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Abstract. — In this paper we complete the study started in [Pi2] of evolution by inverse mean

curvature flow of star-shaped hypersurface in non-compact rank one symmetric spaces. We consider
the evolution by inverse mean curvature flow of a closed, mean convex and star-shaped hypersurface

in the quaternionic hyperbolic space. We prove that the flow is defined for any positive time, the
evolving hypersurface stays star-shaped and mean convex. Moreover the induced metric converges,

after rescaling, to a conformal multiple of the standard sub-Riemannian metric on the sphere defined

on a codimension 3 distribution. Finally we show that there exists a family of examples such that the
qc-scalar curvature of this sub-Riemannian limit is not constant.
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1. Introduction

In this paper we complete the study started in [Pi2] of evolution by inverse mean
curvature flow of star-shaped hypersurface in non-compact rank one symmetric
spaces, studying the evolution in the quaternionic hyperbolic space HHn. The in-
verse mean curvature flow is the most studied example in the class of expanding
flows. For any given smooth hypersurface F0 : M ! HHn, the solution of the in-
verse mean curvature flow with initial datum F0 is the smooth one-parameter
family of smooth immersions F : M� ½0;TÞ ! HHn such that

qF

qt
¼ 1

H
n;

Fð�; 0Þ ¼ F0;

8<
:ð1:1Þ

where H is the mean curvature of Ft ¼ F ð�; tÞ and n is the outward unit normal
vector of Mt ¼ FtðMÞ. It is well known that this flow has a unique solution,
defined at least for small times, if M0 ¼ F ðM; 0Þ is closed and mean convex.
The behaviour of the evolution depends, of course, on the initial datum, but the
geometry of the ambient manifold has a crucial role too. In fact Gerhardt [Ge]
and Urbas [Ur] proved indipendently that, for any star-shaped hypersurface of
the Euclidean space, the limit metric is, up to rescaling, always the standard
round metric on the sphere. In [HW] P. K. Hung and M. T. Wang showed that,
when the ambient manifold is the hyperbolic space, the limit metric is not always
round: it is a conformal multiple of the standard round metric on the sphere and



so it is round only in special cases. More recently the author of the present paper
studied the analogous problem in the complex hyperbolic space. In [Pi2] it has
been proved that in this case a new phenomenon appears: even after rescaling,
the evolving metric blows up along a direction. Hence the limit metric is no
more Riemannian, but only sub-Riemannian defined only on a codimension-1
distribution. Moreover there are infinite examples of initial data such that the
limit sub-Riemannian metric does not have constant scalar Webster curvature.
Recently similar problems have been studied in ambient manifolds which are
warped products [Sc, Zh]: HHn is not in this class, in fact its metric can be written
as (3.1), but, for example, the Euclidean and the hyperbolic space are. Hence a
di¤erent analysis is required. Other examples of evolution by inverse mean curva-
ture flow of star-shaped hypersurfaces can be found in [Di, Ne, KS]. The main
result proved in this paper is the following.

Theorem 1.1. Let nb 2. For any M0 closed, mean convex and star-shaped
S3-invariant hypersurface in HHn, let Mt be its evolution by inverse mean curva-
ture flow and let gt be the induced metric on Mt. Then:

(1) Mt is star-shaped for any time t;
(2) the flow is defined for any positive time;
(3) the rescaled induced metric ~ggt ¼ jMtj�

1
2nþ1gt converges as t ! l to ~ggl ¼

e2f ssR for some smooth function f , where ssR is the standard sub-Riemannian
metric of the sphere S4n�1 defined on a distribution of codimension 3;

(4) finally there are examples of M0 such that ~ggl does not have constant qc-scalar
curvature.

The fact that the maximal time is infinite implies that the evolving hypersur-
face becomes arbitrary large and ‘‘explores’’ the structure at infinity of the ambi-
ent manifold as t tends to infinity. Parts (3) and (4) of Theorem 1.1 say that dif-
ferent initial data explore the structure at infinity of HHn in di¤erent ways, but
the conformal class of ssR is preserved.

Since we are considering only closed star-shaped hypersurfaces, we know that

any hypersurface is an embedding of the sphere S4n�1 into HHn. The rescaled
induced metrics define a family of Riemannian metrics on S4n�1. Analogously
to what seen in [Pi2], this family of metrics diverges in some directions as the
time goes to infinity. In our case we have 3 independent special directions: J1n,
J2n and J3n, where J1, J2 and J3 are the complex structures of HHn induced by
the multiplication by the three quaternionic imaginary unities. Hence the limit
metric is only sub-Riemannian defined on a distribution of codimension 3. In
this contest the best notion of curvature is the qc-curvature introduced by
Biquard in [Bi]. It is easy to prove that the evolution of a geodesic sphere stays
a geodesic sphere at any time: it is a peculiar behaviour of the Euclidean space
and rank one symmetric spaces. Then, in this special case, the qc-curvature of
the limit rescaled metric is constant. On the other hand the research of a hyper-
surface with non trivial limit is more di‰cult. The qc-Yamabe problem was
solved by Ivanov, Minchev and Vassilev in [IMV]: they gave an explicit descrip-
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tion of all the functions f such that e2f ssR has constant qc-scalar curvature. With
the help of this result we show that there are infinite examples of initial data such
that ~ggl has non constant qc-scalar curvature. Following the strategy introduced
in [Pi2], the main tool is the following: for any star-shaped hypersurface M we
define the following Brown-York quantity

QðMÞ ¼ jMj�1þ 1
2nþ1

Z
M

ðH � ĤHÞ dm;

where jMj is the volume of M and, if r is the radial function defining M, ĤH is the
value of the mean curvature of a geodesic sphere of radius r (see (3.7) for the
explicit definition). Q gives a measure of how M is far to being a geodesic sphere,
however it isn’t a true measure because, for example, Q does not have a sign.
In the final section of this paper we found the desired non-trivial example in
the class of S3-invariant submanifolds estimating the behaviour of Q along the
inverse mean curvature flow.

