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ABSTRACT. — A Dirichlet problem driven by the (p, g)-Laplace operator and an asymmetric con-
cave reaction with positive parameter is investigated. Four nontrivial smooth solutions (two positive,
one negative, and the remaining nodal) are obtained once the parameter turns out to be sufficiently
small. Under a oddness condition near the origin for the perturbation, a whole sequence of sign-
changing solutions, which converges to zero, is produced.
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1. INTRODUCTION

Let Q be a bounded domain in RY with a C2-boundary 0Q,let | <s< g < p <
+00, and let 4 € Ry . Consider the Dirichlet problem
s—2 :
(L.1) {—Apu—,quu—/lu| u+ f(x,u) inQ,
u=20 on 0Q),

where A,, r > 1, denotes the r-Laplace operator, namely
A = div(|Vu|"*Vu) Yue W,'(Q),

p=gq iff u=0, 1 is a real parameter, while /' : Q x R — R satisfies Carathéo-
dory’s conditions.

The non-homogeneous differential operator Au := A,u + Aju that appears in
(1.1) is usually called (p, ¢)-Laplacian. It stems from a wide range of important
applications, including biophysics [9], plasma physics [27], reaction-diffusion
equations [2, 6], as well as models of elementary particles [3, 5, 8].

This paper treats the existence of multiple solutions, with a precise sign infor-
mation, to (1.1) when, roughly speaking,

1) A > 0 is suitably small, and
2) t— f(x,t) exhibits an asymmetric behavior as ¢ goes from —oo to +o0.



110 S. A. MARANO, S. J. N. MOSCONI AND N. S. PAPAGEORGIOU

We will assume that, for an appropriate constant C > 0,

AC) < lim supf(x’ f)

—C < liminf

< < A,
oo [P T s i 7
.. t . t

< hmlnff(x7 ) < lim pf(x’ ) <C
t—400 tp—l —+00 tp_l

uniformly in x € Q, where 4, , indicates the first eigenvalue of (—A,, WO1 (Q)).
Hence, f(x,-) grows (p — 1)-linearly at +oo and only a partial interaction with
A1,p 1s allowed (nonuniform non-resonance).

Since s < ¢ < p, the term ¢ — ﬂv|l|5_2t represents a parametric ‘concave’ con-
tribution inside the reaction of (1.1).

Under 1), 2), and a further hypothesis involving the rate of f'(x,-) near zero,
Problem (1.1) admits four nontrivial C(} (Q)-solutions, two positive, one negative,
and the remaining nodal; see Theorem 4.2. If, moreover, ¢+ f(x,?) turns out
to be odd in a neighborhood of zero then there exists a whole sequence {u,} of
nodal solutions such that u, — 0 in C!(Q); cf. Theorem 4.3.

The adopted approach exploits variational methods, truncation techniques, as
well as results from Morse theory. Regularity is a standard matter.

Many recent papers have been devoted to elliptic problems with either

e p-Laplacian and asymmetric nonlinearity (see, e.g., [7, 19, 20, 21, 22] and the
references therein), or

e (p,q)-Laplacian and symmetric reaction (see for instance [4, 17, 18] and the
references given there).

On the contrary, to the best of our knowledge, few articles treat equations driven
by the (p, ¢)-Laplace operator and an asymmetric nonlinearity. Actually, we can
only mention [24], where x := 1, ¢ := 2, the parametric concave term does not
appear, f satisfies somewhat different assumptions, and a complete sign informa-
tion on the solutions is not performed. A wider bibliography on these topics can
be found in the survey paper [16].

2. PRELIMINARIES

Let (X,| -||) be a real Banach space and let X* be its topological dual, with
duality brackets {-,->. An operator 4 : X — X * is called of type (S), provided

X, —x inX, limsup<{A4(x,),x,—x)<0 = x,—x inX.

n—+oo

For ¢ € C'(X) and ¢ € R, put

p¢:={xeX:9(x)<c}, K, ={xeX:¢'(x)=0},
K, ={xeK,:9(x)=c}
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Given an isolated critical point x € K, we define the k-th critical group of ¢ at
X as
Ck((ﬂ,)_C) = Hk((pc nU, wc N U\{)_C})a ke No,

where U is any neighborhood of X such that K, "¢ n U = {X} and H(4, B)
denotes the k-th relative singular homology group for the pair (4, B) with integer
coefficients. The excision property of singular homology ensures that this defini-
tion does not depend on the choice of U; see [23] for details.

