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ABSTRACT. — In this paper we consider a class of fractional Schrodinger equations with potentials
vanishing at infinity. By using a minimization argument and a quantitative Deformation Lemma, we
prove the existence of a sign-changing solution.
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1. INTRODUCTION

In the past years there has been a considerable amount of research related to the
existence of nontrivial solutions for Schrédinger-type equations

(1) {—Au+ V(x)u=K(x)f(u) inRY
: ue gl.Z(RN )

where V' : RY — R and K : RY — R are positive and continuous functions, and
f : R — R is a nonlinearity satisfying suitable growth assumptions at the origin
and at infinity. An important class of problems associated to (1.1) is the so called
zero mass case, which occurs when the potential ¥'(x) vanishes at infinity. Such
class of problems has been investigated by many authors by using several varia-
tional methods; see for instance [1, 3, 4, 13, 14, 15].

Recently, the study of nonlinear equations involving the fractional Laplacian
has gained tremendous popularity due to their intriguing analytic structure and
in view of several applications in different subjects, such as, optimization, finance,
anomalous diffusion, phase transition, flame propagation, minimal surface. The
literature on fractional and non-local operators of elliptic type and their applica-
tions is quite large, for example, we refer the interested reader to [5, 9, 16, 17, 19,
25, 32, 34, 36, 37] and references therein. For the basic properties of fractional
Sobolev spaces with applications to partial differential equations, we refer the
reader to [22, 31] and references therein.

Motivated by the interest shared by the mathematical community in this topic,
the purpose of this paper is to study sign-changing (or nodal) solutions for the
following class of fractional equations

(1.2) (=A)’u+V(x)u=K(x)f(u) inR",
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where o € (0,1) and N > 2a, (—A)” is the fractional Laplacian which may be
defined for a function u belonging to the Schwartz space .#(R”) of rapidly decay-
ing functions as

o ux)—uly
(=A)"u(x) = Cy 4 P.V./NLNS%)( dy, xeRY,
RY [x — |

where P.V. stands for the Cauchy principal value and Cy , is a normalizing con-
stant [22].

Here, we assume that V,K : RY — R are continuous functions verifying
appropriate hypotheses. More precisely, as in [1], we say (V,K) € A if the fol-
lowing conditions hold:

(VKy) V(x),K(x) >0 for all x e RY and K € L*(R");
(VKy) If {4,} € R" is a sequence of Borel sets such that the Lebesgue measure
|4,] < R, for all n € N and some R > 0, then

lim K(x)dx =0, uniformlyinne N.
T=F0 J 4,0 BE(0)
Furthermore, one of the below conditions occurs
K
(VK3) 3 € L*(RY)

or
(VK4) there exists m € (2,2}) such that

K(x
LB 0 asl = e,
V(x) 2;‘—2
. 2N . . .
where 2 = is the fractional critical exponent.

N =20

Concerning the nonlinearity f : R — R, we assume that f is a C'-function and
fulfills the following growth conditions:

(f1) lim S _ 0 if (VK3) holds

|z|—0 |t|
A0

(f) |l‘imo| T = 0if (VKy4) holds with m € (2,2;) defined in (VKjy).
t1—=0|f

(f2) f has a quasicritical growth at infinity, namely

£

jt]=+oo ||
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(f3) There exists 0 € (2,25) so that
1
0 < OF (1) = 9/ F(@)dr < f() forall |1 > 0,
0

(f4) The map f and its derivative f' satisfy

f(1) < @ for all 7 # 0.
. t) . . . .
Let us observe that by (fs) it follows that 7 — A0 is strictly increasing for all
|| > 0. Moreover, L
1
(1.3) t— 3 f ()t — F () is strictly increasing for every 7 > 0

is strictly decreasing for every ¢ < 0

and in particular
? t .
(1.4) Ef (t)—if(z)>0 for all ¢ # 0.

Equation (1.2) appears in a lot of studies, for instance, when we look for stand-
ing wave solutions ¥(x,?) = u(x)e " to the following fractional Schrodinger
equation

h % = R 8) W+ WO — f(x0), xeBY,

where 7 is the Planck’s constant, W : RY — R is an external potential and f
is a suitable nonlinearity. This equation plays an important role in fractional
quantum mechanic, and was introduced by Laskin [27, 28] through expanding
the Feynman path integral from the Brownian-like to the Lévy-like quantum
mechanical paths.

Lately the study of fractional Schrodinger equations has attracted the atten-
tion of many mathematicians; see for instance [6, 7, 20, 21, 23, 24, 26, 30, 33,
35] and references therein.

