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Abstract. — A Dirichlet problem driven by the ðp; qÞ-Laplace operator and an asymmetric con-

cave reaction with positive parameter is investigated. Four nontrivial smooth solutions (two positive,
one negative, and the remaining nodal) are obtained once the parameter turns out to be su‰ciently

small. Under a oddness condition near the origin for the perturbation, a whole sequence of sign-
changing solutions, which converges to zero, is produced.
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1. Introduction

Let W be a bounded domain in RN with a C2-boundary qW, let 1 < s < qa p <
þl, and let m a Rþ

0 . Consider the Dirichlet problem

�Dpu� mDqu ¼ ljujs�2
uþ f ðx; uÞ in W;

u ¼ 0 on qW;

�
ð1:1Þ

where Dr, r > 1, denotes the r-Laplace operator, namely

Dru :¼ divðj‘ujr�2‘uÞ Eu a W
1; r
0 ðWÞ;

p ¼ q i¤ m ¼ 0, l is a real parameter, while f : W� R ! R satisfies Carathéo-
dory’s conditions.

The non-homogeneous di¤erential operator Au :¼ Dpuþ Dqu that appears in
(1.1) is usually called ðp; qÞ-Laplacian. It stems from a wide range of important
applications, including biophysics [9], plasma physics [27], reaction-di¤usion
equations [2, 6], as well as models of elementary particles [3, 5, 8].

This paper treats the existence of multiple solutions, with a precise sign infor-
mation, to (1.1) when, roughly speaking,

1) l > 0 is suitably small, and
2) t 7! f ðx; tÞ exhibits an asymmetric behavior as t goes from �l to þl.



We will assume that, for an appropriate constant C > 0,

�Ca lim inf
t!�l

f ðx; tÞ
jtj p�2

t
a lim sup

t!�l

f ðx; tÞ
jtj p�2

t
a l1;p

a lim inf
t!þl

f ðx; tÞ
t p�1

a lim sup
t!þl

f ðx; tÞ
t p�1

aC

uniformly in x a W, where l1;p indicates the first eigenvalue of ð�Dp;W
1;p
0 ðWÞÞ.

Hence, f ðx; �Þ grows ðp� 1Þ-linearly atel and only a partial interaction with
l1;p is allowed (nonuniform non-resonance).

Since s < qa p, the term t 7! ljtjs�2
t represents a parametric ‘concave’ con-

tribution inside the reaction of (1.1).
Under 1), 2), and a further hypothesis involving the rate of f ðx; �Þ near zero,

Problem (1.1) admits four nontrivial C1
0 ðWÞ-solutions, two positive, one negative,

and the remaining nodal; see Theorem 4.2. If, moreover, t 7! f ðx; tÞ turns out
to be odd in a neighborhood of zero then there exists a whole sequence fung of
nodal solutions such that un ! 0 in C1ðWÞ; cf. Theorem 4.3.

The adopted approach exploits variational methods, truncation techniques, as
well as results from Morse theory. Regularity is a standard matter.

Many recent papers have been devoted to elliptic problems with either

• p-Laplacian and asymmetric nonlinearity (see, e.g., [7, 19, 20, 21, 22] and the
references therein), or

• ðp; qÞ-Laplacian and symmetric reaction (see for instance [4, 17, 18] and the
references given there).

On the contrary, to the best of our knowledge, few articles treat equations driven
by the ðp; qÞ-Laplace operator and an asymmetric nonlinearity. Actually, we can
only mention [24], where m :¼ 1, q :¼ 2, the parametric concave term does not
appear, f satisfies somewhat di¤erent assumptions, and a complete sign informa-
tion on the solutions is not performed. A wider bibliography on these topics can
be found in the survey paper [16].

2. Preliminaries

Let ðX ; k � kÞ be a real Banach space and let X � be its topological dual, with
duality brackets 3� ; �4. An operator A : X ! X � is called of type ðSÞþ provided

xn * x in X ; lim sup
n!þl

3AðxnÞ; xn � x4a 0 ) xn ! x in X :

For j a C1ðX Þ and c a R, put

jc :¼ fx a X : jðxÞa cg; Kj :¼ fx a X : j 0ðxÞ ¼ 0g;
K c

j :¼ fx a Kj : jðxÞ ¼ cg:
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Given an isolated critical point x a K c
j , we define the k-th critical group of j at

x as

Ckðj; xÞ :¼ HkðjcBU ; jcBUnfxgÞ; k a N0;

where U is any neighborhood of x such that KjBjcBU ¼ fxg and HkðA;BÞ
denotes the k-th relative singular homology group for the pair ðA;BÞ with integer
coe‰cients. The excision property of singular homology ensures that this defini-
tion does not depend on the choice of U ; see [23] for details.

