuous polynomials. Let m a N and for each n a N let
sn : P

m ! ½0;lÞ be a mapping. The sequence s ¼ ðsnÞ is called an m-s-number
sequence if the following conditions are satisfied for any n; k a N:

(S1) Monotonicity: For every P a PðmX ;Y Þ,

kPk ¼ s1ðPÞb s2ðPÞb � � �b 0:

(S2) Additivity: For every P;Q a PðmX ;YÞ,

skþn�1ðPþQÞa skðPÞ þ snðQÞ:

(S3) Ideal-property: For every P a PðmX ;Y Þ, S a LðY ;ZÞ, T a LðW ;X Þ

snðS � P � TÞa kSksnðPÞkTkm:

(S4) Rank-property: Let P a PðmX ;YÞ.

rankðPÞ < n ) snðPÞ ¼ 0:

Furthermore, if m ¼ 1 the following condition has to be added:
(S5) Norming-property: snðId : ln

2 ! ln
2 Þ ¼ 1, n a N, where Id is the identity

mapping on the n-dimensional Hilbert space ln
2 .

If ðsnÞ is an m� s-number sequence for each m a N, then ðsnÞ is called an
s-number sequence.

Note that this notion coincides with the usual notion of s-number sequence for
linear operators, introduced in [21], whenever m ¼ 1.

Our first interest is to relate the linear and the polynomial notions of s-number
sequences.
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Proposition 3.1. If the mapping s ¼ ðsnÞ : L ! ½0;lÞN is an s-number se-

quence (in the linear sense) then, s � Im : Pm ! ½0;lÞN is an m-s-number sequence.

Proof. We will pay attention just to the ideal property. This property follows
from the fact that ðS � P � TÞL ¼ S � PL �nm; s T and knm; s Tk ¼ kTkm, for all
P a PðmX ;YÞ, T a LðW ;X Þ and S a LðY ;ZÞ. r

The theory of ideals of homogeneous polynomials between Banach spaces has
been developed in the last decades by several authors, so the extension of the dual
procedure to polynomial ideals is a natural step. In this paper we provide many
results on homogeneous polynomials in connection with their adjoint concerning
measure of non-compactness and s-numbers. First we need the definition of the
adjoint of a continuous homogeneous polynomial.

Definition 3.2 (Aron–Schottenloher [1]). Given P a PðmX ;Y Þ, the adjoint of
P is the following continuous linear operator:

P� : Y � ! PðmX Þ; P�ðjÞðxÞ ¼ jðPðxÞÞ:

It is clear that kP�k ¼ kPk.

After this definition by R. Aron and M. Schottenloher, and after the works of
R. Ryan [22, 24], the adjoint of a polynomial became a standard tool in the study
of spaces of homogeneous polynomials and in infinite dimensional holomorphy
(see, e.g. [6, 7, 17] and references therein).

Remark 3.3. If P a PðmX ;Y Þ has finite rank then PL has finite rank. Since
PLðn̂nps

m; s XÞ coincides with the linear hull of PðX Þ, we have rankðPÞ ¼ rankðPLÞ
¼ rankððPLÞ�Þ ¼ rankðImX ;K � P�Þ ¼ rankðP�Þ.

We refer to [6] or [16] for the properties of polynomials in infinite dimensional
spaces, to [15] for the theory of Banach spaces, and to [5], [12] and [25] for tensor
products of Banach spaces.

4. Approximation numbers and compactness of polynomials

Similarly to the linear case we define the n-th approximation number ~aanðPÞ of any
homogeneous polynomial P a PðmX ;YÞ by

~aanðPÞ :¼ inffkP�Qk : Q a PðmX ;YÞ; rankðQÞ < ng:

If we denote anðTÞ :¼ inffkT � Lk : L a LðX ;Y Þ; rankðLÞ < ng, T a LðX ;YÞ,
then by Remark 3.3 we see that ~aanðPÞ ¼ anðPLÞ.