In spite of the fact that there are many papers dealing with existence and mul-
tiplicity of solutions of fractional Schrodinger equations in RY, to our knowledge
there are no papers dealing with the existence of sign-changing solutions for frac-
tional Schrodinger equations with potentials vanishing at infinity, and here we
would like to go further in this direction.

The main result of this paper is the following:

THEOREM 1.1. Suppose that (V,K) € A and f € C'(R,R) verifies (f1) or (f;),
and (f2)—(fa). Then, the problem (1.2) admits a least energy sign-changing weak
solution.
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For weak solution to (1.2) we mean a function u € X such that

// )(N( 2) #(»)) dxdy+/ V(x)u(x)p(x) dx
& - RY
— [ K@ ot ds

for all ¢ € X, where

X = {u e 7**(RV) : /RN V(x)|u)* dx < —1—00}.

The proof of Theorem 1.1 is obtained by adapting some arguments developed in
[2, 8]. More precisely, we minimize the Euler—Lagrange functional associated to

(1.2), that is
\u I !
o Nm dxdy + 5 x)|ul? dx — K(x

on the nodal set
Mo={we N wt£0,w £0, T (w),wry=0=<J (w),w >},
where
N i={u e X\{0} : <J'(u),uy = 0}.

Then we prove that the minimum is achieved and, by using a suitable variant
of the quantitative deformation Lemma, we show that it is a crltlcal point of

J. Clearly, due to the presence of the nonlocal term [[gov W dxdy, the

Euler—Lagrange functional J does no longer satisfy the decompositions

J(u) = J(u") +J(u”)
(), uy = J'(ut),u™,

which were very useful to get sign-changing solutions to (1.1); see for in-
stance [8, 10, 11, 12, 18]. Therefore, in order to prove the existence of a sign-
changing solution to (1.2), a more accurate investigation is needed in our
setting.

The paper is organized as follows. In Section 2 we present the variational set-
ting of the problem and we provide some compactness results which will be useful
for the next sections. In Section 3 we give some technical lemmas used in the
proof of the main result. Finally, in Section 4 we prove Theorem 1.1 by minimi-
zation arguments and a variant of Deformation Lemma.
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2. PRELIMINARY RESULTS

Firstly we recall some basic notation and facts which will be used in the sequel of
the paper.

We denote by 2*%(R") the closure of functions C*(R") with respect to the
so called Gagliardo seminorm

ju(x) —u(y)l?
//RM X N+2x dx d

In order to prove that problem (1.2) has a variational structure, let us introduce
the Hilbert space

X = {u e 2% (RN : /R V(x)|u)* dx < +oo}
endowed with the norm
Jull =+ [ VP
Let ¢ € R such that ¢ > 1, and let us define the weighted Lebesgue space
LE(RY) = {u RY — R measurable and / K(x)[u|?dx < oo}

endowed with the norm

| Ny e / K(x |u|qu

Now we prove the following continuous and compactness results, whose proofs
can be obtained adapting the arguments in [1]. For the reader’s convenience we
give the proofs.

LemMma 2.1. Assume that (V,K) € #". Then X is continuously embedded into
LE(RN) for all q € [2,27] if (VK3) holds. Moreover, X is continuously embedded
into LY (RN) if (VKy) holds.
PrOOF. Assume that (VK3) is true. The proof is trivial if ¢ = 2 or ¢ = 2.
25—
Fix ¢ € (2,2}) and let 1 =~ 7

2 -2
g =24+ (1—4)2;. Then we have

K(x)|u|‘fdx=/ K () [u) || V9% dx
RN RN

< (/[RN |K(x)|%|u|2dx)/1 </RN ol dx)lf;v
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) V([ L)
)|)</RNVx u| dx) (/RN|u| dx)
()]

()]

p KLY ([
< C(xseuu_gv |§; A) (/[R{N V(x)|u|2dx>)~
Pk (-2

() z
//,N _ N+2cx dx dy)

< C( sup &x)ll) ||u||2|:/~b+(l—;l)z;:|

cerY V(%)
IS

= C| sup
(xiww( i )l

Taking into account K € L*(R") and that (VK3) holds true, we conclude
that

K

S( su
’CERN|V<
|

[[ull g gy < Cllul-
* f—

25 —2°
can be written as m = 249 + (1 — 49)2;. As above, we have

/ K(X)u|"’dx:/ VK(X)|u|Zi°|u|(lf)'0)2§ dx
RY a
< ([ eorturas)" ([ ax) ™
= ([5 m) ( /R V)l ( /R ¥ ax)

K(x m
< c( sup L)L)Hu” .
xerY [V (x)]

Now, we suppose that (VKy) is true. Denoting by 1y = we can see that m

e L™ (RY) we can infer that

ol ey < Cllull
This concludes the proof of the Lemma 2.1. O
PRrOPOSITION 2.1. Assume (V,K) € A". The following facts hold:

(1) X is compactly embedded into LE(R™) for all q € (2,2}) if (VK3) holds;
(2) X is compactly embedded into L’”(RN ) if (VKy) holds.
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ProoOF. (1) Assume that (VK3) holds. Fix ¢ € (2,2}) and let ¢ > 0. Then there
exist 0 <ty < t; and a positive constant C such that

K(x)[t]? < eC[V(x) forall r € R.