We say that j satisfies the Cerami condition when

(C) Every sequence fxng � X such that fjðxnÞg is bounded and ð1þ kxnkÞj 0ðxnÞ
! 0 in X � admits a strongly convergent subsequence.

The following version [23] of the mountain pass theorem will be employed.

Theorem 2.1. If j a C1ðX Þ satisfies ðCÞ, x0; x1 a X, 0 < r < kx0 � x1k,

maxfjðx0Þ; jðx1Þg < mr :¼ inf
kx�x0k¼r

jðxÞ;

and

c :¼ inf
g AG

max
t A ½0;1�

jðgðtÞÞ; where G :¼ fg a C0ð½0; 1�;X Þ : gð0Þ ¼ x0; gð1Þ ¼ x1g;

then: mr a c; K c
j is nonempty; C1ðj; xÞA 0 provided x a K c

j turns out to be
isolated.

Hereafter, W will denote a fixed bounded domain in RN with a C2-boundary
qW. Let u; v : W ! R be measurable and let t a R. The symbol ua v means
uðxÞa vðxÞ for almost every x a W, te :¼ maxfet; 0g, ueð�Þ :¼ uð�Þe. If p a
½1;þlÞ then p 0 :¼ p=ðp� 1Þ is the conjugate exponent of p and p� indicates
the Sobolev critical exponent in dimension N, namely

p� ¼
Np
N�p

when p < N;

any q > 1 for p ¼ N;

þl otherwise.

8><
>:

Set, provided r a ½1;þl�,

Lr
þðWÞ ¼ fu a LrðWÞ : ub 0 a:e: in Wg:

If r < þl then, as usual,

kukr :¼
�Z

W

j‘ujr dx
�1=r

; u a W
1; r
0 ðWÞ; and

jujr :¼
�Z

W

jujr dx
�1=r

; u a LrðWÞ:
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W�1; r 0 ðWÞ denotes the dual space of W 1; r
0 ðWÞ while Ar : W

1; r
0 ðWÞ ! W�1; r 0 ðWÞ is

the nonlinear operator stemming from the negative r-Laplacian, i.e.,

3ArðuÞ; v4 :¼
Z
W

j‘ujr�2‘u � ‘v dx Eu; v a W
1; r
0 ðWÞ:

It is known [10, Section 6.2] that Ar turns out to be bounded, continuous, strictly
monotone, as well as of type ðSÞþ.

Given x a Ll
þ ðWÞnf0g, we define

l1; rðxÞ :¼ inf

R
W j‘ujr dxR
W
xjujr dx : u a W

1; r
0 ðWÞ; uA 0

� �
:ð2:1Þ

When no confusion can arise, simply write l1; r :¼ l1; rð1Þ. Some basic properties
of l1; rðxÞ and its eigenfunctions are listed below.

Proposition 2.1. Let 1 < r < þl and let x a Ll
þ ðWÞnf0g. Then:

1. l1; rðxÞ is positive and attained on a positive function ûu1; r a W
1; r
0 ðWÞ, which ful-

fills jûu1; rjr ¼ 1 as well as

ArðuÞ ¼ l1; rðxÞxjujr�2
u:ð2:2Þ

2. Solutions to (2.2) coincide with minima of (2.1) and form a one-dimensional lin-
ear space.

3. The function x 7! l1; rðxÞ is monotone (strictly) decreasing with respect to the
a.e. ordering of Ll

þ ðWÞ.

Through the compactness of the embedding W
1; r
0 ðWÞ ,! LrðWÞ one can verify

[25, p. 356] the next result.