We say that ¢ satisfies the Cerami condition when

(C) Every sequence {x,} C X such that {p(x,)} is bounded and (1 + ||x,||)¢’(x,)
— 0 in X* admits a strongly convergent subsequence.

The following version [23] of the mountain pass theorem will be employed.
THEOREM 2.1. If ¢ € C'(X) satisfies (C), xo,x1 € X, 0 < p < ||xo — x1],
max{p(xo), p(x1)} <m,:= inf ¢(x),
[lx—xol=p
and

c:= inlf_ m[(e)ulg] o(y(1)), where T := {y e C°([0,1], X) : »(0) = xo, y(1) = x1},
el teo,

then: m, < ¢; KJ is nonempty;, Ci(p,X) #0 provided X € K turns out to be
isolated.

Hereafter, Q will denote a fixed bounded domain in R" with a C?-boundary
0Q. Let u,v:Q — R be measurable and let ¢t € R. The symbol u < v means
u(x) < wv(x) for almost every x € Q, r*:=max{+z,0}, u(:):=u(-)*. If pe
[1,400) then p’:= p/(p—1) is the conjugate exponent of p and p* indicates
the Sobolev critical exponent in dimension N, namely

) NN—fp when p < N,
P =yanyg>1 forp=N,
400 otherwise.

Set, provided r € [1, 40,
L' (Q) ={uel'(Q):u>0ae. inQ}.

If r < +o0 then, as usual,
r Ur 1,r
), = (/ Vi dx) ", ue Wi@), and
o)

], = (/Q |u\"dx)1/r, ue L'(Q).
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W17 (Q) denotes the dual space of W, (Q) while 4, : W, (Q) — W~1"(Q) is
the nonlinear operator stemming from the negative r-Laplacian, i.e.,

Ay (u), 03 :/ V| V- Vodx Yu,ve W(Q).
Q

It is known [10, Section 6.2] that A, turns out to be bounded, continuous, strictly
monotone, as well as of type (S),.
Given ¢ € LT (Q)\{0}, we deﬁne

. fQ |Vu|rdx 1,r }
2.1 iré::mf{—,:ueW’Q,uyéO .
( ) 17() fQé'ul dx 0 ( )
When no confusion can arise, simply write 4; , := 4;,(1). Some basic properties

of 41,,(£) and its eigenfunctions are listed below.

PROPOSITION 2.1. Let 1 <r < +o0 and let £ € LT (Q)\{0}. Then:

1. Z1,,(&) is positive and attained on a positive function i, , € Wol"r(Q), which ful-
Sills |y |, =1 as well as

(2.2) Ar(u) = 20, (&))" u.
2. Solutions to (2.2) coincide with minima of (2.1) and form a one-dimensional lin-
ear space.

3. The function & — Ay (&) is monotone (strictly) decreasing with respect to the
a.e. ordering of LT (Q).

Through the compactness of the embedding WOI”’(Q) — L"(Q) one can verify
[25, p. 356] the next result.

PROPOSITION 2.2. If & e LT (Q)\{41,,} and & < 1, then there exists a constant
c(&) > 0 such that

ull? — /Q Elul dx = e(@)ull Yue W(Q).

We will also employ the linear space

CH@) = {ue C'(©) : ul 0= 0},
which is complete with respect to the standard C'(Q)-norm. Its positive cone

Ci:={ueC)(Q):u(x)>0in Q}
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has a nonempty interior given by

int(Cy) = {ueC+ u(x )>0Ver,%

P (x) <0Vxe GQ}.

