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Abstract. — We establish some properties of the classical area-preserving spline transform of

step-wise functions and propose a regularization algorithm for the positive step-wise functions whose
spline transform fails to be non negative.
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1. Introduction

There is a well-known procedure to transform a step-wise function s into a
smooth one f when we want to preserve the most important properties of s and,
at the same time, operate in an economical way. Let us briefly recall the con-
struction of such smoothing procedure. Unless otherwise specified, all functions
are defined on ½a; b�. Given N ¼ ðx0; x1; . . . ; xn�1; xnÞ where a ¼ x0 < x1 < � � � <
xn�1 < b ¼ xn and Q ¼ ðq1; . . . ; qnÞ a Rn, we denote by s ¼ ½N;Q� the step-wise
function defined by

½N;Q�ðxÞ ¼ qi; x a ½xi�1; xi½; qi A qiþ1; i ¼ 1; . . . ; n;ð1Þ
and ½N;Q�ðxnÞ ¼ qn;

where the condition qi A qiþ1 just means that we choose the shortest subdivi-
sion. The integer n is called the length of ½N;Q�. When N ¼ ða; bÞ, then ½N;Q� is
constant equal to q1, of length one. Histograms correspond to positive step-wise
functions.

A function f a C1½a; b� is said to be an area-preserving smoothing for s ¼
½N;Q� as in (1) if the area under f matches that of ½N;Q� on the intervals
½xi�1; xi�, i ¼ 1; . . . ; n where n ¼ lengthð½N;Q�Þ, that is,Z xi

xi�1

f ðxÞ dx ¼ qiðxi � xi�1Þ; i ¼ 1; . . . ; n:

The particular smoothing f of s that we will study in this paper is the unique
area-preserving smoothing of s of minimal L2 variation, that is, minimizing the

functional h 7!
R b

a
ðh 0ðtÞÞ2 dt. In fact, see Theorem 1 below, f is the unique area-

preserving smoothing for ½N;Q� such that:



(CP1) The derivative of f vanishes at the extremities of the interval, that is
f 0ðaÞ ¼ f 0ðbÞ ¼ 0.

(CP2) The restriction of f to any of the interval ½xi�1; xi�, i ¼ 1; . . . ; n, is a poly-
nomial of degree at most two.

A common way of computing f is as follows. Setting Vi ¼
P i

j¼1 qjðxj � xj�1Þ
¼

R xi
a
½N;Q�ðxÞ dx, since f is area-preserving for s, we must haveZ xi

a

f ðxÞ dx ¼ Vi; i ¼ 0; . . . ; n;ð2Þ

where the index i ¼ 0 (with V0 ¼ 0) actually adds an empty condition. If F
denotes the unique natural cubic spline F satisfying FðxiÞ ¼ Vi, i ¼ 0; . . . ; n,
then we just need to take f ¼ F 0. Recall that by natural, one means that F 00ðaÞ ¼
F 00ðbÞ ¼ 0. In particular, f satisfies properties (CP1) and (CP2) above. We refer
to [5, p. 121] for the definition and main properties of natural cubic interpolation
splines.

Definition 1. The function f above is called the spline transform of s ¼ ½N;Q�.
It will be denoted by fðsÞ ¼ fð½N;Q�Þ or fðN;QÞ. Its evaluation at x a ½a; b� will
denoted by fðN;QÞðxÞ or fðN;Q; xÞ.

It is the purpose of this paper to derive some properties, introduce some defi-
nitions and raise some problems regarding this transform. The reader may ob-
serve the e¤ect of the smoothing procedure in Figure 1. As far as we know, the
above definition of the spline transform goes back to [2], but the idea seemed to
be in the air at that time, see [4, 8]. A Matlab code for computing the spline trans-
form is available at [1].

Of course, any space of smooth functions on ½a; b� in which the interpola-
tion problem (2) has a unique solution provides another natural area-preserving
smoothing for s. We may for instance consider other spaces of spline functions.
Here, we will just mention the case of polynomials. If P is the unique polynomial

Figure 1. A step-wise function s ¼ ½N;Q� and its transform fðsÞ with N ¼ ð7:5; 17:5;
27:5; 42:5; 62:5; 82:5Þ, Q ¼ ð3:5; 7:7; 5:4; 8:9; 1:6Þ (ratio y=x ¼ 3).
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of degree at most n such that PðxiÞ ¼ Vi, i ¼ 0; . . . ; n, that is, by the Lagrange
interpolation formula,

PðxÞ ¼
Xn

i¼0

Vi

Yn
j¼0; jAi

x� xj

xi � xj
;ð3Þ

then f ¼ P 0 is a polynomial of degree at most n� 1 that satisfies (2). As indicated
above, the main motivation for choosing fðsÞ among all others area-preserving
smoothing is the following theorem.