Proposition 2.2. If x a Ll
þ ðWÞnfl1; rg and xa l1; r then there exists a constant

cðxÞ > 0 such that

kukrr �
Z
W

xjujr dxb cðxÞkukrr Eu a W 1; r
0 ðWÞ:

We will also employ the linear space

C1
0 ðWÞ :¼ fu a C1ðWÞ : ubqW¼ 0g;

which is complete with respect to the standard C1ðWÞ-norm. Its positive cone

Cþ :¼ fu a C1
0 ðWÞ : uðxÞb 0 in Wg
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has a nonempty interior given by

intðCþÞ ¼ u a Cþ : uðxÞ > 0 Ex a W;
qu

qn
ðxÞ < 0 Ex a qW

� �
:

Here, nðxÞ denotes the outward unit normal to qW at x.
Suppose g : W� R ! R is a Carathéodory function growing sub-critically,

i.e.,

jgðx; tÞja cð1þ jtjr�1Þ in W� R;

where c > 0, 1a r < p�. Write, as usual, Gðx; tÞ :¼
R t

0 gðx; tÞ dt and consider the
C1-functional j : W 1;p

0 ðWÞ ! R defined by

jðuÞ :¼ 1

p
kukp

p þ
m

q
kukqq �

Z
W

Gðx; uðxÞÞ dx Eu a W
1;p
0 ðWÞ;

with 1 < qa p and mb 0. The next result [11] establishes a relation between local
minimizers of j in C1

0 ðWÞ and in W
1;p
0 ðWÞ.

Proposition 2.3. If u0 a W
1;p
0 ðWÞ is a local C1

0 ðWÞ-minimizer of j, then u0 a
C1;a

0 ðWÞ for some a a ð0; 1Þ and u0 turns out to be a local W
1;p
0 ðWÞ-minimizer of j.

3. Solutions of constant sign

In this section we will construct three nontrivial constant-sign solutions to Prob-
lem (1.1) provided the parameter is small enough. From now on, everywhere in W
stands for almost everywhere and q ¼ p i¤ m ¼ 0.

The hypotheses on the reaction f will be as follows.

(h0) f : W� R ! R is a Carathéodory function such that

j f ðx; tÞjaCð1þ jtj p�1Þ Eðx; tÞ a W� R;

where C a Rþ.
(h1) There exists x1 a Ll

þ ðWÞnfl1;pg satisfying

l1;p a x1ðxÞa lim inf
t!þl

f ðx; tÞ
t p�1

uniformly in x a W:

(h2) There is x2 a Ll
þ ðWÞnfl1;pg such that

lim sup
t!�l

f ðx; tÞ
jtj p�2

t
a x2ðxÞa l1;p uniformly with respect to x a W:

(h3) There exist d0; y0 a ð0; 1Þ fulfilling

0a f ðx; tÞta ml1;qjtjq þ y0l1;pjtj p Eðx; tÞ a W� ½�d0; d0�:
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Remark 3.1. It should be noted that ðh0Þ–ðh2Þ entail

�Ca lim inf
t!�l

f ðx; tÞ
jtj p�2

t
a x2ðxÞa l1;p a x1ðxÞa lim sup

t!þl

f ðx; tÞ
t p�1

aC:

If 1 < s < q and l a Rþ, we put

glðx; tÞ :¼ ljtjs�1
tþ f ðx; tÞ;

which still satisfies a growth condition like ðh0Þ, but with a di¤erent positive con-
stant depending on l, say Cl, and

Glðx; tÞ :¼
Z t

0

glðx; tÞ dt:

The energy functional jl a C1ðW 1;p
0 ðWÞÞ that stems from Problem (1.1) is defined

by

jlðuÞ :¼
1

p
kukp

p þ
m

q
kukqq �

Z
W

Glðx; uðxÞÞ dx Eu a W
1;p
0 ðWÞ:

Suitable truncations of it will be employed. With this aim, set

gþl ðx; tÞ :¼ glðx; tþÞ; g�l ðx; tÞ :¼ glðx;�t�Þ; Ge
l ðx; tÞ :¼

Z t

0

gel ðx; tÞ dt:

Evidently, Gþ
l ðx; tÞ ¼ Glðx; tþÞ, G�

l ðx; tÞ ¼ Glðx;�t�Þ, and the associated func-
tionals

jel ðuÞ :¼
1

p
kukp

p þ
m

q
kukqq �

Z
W

Ge
l ðx; uðxÞÞ dx; u a W

1;p
0 ðWÞ;

turn out to be C1 as well. Likewise the proof of [18, Theorem 4.1], using the non-
linear regularity theory developed in [13, 14], the strong maximun principle, and
the Hopf boundary point lemma [26, pp. 111 and 120], yields

Proposition 3.1. Under ðh0Þ and ðh3Þ, nontrivial critical points for jþ
l (resp.,

j�
l ) actually are critical points of jl and belong to intðCþÞ (resp., �intðCþÞ).

Lemma 3.1. If ðh0Þ–ðh2Þ hold true, then

1. jþ
l satisfies Condition ðCÞ.

2. j�
l is coercive (hence it fulfills the Cerami condition too).