Here, n(x) denotes the outward unit normal to 0Q at x.
Suppose g : Q x R — R is a Carathéodory function growing sub-critically,
ie.,

lg(x, )| <1+ inQxR,

where ¢ > 0,1 <r < p Write, as usual, G(x, 1) fo x,7) dt and consider the
C! functlonal p: W ?(Q) — R defined by

1 H 1,
ol =l + g — [ G v e WiT (@),

p q Q
with 1 < ¢ < pand K > 0. The next result [11] establishes a relation between local
minimizers of ¢ in C}(Q) and in W P(Q).
ProrosiTION 2.3. If uy € W P(Q) is a local C] (Q)-mlnzmzzer of ¢, then uy €
C1 *(Q) for some o € (0,1) and uy turns out to be a local W P(Q)-minimizer of ¢.

3. SOLUTIONS OF CONSTANT SIGN

In this section we will construct three nontrivial constant-sign solutions to Prob-
lem (1.1) provided the parameter is small enough. From now on, everywhere in Q
stands for almost everywhere and ¢ = p iff u = 0.

The hypotheses on the reaction f will be as follows.

(ho) f:Q x R — Risa Carathéodory function such that
SEenl<CU+[") VixneQxR

where C € R™.
(hy) There exists & € LT (Q)\{41,,} satisfying

Ay <&(x) < hmmff(x 2

i—+ow tP—1

uniformly in x € Q.

(hy) There is & € LT ()\{41,,} such that

< &(x) <41, uniformly with respect to x € Q.

(hs) There exist dy, 0y € (0,1) fulfilling

0 < f(x,0)t < pda glt]" + 0021 plt]” V(x,t) € Q X [0, 0.
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REMARK 3.1. It should be noted that (hy)—(h,) entail

J(x,1)

2

S 1) <C.

—C < liminf <
tp—1

t——0 |Z|P_

<&H(x) <A1y <&i(x) < limsup
t ——+o0

If 1 <s<gqandie R, weput
gi(x, 1) = At e+ f(x,0),

which still satisfies a growth condition like (hg), but with a different positive con-
stant depending on 4, say C;, and

t
G/l(x7 [) = / g/l(x) T) dr.
0
The energy functional ¢, € C'( WO1 " (Q)) that stems from Problem (1.1) is defined
by

1 U
9;(u) r—p||u||5+q|lul|fj—/QG/a(xw(X))dx Vue Wy (Q).

Suitable truncations of it will be employed. With this aim, set

t
gf (x,0) = ga(x,17), gy (x,0) = gi(x,—17),  Gi(x,1) = /0 g; (x,7)dr.
Evidently, G} (x,1) = G,(x,t"), G; (x,1) = G;(x,—t"), and the associated func-
tionals

1 H 1,
05 (1) :—;Ilull,‘i’+gllullZ—/QGI(x,u@c))dx, ue Wy'(Q),

turn out to be C' as well. Likewise the proof of [18, Theorem 4.1], using the non-
linear regularity theory developed in [13, 14], the strong maximun principle, and
the Hopf boundary point lemma [26, pp. 111 and 120], yields

PROPOSITION 3.1. Under (hy) and (h3), nontrivial critical points for ¢; (resp.,
¢, ) actually are critical points of ¢, and belong to int(Cy) (resp., —int(C,)).

LemMma 3.1. If (ho)—(hy) hold true, then

1. ¢ satisfies Condition (C).
2. ¢; is coercive (hence it fulfills the Cerami condition t0o).

Proor. 1. Let {u,} C Wol‘p(Q) be such that {¢; (u,)} is bounded and

(1 + llell, ) (97) (ua) — O in W17 (Q).
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Since the embedding WO1 P(Q) — L?(Q) is compact, while 4, + p4, enjoys prop-
erty (S),, it suffices to show that {u,} is bounded. One has

(3.1) ).+ 1<), 0 = [ g (v
Il Vo e W7 (Q)
T Twll, o
where ¢, — 07. Letting v := —u,, yields

et + pellua, lly < &n,

so that u, — 0 and

B2 Ao+ )o0> = [ 07 (oo

<&l

for some ¢, — 0F. Suppose |[u, ||, — +co and put w,:=u,/[[u;],. From
[[wall, = 1 it follows up to subsequences

(3.3) Wy —w in WyP(Q), w,—w inLP(Q), w=>0.