] + CK( ) to tl](|[|)

Integrating over %y (0) we have, for all u € X and r > 0,

2.1) / K(x)|u|‘fdxgec/ VGl + Jul™] dx + szi‘/ K(x) dx
2¢(0) 2¢(0) AnBE(0)

=:e¢C2(u) + Ctlz’T / K(x)dx
AnBE(0)
where we set

2u) ::/ VOl + < ]dx and A= {xeRY : 1 < [u(x)| < 1}
%/ (0)

e

Now, if {u,} C X is a sequence such that u, — u in X, then there is M > 0 such
that

unzjdst Vn e N.

(2.2) lul> < M and /R|

This implies that {2(u,)} is bounded from above by a positive constant. Let us
denote by 4, = {x € R : tp < |u,| < t;}. By (2.2) we deduce

zjim(An)g/ % dx <M VneN,
A”

which implies that sup, y|m(4,)| < +00. Therefore, from (VK;) there exists a
positive radius r large enough such that

(2.3) / K(x) forallm e N.
A, % (0) ll
Putting together (2.1) and (2.3) we obtain
(2.4) / K(x)|un]? dx < 6CM + C> / K(x) dx
(0 AnnB(0)

< (CM + C)e forallne N.

Recalling that ¢ € (2,2}) and that K is a continuous function, by Sobolev embed-
ding it follows that

(2.5) lim K(x) |un|qu—/ K(x)|u|? dx.

n—0o0 jr<0)
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By (2.4) for ¢ > 0 small enough and (2.5) it holds

lim K(x)|un|qu:/ K(x)[u] " d
RY

n— oo RN
from which we conclude that
u, — uin LL(RY), forevery q € (2,2}).

(2) Let us suppose that (VKy) is true. Then we can see that for each x € RY
fixed, the function

g(t) = V(x)£>™™ + >~ forevery t > 0,

2-m

2%_2
) * ", Hence

Lomo . 2% -2 -2
has C,,V'(x)%? as its minimum value, where C,, = ( % ) (m
28 —m/\2; =2

*
2, —m

CoV(X)572 < V(x)2 ™+ forevery x e RV and 1 > 0.

Combining the last inequality with (VKy), for any ¢ > 0 we can find a positive
radius r sufficiently large such that

K(x)|f|" < eCl[V(x)|1)* 4 |1|*], forevery e Rand |x| > r,

where C,, is the inverse of C,,, and integrating over %, (0) we get
(2.6) / K(x)|u|™ dx < eC![|lul|* + |jul| ., _+.] forallue X.
2¢(0) L7 (R™)
If {u,} C X is a sequence such that u, — u in X, by (2.6) we deduce that
(2.7) / K(x)|u|" dx < eC), forallne N.
#:(0)

Once that m € (2,27) and K is a continuous function, it follows from Sobolev
embedding that

(2.8) fim [ K()[u]” dx = / K(x)[u]™ d.
=) 4,(0) 2,(0)

Then (2.7) and (2.8) yield

lim K(x)|un|mdx—/ K(x)|u|™ dx,
RN

n— oo RN
from which we can infer that

u, — uin LY(RY), for every m e (2,2}). O
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The following lemma is a compactness result related to the nonlinear term.

LEMMA 2.2. Assume (V,K) € A and f satisfies (f1)—(f3) or (f;)—(f2). Let {uy}
be a sequence such that u, — u in X, then, up to a subsequence,

lim K(x)F(u,) dx = K(x)F(u) dx
n—ow fpN RN
and
lim K(x)f (u,)u, dx = K(x)f (u)udx.
n—oo RN RN

PrOOF. Assume that (VK3) holds. From (f1)—(f2), fixed ¢ € (2,2}) and given
& > 0, there exists C > 0 such that

(2.9)  |K(x) /()1 < eClVX)|t]* + |1|*] + CK(x)|1]4, forallze R.
From Proposition 2.1 we know that
im [ K07 dx = / K()[u]? dx,
n—o [pN RN
so there exists r > 0 such that
(2.10) / K()[un|?dx <&, forallneN.
7:0)

Since {u,} C X is bounded, there exists a positive constant C’ such that

Zdx < C', forallne N.