This paper is organized as follows. In section 2 we collect some preliminaries
and we fix some notations. In section 3 we compute the main geometric quantities
for a star-shaped hypersurface in HHn, as the induced metric, the second funda-
mental form and the mean curvature. In section 4 we have ax explicit example,
i.e. the evolution of the geodesic spheres. In section 5 we estimate the norm of
the gradient of the radial function. As a consequence we have that the property
of being star-shaped and the mean convexity are preserved by the flow. In section
6 we collect without proof some results about the higher order derivatives of r
and we discuss their consequences. The proofs are not given because they are
very similar of those of the analogous results in [Pi2]. In particular we show that
the solution of the flow is defined for any positive time and that the rescaled
induced metric converges to a sub-Riemannian limit. Finally in section 7 we con-
clude the proof of Theorem 1.1 studying the Webster curvature of the limit metric
and giving a family of non-trivial examples.

2. Preliminaries

2.1. Riemannian and sub-Riemannian metrics on the sphere

Every hypersurface considered in this paper is closed and star-shaped and so it is
an embedding of S4n�1, the sphere of dimension 4n� 1, into HHn. On that
sphere we have di¤erent ‘‘standard’’ metrics. Let s be the usual round Rieman-
nian metric on that sphere. We can distinguish three important vector fields: we
can think the sphere embedded in Hn equipped with J1, J2 and J3 the complex
structures induced by the multiplication by the three quaternionic imaginary uni-
ties then:

J 2
1 ¼ J 2

2 ¼ J 2
3 ¼ J1J2J3 ¼ �id4n;
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where idk is the identity matrix of order k. If n is the unit outward normal to
S4n�1, the xi ¼ Jin are three independent unit tangent vector field on the sphere.
They are often called the Hopf vector fields, because they span the tangent space
of the fibers of the Hopf fibration: p : S4n�1 ! HPn�1. They allow us to define
the vertical distribution V ¼ 3x1; x2; x34 and the horizontal distribution H ¼ V?,
the orthogonal complement of V with respect to s. The Berger metrics is a family
of deformations of s obtained with the canonical deformation of p: for any l > 0
let el be the Riemannian metric defined by

elðX ;YÞ ¼ sðX ;Y Þ for any X ;Y a H;

elðX ;VÞ ¼ 0 for any X a H; V a V;

elðV ;WÞ ¼ lsðV ;W Þ for any V ;W a V:

8<
:

When l converges to infinity, the metric el degenerates on the vertical directions,
hence the limit is defined only on H, but, since H is braket generating, ssR ¼
liml!l el is a sub-Riemannian metric on S4n�1. We will call it the standard sub-
Riemannian metric. For brevity of notation, let us first define the following set:
3 :¼ f1; 2; 3g. The Levi–Civita connection of el has the following behaviour.

Lemma 2.1. Fix a s-orthonormal basis ðY1; . . . ;Y4n�1Þ of S4n�1 such that for
every i a 3 and for every r Yi ¼ xi and Y4rþi ¼ JiY4r. Let us denote with ‘e

(‘s respectively) the Levi–Civita connection associated to the metric el (s respec-
tively). Then for every 1a i; ja 2n� 1 we have:

‘eYi
Yj � ‘sYi

Yj ¼
ð1� lÞJiYj if i a 3 ; j B 3 ;

ð1� lÞJjYi if j a 3 ; i B 3 ;

0 otherwise:

8<
:

Proof. Fix i a 3 and X any vector field tangent to S4n�1, by the Gauss equa-
tion of the canonical immersion i : S4n�1 ! R4n we have:

‘sXJin ¼ Ji‘0Xn� A0ðX ; JinÞn ¼ �JiX ;

where ‘0 is the Levi–Civita connection of the Euclidean space and A0 is the
second fundamental form of i. The thesis follows applying Lemma 3 of [O] and
Lemma 9.69 in [Be]. r

Notation 2.2. We introduce the following notation in order to distinguish be-
tween derivatives of a function with respect to di¤erent metrics. For any given func-
tion f : S4n�1 ! R, let fij ( f̂fij respectively) be the components of the Hessian of f
with respect to s (ee respectively). The value of e will be clear from the context. The
indices go up and down with the associated metric: for istance f̂f k

i ¼ f̂fije
jk
e , while

f k
i ¼ fijs

jk. Analogous notations will be used for higher order derivatives.