Moreover,
g7 (w2 < Ca/g(l + s |7) dx < C(1Qf + Ay ylluf 1)
because f* satisfies (hy). This implies

(.t '

g; (1) 1/,;'( Q 1 )1/1’

~—— <C +— .
PNl A

]
[Eral
Since the right-hand side is bounded, we may suppose

gj('au:)
-1
s 1l

p/

—h in LP(Q).

Recalling that s < p, namely (h;) holds true for g;, and proceeding as in [23,
pp- 317-318] produces

(3.4) h=nw?™! for some 5 € L*(Q) with & (x) < 5(x) < C.

Through (3.2) we then have

v gt
(3.5)  [<Ap(wn), 0> + pllu, 177 <Ay (W), 0> — Mvdx' <¢g—~1— Il

-1 onp—1
@ [lurly el
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Now, choose v := w, — w and use (3.3) to arrive at

lim <{A4,(w,),w, —w) =0.

n—-+0o0

Therefore, by [23, Proposition 2.72], w, — w in Wol""(Q), whence [Jw[|, = 1. Via
(3.5) we thus obtain, letting n — +o0,

{Ay(w),v) = /nywplvdx Yo e W, (Q),

i.e., 2 =1 is an eigenvalue for the problem
—Aju=Jylul’u inQ, u=0 ondQ

associated with the eigenfunction w. However, due to Item 4) of Proposition 2.1,
(h;y), and (3.4),

1= )Vl,p(ﬂl,p) > il,p(él) = j'1-,[7(77)‘

Point 3) in the same result ensures that w changes sign, contradicting w > 0.
2. By (hg) and (hy), for every & > 0 there exists a constant C, > 0 such that

1
F(x, 1) < ;(éz(x) +e)|tf)? +C, Y(x,t) € Q x (—00,0].
Thus, on account of Proposition 2.2,

1 u A 1
Tw) > —ul|)f + =l ==l - | = “|Pdx — C|Q
0; () = Slully + 2y = Sl /p(fz+8)|u | dx — G|Q|

1 1 & A
> | _( -1 — *”d)—— 12 =2l - clo
> p||u ||,,+p ™1l /szlu | dx plu lp = luls = GIQ

1

1 A
P = 1P 2yl —
= )+ (@) = 5 ) Il = Sl - Gl

e
/ll,p

Choosing & := Aj pc(&,)/2 and recalling that s < p finally provides the desired
coercivity property. |

With slight modifications one can verify the next lemma.

LemMa 3.2. Under (hy)—(hy), the functional ¢, satisfies Condition (C) for all
4> 0.

Proor. Fix 4 > 0. Let {u,} C WO1 7(Q) be such that {p,(u,)} is bounded and

(1 + llenll,) (92) () — O in W=7 (Q).
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Then (3.1) holds with g, instead of g;. Choosing v := —u,,, it furnishes
B0l I+l 19 =y ;= [ (v =) ) v < me

where ¢, — 0. Thanks to (hy) and (h,), for every ¢ > 0 there exists a constant
C. > 0 such that

f(x, 0t < (&(x)+ o)t + C, Y(x, 1) € Qx]—00,0].

So, the proof of Conclusion 2 in the previous lemma carries over, giving the
coerciveness of the functional

“H4WWE+NWWE—iwwyiéf@fﬂj@ﬂjd& ue Wyt (Q).

Hence, due to (3.6), the sequence {u, } has to be bounded. To check that the
same holds for {u,}, suppose on the contrary [u, ||, — +o0 and put w, :=
un/|[u,f ||, Obviously, {w,} turns out to be bounded, because so is {u, }. More-
over, w, — 0 while, along a subsequence when necessary,

Wy —w in WyP(Q), w,—w inL(Q).

As before, via (hy) we see that {gi(-,un)||un+||;”} is bounded in L”'(Q). Now,

divide the present version of (3.1) by |ju;||”~', test with v:=w, —w, use the
inequality ¢ < p, and let n — +o0 to achieve

lim <{A,(w,),w, —w) =0,

n—-+400

which implies w, — w in Wol’p (Q2). Consequently, w > 0 and [|w||, > 1. Since

gi(-,—u") 1@’( Q] _l_”unH5>Uﬂ<_>0
[ A A T ’
P
we have
. Lo /
(3.7) gA( 7ui) _g).( auyi) 0 inL? (Q)
[l o e
n lip n lip