If a ¼ ðanÞ is an s-number sequence on L, Proposition 3.1 gives that ~aa ¼
a � Im is an m� s-number sequence on Pm. Therefore, ~aa ¼ a � I is an s-number
sequence.
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Proposition 4.1. Let ðsnÞ : PðmX ;Y Þ ! ½0;lÞN be an s-number sequence.
Then

(i) For all P a PðmX ;YÞ we have snðPÞa ~aanðPÞ, n a N.
(ii) For all S a LðY ;ZÞ, P a PðmX ;Y Þ and all k; n a N we have skþn�1ðS � PÞa

s1ðSÞ~aanðPÞ and skþn�1ðS � PÞa akðSÞsnðPÞ.

Proof. (i) Let P a PðmX ;Y Þ. Then for any R a PðmX ;YÞ with rankðRÞ < n,
we have snðPÞa s1ðP� RÞ þ snðRÞ ¼ kP� Rk þ snðRÞ ¼ kP� Rk. Hence,
snðPÞa ~aanðPÞ.

(ii) Let R a PðmX ;Y Þ with rankðRÞ < n. Since rankðS � RÞ < n, it follows
that

skþn�1ðS � PÞa skðSðP� RÞÞ þ snðS � RÞ ¼ skðSðP� RÞÞ
a kSkskðP� RÞkIXkm

a kSks1ðP� RÞ ¼ kSk kP� Rk:

Therefore skþn�1ðS � PÞa s1ðSÞ~aanðPÞ.
The proof of the second inequality can be obtained in a similar way. r

It is worth mentioning that our use of polynomial techniques allows us to
reduce many proofs to the linear case instead of adapting all calculations to the
new setting.

Proposition 4.2. Let mb 2 and let X and Y be Banach spaces.

(a) For every polynomial P a PðmX ;YÞ we have anðP�Þa ~aanðPÞ, n a N. Fur-
thermore, if there exists a linear projection p of norm 1 from Y �� onto
kY ðY Þ then, for every P a PðmX ;Y Þ we have that anðP�Þ ¼ ~aanðPÞ for every
n a N.

(b) If P a PðmX ;Y Þ is a compact polynomial, then anðP�Þ ¼ ~aanðPÞ for every
n a N.

Proof. (a) Since ImX ;K is an isometric isomorphism, it follows from, e.g., [20,
p. 152, 11.7.3. Proposition] that anðP�Þ ¼ anðImX ;K � P�Þ ¼ anððPLÞ�Þa anðPLÞ
¼ ~aanðPÞ:

For the second assertion, we use the analogous property for linear operators
[11, Proposition 3.3] to get that ~aanðPÞ ¼ anðPLÞ ¼ anððPLÞ�Þ ¼ anðImX ;K � P�Þ ¼
anðP�Þ:

(b) This equality follows from the well known fact that P is compact if and
only if PL is compact (see [22]) and the corresponding property for linear opera-
tors (see, e.g., [20, 11.7.4 Theorem]), that is, ~aanðPÞ ¼ anðPLÞ ¼ anððPLÞ�Þ ¼
anðI � P�Þ ¼ anðP�Þ, for all n a N. r

Remark 4.3. The technique we have used in this section makes use of the lin-
earization of continuous homogeneous polynomials. A similar technique works
for continuous m-linear mappings. For each integer m a N, let LðX1; . . . ;Xm;Y Þ
be the Banach space of all continuous m-linear mappings A : X1 � � � � � Xm 7!
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Y , endowed with the sup norm kAk ¼ supfkAðx1; . . . ; xmÞk : kxika 1; i ¼
1; . . . ;mg. If T a LðX1; . . . ;Xm;Y Þ there is a unique continuous linear operator
TL a LðX1 n̂np � � � n̂np Xm;Y Þ such that TLðx1 n � � �n xmÞ ¼ Tðx1; . . . ; xmÞ, and
the correspondence T $ TL determines an isometric isomorphism between
LðX1; . . . ;Xm;Y Þ and LðX1 n̂np � � � n̂npXm;YÞ. This yields alternative proofs to
those given in [11] based in the well-known linear case.

An important notion used to determine the compactness of a polynomial (in
particular, of an operator) is the measure of non-compactness which is closely
related to s-number sequences. Here we consider Kuratowski and Hausdor¤
measures of polynomials which will be useful to determine compactness of a
polynomial and to obtain some basic inequalities in connection with s-numbers.
First let us state a basic result.