Lemma 2.3. Let j : S4n�1 ! R be an S1-invariant smooth function. With re-
spect to the basis introduced in the previous Lemma, the Hessian of j with respect
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to ee is:

ĵjij ¼
0 eJiYjðjÞ

eJjYiðjÞ jij

� �
;

where we are using Notations 2.2. Taking the trace and the norm of the Hessian,
in particular we have:

Dej ¼ Dsj;

j‘2
ejj

2
e ¼ j‘2

sjj
2
s þ 6ðe� 1Þj‘sjj2s:

Proof. We can apply the previous result and we detect three cases:

1) if i; j a 3

ĵjij ¼ YiYjðjÞ � ‘eYi
YjðjÞ ¼ 0

because j is S1-invariant we have that jj ¼ YjðjÞ ¼ 0 for every j a 3 and

‘eYi
Yj ¼ ‘sYi

Yj ¼
0 if i ¼ j;

�JiJjn if iA j:

�

Hence ‘eYi
YjðjÞ ¼ 0 too.

2) if i a 3 and j B 3 we get

ĵjij ¼ jji ¼ YjYiðjÞ � ‘eYj
YiðjÞ ¼ eJiYj:

3) if i; j B 3 it easy to check that ĵjij ¼ jij.

Finally as a consequence of the symmetries considered,

j‘ejj2e ¼ j‘sjj2s

Taking into account this remark, the formulas for the Laplacian and the norm of
the Hessian follow after some trivial computations. r

2.2. The Biquard connection and the qc-scalar curvature

The notion of quaternionic contact structure (qc-structure for short) has been
introduced by Biquard in [Bi]. We refer also to the book [IV1] of Ivanov and
Vassilev for further details. A qc-structure on a real ð4n� 1Þ-dimensional mani-
fold M is a codimension 3 distribution H (called horiziontal distribution) locally
given as the kernel of a 1-form h ¼ ðh1; h2; h3Þ with values in R3 such that the
three 2-forms dhijH are the fundamental forms of a quaternionic Hermitian
structure on H. Such h is determined up to the action of SOð3Þ on R3 and a con-
formal factor. Hence H is equipped with a conformal class ½g� of quaternionic
Hermitian metrics. To every metric in the conformal class of g one can associate
a linear connection with torsion preserving the qc-structure called the Biquard
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connection. It has been defined by Biquard in [Bi] if n > 2 and by Duchemin in
[Du] if n ¼ 2. They proved that this connection is unique. Using the Biquard
connection we can define the qc-Ricci tensor as in [Bi]: it is a symmetric tensor
and its trace is called the qc-scalar curvature. Once we know this new notion of
curvature, we can define the qc-Yamabe problem: determinate if there exists a
metric e2f g in the conformal class ½g� with constant qc-scalar curvature. This
problem has been solved in great generality, see [IV2] for a survey. In our case
M ¼ S4n�1, g ¼ ssR and for every i hið�Þ ¼ sðxi; �Þ. The metric ssR has constant
qc-curvature, but it is not the only one in its conformal class. In fact, in [IMV],
Ivanov, Michev and Vassilev fully characterized the solution of the qc-Yamabe
problem in the special case of the quaternionic Heisenberg group. As they
noticed, with the Cayley transform, we can find the corresponding solutions on
ðS4n�1; ½ssR�Þ: e2f ssR has constant qc-scalar curvature if and only if there are c
and u positive constants and z a S4n�1 such that

e�2f ðzÞ ¼ cjcoshðuÞ þ sinhðuÞz � zj2; Ez a S4n�1;ð2:1Þ

Here we are considering the sphere of real codimension one immersed in
R4nCHn and the norm and the product are the usual ones in Hn.

The formula can be simplified imposing the symmetries considered. With
some trivial computations similar to those of Lemma 2.5 of [Pi2], we can show
that the following are equivalent:

Lemma 2.4. Let f : S4n�1 ! R be an S3-invariant function.

(a) f satisfies (2.1),
(b) f is constant.

2.3. Quaternionic hyperbolic space

The quaternionic hyperbolic space, like its real or complex analogous, can be
defined in many equivalent ways. Since we wish to study star-shaped hypersur-
faces, it is convenient introduce in polar coordinates. Let HHn be R4n equipped
with the following g:

g ¼ dr2 þ sinh2ðrÞecosh2ðrÞ;ð2:2Þ

where r represents the distance from the origin and ecosh2ðrÞ is the Berger metric of
parameter cosh2ðrÞ on S4n�1. Note that g is not a warped product, so this ambi-
ent space is not included in the case studied in [Sc, Zh]. Since the inverse mean
curvature flow is invariant under the action of an isometry of the ambient space,
all the hypersurfaces considered in this paper can be thought as star-shaped with
respect to the origin of the polar coordinates. The metric g has some nice proper-
ties: it is an example of rank one symmetric space, hence ‘R ¼ 0.

Here and in the following we are using the convention to put a bar over the
symbol for geometric quantity of the fixed ambient manifold HHn, for example ‘
is the Levi–Civita connection of g.
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Moreover its Riemann curvature tensor has the following explicit expression

RðX ;Y ;Z;WÞ ¼ �gðX ;ZÞgðY ;W Þ þ gðX ;W ÞgðY ;ZÞð2:3Þ

�
X3

i¼1

gðX ; JiZÞgðY ; JiWÞ þ gðX ; JiW ÞgðY ; JiZÞ

� 2
X3

i¼1

gðX ; JiY ÞgðZ; JiWÞ;

where J1, J2 and J3 are the complex structure of HHn induced by the quater-
nionic imaginary units. It follows that the sectional curvature of a plane spanned
by two orthonormal vectors X and Y is given by

KðXbYÞ ¼ �1� 3
X3

i¼1

gðX ; JiY Þ2 ¼ �1� 3jprYHX j2;ð2:4Þ

where YH is the space spanned by JiY and prYH is the projection on that space.
Then �4aK a�1 and it is equal to �1 (respectively to �4) if and only if X
is orthogonal (respectively parallel) to YH. Furthermore HHn is Einstein with
Ric ¼ �4ðnþ 2Þg.