The same arguments of [23, pp. 317-318] yield here

g (-, u,")

— . !
T T L),
n llp
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with appropriate 7 € L*(Q) fulﬁlhng &i(x) <np(x) < C. Thanks to (3.7), this
holds true also for {g,(-, u,,)||u+|| “71. Hence, from

95(x, uy) ;o lll,
CAp(wy), 0> + ullu | 177<CAy (W), v) — / vdx| < e —L—
( Vl) || || n ||u+||p oanp—1 ||u;r||5—1
(cf. (3.5)) it follows, when n — 400,
{Ap(w), vy = / P lodx Yo e WP (Q).
Q
Now the proof goes on exactly as the one of Item 1 in Lemma 3.1. O

LemMma 3.3. If (ho) and (hs) are satisfied, then there exists a constant 1" > 0 such
that to every A € (0, 1) corresponds a p, € R" complying with

mi= 1an 5 (1) > 0.
ull,=p;

PRrOOF. Fix any r € (p, p*). Through (hy) and (h3) we obtain
FOet) < pdy gt + 02 pt" H Gt (1) € Q [0, 4+00),

which, when integrated, entails
/ A C. )
F(x,t)S,u%tq—l—Ho%tp—FTtr in Q x [0, 400).

Here, C, € R™. By the Sobolev, Holder, and Poincaré inequalities one has

C

1 u A Al A1 :
+ P q + 1S 4 q P P U
(p)v (u) = ; ||u||p +5||”Hq - E'u |s —H q |u|q - 90 p |u|p - 7 |u|r

1— 0, A c
> 20l Sty —

1 -0, I e (o) Te i
> Tllullﬁ = Q) Ll — = ul,.

Y

1-0y -~ A
{ P Ciallully? = Collull, ”] Jull,

for appropriate positive constants C1, C. Letting ||u| = i yields

1 — r—p — — — r—p
o (1) > [ b _ e -5 e s]zr P = { b _ (Cy + Ca)ars | a7
p p

This immediately brings the conclusion, because s < p < rand 0 < 6y < 1. O



ON A (p,¢)-LAPLACIAN PROBLEM WITH PARAMETRIC CONCAVE TERM 119
From now on, A* will denote the real number just found.
LeEmMA 3.4. Suppose (hy)—(hy) hold true. Then

gim g (s ) = o,

with i , as in Proposition 2.1.

ProOF. Thanks to (hg)—(h;), for every ¢ > 0 there exists a constant C, > 0 such
that

fl(x) — gtp

(3.8) Flonz =2

—C, VY(x,1) e Qx[0,+0).
The properties of #; , and £; produce

/(él—mp) dx > 0.
Q

Choose ¢ > 0 fulfilling

9;:/(51—ﬂbl,p)ﬁfpdx—a/ﬂf’_pdx>0.
Q ' Q

Since | |y = 21, plth pl) = 21, via (3.8) we get
ot (eing) < il + 0 il =5 [ (@ = ol v = 25 i+ €l
p q P
T’ 74 7t
~ q ~ N
—0tu et plly = 2~ [ pls + Gl

for all = > 0. The conclusion follows from ¢ < p. |
Now, critical point arguments will provide three constant-sign solutions.

THEOREM 3.1. Let (hy)—(h3) be satisfied. Then:

1. For every A€ (0,1%), Problem (1.1) admits two positive solutions ugy,u; €
int(Cy).

2. For every A > 0 there exists a negative solution u, € —int(C..) to (1.1).

PROOF. 1. Pick 4 € (0,4"). Lemma 3.4 gives a t € R" so large that o) (i ) <
0. On account of Lemmas 3.1 and 3.3, Theorem 2.1 applies to ;. Thus, there is
uo € W,y (Q) fulfilling

(0]) (o) =0, ¢ (uo) = m; >0,
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whence 1 # 0. By Proposition 3.1, the function u, turns out to be a solution of
(1.1) lying in int(C, ). Next, define

By, == {ue Wy"(Q): |[ul, < p;},

where p; comes from Lemma 3.3. A standard procedure based on the weak
sequentlal lower semicontinuity of ¢;” ensures that this functional attains its min-
imum at some u; € B,,. Fix w € int(C,) and choose 7; > 0 complying with

[ziwll, <p; 71 supw(x) < Jy.
xeﬁ

Thanks to (h3) we have
S(x,ow(x)) =0 Ve (0,11),

which easily entails
9, (tw) < ;I\Wllpﬂt . IIWIIq —A—IWI <0

provided 7 is sufficiently small (recall that s < ¢ < p). Hence, a fortiori,
o) () < 0.