Theorem 1. The function fðsÞ is the unique area-preserving smoothing for s ¼
½N;Q� with minimal L2 variation. Thus, setting Vð f Þ ¼

R b

a
ð f 0ðxÞÞ2 dx, we have

VðfðsÞÞ ¼ inffVð f Þ; f is an area-preserving smoothing for sg:ð4Þ

The proof is a simple adaptation of the proof of the corresponding variation
diminishing property for cubic splines, see [5], and we will omit it.

In section 3, we derive some a-priori estimates on the way the variation
VðfðN;QÞÞ depends on N and Q. Such estimates rest on a simple property of
spline transforms of length two step-wise functions. Some useful observations on
the structure of spline transforms are presented in section 2. In practice, apart
from the area-preserving property, it is often desirable that the smoothing f re-
spects, in some sense, other elements of the geometry of the graph. For instance,
one usually wishes, especially when we have histograms in mind, that the smooth-
ing be non negative. Such property, in general, is not satisfied by the spline
transform (as in Figure 1, close to the right extremity of the interval) and this
drawback lead to a rich literature where many modifications or alternatives are
investigated; the reader may, for instance, consult [3, 6, 7] and the references
therein. In this paper, we take a di¤erent point of view. The eventual negativity
of fðsÞ when s is a positive step-wise function is regarded as an exploitable indi-
cator on the structure of s. This is explained in section 4. This point of view seems
to lead to natural and interesting questions.

2. Basic properties of the spline transform f

2.1. Some useful observations

The following easy properties follow directly from the definition or the character-
ization properties. Given

N ¼ ða; x1; . . . ; xn�1; bÞ;

the map FN : Rn C Q 7! fðN;Q; �Þ a C1ð½a; b�Þ is linear and one-to-one. It
is worth observing that fðN;Qþ kÞ ¼ fðN;QÞ þ k with Qþ k ¼ ðq1 þ k; . . . ;
qn þ kÞ. This is because the right-hand side satisfies the properties (CP1) and
(CP2) of fðN;Qþ kÞ as well as the area-preserving property. In fact, if tðxÞ is a
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polynomial of degree at most two then fðN;QÞ þ t is a spline transform if and
only if t is constant (otherwise the conditions on the derivative at the extremities
of the interval are not fulfilled).

For k a R,

fðN þ k;Q; xÞ ¼ fðN;Q; x� kÞ x a ½aþ k; bþ k�;ð5Þ

where N þ k :¼ ðaþ k; x1 þ k; . . . ; xn�1 þ k; bþ kÞ if N ¼ ða; x1; . . . ; xn�1; bÞ.
Equivalently, letting tk denote the translation x ! xþ k, fðtkðNÞ;QÞ � t�k ¼
fðN;QÞ. There is also an immediate invariance relation with respect to scale
transformations. For instance, if s > 0 and hs½N;Q� :¼ ½ðsa; sx1; . . . ; sxn�1; sbÞ;
Q� then

fðhs½N;Q�ÞðxÞ ¼ fðN;Q; s�1xÞ; x a hsð½a; b�Þ:ð6Þ

From (5) and (6), we deduce that the map f is invariant under bijective a‰ne
maps in a natural sense. In particular, fðsÞ reproduces the standard symmetries
that may possess the graph of s.

Lemma 2. Let s ¼ ½N;Q� be a step-wise function of length n on ½a; b�.

(1) On the first and on the last interval, fðsÞ is monotone ( possibly constant).
(2) fðsÞ has at most n� 2 local strict extrema in �a; b½.
(3) We have

max
x A ½a;b�

jsðxÞ � fðsÞðxÞja max
1aian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ b

a

ððfðsÞÞ0ðxÞÞ2 dx

s
:

Thus, the variation, that is VðfðN;QÞÞ, actually controls the uniform approx-
imation of ½N;Q� by fðN;QÞ.