2.4. Inverse mean curvature flow

Since we are considering only closed and mean convex initial data, the standard
theory ensures that the inverse mean curvature flow (1.1) has a unique smooth
solution, at least for small times. Here we list the evolutions of the main geo-
metric quantities. The proof of this Lemma is similar to the computation of the
analogous equations for the mean curvature flow which can be found in [Hu].
We use the following notations: let gij be the induced metric, and gij its inverse;
the second fundamental form is denoted with hij, while the mean curvature is
H ¼ hijg

ji. Finally jMtj denotes the volume.

Lemma 2.5. Since the ambient space is symmetric the following evolution equa-
tions hold:

(1)
qgij

qt
¼ 2

H
hij,

(2)
qgij

qt
¼ � 2

H
hij,

(3)
qH

qt
¼ DH

H 2
� 2

j‘Hj2

H 3
� jAj2

H
� Ricðn; nÞ

H
,

(4)
qhij

qt
¼ Dhij

H 2
� 2

H 3
‘iH‘jH þ jAj2

H 2
hij �

2

H
Ri0j0 þ Ricðn; nÞ hij

H 2

þ 1

H 2
glrgmsð2Rrisjhlm � Rrmishjl � RrmjshilÞ,
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(5)
qh

j
i

qt
¼ Dh

j
i

H 2
� 2

H 3
‘iH‘kHgkj þ jAj2

H 2
h
j
i �

2

H
Ri0k0g

kj � 2
hk
i h

j
k

H

þ Ricðn; nÞ h
j
i

H 2
þ 1

H 2
glrgmsgkjð2Rriskhlm � Rrmishkl � RrmkshilÞ,

(6)
djMtj
dt

¼ jMtj,

(7)
qn

qt
¼ ‘H

H 2
.

Here and in the following we are using Einstein convention on repeted indices.
Moreover the operation of raising/lowering the indices is done with respect to the
metric: for example h j

i ¼ hikg
kj . Note that, integrating equation (6), we have that

the inverse mean curvature flow is an expanding flow, precisely jMtj ¼ jM0jet.
Moreover, with the same proof of Lemma 3.1 of [Pi1] we can prove the fol-

lowing result.

Lemma 2.6. The evolution of an S3-invariant hypersurface stays S3-invariant
during the whole duration of the flow.

3. Geometry of star-shaped hypersurfaces

In this section we compute the main geometric quantities for a star-shaped hyper-
surface in HHn. Let F : S4n�1 ! HHn be a smooth star-shaped immersion. Up
to an isometry of the ambient space, we can consider that it is star-shaped
with respect to the origin. Then F is defined by its radial function: there exist a

smooth function r : S4n�1 ! Rþ such that in polar coordinates M ¼ FðS4n�1Þ
¼ fðz; rðzÞÞ a HHn j z a S4n�1g. Fix any ðY1; . . . ;Y4n�1Þ tangent basis of the
sphere S4n�1, for every i we define ri ¼ YiðrÞ and Vi ¼ F�Yi CYi þ ri

q
qr
. Then

ðV1; . . . ;V4n�1Þ is a tangent basis of M. The induced metric on M is g ¼ F �g, in
local coordinates we have

gij ¼ rirj þ sinh2ðrÞeij;ð3:1Þ

where for short eij ¼ ðecosh2ðrÞÞij . The inverse of the metric therefore is

gij ¼ 1

sinh2ðrÞ

�
eij � r ir j

sinh2ðrÞ þ j‘erj2e

�
;ð3:2Þ

where eij is the inverse of eij, r
i ¼ rke

ki and the gradient and the norm of r are
defined with respect to the metric ecosh2ðrÞ. In order to simplify the expressions we

can fix a function j ¼ jðrÞ such that dj

dr
¼ 1

sinhðrÞ and introduce v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘erj2e

sinh2ðrÞ

r
.

Since ji ¼ YiðjÞ ¼ ri
sinhðrÞ , we get gij ¼ sinh2ðrÞðjijj þ eijÞ, gij ¼ 1

sinh2ðrÞ

�
eij � j ij j

v2

�
and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘ejj2e

q
. A unit normal vector is n ¼ 1

v

�
q
qr
� ‘er

sinh2ðrÞ

�
. In case of S3-

invariant hypersurfaces we have that ‘er ¼ ‘sr and ‘ej ¼ ‘sj.
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Now we want to compute the second fundamental form of M. Since the
metric of the ambient space is not the same in any direction, it is convenient to
introduce a specific basis tangent to S4n�1. Then let us use the basis ðY1; . . . ;
Y4n�1Þ introduced in Lemma 2.1. In this way we have

ecosh2ðrÞ ¼
cosh2ðrÞid3 0

0 id4n�4

� �
;ð3:3Þ

For each i and j let hij ¼ �gð‘Vi
Vj ; nÞ. Moreover we introduce the following

notation: Latin indices i; j; . . . range from 1 to 4n� 1 and are related to compo-
nents tangent to the sphere, the index 0 represents the radial direction q

qr
and

Greek indices a; b; . . . range from 0 to 4n� 1. An explicit computation, together
to the fact that for every i q

qr
ðriÞ ¼ 0 and g

�
‘Yi

q
qr
; q
qr

�
¼ 0 we get:

hij ¼
1

v
ðGk

ijrk þ rirkG
k
0j þ rjrkG

k
0i � G0

ij � YiðrjÞÞ:

We have that Gk
ij ¼ ĜGk

ij , the Christo¤el symbols of the metric ecosh2ðrÞ, then
Gk
ijrk � YiðrjÞ ¼ �r̂rij, where we used Notation 2.2. For short, let Y0 be q

qr
,

then

G0
ij ¼

1

2
ðYiðgiaÞ � YaðgijÞ þ YjðgiaÞÞga0

¼ � 1

2

q

qr
ðgijÞ ¼ �gidij

¼ �sinhðrÞ coshðrÞðsinh2ðrÞ þ cosh2ðrÞÞdij if i a 3 ;

�sinhðrÞ coshðrÞdij if i B 3 :

(

Finally

Gk
i0 ¼

1

2

�
Yiðg0aÞ � Yaðgi0Þ þ

q

qr
ðgiaÞ

�
gak

¼ 1

2

q

qr
ðgiaÞgak ¼ hidik ¼

sinh2ðrÞ þ cosh2ðrÞ
sinhðrÞ coshðrÞ dik if i a 3 ;

coshðrÞ
sinhðrÞ dik if i B 3 :

8>>><
>>>:

Note that

ĵjij ¼
1

sinhðrÞ rij �
coshðrÞ
sinh2ðrÞ

rirj , r̂rij ¼ sinhðrÞjij þ sinhðrÞ coshðrÞjijj:

Similar equations hold for rij and jij too.
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Summing up these quantities we get

hij ¼ � sinhðrÞ
v

ĵjijð3:4Þ

þ

sinh2ðrÞ þ cosh2ðrÞ
v sinhðrÞ coshðrÞ gij þ

sinh3ðrÞ
v coshðrÞ jijj if i; j a 3 ;

coshðrÞ
v sinhðrÞ gij if i; j B 3 ;

sinh2ðrÞ þ cosh2ðrÞ
v sinhðrÞ coshðrÞ gij otherwise.

8>>>>>>>><
>>>>>>>>:

Raising the second index we have

hk
i ¼ �

ĵjij~ee
jk

v sinhðrÞð3:5Þ

þ

sinh2ðrÞ þ cosh2ðrÞ
v sinhðrÞ coshðrÞ dki þ sinhðrÞ

v coshðrÞ
X3

j¼1

jijj~ee
jk if i a 3 ;

coshðrÞ
v sinhðrÞ d

k
i þ sinhðrÞ

v coshðrÞ
X3

j¼1

~eeij~ee
jk if i B 3 ;

8>>>>><
>>>>>:

where ~eeij ¼ sinh2ðrÞgij ¼ eij � j ij j

v2
. Taking the trace of (3.8) we obtain the mean

curvature of M:

H ¼ hi
ið3:6Þ

¼ �
ĵjij~ee

ji

v sinhðrÞ þ 3
sinh2ðrÞ þ cosh2ðrÞ
v sinhðrÞ coshðrÞ þ 4ðn� 1Þ coshðrÞ

v sinhðrÞ

þ sinhðrÞ
v coshðrÞ

X3

k¼1

jijk~ee
ik þ sinhðrÞ

v coshðrÞ
X3

k¼1

~eeik~ee
ik

¼ �
ĵjij~ee

ji

v sinhðrÞ þ
ĤH

v
þ sinhðrÞ
v3 coshðrÞ

X3

k¼1

ðjkÞ
2;

where

ĤH ¼ ĤHðrÞ ¼ ð4n� 1Þ coshðrÞ
sinhðrÞ þ 3

sinhðrÞ
coshðrÞð3:7Þ

For the sake of clarity, we point out that in the above formula, the Einstein
convention is used for all repeated indices except that, for k which belongs to
3 .
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In case of S3-invariance the formula just found can be simplified:

hk
i ¼ �

ĵjij~ee
jk

v sinhðrÞ þ

sinh2ðrÞ þ cosh2ðrÞ
v sinhðrÞ coshðrÞ dki if i a 3 ;

coshðrÞ
v sinhðrÞ d

k
i if i B 3 :

8>>><
>>>:

ð3:8Þ

Moreover let ~ss ji ¼ s ji � j ij j

v2
, then by Lemma 2.3 we have that ĵjij~ee

ji ¼ jij~ss
ji. It

follows that:

H ¼ �
jij~ss

ji

v sinhðrÞ þ
ĤH

v
:ð3:9Þ

4. The case of geodesic spheres

If the radial function r is constant, M0 is, of course, a geodesic sphere. From (3.8)
we can see that M0 has two distinct principal curvatures: lðrÞ ¼ coshðrÞ

sinhðrÞ with

multiplicity 4n� 4 and mðrÞ ¼ 2 cothð2rÞ ¼ sinhðrÞ
coshðrÞ with multiplicity 3 and eigen-

vectors xi, with i a 3 . It follows that the mean curvature is costant and depends
only on the radius. Then the evolution of M0 by inverse mean curvature flow
reduces to an ODE: the evolution on M0 is a family of geodesic spheres Mt of
radius rðtÞ satisfying

_rr ¼ 1

H
¼ sinhðrÞ coshðrÞ

ð4n� 1Þ cosh2ðrÞ þ 3 sinh2ðrÞ
;

rð0Þ ¼ r0:

8><
>:

Trying to solve this ODE we can see that the solution is defined for any positive
time and rðtÞ ¼ t

2ð2nþ1Þ þ oð1Þ as t ! l. The rescaled induced metric is

~ggt ¼ jMtj�
1

2nþ1g ¼ sinh2ðrðtÞÞ
jM0j

1
2nþ1e

t
2nþ1

ecosh2ðrðtÞÞ:

Since in this special case r depends only on time, we have that ~ggt converges to
~ggl ¼ c2ssR, where c is a constant di¤erent from zero. We can see for the first
time the phenomenon announced in the statement of Theorem 1.1: the rescaled
metric converge to a sub-Riemannian metric defined only on a distribution of
codimension 3. Moreover the qc-curvature of this metric is constant.