Proof. 1. Let fung � W
1;p
0 ðWÞ be such that fjþ

l ðunÞg is bounded and

ð1þ kunkpÞðjþ
l Þ

0ðunÞ ! 0 in W�1;p 0 ðWÞ:
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Since the embedding W
1;p
0 ðWÞ ,! LpðWÞ is compact, while Ap þ mAq enjoys prop-

erty ðSÞþ, it su‰ces to show that fung is bounded. One has

3ApðunÞ; v4þ m3AqðunÞ; v4�
Z
W

gþl ðx; unÞv dx
����

����ð3:1Þ

a en
kvkp

1þ kunkp
Ev a W

1;p
0 ðWÞ;

where en ! 0þ. Letting v :¼ �u�n yields

ku�n kp þ mku�n kq a en;

so that u�n ! 0 and

3Apðuþn Þ; v4þ m3Aqðuþn Þ; v4�
Z
W

gþl ðx; uþn Þv dx
����

����a e 0nkvkpð3:2Þ

for some e 0n ! 0þ. Suppose kuþn kp ! þl and put wn :¼ uþn =kuþn kp. From
kwnkpC 1 it follows, up to subsequences,

wn * w in W
1;p
0 ðWÞ; wn ! w in LpðWÞ; wb 0:ð3:3Þ

Moreover,

jgþl ð�; uþn Þj
p 0

p 0 aCl

Z
W

ð1þ juþn j
pÞ dxaClðjWj þ l�1

1;pkuþn k
p
p Þ

because f satisfies (h0). This implies

gþl ð�; uþn Þ
kuþn k

p�1
p

�����
�����
p 0

aC
1=p 0

l

� jWj
kuþn k

p
p

þ 1

l1;p

�1=p 0

:

Since the right-hand side is bounded, we may suppose

gþl ð�; uþn Þ
kuþn k

p�1
p

* h in Lp 0 ðWÞ:

Recalling that s < p, namely ðh1Þ holds true for gþl , and proceeding as in [23,
pp. 317–318] produces

h ¼ hwp�1 for some h a LlðWÞ with x1ðxÞa hðxÞaC:ð3:4Þ

Through (3.2) we then have

3ApðwnÞ; v4þ mkuþn k
q�p
p 3AqðwnÞ; v4�

Z
W

gþl ðx; uþn Þ
kuþn k

p�1
p

v dx

�����
�����a e 0n

kvkp
kuþn k

p�1
p

:ð3:5Þ

115on a ðp; qÞ-laplacian problem with parametric concave term



Now, choose v :¼ wn � w and use (3.3) to arrive at

lim
n!þl

3ApðwnÞ;wn � w4 ¼ 0:

Therefore, by [23, Proposition 2.72], wn ! w in W
1;p
0 ðWÞ, whence kwkp ¼ 1. Via

(3.5) we thus obtain, letting n ! þl,

3ApðwÞ; v4 ¼
Z
W

hwp�1v dx Ev a W
1;p
0 ðWÞ;

i.e., l ¼ 1 is an eigenvalue for the problem

�Dpu ¼ lhjuj p�2
u in W; u ¼ 0 on qW

associated with the eigenfunction w. However, due to Item 4) of Proposition 2.1,
ðh1Þ, and (3.4),

1 ¼ l1;pðl1;pÞ > l1;pðx1Þb l1;pðhÞ:

Point 3) in the same result ensures that w changes sign, contradicting wb 0.
2. By (h0) and (h2), for every e > 0 there exists a constant Ce > 0 such that

Fðx; tÞa 1

p
ðx2ðxÞ þ eÞjtj p þ Ce Eðx; tÞ a W� ð�l; 0�:

Thus, on account of Proposition 2.2,

j�
l ðuÞb

1

p
kukp

p þ
m

q
kukqq �

l

s
jujss �

Z
1

p
ðx2 þ eÞju�j p dx� CejWj

b
1

p
kuþkp

p þ
1

p

�
ku�kp

p �
Z
W

x2ju�j p dx
�
� e

p
ju�jpp �

l

s
jujss � CejWj

b
1

p
kuþkp

p þ
1

p

�
cðx2Þ �

e

l1;p

�
ku�kp

p �
l

s
jujss � CejWj:

Choosing e :¼ l1;pcðx2Þ=2 and recalling that s < p finally provides the desired
coercivity property. r

With slight modifications one can verify the next lemma.