Proof. (1) In fact, on both intervals, we have a polynomial of degree at most
two whose derivative vanishes at one extremity. Unless it is constant, it cannot
vanish somewhere else on one of these intervals.

(2) On each of the ðn� 2Þ intervals ½xi; xiþ1�, i ¼ 1; . . . ; n� 2, fðsÞ is a poly-
nomial of degree at most two and therefore possesses at most one strict local ex-
trema and, according to the previous lemma, there is no strict local extrema in
�a; x1�A ½xn�1; b½.

(3) Write f ¼ fðsÞ. Let x a ½xi�1; xi� for i ¼ 1; . . . ; n� 1 (when i ¼ n, we may
have x ¼ xn). Since

1

xi � xi�1

Z xi

xi�1

fðxÞ dx ¼ qi;

by the mean value theorem, there exists c a �xi�1; xi½ such that fðcÞ ¼ qi. Hence,

fðxÞ � sðxÞ ¼ fðxÞ � qi ¼ fðxÞ � fðcÞ ¼
Z x

c

f 0ðxÞ dx:ð7Þ
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Using Cauchy-Schwarz inequality, we have

jfðxÞ � sðxÞja
Z xi

xi�1

jf 0ðxÞj dxa ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ xi

xi�1

ðf 0ðxÞÞ2
s

dx:ð8Þ

The claim readily follows. r

2.2. Reducibility

We now investigate whether the f-map is one-to-one. To do that, we require the
following definitions.

Definition 2. A step-wise function s ¼ ½N;Q� is said to be reducible if there
exists a step-wise function ŝs ¼ ½N 0;Q 0� such that

(1) lengthðŝsÞ < lengthðsÞ,
(2) fðŝsÞ ¼ fðsÞ.

Non reducible step-wise functions are irreducible.

If lengthðŝsÞ is minimal among all those ŝs such that fðŝsÞ ¼ fðsÞ then ŝs ¼
½N 0;Q 0� is called a reduction for s ¼ ½N;Q�. The problem of describing the reduc-
tion of a given s is readily answered once we introduce the following definition.

Definition 3. The points of �a; b½ at which fðsÞ is not twice di¤erentiable are
the nodal points of s ¼ ½N;Q�.

The nodal points of s are obviously among the interior entries of N. We will
see that, in most cases, they are exactly the interior entries of N. By interior entry
of N, we mean the nodes xi for 0 < i < n.

Theorem 3. Every step-wise function s ¼ ½N;Q� admits one and only one reduc-
tion ŝs ¼ ½N 0;Q 0� and the interior entries of N 0 are exactly the nodal points of s.

Lemma 4. If lengthðsÞ > 1 then fðsÞ is not constant.

Proof. Indeed, there are at least two di¤erent successive values, say q1 and q2,
see (1), so that

q1 ¼
1

x1 � x0

Z x1

x0

fðsÞðxÞ dxA q2 ¼
1

x2 � x1

Z x2

x1

fðsÞðxÞ dx;

and fðsÞ cannot be constant. r

Proof of Theorem 3. Let ŝs ¼ ½N 0;Q 0� be a reduction of s. If lengthðŝsÞ ¼ 1
then fðsÞ ¼ fðŝsÞ is constant, and, according to the previous lemma, lengthðsÞ ¼
1, but, in that case, s is irreducible, ŝs ¼ s and the assertion of the theorem trivially
holds true.
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We assume that lengthðŝsÞ ¼ n > 1 so that N 0 ¼ ða; x 0
1; . . . ; x

0
n�1; bÞ and we

prove that the points x 0
i are nodal points for s. In fact, if fðsÞ ¼ fðŝsÞ was twice

di¤erentiable at x 0
i , 1a ia n� 1, then the same polynomials of degree at most

two would define fðŝsÞ on ½x 0
i�1; x

0
i � and on ½x 0

i ; x
0
iþ1� (both polynomials would

share the same j-th derivative at x 0
i for j ¼ 0; 1; 2). But, in that case, we could

further reduce ŝs to ^̂sŝss ¼ ½N 00;Q 00� by removing x 0
i from N 0, that is, taking

N 00 ¼ ða; x 0
1; . . . ; x

0
i�1; x

0
iþ1; . . . ; x

0
n�1; bÞ

and

Q 00 ¼
�
q 0
1; . . . ; q

0
i�1;