Proposition 4.4 (see, e.g., [14, Lemma 2.6]). Let X be a Banach space. Then
bðCÞ ¼ bðGðCÞÞ for any bounded subset C � X. In particular, bðGðPðBX ÞÞÞ ¼
~ggðPÞ.

The following theorem can also be proved with similar techniques to the ones
given in [11, Theorem 2.1]. However, we will show how to use polynomial tech-
niques related to tensor products to show that the polynomial case admits shorter
proofs.

Theorem 4.5. Let mb 2 and let X and Y be Banach spaces. Then for every
P a PðmX ;YÞ we have

(1) gðPÞa ~ggðP�Þ and gðP�Þa ~ggðPÞ,
(2) 1

2 gðPÞa gðP�Þa 2gðPÞ and 1
2
~ggðPÞa ~ggðP�Þa 2~ggðPÞ.

Proof. (1) Since PLðBnps
m; s X

Þ ¼ PLðGðnm; s BXÞÞ ¼ GðPLðnm; s BXÞÞ ¼ GðPðBXÞÞ,
we obtain gðPLÞ ¼ aðPLðBnps

m; s X
ÞÞb aðPðBX ÞÞ ¼ gðPÞ. Then, by [9, Theorem

I.2.9]

gðPÞa gðPLÞa ~ggððPLÞ�Þ ¼ ~ggðImX ;K � ðPLÞ�Þ ¼ ~ggðP�Þ;

where the first equality follows from being ImX ;K an isometric isomorphism. Now
[9, Theorem I.2.9] and Proposition 4.4 give that

gðP�Þ ¼ gðImX ;K � ðPLÞ�Þ ¼ gððPLÞ�Þa ~ggðPLÞ ¼ bðPLðBnps
m; s X

ÞÞ
¼ bðGðPðBX ÞÞÞ ¼ ~ggðPÞ:

(2) By using part (1),

1

2
gðPÞa 1

2
~ggðP�Þ ¼ 1

2
bðP�ðBY � ÞÞa 1

2
aðP�ðBY �ÞÞa gðP�Þ

a ~ggðPÞ ¼ bðPðBX ÞÞa aðPðBX ÞÞa 2gðPÞ;
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and

1

2
~ggðPÞ ¼ 1

2
bðPðBX ÞÞa

1

2
aðPðBX ÞÞ ¼

1

2
gðPÞa 1

2
~ggðP�Þ

a bðP�ðBY �ÞÞa aðP�ðBY �ÞÞ ¼ gðP�Þa 2~ggðPÞ: r

As a consequence, we get the result by R. Aron and M. Schottenloher on com-
pactness of polynomials:

Corollary 4.6 ([1, Proposition 3.6]). Let mb 2 and let X and Y be Banach
spaces. Then for every homogeneous polynomial P a PðmX ;YÞ we have that P is
compact if and only if its adjoint P� is compact.

Corollary 4.7. For every P a PðmX ;Y Þ we have that ~aanðPÞa 5anðP�Þ,
n a N.

Proof. By [10, Proposition 2] we get anðPLÞa 5anðP�
LÞ, so that ~aanðPÞ ¼

anðPLÞa 5anðP�
LÞ ¼ 5anðImX ;K � P�Þ ¼ 5anðP�Þ. r

Remark 4.8. For any polynomial P a PðmX ;YÞ by [10, Proposition 2] we
have

~aanðPÞa anððPLÞ��Þ þ 2~ggðPLÞ ¼ anððImX ;K � P�Þ�Þ þ 2~ggðPÞ ¼ anðP��Þ þ 2~ggðPÞ;

as occurs in the linear case, where the first equality can be taken from the proof
of Theorem 4.5 part (1). On the other hand, since anðP��Þa anðP�Þ (see, e.g., [20,
p. 152, 11.7.3. Proposition]), now if P is compact then ~ggðPÞ ¼ 0 and hence, by
these two inequalities and Proposition 4.2(a), we obtain ~aanðPÞ ¼ anðP�Þ, which
recovers Proposition 4.2(b).