Lemma 3.2. Under ðh0Þ–ðh2Þ, the functional jl satisfies Condition ðCÞ for all
l > 0.

Proof. Fix l > 0. Let fung � W
1;p
0 ðWÞ be such that fjlðunÞg is bounded and

ð1þ kunkpÞðjlÞ
0ðunÞ ! 0 in W�1;p 0 ðWÞ:
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Then (3.1) holds with gl instead of gþl . Choosing v :¼ �u�n , it furnishes

ku�n k
p
p þ mku�n k

q
q � lju�n j

s
s �

Z
W

f ðx;�u�n Þð�u�n Þ dxa en; n a N;ð3:6Þ

where en ! 0þ. Thanks to ðh0Þ and ðh2Þ, for every e > 0 there exists a constant
Ce > 0 such that

f ðx; tÞta ðx2ðxÞ þ eÞjtj p þ Ce Eðx; tÞ a W� ��l; 0�:

So, the proof of Conclusion 2 in the previous lemma carries over, giving the
coerciveness of the functional

u 7! ku�kp
p þ mku�kqq � lju�jss �

Z
W

f ðx;�u�Þð�u�Þ dx; u a W
1;p
0 ðWÞ:

Hence, due to (3.6), the sequence fu�n g has to be bounded. To check that the
same holds for fuþn g, suppose on the contrary kuþn kp ! þl and put wn :¼
un=kuþn kp. Obviously, fwng turns out to be bounded, because so is fu�n g. More-
over, w�

n ! 0 while, along a subsequence when necessary,

wn * w in W
1;p
0 ðWÞ; wn ! w in LpðWÞ:

As before, via ðh0Þ we see that fglð�; unÞkuþn k
1�p
p g is bounded in Lp 0 ðWÞ. Now,

divide the present version of (3.1) by kuþn k
p�1, test with v :¼ wn � w, use the

inequality q < p, and let n ! þl to achieve

lim
n!þl

3ApðwnÞ;wn � w4 ¼ 0;

which implies wn ! w in W
1;p
0 ðWÞ. Consequently, wb 0 and kwkp b 1. Since

glð�;�u�Þ
kuþn k

p�1
p

�����
�����
p 0

aC
1=p 0

l

� jWj
kuþn k

p
p

þ 1

l1;p

ku�n k
p
p

kuþn k
p
p

�1=p 0

! 0;

we have

glð�; unÞ
kuþn k

p�1
p

� glð�; uþn Þ
kuþn k

p�1
p

! 0 in Lp 0 ðWÞ:ð3:7Þ

The same arguments of [23, pp. 317–318] yield here

glð�; uþn Þ
kuþn k

p�1
p

* hwp�1 in Lp 0 ðWÞ;
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with appropriate h a LlðWÞ fulfilling x1ðxÞa hðxÞaC. Thanks to (3.7), this
holds true also for fglð�; unÞkuþn k

1�p
p g. Hence, from

3ApðwnÞ; v4þ mkuþn k
q�p
p 3AqðwnÞ; v4�

Z
W

glðx; unÞ
kuþn k

p�1
p

v dx

�����
�����a e 0n

kvkp
kuþn k

p�1
p

(cf. (3.5)) it follows, when n ! þl,

3ApðwÞ; v4 ¼
Z
W

hwp�1v dx Ev a W
1;p
0 ðWÞ:

Now the proof goes on exactly as the one of Item 1 in Lemma 3.1. r

Lemma 3.3. If ðh0Þ and ðh3Þ are satisfied, then there exists a constant l� > 0 such
that to every l a ð0; l�Þ corresponds a rl a Rþ complying with

ml :¼ inf
kukp¼rl

jþ
l ðuÞ > 0:

Proof. Fix any r a ðp; p�Þ. Through ðh0Þ and ðh3Þ we obtain

f ðx; tÞa ml1;qt
q�1 þ y0l1;pt

p�1 þ Crt
r�1; ðx; tÞ a W� ½0;þlÞ;

which, when integrated, entails

Fðx; tÞa m
l1;q

q
tq þ y0

l1;p

p
t p þ Cr

r
tr in W� ½0;þlÞ:

Here, Cr a Rþ. By the Sobolev, Hölder, and Poincaré inequalities one has

jþ
l ðuÞb

1

p
kukp

p þ
m

q
kukqq �

l

s
juþjss � m

l1;q

q
jujqq � y0

l1;p

p
juj pp � Cr

r
jujrr

b
1� y0

p
kukp

p �
l

s
juþjss �

Cr

r
jujrr

b
1� y0

p
kukp

p � C1ðWÞ l
s
juþjsp� �

C2ðWÞCr

r
jujrp�

b
1� y0

p
� C1lkuks�p

p � C2kukr�p
p

� �
kukp

p

for appropriate positive constants C1, C2. Letting kukp ¼ l
1

r�s yields

jþ
l ðuÞb

1� y0

p
� C1l

1� p�s
r�s � C2l

r�p
r�s

� �
l

1
r�s ¼ 1� y0

p
� ðC1 þ C2Þl

r�p
r�s

� �
l

1
r�s:

This immediately brings the conclusion, because s < p < r and 0 < y0 < 1. r
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From now on, l� will denote the real number just found.

Lemma 3.4. Suppose ðh0Þ–ðh1Þ hold true. Then

lim
t!þl

jþ
l ðtûu1;pÞ ¼ �l;

with ûu1;p as in Proposition 2.1.

Proof. Thanks to ðh0Þ–ðh1Þ, for every e > 0 there exists a constant Ce > 0 such
that

F ðx; tÞb x1ðxÞ � e

p
t p � Ce Eðx; tÞ a W� ½0;þlÞ:ð3:8Þ

The properties of ûu1;p and x1 produce

Z
W

ðx1 � l1;pÞûu p
1;p dx > 0:

Choose e > 0 fulfilling

y :¼
Z
W

ðx1 � l1;pÞûu p
1;p dx� e

Z
W

ûu
p
1;p dx > 0:

Since kûu1;pkp
p ¼ l1;pjûu1;pjpp ¼ l1;p, via (3.8) we get

jþ
l ðtûu1;pÞa

t p

p
kûu1;pkp

p þ m
tq

q
kûu1;pkqq �

t p

p

Z
W

ðx1 � eÞûu p
1;p dx� l

ts

s
jûu1;pjss þ CejWj

a�y
t p

p
þ m

tq

q
kûu1;pkqq � l

ts

s
jûu1;pjss þ CejWj

for all t > 0. The conclusion follows from q < p. r

Now, critical point arguments will provide three constant-sign solutions.

Theorem 3.1. Let ðh0Þ–ðh3Þ be satisfied. Then:

1. For every l a ð0; l�Þ, Problem (1.1) admits two positive solutions u0; u1 a
intðCþÞ.

2. For every l > 0 there exists a negative solution u2 a �intðCþÞ to (1.1).

Proof. 1. Pick l a ð0; l�Þ. Lemma 3.4 gives a t a Rþ so large that jþ
l ðtûu1;pÞ <

0. On account of Lemmas 3.1 and 3.3, Theorem 2.1 applies to jþ
l . Thus, there is

u0 a W
1;p
0 ðWÞ fulfilling

ðjþ
l Þ

0ðu0Þ ¼ 0; jþ
l ðu0Þbml > 0;
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whence u0A 0. By Proposition 3.1, the function u0 turns out to be a solution of
(1.1) lying in intðCþÞ. Next, define

Brl :¼ fu a W
1;p
0 ðWÞ : kukp < rlg;

where rl comes from Lemma 3.3. A standard procedure based on the weak
sequential lower semicontinuity of jþ

l ensures that this functional attains its min-
imum at some u1 a Brl . Fix w a intðCþÞ and choose t1 > 0 complying with

kt1wkp < rl; t1 sup
x AW

wðxÞa d0:

Thanks to ðh3Þ we have

f ðx; twðxÞÞb 0 Et a ð0; t1Þ;

which easily entails

jþ
l ðtwÞa

t p

p
kwkp

p þ m
tq

q
kwkqq � l

ts

s
jwjss < 0

provided t is su‰ciently small (recall that s < q < p). Hence, a fortiori,

jþ
l ðu1Þ < 0:

The above inequality brings both u1A u0 and u1 a Brlnf0g. On account of [15,
Lemma 4.3] we thus arrive at ðjþ

l Þ
0ðu1Þ ¼ 0. Finally, due to Proposition 3.1, the

function u1 lies in intðCþÞ and solves (1.1).
2. j�

l is coercive (cf. Lemma 3.1) and weakly sequentially lower semicontinu-
ous. So, it attains its minimum at some u2 a W