(2.11) / V(x)lun?dx < €' and / s
RN RN
Taking into account (2.9), (2.10), and (2.11) we have
K(x)|us|Tdx < (2CC"+ 1)e, forallne N.
#:(0)

Assume that (7Ky4) holds. Similarly to the second part of Proposition 2.1, given
& > 0 sufficiently small there exists » > 0 large enough such that

K(x) < eCp[V ()| + [o 7]

, forevery |7 > 0 and |x| > r.

Consequently, for all |¢/ > 0 and |x| > r

K01 < eCoV L@l |27+ F(1)e] %77
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From (f,) and (f3), there exist C, 19, 7; > 0 satisfying
K(x)|f(n)e < sC[V(x)|t|2 + |Z|2;], for every t € I and |x| > r

where I = {t € R: |t| < t or [t| > 1, }. Therefore, for every u € X, setting

,@(u):/ V(x)|u|2dx+/ ) dx
RY RN

and 4 = {x e R" : tp < |u(x)| < 11}, the following estimate holds

/ K(x)f(wudx <eC2(u )+C/ K(x)dx.

AnBE(0)

Due to the boundedness of {u,} C X, we can find C’ > 0 such that

/ V(x)|us|* dx < €' and / 2 dx < C', forallneN.
RN
Therefore
K(x)f (tn)uy dx < eC" + C/ K(x)dx,
#:(0) Ay BE(0)

where 4, = {x e RY : #) < |u,(x)| < t;}. Following the same arguments in the
proof of Proposition 2.1 and by (VK;) we deduce that

/ K(x)dx — 0 asr— 4o
A,~B(0)

uniformly in #» € N and, for ¢ > 0 small enough

/ K(x) f (up)uy dx

In order to complete the proof, we need to prove that

< (C"+1)e.

lim K(x)f (up)uy dx = / K(x)f(u)udx
n—+00 %r(o) I
which easily follows by the compactness Lemma of Strauss [14]. O

3. TECHNICAL LEMMAS

In what follows we look for a sign-changing weak solution of problem (1.2),
that is a function u € X such that u™ := max{u,0} #0, u~ := min{u,0} #0
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in RY and
(u(x) —u(y))(p(x) — p(»))
//[RZ‘V |X o y|N+2(x dXdy+ AN V(x)u<x)¢(x) dx
= . K(x)f(u)p(x) dx
for all p € X.

In view of the assumptions on V', K and f, we can see that the functional
J : X — R defined by

J() = %W +% /R V(o dx - /R K()F(u)ds

is Fréchet differentiable and that its differential J’ is given by

1) (p(x) — p(»))
u), ) = / /[R " ywm dxdy

+ /[R{N V(x)u(x)p(x) dx — K(x)f(u)p(x)dx

RY

for all u,¢p € X. Then, weak solutions to the problem (1.2) are critical points
of J.
Associated to J, we introduce the following Nehari manifold

N = {u e X\{0} : <J'(u),u)y = 0}.

Since we look for sign-changing solutions to (1.2), it is natural to seek functions
w € .4 such that

J(w) = blélﬁ/ J(v),

where
Mo={we N wh#£0,w £0, T (w),wt>=0=<J(w),w >}
Let us point out that for all # € X

i = = [ S = W

so we can deduce that

J(u) - J( //RZ/\ j)_| ]L\tUrZ(oc ) +(y) dxdy’
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and

S byt Ll (0)
Gty =y - [[ EE e dy.

In particular, for all w € . it results
J'(wH),wH) <0.

Motivated by [2, 8], we will show the existence of a minimizer of J on .# and that
it is a weak solution to (1.2) by using a suitable deformation argument.

Firstly, we collect some preliminary lemmas which will be fundamental to
prove our main result.

LEmMmA 3.1.

(i) For allu € N such that ||u|| — +oo, then J(u) — +o0;
(i) There exists 0> 0 such that ||ul| > ¢ for all ue N and |w*| = o for all
we M.

PRrOOF. (i) By using the definition of ./" and taking into account the assumption
(f3) we get

So, when ||u|| — +c0, the last inequality yields J(u) — +c0.
(i) From the assumptions (f1)—(f2) or (f;)—(f2) we deduce that, for any
& > 0 there exists a positive constant C; such that

|f(0)1] < elt] + Clt|*, forallreR
(3.2) |f(0)1] < elt|” + C,lt|*, forall e R.

Since u € A" we have {(J'(u),uy = 0, that is

]| / K(x)f(u)udx.