Remark 4.9. Given P a PðmX ;Y Þ, let ~aaðPÞ :¼ lim
n!l

~aanðPÞb 0. If we con-

sider the approximation property (AP for short) on Y , then any compact
m-homogeneous polynomial P a PðmX ;Y Þ can be approximated by finite-rank
m-homogeneous polynomials (see [2, Proposition 2.5]). Hence, similar to the
(multi)linear case, if the space Y has the AP, then P a PðmX ;Y Þ is compact if
and only if ~aaðPÞ ¼ 0. However, by [1, Proposition 3.3] (see also [17, Theorem
4.3]) we know that PðmX Þ has the AP if and only if, for every Banach space
Y , the space of all finite-rank polynomials Pf ðmX ;Y Þ is norm-dense in the
space of all compact polynomials PkðmX ;Y Þ, or equivalently, any compact
m-homogeneous polynomial P a PðmX ;Y Þ can be approximated by finite-rank
m-homogeneous polynomials. Therefore if the space PðmX Þ has the AP, then
P a PðmX ;Y Þ is compact if and only if ~aaðPÞ ¼ 0. Let us remark that there is a
reflexive separable Banach space X with basis such that Pð2X Þ does not have the
AP (see [1]). Hence, for this space X , which has the AP, there is a Banach space
Y such that there is a compact polynomial P : X ! Y which cannot be approxi-
mated by finite-rank polynomials. (Note that it turns out that this space Y also
cannot have the AP by [2, Proposition 2.5].)
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5. Kolmogorov numbers

The spirit of Kolmogorov numbers is to measure how far a polynomial is from
being compact. We define the n-th Kolmogorov number ~ddnðPÞ of a polynomial
P a PðmX ;YÞ by

~ddnðPÞ :¼ inffe > 0 : PðBX Þ � Ne þ eBY ; Ne � Y ; dimðNeÞ < ng:

For P :¼ T a LðX ;YÞ we write dnðTÞ :¼ ~ddnðPÞ.

Proposition 5.1. Given P a PðmX ;Y Þ, ~ddnðPÞ ¼ dnðPLÞ.

Proof. Clearly ~ddnðPÞa dnðPLÞ. On the other hand, if PðBX Þ � Ne þ eBY

then PLðBnps
m; s X

Þ � GðPðBX ÞÞ � GðNe þ eBY Þ ¼ Ne þ eBY � Ne þ ðeþ dÞBY for
all d > 0. Hence, dnðPLÞa eþ d for all d > 0 and so, dnðPLÞa ~ddnðPÞ. r

As in the linear case, P a PðmX ;Y Þ is compact if and only if ~ddðPÞ :¼ lim
n!l

~ddnðPÞ
¼ 0. Also it is obvious that ~ddnðPÞ ¼ 0 whenever rankðPÞ < n. Propositions 3.1
and 5.1 imply that ~ddn ¼ dn � I forms an s-number sequence. Proposition 4.1
implies that ~ddnðPÞa ~aanðPÞ, for every n a N.

Kolmogorov numbers are related to approximation numbers via the equality
dnðTÞ ¼ anðT �QÞ, n a N, T a LðX ;Y Þ, where Q is the canonical metric sur-
jection from l1ðBX Þ onto X , defined by QðflxgÞ ¼

P
x ABX

lxx, flxg a l1ðBX Þ
(see [20, p. 150–151], and for the multilinear case see [11, Theorem 4.1].) We do
not know if the polynomial version of this result holds. But the following result,
which gives a characterization of the polynomial (metric) lifting property in terms
of (metric) lifting property, may be of some use in this connection. Before giving
the result let us recall the definition of the lifting property for polynomials intro-
duced by González and Gutiérrez [13]. Let m a N. We say that X has the poly-
nomial m-lifting property if, for every continuous m-homogenous polynomial
P from X to any quotient space Y=N, there is ~PP a PðmX ;Y Þ such that P ¼
QY

N � ~PP, where QY
N denotes the canonical map of Y onto the quotient space

Y=N. We say that X has the polynomial metric m-lifting property if, for every
e > 0 and every continuous m-homogenous polynomial P from X to any quotient
space Y=N, there is ~PP a PðmX ;YÞ such that P ¼ QY

N � ~PP and k ~PPka ð1þ eÞkPk.