The following result is useful to bound the evolution of the radial function in
the general case.

Lemma 4.1. Consider two concentric geodesic spheres in CHn of radius r1ð0Þ and
r2ð0Þ respectively. For every i ¼ 1; 2, let riðtÞ be the evolution by inverse mean cur-
vature flow of initial datum rið0Þ, then there exist a positive constant c depending
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only on n, r1ð0Þ and r2ð0Þ such that for every time we have

jr2ðtÞ � r1ðtÞja cjr2ð0Þ � r1ð0Þj:

Proof. Suppose that r2ð0Þ > r1ð0Þ and let us define d ¼ dðtÞ ¼ r2ðtÞ � r1ðtÞ.
The proof is similar to that of Lemma 4.1 of [Pi2], taking into account that this
time the function d satisfies

dd

dt
¼ 1

ð4n� 1Þ cothðr2Þ þ 3 tanhðr2Þ
� 1

ð4n� 1Þ cothðr1Þ þ 3 tanhðr1Þ
: r

From these properties of the geodesic spheres we can deduce some estimates
on the evolution of the general case: we can bound the inverse mean curvature
flow of a general star-shaped hypersurface M0 with the evolution of geodesic
sphere inside and a geodesic sphere outside. Applying Lemma 4.1 we have that
the oscillation of the radial function of M0 is bounded by a constant which
depends only on the initial datum. Below we will show that the flow is defined
for any positive time also for any star-shaped initial datum. It follows that in
any case we have rðtÞ ¼ t

2ð2nþ1Þ þ oð1Þ as t ! l.

5. First order estimates

The main result of this section is the proof of part (1) of Theorem 1.1. Moreover
we will prove also that the mean curvature converges exponentially to that one of
an horosphere. The main technical result is the following:

Proposition 5.1. There exist a positive constants c such that

j‘sjj2s a ce�
t

2nþ1:

As an immediate geometric consequence we have:

Corollary 5.2. The evolution of any star-shaped hypersurface stays star-
shaped for any time the flow is defined.

Proof. An hypersurface is star-shaped if and only if q
qr

and n are never orthog-
onal in HHn. This means that there exists a positive constant c such that

g
� q

qr
; n
�
¼ 1

v
b

1

c
, v2 a c2

Recalling that v2 ¼ 1þ j‘sjj2s, the thesis follows from Proposition 5.1. r

The proof of Theorem 5.1 is divided into two steps: first we can prove that
j‘sjj2s is bounded, then, applying the strategy of Section 5 of [Pi2], we can prove
the exponential decay.
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Lemma 5.3.

j‘sjj2s a sup
z AS4n�1

j‘sjðz; 0Þj2s:

Proof. Let us define o ¼ 1
2 j‘sjj2s. We want to compute the evolution equation

for o. We have

qr

qt
¼ v

H
;ð5:1Þ

and so

qj

qt
¼ 1

sinhðrÞ
qr

qt
¼ v

H sinhðrÞ ¼:
1

F
ð5:2Þ

holds. From the explicit computation of the mean curvature (3.9) we have

F ¼ Fðj; ji; jijÞ ¼
�jij~ss

ij

v2
þ sinhðrÞĤH

v2
:

Now we can compute the evolution equation of o: let aij ¼ � qF
qjij

¼ ~ss ij

v2
and

ai ¼ qF
qji

, then

qo

qt
¼ jk‘k

qj

qt

¼ � 1

F 2

�
�aijjijkj

k þ aijikj
k þ qF

qj
jkj

k
�

¼ � 1

F 2

�
�aijjijkj

k þ aioi þ 2
qF

qj
o
�

We can apply the rule interchanging for derivatives:

jijk ¼ jkji þ Rm
ijkjm;

where this time R is the Riemannian curvature tensor of s, i.e. Rsijk ¼
ssjsik � ssksij. Since a

ij is symmetric we get:

�aijjijkj
k ¼ �aijjkjij

k � aijðdmj sik � dmk sijÞjmjk

¼ �aijoij þ aijjkij
k
j � aijjijj þ 2ai

io

b�aijoij:

Moreover we have
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qF

qj
¼ qF

qr

qr

qj
¼ sinhðrÞ

v2
q

qr
ðsinhðrÞĤHÞð5:3Þ

¼ sinh2ðrÞ
v2 cosh2ðrÞ

ð2ð2nþ 1Þ cosh2ðrÞ þ 3Þ:

In particular qF
qj

> 0. We have that aij is positive definite. Finally we have that

aijjikj
k
j ¼ aijskljikjjl b 0

because, as showed in [Di], if A, B and C are symmetric matrices, with A and
B positive definite, then trðACBCÞb 0. The thesis follows by the maximum
principle. r

We can use this partial result to prove that the mean convexity is preserved.