ðxi � xi�1Þq 0
i þ ðxiþ1 � xiÞq 0

iþ1

xiþ1 � xi�1
; q 0

iþ2; . . . ; q
0
n

�
;

and this would contradict the minimality of the length of ŝs.
Conversely, since fðŝsÞ ¼ fðsÞ, the singular points of the derivative of fðsÞ are

singular for the derivative of fðŝsÞ, the nodal points of ½N;Q� must therefore
appear in N 0. The fact that fðŝsÞ is an area-smoothing for s next forces the value
for Q 0, namely if N 0 ¼ ða; xi1 ; . . . ; xik ; bÞ with 1a i1 < i2 < � � � < ik am with
m ¼ lengthð½N;Q�Þ then

q 0
k ¼

P ikþ1�1
j¼ik

ðxjþ1 � xjÞqj
xikþ1

� xik
: r

Example 1. Let N ¼ ða; x1; . . . ; xn�1; bÞ with a < x1 < � � � < xn�1 < b and
nb 2. The sets of Q a Rn for which ½N;Q� is reducible is a union of n� 1 hyper-
planes. In particular it is of empty interior and its Lebesgue measure is null.

Proof. Indeed, to be reducible, there must be at least one of the xi, i ¼ 1; . . . ;
n� 1, which is not a nodal point for ½N;Q�. But to say that xi is not nodal means
that, say, both constants f 00ðN;QÞððxi � xi�1Þ=2Þ and f 00ðN;QÞððxiþ1 � xiÞ=2Þ
coincide. Hence, Q is in the kernel of the linear form

Rn C Q 7! D2 �FNððxi � xi�1Þ=2Þ �D2 �FNððxiþ1 � xiÞ=2Þ a R;

which is an hyperplane Hi (D
2 is used for the second derivative and the linear

map FN in defined in subsection 2.1. r

Let us denote by SW (or SWða; bÞ) the class of irreducible step-wise functions
on ½a; b� and by SP2 (or SP2ða; bÞ) the class of functions in C1ð½a; b�Þ which co-
incide with a polynomial of degree at most 2 on each interval of a subdivision of
½a; b� and with horizontal tangents at the extremities. Clearly, SW is the quotient
set (that is, is in canonical one-to-one relation with the quotient set) of the equiv-
alence relation ½N;Q�C ½M;T � if fðN;QÞ ¼ fðM;TÞ. Hence, SW is isomorphic
to the range of the map ½N;Q� 7! fðN;QÞ which is SP2.

Let us briefly explain how to obtain the pre-image of f a SP2. We first select
the points (in �a; b½) where f is not twice di¤erentiable. This set may be empty
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(when and only when f is constant) but, by definition of SP2, it is necessarily
finite. We assume that there exists at least one such point and form N ¼ ðx1; . . . ;
xn�1Þ by correctly ordering them. Next, we set

qi ¼
1

xi � xi�1

Z xi

xi�1

f ðxÞ dx; i ¼ 1; . . . ; n;

where x0 ¼ a and xn ¼ b. We have fðN;QÞ ¼ f .

2.3. Application

It seems reasonable to say that a data ½N;Q�, that is a step-wise function s ¼
½N;Q� of length n, in particular a histogram, is f-redundant when ½N;Q� is re-
ducible, since a smaller data would return the same spline transform. For com-
putational reasons, exact reducibility, in general, cannot be neither verified nor
expected and we should instead introduce a measure of redundancy based on
the singular points of the second derivative of the spline transform of s ¼ ½N;Q�.
On ½xi; xiþ1½, fðsÞ is of the form aiþ1x

2 þ biþ1xþ ciþ1, the above discontinuity is
measured as jaiþ2 � aiþ1j.

Definition 4. The f-redundancy coe‰cients gi and g of ½N;Q� are defined
as

gi ¼
jaiþ2 � aiþ1j
maxi¼1;...;njaij

; i ¼ 0; . . . ; n� 2; and g ¼ min
i¼0;...;n�2

gi:

The redundancy coe‰cient g for the step-wise function in Figure 1 is about
0:7 while the coe‰cient for ðN;QÞ ¼ ðð1; 2; 3; 4; 5Þ; ð2; 3; 6; 8ÞÞ is about 0:06, the
redundancy arising at x3 ¼ 4.