The above inequality brings both Ui # o and u; € B,,\{0}. On account of [15,
Lemma 4.3] we thus arrive at (¢;)'(«;) = 0. Finally, due to Proposition 3.1, the
function u; lies in int(C, ) and solves (1.1).

2. ¢p; is coercive (cf. Lemma 3.1) and weakly sequentlally lower semicontinu-
ous. So, it attains its minimum at some u; € W P(Q). As before, we see that
¢ (u2) < 0, whence u # 0. Since (¢;) (u2) =0, Proposmon 3.1 apphes to get
the conclusion. 0

4. NODAL SOLUTIONS

Let us first show that (1.1) admits extremal constant-sign, namely a smallest posi-
tive and a biggest negative, solutions. Indeed, (hy) and (hs3) yield a real number
¢o > 0 fulfilling

f(x, 0t > —colt]? V(x,1) e A x R.

The same arguments exploited to prove [18, Lemma 2.2] ensure here that, given
A > 0, the auxiliary problem

—Apu — pAgu = Mul " u—colu)”Pu inQ, u=0 ondQ
has only one positive solution i, € int(C, ), while, by oddness, 7; := —ii; turns

out to be its unique negative solution. Reasoning as made for [17, Lemma 3.3]
we next achieve
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LEMMA 4.1. Under (hg)—(h3), any positive (resp., negative) solution u of (1.1) sat-
isfies the inequality @; < u (resp., u < 0y).

These facts give rise to the following result; cf. the proof of [18, Lemma 4.2].

LemMMaA 4.2. Assume (hg)—(h3). Then, for every A€ (0,17), Problem (1.1) pos-
sesses a smallest positive solution u} € int(C) and a greatest negative solution
u; € —int(Cy).

We are in a position now to produce a nodal solution through a mountain
pass procedure. Set

[y ul) == {ue W' (Q):u; <u<uj ae. inQ}.

THEOREM 4.1. If (ho)—(hs) hold true and J € (0,1") then there exists a sign-
changing solution us € Cj(Q) N [u; ,u}] to (1.1).

PRrROOF. The proof is similar to that of [17, Theorem 3.8]; so, we only sketch it.
Define, for every (x,7) € Q x R,

Ao ()2 () + £ (xyuy (x)if £ < g (x),
G, t) = A e+ f(x,0) if u; (x) <t <uf(x),
A|uf(x)|‘v72uf(x) + f(xuf (x)) if 1> uf(x),

as well as G (x, 1) fo g,(x,7) dr. The associated energy functional
. 1 > -
00) = [l + 2l — [ Gulxux) dx, e Wy (@),

clearly fulfills
(4.1) Ky, € [y u],

while using Proposition 2.3 one verifies that both »; and u; turn out to be local
WO1 ?(Q)-minimizers of ¢;; see [18, 17] for details. We may suppose K, finite,
otherwise ¢, (and so ¢,, by standard nonlinear regularity theory) would have
infinitely many critical points in [u; ,u;]\{u; ,u; }, which brings the conclusion.
Consequently, u; and u; are strict local minimizers. Without loss of generality,
assume ¢, (u;") < ¢, (u; ). The reasoning employed to establish [1, Proposition 29]
produces here p e (0, 1) such that

42) My —ufll,>p, max{p;(w)), 9,(u;)} <my:= —inf  ¢(u).

(= 1l,=

Moreover, ¢, satisfies Condition (C), because it evidently is coercive. Hence,
Theorem 2.1 applies, and there exists u3 € K, such that m, < ¢, (u3). Combining
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(4.2) with (4.1) entails u3 € [u; ,u;]\{u; ,u; } while, by Theorem 2.1 again,
(4.3) Ci(p,,u3) #0.