Lemma 5.4. There exist two positive constants c1 and c2 depending only on n and
the initial datum such that for any time the flow is defined

0 < c1 aHa c2:

Proof. From Lemma 2.5 and the fact that jAj2 b 1
4n�1

H 2 we can compute

qH

qt
a

DH

H 2
� H

4n� 1
þ 4ðnþ 2Þ

H
:

By the maximum principle, it is easy to show that H is bounded from above. To
prove that H is bounded from below we adapt the proof of Lemma 5.4 of [Pi2]

in the new setting: this time we define c ¼ v
sinhðrÞH e

t
2ð2nþ1Þ ¼ 1

F
e

t
2ð2nþ1Þ ¼ qj

qt
e

t
2ð2nþ1Þ. We

want to prove that this function is bounded from above. Preceding like in the
proof of Lemma 5.3:

qc

qt
¼ q

qt

�qj
qt

e
t

2ð2nþ1Þ
�

¼ � 1

F 2

�
�aij

qjij

qt
þ ai qji

qt
þ qF

qj

qj

qt

�
e

t
2ð2nþ1Þ þ 1

2ð2nþ 1Þc

¼ � 1

F 2

�
�aijcij þ aici þ

qF

qj
c
�
þ 1

2ð2nþ 1Þc

From (5.3) we have that qF
qj

b 2ð2nþ 1Þ sinh
2ðrÞ
v2

, moreover 1
F 2 ¼ c2e�

t
2nþ1. By

Lemma 5.3 v2 is bounded. Since the function sinh2ðrÞe� t
2nþ1 is bounded too, we

get that

� 1

F 2

qF

qj
cþ 1

2ð2nþ 1Þca�cc3 þ 1

2ð2nþ 1Þc;
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for some positive constant c. By the maximum principle we deduce that c ¼
v

sinhðrÞH e
t

2ð2nþ1Þ is bounded. This imply that there is a constant c > 0 such that

Hb cv e
t

2ð2nþ1Þ

sinhðrÞ . The thesis follows since vb 1 by definition and e
t

2ð2nþ1Þ

sinhðrÞ is bounded.
r

Now we can arguing as in Section 5 of [Pi2] and conclude the proof Proposi-
tion 5.1 and prove the asymptotic behaviour of the mean curvature:

Proposition 5.5. There is a positive constant c such that

jH � 4n� 2j2 a ce�
t

2nþ1:

6. Higher order estimates

In this section we describe the behaviour of the derivatives of the radial function
and its consequence. The results will be only listed. The proofs follow the same
procedures of the analogous results of the Sections 6 and 7 of [Pi2]: minor mod-
ifications are required when we need to use Proposition 5.1 and Proposition 5.5.

Proposition 6.1. There is a positive constant c such that:

(1) jAj2 a c;
(2) for every k a N we have j‘k

sjj
2
s a ce�

t
2nþ1;

(3) for every k a N we have j‘k
srj

2
s a c.

It follows the uniform parabolicity of equation (5.1) and a uniform C2-
estimate for the function rð�; tÞ. Arguing as in chapter 2.6 of [Ge], we can apply
the C2;a estimates of [Kr] to conclude that the solution of the flow is defined for
any positive time and it is smooth, since the initial datum is smooth.

An other interesting consequence of Proposition 6.1 is the asymptotic behav-
iour of the second fundamental form.

Corollary 6.2. There is a positive constant c such that

hk
i � dki �

X3

j¼1

d
j
i d

k
j

					
					
2

a ce�
t

2nþ1:

If we restrict our attention to the horizontal distribution H (that is we have to con-
sider i; k B 3 ) we get the faster convergence:

jhk
i � dki j

2
a ce�

2t
2nþ1:

An other consequence of Proposition 6.1, part (3) is that, with the same proof
of Theorem 8.1 of [Pi2], we can prove part (3) of Theorem 1.1: the rescaled limit
metric converges to a ~ggl ¼ e2f ssR for some smooth function f .
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7. The curvature of the limit metric

In this section we want to show that the limit metric ~ggl ¼ e2f ssR has not neces-
sarily constant qc-scalar curvature. It is well known that in HHn there are no to-
tally umbilical hypersurfaces, so the trace-free part of the second fundamental
form cannot have the same strong meaning that it has in the case of hyperbolic
space: see Propositions 3 and 5 of [HW]. Following the ideas developed in [Pi2],
for any star-shaped hypersuface M we introduce the following Brown–York like
quantity:

QðMÞ ¼ jMj�1þ 1
2nþ1

Z
M

ðH � ĤHÞ dm;ð7:1Þ

where ĤH was defined in (3.7). Q gives a measure of how M is far from being a
geodesic sphere. However Q is not a real measure, because it has not a sign and,
even if it is trivially zero when M is a geodesic sphere, in general it is not true the
contrary. One of the main properties of Q is the following.

Proposition 7.1. Let ~MMt be a family of hypersurfaces in HHn that are radial
graph of the functions ~rrðz; tÞ ¼ tþ f ðzÞ þ oð1Þ, for some fixed S3-invariant func-

tion f : S4n�1 ! R. Then

lim
t!l

Qð ~MMtÞ ¼
�Z

S4n�1
e2ð2nþ1Þ f ds

��1þ 1
2nþ1

�
Z
S4n�1

eð2ð2nþ1ÞÞ f ðe�fDse
�f � ð2nþ 1Þj‘se

�f j2Þ ds:

Moreover if limt!l Qð ~MMtÞA 0, then e2f ssR – the limit of the rescaled metric
on ~MMt – does not have constant qc-curvature.