Proposition 5.2. Let m a N. A Banach space X has the polynomial (metric)
m-lifting property if, and only if, n̂nps

m; s X has the (respectively, metric) lifting
property.

Proof. Assume first that X has the polynomial m-lifting property. Let T be a
continuous linear operator from n̂nps

m; s X into some quotient space Y=N. Let P a
PðmX ;Y=NÞ be such that PL ¼ T . By assumption, there is ~PP a PðmX ;YÞ such
that QY

N � ~PP ¼ P. Since QY
N � ð ~PPÞL � dX ¼ P, where dX is the m-homogeneous

polynomial from X to n̂nps
m; s X given by dX ðxÞ ¼ xn � � �n x (see [22]), then

QY
N � ð ~PPÞL ¼ PL ¼ T and n̂nps

m; s X has the lifting property.
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We now assume that n̂nps
m; s X has the lifting property. Let P a PðmX ;Y=NÞ.

Then PL a Lðn̂nps
m; s X ;Y=NÞ. By assumption, there is fPLPL a Lðn̂nps

m; s X ;Y Þ such

that QY
N � fPLPL ¼ PL. Then ~PP :¼ fPLPL � dX satisfies P ¼ QY

N � ~PP.
The metric case follows from the fact that kPk ¼ kPLk. r

As a consequence, if X has the polynomial metric m-lifting property, then by
[20, 11.6.3] for every P a PðmX ;YÞ we have ~ddnðPÞ ¼ dnðPLÞ ¼ anðPLÞ ¼ ~aanðPÞ;
for all n a N.

It was shown in [13, Theorem 1] that l1ðGÞ has the polynomial lifting property
(see also [23] and [8]), which is the Banach space of summable number families
flggg AG over an arbitrary index set. Moreover, by a modification of the proof of
[21, C.3.6. Proposition, p. 34] one can see that if X ¼ l1ðGÞ, then, given e > 0 and
a continuous m-homogenous polynomial P from X to any quotient space Y=N,

there is ~PP a PðmX ;YÞ such that P ¼ QY
N � ~PP and k ~PPka ð1þ eÞm

m

m!
kPk (for the

coe‰cient
mm

m!
, see, e.g., [16, Theorem 2.2]). Accordingly we get the following

result.

Theorem 5.3. Let mb 2 and let X and Y be Banach spaces. Let P a PðmX ;Y Þ,
and let Q be the canonical metric surjection from l1ðBX Þ onto X. Then we have that

~aanðP �QÞa mm

m!
~ddnðPÞ; n a N:

Proof. By [13, Theorem 1] l1ðBX Þ has the polynomial lifting property, and so

it follows by the above remark that for each n a N, ~aanðP �QÞa mm

m!
~ddnðP �QÞ.

Using that ðdnÞ is surjective (see [20, Definition 11.6.4 and Theorem 11.6.5]), we

get ~aanðP �QÞa mm

m!
~ddnðPÞ, n a N. r

We remark that we do not know if l1ðBX Þ has the polynomial metric lifting
property. If that were the case, then as a consequence of Propositions 5.1 and

5.2, we would obtain the equality ~aanðP �QÞ ¼ ~ddnðPÞ, for every n a N and P a
PðmX ;Y Þ.

We end this section with another variant of s-number of homogeneous poly-
nomials, namely, Gelfand numbers, from which we will get alternative character-
izations of compactness of homogeneous polynomials. Motivated by [20, 11.5.1.
Proposition] we define the Gelfand numbers ~ccnðPÞ of an m-homogeneous poly-
nomial P a PðmX ;YÞ by

~ccnðPÞ :¼ ~aanðkYPÞ:

Clearly ð~ccnÞ is an s-number sequence since ð~aanÞ is an s-number sequence, and
for each n a N we have that ~ccnðPÞa ~aanðPÞ. We will just write cnðTÞ :¼ ~ccnðPÞ
whenever P ¼ T a LðX ;YÞ. Note that ~ccnðPÞ ¼ cnðPLÞ for any P a PðmX ;Y Þ.
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Considering the function ~cc : PðmX ;YÞ ! ½0;lÞ given by ~ccðPÞ :¼ lim
n!l

~ccnðPÞ,
we have that ~ccðPÞ ¼ cðPLÞ. Now, as a polynomial counterpart of [11, Proposition
5.1] compactness of homogeneous polynomials can be quantified by means ~cc and
c as follows.