1;p
0 ðWÞ. As before, we see that

j�
l ðu2Þ < 0, whence u2A 0. Since ðj�

l Þ
0ðu2Þ ¼ 0, Proposition 3.1 applies to get

the conclusion. r

4. Nodal solutions

Let us first show that (1.1) admits extremal constant-sign, namely a smallest posi-
tive and a biggest negative, solutions. Indeed, ðh0Þ and ðh3Þ yield a real number
c0 > 0 fulfilling

f ðx; tÞtb�c0jtj p Eðx; tÞ a W� R:

The same arguments exploited to prove [18, Lemma 2.2] ensure here that, given
l > 0, the auxiliary problem

�Dpu� mDqu ¼ ljujs�2
u� c0juj p�2

u in W; u ¼ 0 on qW

has only one positive solution ul a intðCþÞ, while, by oddness, vl :¼ �ul turns
out to be its unique negative solution. Reasoning as made for [17, Lemma 3.3]
we next achieve
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Lemma 4.1. Under ðh0Þ–ðh3Þ, any positive (resp., negative) solution u of (1.1) sat-
isfies the inequality ul a u (resp., ua vl).

These facts give rise to the following result; cf. the proof of [18, Lemma 4.2].

Lemma 4.2. Assume ðh0Þ–ðh3Þ. Then, for every l a ð0; l�Þ, Problem (1.1) pos-
sesses a smallest positive solution uþl a intðCþÞ and a greatest negative solution
u�l a �intðCþÞ.

We are in a position now to produce a nodal solution through a mountain
pass procedure. Set

½u�l ; uþl � :¼ fu a W
1;p
0 ðWÞ : u�l a ua uþl a:e: in Wg:

Theorem 4.1. If ðh0Þ–ðh3Þ hold true and l a ð0; l�Þ then there exists a sign-
changing solution u3 a C1

0 ðWÞB ½u�l ; uþl � to (1.1).

Proof. The proof is similar to that of [17, Theorem 3.8]; so, we only sketch it.
Define, for every ðx; tÞ a W� R,

ĝglðx; tÞ :¼
lju�l ðxÞj

s�2
u�l ðxÞ þ f ðx; u�l ðxÞÞ if t < u�l ðxÞ;

ljtjs�2
tþ f ðx; tÞ if u�l ðxÞa ta uþl ðxÞ;

ljuþl ðxÞj
s�2

uþl ðxÞ þ f ðx; uþl ðxÞÞ if t > uþl ðxÞ;

8><
>:

as well as ĜGlðx; tÞ :¼
R t

0 ĝglðx; tÞ dt. The associated energy functional

ĵjlðuÞ :¼
1

p
kukp

p þ
m

q
kukq

q �
Z
W

ĜGlðx; uðxÞÞ dx; u a W
1;p
0 ðWÞ;

clearly fulfills

Kĵjl � ½u�l ; uþl �;ð4:1Þ

while using Proposition 2.3 one verifies that both uþl and u�l turn out to be local
W

1;p
0 ðWÞ-minimizers of ĵjl; see [18, 17] for details. We may suppose Kĵjl finite,

otherwise ĵjl (and so jl, by standard nonlinear regularity theory) would have
infinitely many critical points in ½u�l ; uþl �nfu�l ; uþl g, which brings the conclusion.
Consequently, uþl and u�l are strict local minimizers. Without loss of generality,
assume ĵjlðuþl Þa ĵjlðu�l Þ. The reasoning employed to establish [1, Proposition 29]
produces here r a ð0; 1Þ such that

ku�l � uþl kp > r; maxfĵjlðuþl Þ; ĵjlðu�l Þg < mr :¼ inf
ku�u�

l
kp¼r

ĵjlðuÞ:ð4:2Þ

Moreover, ĵjl satisfies Condition (C), because it evidently is coercive. Hence,
Theorem 2.1 applies, and there exists u3 a Kĵjl such that mr a ĵjlðu3Þ. Combining
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(4.2) with (4.1) entails u3 a ½u�l ; uþl �nfu�l ; uþl g while, by Theorem 2.1 again,

C1ðĵjl; u3ÞA 0:ð4:3Þ

Now, through uþl ;�u�l a intðCþÞ, ĵjlb½u�
l
;uþ

l
� ¼ jlb½u�

l
;uþ

l
�, and 0 a int

C 1
0
ðWÞð½u�l ; u

þ
l �Þ,

we infer

CkðĵjlbC 1
0
ðWÞ; 0Þ ¼ CkðjlbC 1

0
ðWÞ; 0Þ; k a N0:

Since C1
0 ðWÞ is dense in W

1;p
0 ðWÞ, one has

CkðĵjlbC 1
0
ðWÞ; 0Þ ¼ Ckðĵjl; 0Þ; CkðjlbC 1

0
ðWÞ; 0Þ ¼ Ckðjl; 0Þ:

Let us verify that

Ckðĵjl; 0Þ ¼ 0 Ek a N0;ð4:4Þ

which will force u3A 0 thanks to (4.3). Pick any y a ðs; qÞ. Assumption ðh3Þ
directly yields

glðx; tÞt ¼ ljtjs þ f ðx; tÞtb ljtjy in W� ½�d0; d0�:

If d1 < d0 fulfills

jtja d1 )
�y
s
� 1

�
ljtjs b ml1;qjtjq þ y0l1;pjtj p

then from ðh3Þ and the obvious inequality Fðx; tÞb 0 for jtja d1 we deduce

glðx; tÞta ljtjs þ ml1;qjtjq þ y0l1;pjtj p a l
y

s
jtjs a y

�l
s
jtjs þ F ðx; tÞ

�
a yGlðx; tÞ:

Consequently,

ljtjy a glðx; tÞta yGlðx; tÞ; ðx; tÞ a W� ½�d1; d1�:

Recalling that ĵjl is coercive, [17, Theorem 3.6] can be used to achieve (4.4), as
desired. Finally, u3 is nodal by extremality of u�l and uþl (cf. Lemma 4.2), while
standard nonlinear regularity results give u3 a C1

0 ðWÞ. r

Theorems 3.1 and 4.1 together produce the following

Theorem 4.2. Let ðh0Þ–ðh3Þ be satisfied. Then there exists a real number
l� > 0 such that for every l a ð0; l�Þ Problem (1.1) admits four nontrivial solu-
tions: one smallest positive, uþl a intðCþÞ; a further positive solution ul a intðCþÞ;
one greatest negative, u�l a �intðCþÞ; a nodal solution ul a C1

0 ðWÞB ½u�l ; uþl �.
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Our next goal is to find a whole sequence of sign-changing solutions that
converges to zero. With this aim, the local symmetry condition below involving
f ðx; �Þ will be posited whatever x a W.

ðh4Þ The function t 7! f ðx; tÞ is odd on ½�d1; d1� for some d1 a Rþ.

Theorem 4.3. If ðh0Þ–ðh4Þ hold true then to every l > 0 corresponds a sequence
fung of nodal solutions to (1.1) such that un ! 0 in C1ðWÞ.

Proof. Pick l > 0 and define, provided ðx; tÞ a W� R,

hlðx; tÞ :¼
�lds�1

1 � f ðx; d1Þ when t < �d1;

ljtjs�2
tþ f ðx; tÞ when jtja d1;

lds�1
1 þ f ðx; d1Þ when t > d1;

8><
>:ð4:5Þ

as well as Hlðx; tÞ :¼
R t

0 hlðx; tÞ dt. By ðh4Þ, the associated energy functional

clðuÞ :¼
1

p
kukp

p þ
m

q
kukqq �

Z
W

Hlðx; uðxÞÞ dx; u a W
1;p
0 ðWÞ;

turns out to be even, besides C1 and coercive.
Let V � C1

0 ðWÞ � W
1;p
0 ðWÞ be any finite dimensional space. Bearing in mind

that all norms on V are equivalent, we have

u a V ; kukp a r ) juðxÞjaminfd0; d1g; x a W;

for some constant r > 0 depending on V . Hence, Fðx; uðxÞÞb 0 thanks to ðh3Þ,
which entails

clðuÞa
1

p
kukp

p þ
m

q
kukqq �

l

s
jujss whenever u a V ; kukp a r:

Since s < qa p, there exists r 0 a ð0; rÞ such that clðuÞ < 0 provided u a V ,
kukp ¼ r 0. So, Theorem 1 of [12] furnishes a sequence

fung � Kcl
Bc�1

l ðð�l; 0ÞÞð4:6Þ

converging to zero in W
1;p
0 ðWÞ. The nonlinear regularity theory ensures a uni-

form C1;aðWÞ-bound on fung. Through Ascoli-Arzelà’s theorem we thus obtain
un ! 0 in C1ðWÞ. Consequently, if ul is the barrier given by Lemma 4.1 then

sup
x AW

junðxÞj < min d1; sup
x AW

ulðxÞ
� �

ð4:7Þ

for any n large enough. These un evidently solve Problem (1.1), because of (4.5)–
(4.7). Due to Lemma 4.1 and (4.7) again, they must be nodal. r
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