The proof is the same, with minor changes concerning the explicit value of the
constants, to the proof of Proposition 9.1 of [Pi2], except for the fact that, in the
present case, we have that ri ¼ 0 for any i a 3 .

If we compare Q with the modified Hawking mass studied for the real hyper-
bolic case in [HW], Q has the disadvantage that it works only with S3-invariant
data and it does not characterize the constant curvature limit. However Proposi-
tion 7.1 suggests that, like in the case of complex hyperbolic ambient manifold
[Pi2], the study of the asymptotic behaviour of Q is enough to find a family of
initial data such that the limit of the rescaled metric does not have constant qc-
curvature. In order to complete this goal we need to study the evolution equation
of Q along the inverse mean curvature flow.

Lemma 7.2. For any star-shaped M0 the following evolution equation holds:

dQðMtÞ
dt

¼ 1

2nþ 1
QðMtÞ � jMj�1þ 1

2nþ1

Z
1

H
ðjAj2 � 4ðnþ 2ÞÞ dm

þ jMj�1þ 1
2nþ1

Z
v

H

� 4n� 1

sinh2ðrÞ
� 3

cosh2ðrÞ

�
dm:
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Proof. Since ĤH ¼ ð4n� 1Þ coshðrÞ
sinhðrÞ þ 3

sinhðrÞ
coshðrÞ and

qr
qt
¼ v

H
, we can easily compute:

qĤH

qt
¼ v

H

� 3

cosh2ðrÞ
� 4n� 1

sinh2ðrÞ

�
:

The thesis follows using the evolution of h in Lemma 2.5 and the fact that

DH

H 2
� 2

j‘Hj2

H 3
¼ �D

� 1

H

�
;

hence its integral vanishes. r

Now we can prove that if Q decreases, it decreases very slowly.

Proposition 7.3. Let Mt an S3-invariant star-shaped hypersurface of HHn

evolving by inverse mean curvature flow. There is a positive constant c such that

qQ

qt
b � ce�

t
2nþ1:

Proof. In case of S3-invariant hypersurfaces, by Lemma 2.3, (3.8) and (3.9) we
have

jAj2 � 4ðnþ 2Þ ¼ hk
i h

i
k � 4ðnþ 2Þð7:2Þ

¼
ĵjijĵjkh~ee

jk~eehi

v2 sinh2ðrÞ
� 2 coshðrÞ
v2 sinh2ðrÞ

ĵjij~ee
ji � 4ðnþ 2Þ

� ð4n� 1Þ cosh2ðrÞ
v2 sinh2ðrÞ

þ 3
sinh2ðrÞ

v2 cosh2ðrÞ
þ 6

v2

¼
jijjkh~ss

jk~sshi

v2 sinh2ðrÞ
þ 6

v2
j‘sjj2s

� 2 coshðrÞ
v sinhðrÞ

�
H � ĤH þ ĤH

vðvþ 1Þ j‘sjj2s
�

þ 4n� 1

v2 sinh2ðrÞ
� 3

v2 cosh2ðrÞ
� 4ðnþ 2Þ

v2
j‘sjj2s:

Then, by Lemma 7.2, we have:

jMtj1�
1

2nþ1
qQðMtÞ

qt
¼

Z � 1

2nþ 1
� 2 coshðrÞ
vH sinhðrÞ

�
ðH � ĤHÞ dm

�
Z

jijjkh~ss
ik~ss jh

v2H sinh2ðrÞ
dm
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þ
Z

1

H

� 4n� 1

sinh2ðrÞ
� 3

cosh2ðrÞ

��
v� 1

v2

�
dm

þ
Z j‘sjj2s

H

�
4nþ 2� 2ĤH coshðrÞ

ðvþ 1Þ sinhðrÞ

�
dm:

Since v and H are bounded away from zero, by Proposition 5.1, Proposition 5.5
and Proposition 6.1 we have that every integral in the equality above is bigger
than �ce�

2t
2nþ1 for some positive constant c. r

Now, following the strategy of [HW] and [Pi2] we can complete the proof of
Theorem 1.1

Proposition 7.4. There is an M0 such that the rescaled induced metric ~ggl does
not have constant qc-scalar curvature.

Proof. Fix a positive constant c0 big enough and choose an S3-invariant func-
tion f : S4n�1 ! R such that

�Z
S4n�1

e2ð2nþ1Þ f ds
��1þ 1

2nþ1

Z
S4n�1

eð2ð2nþ1ÞÞ f ðe�fDse
�f � ð2nþ 1Þj‘se

�f j2Þ ds

is bigger than 4c0, and consider the family of S3-invariant star-shaped hyperfur-
faces ~MMt defined by the radial function ~rrtðzÞ ¼ tþ f ðzÞ. We can fix a t big
enough such that ~MMt is mean convex, and, by Proposition 7.1, Qð ~MMtÞb 2c0. Let
us consider Mt

t , the evolution by inverse mean curvature flow of such ~MMt. The
constant c appearing in Proposition 7.3 in uniformly bounded if t is big enough.
Since c0 is big enough too, Proposition 7.3 ensures that

lim
t!l

QðMt
t Þb c0 > 0:

The thesis follows from Proposition 7.1. r
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