Now, through u}, —u; € int(C), ¢;1, ) = ¢:lp 1 and O € inte g [y, ufl),
we infer o o ’

Cr(o; Lcol(ﬁyo) = Ci(o, Lcol(ﬁ>70)a k € Ny.
Since C}(Q) is dense in Wol’p(Q), one has
C(9, Lcol(g_z)ao) = C(9;,0), Cil(p; Lcol(g_z)ao) = Ci(p;,0).
Let us verify that
(4.4) Ck(9,,0) =0 Vk e N,

which will force u3 # 0 thanks to (4.3). Pick any 0 € (s,¢q). Assumption (h3)
directly yields

g, 01 =2t + f(x, 01> 2] in Q x [, ).

If 6, < oy fulfills
0 14l q p
| <o = (— - 1)A|l| > uh gt]7 + Ooda 1]
s
then from (h3) and the obvious inequality F(x,¢) > 0 for |7| < J; we deduce
K q P 0 K A K
9206, )1 < 2" + g8 + Ol |1 < A|d]” < 9(;|z| +F(x, z)) < 0G;(x,1).

Consequently,
A < gi(x, 0t <0G (x,1),  (x,1) € Q x [-01,01].

Recalling that ¢, is coercive, [17, Theorem 3.6] can be used to achieve (4.4), as
desired. Finally, u3 is nodal by extremality of u; and u; (cf. Lemma 4.2), while
standard nonlinear regularity results give u3 € C}(Q). |

Theorems 3.1 and 4.1 together produce the following

THEOREM 4.2. Let (hg)—(h3) be satisfied. Then there exists a real number

2" >0 such that for every A€ (0,1) Problem (1.1) admits four nontrivial solu-

tions: one smallest positive, u;” € int(Cy); a further positive solution @i; € int(C,);
o : . ; e — gt

one greatest negative, u; € —int(C,.); a nodal solution u; € Cy(2) N [u; ,u;].
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Our next goal is to find a whole sequence of sign-changing solutions that
converges to zero. With this aim, the local symmetry condition below involving
f(x,-) will be posited whatever x € Q.

(hg) The function 7 — f(x,¢) is odd on [—J1,d,] for some J; € RT.

THEOREM 4.3. If (ho)—(hy) hold true then to every i > 0 corresponds a sequence
{u,} of nodal solutions to (1.1) such that u, — 0 in C'(Q).

PRrROOF. Pick A > 0 and define, provided (x,7) € Q x R,

—2007" — f(x,0,) when t < -4,
(4.5) h@(x, t) = /1|t|3721+f(x, l) when |t| S(Sl,
léiv_l + f(xaél) when ¢ > 51,

as well as H)(x, 1) := fot h;(x,7)dz. By (hy), the associated energy functional

1 u
¢M@?=?WM+;WM?1LHM%MMNM ue Wy (Q),

turns out to be even, besides C I'and coercive.
Let V C CH(Q) C WO1 ’(Q) be any finite dimensional space. Bearing in mind
that all norms on V" are equivalent, we have

ueV, |lul,<p = |ulx)| <min{d,01}, xeQ,
for some constant p > 0 depending on V. Hence, F(x,u(x)) > 0 thanks to (h3),
which entails

1 7 Ay
W, (u) < 1_7”qu +5||u||f]’ —§|”|; whenever u € V, |[ul|, < p.

Since s < ¢ < p, there exists p’ € (0,p) such that y,(u) < 0 provided u € V,
[|ul|, = p'. So, Theorem 1 of [12] furnishes a sequence

(4.6) {un} C Ky, 0 p; ! ((—0,0))

converging to zero in WO1 ’(Q). The nonlinear regularity theory ensures a uni-
form C'*(Q)-bound on {u,}. Through Ascoli-Arzeld’s theorem we thus obtain
u, — 0 in C'(Q). Consequently, if ii; is the barrier given by Lemma 4.1 then

(4.7) sup |u,(x)| < min{él, sup ﬁ,{(x)}

xeQ xeQ

for any n large enough. These u, evidently solve Problem (1.1), because of (4.5)—
(4.7). Due to Lemma 4.1 and (4.7) again, they must be nodal. O
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