Proposition 5.4. Let mb 2 and let X and Y be Banach spaces. The following
statements for a polynomial P a PðmX ;Y Þ are equivalent.

(i) P is compact.
(ii) ~ccðPÞ ¼ 0.
(iii) cðP�Þ ¼ 0.

Proof. We know that P is compact if and only if PL is compact (see [22]), and
P is compact if and only if P� is compact (see [1] or Corollary 4.4). Combining
these facts with [21, 2.4.11] we get the implications (i) , (ii), and (i) , (iii).

r

Following the proof of [11, Theorem 5.1] we get the following result, which
gives the relation between Gelfand and Kolmogorov numbers of polynomials.

Theorem 5.5. Let mb 2 and let X and Y be Banach spaces. Then, for every
polynomial P a PðmX ;YÞ and n a N we have that

(i) cnðP�Þa mm

m!
~ddnðPÞ,

(ii) ~ccnðPÞ ¼ dnðP�Þ,
(iii) ~ccnðPÞa 2

ffiffiffi
n

p
cnðP�Þ.

6. s-numbers of diagonal polynomials

In [20, p. 158], the asymptotic behavior of ðanÞ, ðcnÞ, and ðdnÞ as n ! l for
diagonal operators between sequence spaces lp is determined. Extending the tech-
niques to the polynomial setting, we now calculate the corresponding numbers
~aanðPÞ, ~ccnðPÞ, and give lower and upper estimates for the number ~ddnðPÞ of a diag-
onal polynomial P defined between sequence spaces. As usual, ðekÞlk¼1 denotes
the unit vector basis.

Theorem 6.1. Let mb 2 and 1 < v < ual be such that 0 < u�mva uv

and let r be given by
1

r
¼ 1

v
�m

u
. If ðskÞlk¼1 a lr is such that js1jb js2jb � � �b 0

then, the diagonal polynomial P a Pðmlu; lvÞ given by PðxÞ ¼
Pl

k¼1 skx
m
k ek, x ¼

ðxkÞlk¼1 a lu, satisfies

~aanðPÞ ¼ ~ccnðPÞ ¼
�Xl
k¼n

jskjr
�1=r

b ~ddnðPÞb
1

2
ffiffiffi
n

p m!

mm

�Xl
k¼n

jskjr
�1=r

:

102 e. çalişkan and p. rueda



Proof. The proof is modeled on [20, p. 158, Theorem], although it has to
overcome di‰culties that come when dealing with polynomials, as the lack in
our context of [20, Theorem 11.5.6]. We include the details for the sake of
completeness.

(i) First we deal with the case 1 < v < u < l. For each n a N consider the
linear operators Jn : l

n
u ! lu, Qn : lv ! l nv and Pn : lu ! lu given by

Jnðx1; . . . ; xnÞ ¼ ðx1; . . . ; xn; 0; 0; . . .Þ;
QnððxnÞln¼1Þ ¼ ðx1; . . . ; xnÞ;

and

PnððxnÞln¼1Þ ¼ ðx1; . . . ; xn; 0; 0; . . .Þ:

Let Q :¼ P � Pn�1, so that Q a Pðmlu; lvÞ with rankðQÞ < n. Hence, using
Hölder’s inequality we have

~aanðPÞa kP�Qk ¼ kP� P � Pn�1k ¼ sup
kðxkÞlk¼1kua1

kðskxm
k Þ

l
k¼nkv

a sup
kðxkÞlk¼1kua1

�Xl
k¼n

jskjr
�1

r
�Xl
k¼n

jxkju
�m

u

" #
a

�Xl
k¼n

jskjr
�1

r

;

that is,

~aanðPÞa
�Xl
k¼n

jskjr
�1

r

:ð1Þ

We now show the reverse inequality. Suppose that jssj > 0 for some
sb n. Then define a one-to-one operator D : l su ! l sl by Dððx1; . . . ; xsÞÞ ¼
ðjs1j�r=ux1; . . . ; jssj�r=uxsÞ: By [20, p. 158, Lemma 1] for every subspace M of
l su with codimension codimðMÞ < n there is e ¼ ðe1; . . . ; esÞ a DðMÞ such that
kekl ¼ 1 and cardðKÞb s� nþ 1, where K ¼ fk : jekj ¼ 1g and cardðKÞ is the
cardinality of the set K .