Now we distinguish two cases.
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Assume that (VK3) holds. Then, by applying (3.1) and Proposition 2.1 we
get

K

2

i =[5
L

5/ V() ul? dx + cg/ K(x)[u|* dx
RY RY

H—H AP+ CSIE

2

where S is the Sobolev embedding constant. Choosing ¢ € (0,1/ £ | L( )) we
can find g; > 0 such that ||u|| > o;.
Let us suppose that (FKy) holds true. By (3.2) and Proposition 2.1 we have

(3.3) [lul|* < e/R K (x)|u|™ dx + C/R K (x)|ul* dx

.
< eflull™ + CoSIIKI| oo o llull ™

Since m € (2,2), we can choose ¢ sufficiently small in order to find g, > 0 such
that ||u|| > 0. Now, for w e .4, we have that (J'(w),w*)> =0, and, observing
that

[ )
R | o

X — y|N+20(

we have

[wi]? < /[R{N K(x)w* f(wh) dx

Then we can argue as before to prove that there is o > 0 such that [|[w*|| > 0. O
LEmMA 3.2. Let {w,} C M such that w, — w in X. Then w* # 0.

Proor. Firstly we observe that by Lemma 3.1 there exists ¢ > 0 such that

(3.4) [wE|| > o forallne N.

Since w,, € .#, we have {J'(w,),wF> = 0, that is

(3.5) Hw+|] // wy (¢ ;X/‘jﬂg X)wy () dxdy = . K(x)f(w;—r)wnidx.

At this point, recalling that

Méww%m+mmwmﬁﬁgm

Y — y|N+2CZ
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by (3.4) and (3.5) we get
(3.6) <l < [ KOOSO d
RY

Now, by using w, — w in X and Proposition 2.1, we know that w, — w in
L’"([REN) Then, exploiting |+ — s*| <|r—s| for all t,s € R, we can deduce

that wt — w* in LPZ(RY), and being K(x) > 0 for all X € RN, we also have

wE — wt ae. in RY. Arguing as in Lemma 2.2 we can see that

(3.7) K(x)f(whHwtdx — K(x)f (w5 w* dx.

RN RN

Putting together (3.6) and (3.7), we have

0<o®< K(x)f(wH)w* dx
RY

which shows that w* # 0. 0
LEMMA 3.3. Ifve X : vt #0, then there exist s,t > 0 such that
J'(twt +sv7),0">=0 and {J'(tv" +sv7),07 > =0.
As a consequence tvt + sv” € M.
PROOF. Let G : (0,+0) x (0,4+00) — R? be a continuous vector field given by
G(t,s) = (J' (" +sv7), 0wy, I (" +sv7),507))

for every #,5 € (0,+00) x (0,+00). We consider two cases.
Assume that (VK3) holds. By using (3.1) and Proposition 2.1 we have

(3.8)  J'(wt+svT), 0wty

+ vF(x)o” v (x)o"(y)
= 2|v*|? st// y|N+2x dxdy

- K(x)ow™ f (") dx

RN

> £2||v*]? —/ K(x)to" f(tw) dx
RY

+|25

> 2|

—<1—85

V

o g
Lo(®Y)

(u;eN)HU

Vv

2 * 2
)tzllvﬂl — Gt || K| oo oy 10|
L*(RY)
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Suppose that (VKy) holds. Then by (3.2) and Proposition 2.1 we deduce

(39) <J/(tv+ +SU_), [U+> _ [2||U+||2 _ SI//RZN U+(X)U7(y) + Ui(x>l]+(y) dXdy

|x o y|N+21x

- / K(x)ow" f(w™) dx
RN

2 ' 2
2 2ot = e ot " = Gt K e g [0

K )
% )szllv I
L*(RY)

%

Similarly, we can see that

(3.10) T (T +sv7), 507y > (1 —¢

* o 2F
= Cos™ [|K || - 01
if (VK3) holds, and
(3.11) ("t so7), 507> = $lo7||F —es™ o7 | = Cos™ K gy 07|

under the condition (VKy).
Then, taking into account (3.8), (3.9), (3.10) and (3.11), there exists r > 0
small enough such that

(3.12) J'(rot +sv7),r0"y >0 foralls >0 and
J' (" +rv7),rv"y >0 forallz>0.

Taking into account (f3) and 0 € (2,2}) we get

J' (" +sv7), 00"

+
=2|o*|? st// +|11i,+2(1) ) dx dy
-

- K( Yot f (") dx

+
< 2lo*| st// +|z+§a) W) g ay
-J

- t”Cl /A+ K(x)|v+|0 dx + C2||K||Lm(RN)|A+|

and
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(" +sv7),507)
+
<72 st// +|:,+2(U) () dx dy

—sf’cl/ K(x)|v’|0dx+ ColIK]| o vy |47
.

where AT C supp(w™) and A~ C supp(w~) are measurable sets with finite and
positive measures. Thus there exists R > 0 sufficiently large such that for all
t,s € [r, R] it holds

(3.13) <J'(Rv" +sv7),Rv"> <0 and <J'(w"+Rv"),Rv" ) <0.