3. Bounding the variation

To compute a spline transform, following the method sketched in the introduc-
tion, we need to solve a cubic spline interpolation problem which amounts to
solve a tri-diagonal linear system of order n (or, directly the linear system given
below in (19)). This is a reasonably simple computational problem, at least when
n is not too big. Yet, one cannot expect a simple closed general expression for
fðN;QÞ and it is therefore interesting to derive a-priori estimates for the variation
VðfðN;QÞÞ of a spline transform. To do that, we first concentrate on the sim-
plest cases.

3.1. Length two case

When lengthð½N;Q�Þ ¼ 1, s ¼ ½N;Q� is constant and equal to its spline transform.
Here is a reasonably simple formula when lengthðsÞ ¼ 2, that is N ¼ ða;w; bÞ
with a < w < b. It confirms the intuition that the variation – essentially given by
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the coe‰cients of the squared terms – depends on the di¤erences between the qi
and that, keeping it fixed, it grows as w get closer to one of the extremity.

Lemma 5 (Spline transform for length-two step-wise functions). Let a < w < b,
N ¼ ða;w; bÞ and Q ¼ ðq1; q2Þ the spline transform of s ¼ ½N;Q� is given by

fðsÞðxÞð9Þ

¼
�q1ðwþ 2b� 3aÞ þ q2ða� wÞ

2ðb� aÞ þ 3ðq2 � q1Þðx� aÞ2

2ðb� aÞðw� aÞ

�
charfunðx; a;wÞ

þ
�q1ðw� bÞ þ q2ð�wþ 3b� 2aÞ

2ðb� aÞ � 3ðq2 � q1Þðx� bÞ2

2ðb� aÞðb� wÞ

�
charfunðx;w; bÞ;

where charfunðx; u; vÞ denotes the characteristic function of the interval ½u; v½. The
variation is particularly simple and does not depend on w:

VðfðsÞÞ ¼
Z b

a

ððfðsÞÞ0ðxÞÞ2 dx ¼ 3ðq2 � q1Þ2

ðb� aÞ :

Proof. One checks that the right hand side of (9) is an area-preserving smooth-
ing which satisfies the properties (CP1) and (CP2) characterizing fðN;QÞ. The
computations are easily done with the help of a computer algebra software. (We
used Maxima.) r

Example 2. Step-wise functions of length 2 are irreducible.

Proof. In view of Theorem 3, it su‰ces to show that w is nodal and this follows
from a direct computation with (9). r

Observe that (9) shows that fðsÞ is increasing when q1 < q2 and decreasing
when q1 > q2.

3.2. Lower bounds

Lemma 5 enables one to derive simple lower bounds for the variation of any
spline transform. In fact, if s ¼ ½N;Q� is a step-wise function of length n, the re-
striction of fðsÞ to ½xi�1; xiþ1� is an area-preserving smoothing for the step-wise
function ½ðxi�1; xi; xiþ1Þ; ðqi; qiþ1Þ� on the interval ½xi�1; xiþ1�. Its L2-variation is
therefore bigger (or equal) than that of

fððxi�1; xi; xiþ1Þ; ðqi; qiþ1Þ; xÞ:

Hence, in view of Lemma 5,

Z xiþ1

xi�1

ðf 0ðN;Q; xÞÞ2 dxb 3
ðqiþ1 � qiÞ2

xiþ1 � xi�1
;ð10Þ
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where, of course, f 0ðN;Q; xÞ denotes the derivative of fðN;QÞ with respect to x.
More generally, if 0a i < j < ka n, using that fðsÞ is an area smoothing for the
step-wise function

ðxi; xj; xkÞ;
�Xj

s¼iþ1

qsðxsþ1 � xsÞ;
Xk

s¼jþ1

qsðxsþ1 � xsÞ
�" #

on ½xi; xk�;

we obtain the following bound.