Next write Rs ¼ Qs � P � Js and denote the inclusion map from M into l su by
iM . Now, if we define x :¼ D�1e ¼ ðjs1jr=ue1; . . . ; jssjr=uesÞ then

Rs � iMðxÞ ¼ Qs � P � Jsððjs1jr=ue1; . . . ; jssjr=uesÞÞ
¼ ðjs1j1þ

r
u
mem1 ; . . . ; jssj

1þ r
u
mems Þ

¼ ðjs1j
r
vem1 ; . . . ; jssj

r
vems Þ:

Therefore kRs � iMðxÞkv ¼
�Ps

k¼1 jekj
mvjskjr

�1
v, and consequently it follows from

[20, p. 158, Lemma 2] that
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kRs � iMkb kRs � iMðxÞkv
kxkm

u

¼
�Ps

k¼1 jekj
mvjskjr

�1
v�Ps

k¼1 jekj
ujskjr

�m
u

b

�P
k AK jekjmvjskjr

�1
v�P

k AK jekjujskjr
�m

u

¼
�X
k AK

jskjr
�1

v
�m

u

b

�Xs

k¼n

jskjr
�1

r

:

This implies that

inffkRs � iMk : M � l su ; codimðMÞ < ngb
�Xs

k¼n

jskjr
�1

r

:ð2Þ

Now we claim that

~ccnðRsÞb inffkRs � iMk : M � l su ; codimðMÞ < ng:ð3Þ

In fact, given any subspace M � l su with codimðMÞ < n if we take any Q a
PðmM; l sv Þ with rankðQÞ < n then, since

kRs � iMk ¼ kkl sv � Rs � iMka kkl sv � Rs � iM �Qk þ kQk

we get that

kRs � iMka inffkkl sv � Rs � iM �Qk : Q a PðmM; l sv Þ; rankðQÞ < ng
¼ ~aanðkl sv � Rs � iMÞ

or,

kRs � iMka ~ccnðRs � iMÞa ~ccnðRsÞ;

from which we obtain the inequality (3). Therefore from (2) and (3) we have that
~ccnðRsÞb

�Ps
k¼n jskj

r
�1
r for all sb n. It follows that

~ccnðPÞb ~ccnðRsÞb
�Xs

k¼n

jskjr
�1

r

;ð4Þ

for all sb n. Now, combining (1) and (4) we get

�Xl
k¼n

jskjr
�1

r

a ~ccnðPÞa ~aanðPÞa
�Xl
k¼n

jskjr
�1

r

and, applying Theorem 5.5, we get the desired inequalities stated in the
theorem.
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(ii) To prove the case 1 < v ¼ r < u ¼ l, we need to include some minor
modifications to the above. We keep the notation used in the part (i). We first
note that

~aanðPÞa kP�Qk ¼ kP� P � Pn�1k

¼ sup
kðxkÞlk¼1kla1

kðskxm
k Þ

l
k¼nkva

�Xl
k¼n

jskjv
�1

v

:

Conversely, assume that jssj > 0 for some sb n. Note that D is now the iden-
tity map and x ¼ e. Then,

kRs � iMkb kRs � iMðxÞkv ¼
�Xs

k¼1

jekjmvjskjv
�1

v

b

�X
k AK

jekjmvjskjv
�1

v

b

�Xs

k¼n

jskjv
�1

v

:

Hence, ~ccnðRsÞb
�Ps

k¼n jskj
v
�1
v for all sb n. Therefore

~aanðPÞb ~ccnðPÞb ~ccnðRsÞb
�Xs

k¼n

jskjv
�1

v

for all sb n, and the result follows as in the part (i). r

Note that for any mb 2 and for the diagonal polynomial P a Pðmlu; lvÞ given
in the above theorem we have that ~aaðPÞ ¼ ~ccðPÞ ¼ ~ddðPÞ ¼ 0, as expected since
this polynomial is compact (see, [18]).
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