From (3.12) and (3.13), and by applying Miranda’s Theorem [29], we can con-
clude the proof of Lemma 3.3. |

For each v € X with v* # 0, let us consider the function /" : [0, +00) X [0, +00)
— R given by

(3.14) h'(t,s) = J(tv" +sv7)
and its gradient ®" : [0, +00) x [0, +-00) — R? defined by
(3.135) (1, 5) = (@1(1,5), D5 (1,5))

= (3 9.5 0.9)

= (I (twt +sv7), vy, I (0" +s07),07)).

Furthermore, we consider the Jacobian matrix of ®*, namely

oD o0y
oY/ | w6 (1)
((I) ) (l? S) - ((7(1)” FloX .

atz (lv S) [;?Sl ([7 S)

In the next result we prove that, if we .#, the function A" defined in
(3.14) has a critical point and in particular a global maximum in (¢,5) =

(1, 1).
LemMA 3.4. Ifwe M then

(@) h"(t,s) < h"(1,1) = J(w), for all t,s > 0 such that (t,s) # (1,1);
(b) det(@")'(1,1) > 0.
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PrOOF. (a) Since w € .4 then {J'(w),wE) = 0, that is

+( - +
i - [, +|LV+2SX)’” Daxay= [ kewsor)ax
-y ' RY

i - ff ;L”( P ey = [ kw0

From this and by the definition of ®", it follows that (1,1) is a critical point
of h".
Thus, by using (f3) and F(z) > 0, we have

h"(t,s) = J(tw™ +sw™)

£—||tw +ow |2 —/ K(O)F(ow) dy— [ K(x)F(sw ) dx
B
+ —
< = ||w+|| + Hw & st// +|X,V+2<yy)w ) dxdy
-y

— it [ K@) wt| dx - Cs° K(x)|w—|"dx

A+ A~

+ Cof[K] oy (147 + 147]),

where A" C supp(w*) and 4~ C supp(w~) are measurable sets with finite and
positive measures. Taking into account that § > 2, we can infer that

lim A"(t,s) = —c0.
[(1,5)] =400

By using the continuity of 42" we can deduce the existence of (7,5) € [0,400) x
[0, 400) that is a global maximum point of /".

Now we prove that 7,§ > 0. Suppose by contradiction that §= 0. Then
J'(tw™), twT) =0, that is

(3.16) wt|)? = /RNK(x)(wﬂzf(ti”:) dx.

Since w € .4 we obtain

+w ()w(y)
N+2o

1+ FN / + LV+(X)W7(y)
T wh),w™y = (w),w >+//sz | dx dy

x -y
_ // wh(x)w™ (y) +w (x)w' () dxdy <0
RZN

|x o y|N+2fx
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which implies that

W+

(3.17) [wt|?* < /RN K(x)(w*)zf(wﬂ dx.

Then, combining (3.16) and (3.17) we obtain

o< [ G ){f(w )_f(_tW)} )

wt twt

that in view of (f4) yields 7 < 1. Taking into account (1.3) we can infer

=J(w") —%<J’(rw+), why
_ /R K(X)B'wv(zw ) — F(fw )]
< /RN K(x) [%W*f(fw*)—F(fw )} dx

=J(w) — % T (w), w)

=J(w)=h"(1,1).

Then /7"(7,0) < h"(1,1), and this gives a contradiction because (7,0) is a global
maximum point. In similar fashion we can prove that 7 > 0.
Now we show that 5,7 < 1. Since (h")'(Z,5) = 0, we get

2wt ? st// :;Vﬂ(a X)W () dxdy = /RN K(x)twtf(iw") dx
2w ? st// ;;VH(“ X)W () dxdy = /[RN K(x)sw™f(5w™)dx

Assume that 7 > 5. In view of

+ - +
// wH(xX)w™(y) +w= (x)wt(p) dxdy <0
RZI\

y|N+21

we have
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(3.18) f2||W+||2 // ;;\Lz& x)wH(y) dx dy

> /RNK(x)fW f(tw™) dx

Since (J'(w),w™> =0 (w € M), we deduce that
e = ff S S ey = [ K0 s
which together with (3.18) gives
0> / K(x) [f () _J (WW dx.
RV

wt wt

By (f4) we can infer that 7 < 1.

Now we aim to prove that 42" does not assume a global maximum in
0,11 x [0, 1\{(1, 1)}, namely

n(7,5) < h"(1,1)  for every (7,5) € [0, 1] x [0, 1]\{(1, 1)}.

Let us observe that by the linearity of F and the positivity of K it follows that

K(x)F(w)dx = K(x)(F(w®) + F(w™)) dx.

RN IRN
Then, by the definition of 4" and (1.3) we get

_ _ 1 _ _ 1 _
h(5,5) = J(tw" +35w™) — E(J’(ZWJr +5wT), twty — 5(]'(1\4}* +5w7),sw )

+( - +
A e

2
y|N+ o

72 <2
— [ KGF(e) dx - K(x)F(s-w-wxf%nw*nzf%nw-nz

RY RY

N wr(xX)w=(y) + w (x)wH(y)
+ 5t / /R N | dxdy

x — y|N+2a

—|—% . K(x)wa’f(fWJ’)dx—l-%/RN K(x)sw=f(5w™) dx
- % K(x)[twtf(tw®) — F(iw™)] dx
RN

1 o o
—|-§/RNK(X)[SW f(w™) = F(sw™)]dx
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< % K(x)[wrf(wh) — F(w™)] dx—i—%/RN K(x)[w f(w™) = F(w™)]dx

RN
= %/RN K(x)wf(w) — F(w)]dx=h"(1,1).

(b) Firstly, let us observe that

(3.19) q) (ts ) = [lwt? / K(x (w2 dx
@H
(ts = |lw™|? —/ K(x)f"(sw™)(w™)dx
ol "CD; w( x)w y) +w (x)wT(y)
R (t,5) = //R” e dx dy.

Then, by using the fact that w € .#, (3.19) and (1.4) we have

det(®")'(1,1) = | —/ R R Ty A

wh(x )+ w (x)w'(y) 2
//RZN y|N+2a dXdy)

- [ [0t 0) = £ )00

wr(xX)w () +w (x)w*(y)
+ //RZN |X B y|N+20c dxal);|

o g2
X l/RN(W fw™) = f'(w)(w™)")dx

wHx)w=(¥) +w (x)wh(p)
+ //sz v — y|N+2o< dxdy]

wh(x)w™ y)+w (X)w*(y) 2
//R“ y|N+2“ dxdy) > 0. O

4. PROOF OF THEOREM 1.1

In this section we prove the existence of w € .# in which the infimum of J is
achieved on .#. Then, by using a quantitative deformation lemma, we show that
w is a critical point of J, so a sign-changing solution of (1.2).
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By using Lemma 3.1 we know that there exists a minimizing sequence
{wn}, C . bounded in X, such that

(4.1) J(wy) — ing/J(v) =:¢p > 0.

By using Proposition 2.1 we can assume that

wE—w® in X,

wi - wt in LP(RY),

wi —w* ae inRY.

From Lemma 3.2 we deduce that wt #0, so w=w" +w~ is sign-changing.
By Lemma 3.3, there exist s, ¢ > 0 such that

(4.2) J(twT +sw ), wtHy =0, J'(twt+sw),w >=0

and twt +sw™ e 4. Now, we prove that s,z < 1. Since w, € .#, we have
{J'(wy), wiEy = 0 or equivalently

(43) ||W2-||2 _ //Rm W*(x>Wi(y> +W7(X)W+(y) dxdy _ /RN K(x)w;ff(w:) dx

|X _ y| N+20
+ - - +
@) oy P [ L D) gy - [ kw0 d
R2V |X _ y| RN
The weak lower semicontinuity of the norm || - || in X yields
(4.5) wE|? < liminf |wE|?,
n—oo

and arguing as in Lemma 2.2, we obtain
(4.6) K(x)f(whHwrdx — [ K(x)f(wH)wtdx.

R N R N

Taking into account (4.3), (4.4), (4.5), (4.6), and by applying Fatou’s lemma we
deduce

(4.7) J'(w),w™> <0 and J'(w),w > <0.

Then, putting together (4.2) and (4.7), and arguing as in the proof of Lemma 3.4-
(a) we deduce that s, 7 < 1. Next, we show that J(twt +sw™) =¢pand t =5 = 1.
By using twt +sw™ € M, w, € M, (1.3), (4.1) and 5,1 € (0, 1] we can see

co < J(twh +sw7)

1
=J(wT +sw7) — §<J’(Zw+ +sw), w4 swT)
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_ /R K B Flow™ +sw)(ow* + sw) — F(ow™ + sw™) | d
= [ K 3w~ Fow)
# [ K| 3 )ow) = Flowo)| o
< [ KE)|3700)00) = Flw)
+ [ KG| 5000 = ) s

= tim{ [ K00 3050087 = £

n—oo

n—oo RN

= lim K(x) Bf(wn)(w,,) — F(wn)] dx

= lim |:J(W,,) — % <J/(Wn)7 Wn>:|

n—oo

= lim J(w,) = c.
n— oo

Thus we have proved that there exist 7,5 € (0,1] such that rw* +sw™ € .# and
J(twT 4+ sw™) = ¢p. Let us observe that by the above calculation we can infer
thatt=s=1,sow=wr+w e .#Zand Jwr +w") = ¢.

Finally we prove that w is a critical point of J, that is J'(w) =0. We
argue by contradiction. Then we can find a positive constant f > 0 and vy € X
with |lvog]| =1, such that {J'(w),v9) =2 > 0. By the continuity of J', we
can choose a radius R so that {(J'(v),vo) > f for every v e #r(w) C X with
vt #£0.

Let o7 = (&) x (&,7) € R? with 0 < & < 1 < y such that

(i) (1,1) € o7 and ®"(1,5) = (0,0) in <7 if and only if (¢,5) = (1,1),
(i) co ¢ h"(0),
(i) {tw* +sw™: (t,5) € A} C Br(w)

where 4" and ®@" are defined as in (3.14) and (3.15), and satisfy Lemma 3.4. Then
we can take a radius 0 < r < R such that

(4.8) % =B,(w) C Br(w) and Bo{w" +sw™ :(t,5) € 0/} =0.
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Now, let us define a continuous mapping p : X — [0, 400) such that
p(u) := dist(u, £¢) forallu e X,

and let V : X' — X be a bounded Lipschitz vector field given by V(u) = —p(u)vy.
For every u € X, denoting by #(7) = 5(t,u), we consider the following Cauchy
problem

{n’(r) =V(n(z)) forallt>0,
n(0) = u.

Let us note that there exist a continuous deformation #(z,u) and 7y > 0 such that
for all 7 € [0, 7¢] the following properties hold:

(a) n(t,u) = u for all u ¢ A,
(b) © — J(n(z,u)) is decreasing for all n(z,u) € 4,
() J(n(z,w)) < J(w) — %}T.

Indeed, (a) follows by the definition of p. Regarding (b), we can observe that
{J'(n(t)),v0) = > 0 for 5n(r) € B C %Br(w), and, by the definition of p, we can
infer p(n(7)) > 0. Then

%(J('?(T))) = I (n(2),n'(1)> = —p(n(2))<JI" (n(x)), v0>

< —p(n(2))B <0, Vn()e %,

that is J(#(z,u)) is decreasing with respect to 7.
Now we prove (¢). Fix 79 > 0 such that #(z,u) € % for every 7 € [0, 7¢], and we
assume without loss of generality that

l7(z, w) —w|| < §<:> n(t,w) € B:(w) forany 7 € [0, 7).

Since p(n(z,w)) = dist(n(z, w), B) > %, we can deduce that

& st < —pln(r.wp < -2

and integrating on [0, 79] we get

J(n(zo,w)) — J(w) < —?ﬁfo.

Now we consider a suitable deformed path 7, : ./ — X defined by
i, (1, 5) == n(zo, tw" +sw™), forall (1,5) € </,
and we note that

max _J(1,,(t,5)) < co.
(t,8) e
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Indeed, by (b) and the fact that #(0,u) = u, we have
(1, (t,5)) = T (n(zo, W™ +5w7)) < J(n(0, tw™ +5w7))
=J(wt +swT) =h"(t,5) <co V(t,5) € Z\{(1,1)},
and for (z,5) = (1, 1), in virtue of (c), we have

(11, (1, 1)) = J (n(zo, w" +w7)) = J(n(z0,w))

<J(w) —%’ro < J(w) = co.

Then 7, (/) N4 = 0, that is
(4.9) i, (t,5) & 4 forall (t,5) € .
On the other hand, setting ¥, : ./ — R? by

I (71, (1,5)), (71, (£:8)) > <J’(’710(I,S)),(ﬁfo(f>s))_>)

t s

we can see that, for all (¢,s) € d.«Z, by (4.8) and (a) for 7 = 1y, it holds
Vo, (1,5) = (T (ow™ +sw™),wH, I (twt +sw™),w™ ) = ®(1,5).
Then by using Brouwer’s topological degree we have
deg(¥,,,.7,(0,0)) = deg(®", .7, (0,0)) = sgn(det(®")'(1,1)) =1,
so we deduce that ¥, has a zero (7,5) € <7, that is
Wo (1,5) = (0,0) & (7, (1,9)), (7, (7,5)) ") = 0.

Therefore there exists (7,5) € .o/ such that 7, (#,5) € ./, and this is impossible
in view of (4.9).
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