Theorem 6. Let ½N;Q� be a step-wise function of length n and 0a i < j <
ka n. We have

Z xk

xi

ððfðsÞÞ0ðxÞÞ2 dxb 3

�P j
s¼iþ1 qsðxsþ1 � xsÞ �

Pk
s¼jþ1 qsðxsþ1 � xsÞ

�2
xk � xi

:ð11Þ

It follows from (10) that

V2ðfðsÞÞb 3
Xbn=2c
i¼0

ðqiþ2 � qiÞ2

ðxiþ2 � xiÞ
;ð12Þ

and a similar lower bound holds for odd indices. More generally, if the right hand
side of (11) is denoted by Vði; j; kÞ and 0 ¼ i0 a i1 < i2 < � � � < i2n ¼ n, using
Theorem 6, we have

V2ð f ÞbVði0; i1; i2Þ þVði2; i3; i4Þ þ � � � þVði2n�2; i2n�1; i2nÞ:

Of course, the best lower bound based on Lemma 5 would be obtained by taking
the maximum of the right hand side over all sub-subdivisions of N.

Example 3. From Theorem 6, it follows that if a sequence of step-wise func-
tions ½Nd ;Qd �, Nd ¼ ðxd

0 ; . . . ; x
d
n Þ, Qq ¼ ðqd

1 ; . . . ; q
d
n Þ, is such that, for some

0 < i < j < k,

1

xd
k � xd

i

�Xj

s¼iþ1

qd
s ðxd

sþ1 � xd
s Þ �

Xk
s¼jþ1

qd
s ðxd

sþ1 � xd
s Þ
�
! l; d ! l;

then

lim
d!l

VðfðNd ;QdÞÞ ¼ l:

In particular, we obtain the intuitively obvious fact that if minfxd
iþ1 � xd

i : i ¼
0; . . . ; n� 1g goes to 0 as d tends to infinity and Qd remains constant then the
variation goes to l.
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3.3. Upper bounds

As for bounding the variation from above, we may use the following obser-
vation.

Theorem 7. Let s ¼ ½N;Q� be a step-wise function of length n on ½a; b� and
0a i < j < ka n. We denote by ~ss ¼ ½ ~NN; ~QQ� the step-wise function obtained by
deleting the last entries of N and Q. We have

V2ðfðsÞÞa 24ðqn � qn�1Þ2

ðb� xn�1Þ
þ
�
1þ 24ðxn�1 � xn�2Þ

ðb� xn�1Þ

�
V2ðfð~ssÞÞ:ð13Þ

Proof. Let f ¼ fð~ssÞ and define f on ½a; b� by

f ðxÞ ¼
fðxÞ ðaa xa xn�1Þ
fðxn�1Þ þ cðx� xn�1Þ2 ðxn�1 a xa bÞ;

�

where c is chosen so that

Z b

xn�1

f ðxÞ dx ¼ qnðb� xn�1Þ:ð14Þ

Thanks to the fact that f 0ðxn�1Þ ¼ 0 (the derivative of a spline transform always
vanishes at the extremities of its interval which is here ½a; xn�1� by definition of ~ss),
we have that f is C1 on ½a; b�, which, together with the definition of c, ensures
that f is an area-preserving smoothing for s. It follows that

V2ðfðsÞÞaV2ð f Þ ¼ V2ðfð~ssÞÞ þ
Z b

xn�1

ð f 0ðxÞÞ2 dx:ð15Þ

Now, we have

Z b

xn�1

ð f 0ðxÞÞ2 dx ¼ 4c2

3
ðb� xn�1Þ3;ð16Þ

and, from (14) one readily checks that c ¼ 3

ðb�xn�1Þ2
ðqn � fðxn�1ÞÞ, so that

Z b

xn�1

ð f 0ðxÞÞ2 dx ¼ 12

ðb� xn�1Þ
ðqn � fðxn�1ÞÞ2;ð17Þ

and, using the inequality ðaþ bÞ2 a 2ða2 þ b2Þ,
Z b

xn�1

ð f 0ðxÞÞ2 dxa 24

ðb� xn�1Þ
ððqn�1 � fðxn�1ÞÞ2 þ ðqn � qn�1Þ2Þ:ð18Þ
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Now, since qn�1 ¼ ~ssðxn�1Þ, a use of inequality (8) in the proof of Lemma 2 yields

ðqn�1 � fðxn�1ÞÞ2 a ðxn�1 � xn�2ÞV2ðfð~ssÞÞ:

Thus, in view of (18), we haveZ b

xn�1

ð f 0ðxÞÞ2 dx ¼ 24

ðb� xn�1Þ
fðqn � qn�1Þ2 þ ðxn�1 � xn�2ÞVðfð ~NN; ~QQÞÞg;

and, turning to (15), we arrive at (13). r

We may now use repeatedly the above theorem as follows. Setting

Dqi :¼
ðqi � qi�1Þ2

xi � xi�1
and Dxi :¼

xi�1 � xi�2

xi � xi�1
;

we have

V2ðfðN;QÞÞa
Xn�4

i¼0

24Dqn�j

Y
j<i

ð1þ 24Dxn�jÞ

þV2ðfððx0; x1; x2Þ; ðq1; q2ÞÞÞ
Y

j<n�3

ð1þ 24Dxn�jÞ;

hence, in view of Lemma 5,

V2ðfðN;QÞÞa
Xn�4

i¼0

24Dqn�j

Y
j<i

ð1þ 24Dxn�jÞ þ
3ðq2 � q1Þ2

ða� x2Þ
Y

j<n�3

ð1þ 24Dxn�jÞ;

where, as usual, an empty product is taken to be one.

Example 4. If ½Nd ;Q� is a sequence of stepwise functions of length n (Q fixed)
– such that min0aian�1ðxd

iþ1 � xd
i Þ tends to 0 as d ! l but max2aian Dx

d
i re-

mains bounded – then VðfðNd ;QÞÞ tends to 0 as d ! l.

We mention still another way of obtaining elementary upper bounds. Let s ¼
½N;Q� be a stepwise function of length n as above. For 1 < i < n� 1, we write
Ni ¼ ða; x1; . . . ; xi�2; xi�1Þ, Qi ¼ ðq1; . . . ; qi�1Þ, N i ¼ ðxi; xiþ1; . . . ; xn�1; bÞ, Qi ¼
ðqiþ1; . . . ; qnÞ, fi ¼ fðNi;QiÞ and f i ¼ fðN i;QiÞ then we have

V2ðfðN;Q j a; bÞÞaV2ðfiÞ þV2ðpÞ þV2ðf iÞ

where p is the unique polynomial of degree 4 which is tangent to fi at xi�1, to
f i at xi and such that

R xi
xi�1

pðxÞ dx ¼ qiðxi � xi�1Þ. (The existence and uniqueness
of such polynomial is easily shown). Again, the estimate follows from the fact
that the function obtained on suitably glueing fi, p and f i is a preserving-area
smoothing for ½N;Q�, so that its variation is not smaller than that of fðN;QÞ.
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4. Regularity and regularization

As explained in the introduction, it is often desirable that the smoothing f ¼ fðsÞ
of a (strictly) positive step-wise function s ¼ ½N;Q� be not negative and this prop-
erty is not guaranteed by the spline transform, see the example in Figure 1 (close
to the right extremity). This may be interpreted in two di¤erent ways. We may
consider that the spline transform is not, at least in these cases, a suitable
smoothing procedure and may therefore look for other techniques. One might
for instance look for splines minimizing more involved kernels than the plain
f !

R b

a
ð f 0ðtÞÞ2 dt used here, or one might try to use other types of approximants.

We refer to the references indicated in the introduction for more on these ap-
proaches. Here, we look at the eventual negativity of fðsÞ, not as a defect of the
spline transform, but as an indicator that the definition of s is defective, that is,
that the subdivision N is not well adapted to the data Q. We provide an algo-
rithm which gives a plausible redistribution (refining the original one) of the data
½N;Q�.

Let us point out that, when s is obtained, for instance, from experimental
data or from a practical problem, the pertinence of the redistribution provided
by our algorithm must be analysed in light of the experiment which produced
the data.

4.1. Singularities

We define the three forms of negativity that a spline transform may exhibit, each
of them leading to a di¤erent kind of singularity which will be handled in a dif-
ferent way.

Definition 5. A (strictly) positive step-wise function ½N;Q� on ½a; b� is said to
be regular or f-regular when its spline transform is positive (or null) on ½a; b�.
Non regular step-wise functions are singular.

We will distinguish three types of singularities. Let s ¼ ½N;Q� be a strictly pos-
itive step-wise function of length n and f ¼ fðN;QÞ its spline transform.

(LS) s has a left singularity when fðaÞ < 0.
Thus, by continuity, there exists e > 0 such that f < 0 on ½a; aþ e½. SinceR x�1

a
fðxÞ dx ¼ q1 > 0, we necessarily have e < a� x1.

(RS) Likewise, s has a right singularity when fðbÞ < 0.
There exists e > 0 such that f < 0 on ½b� e; b�. As above, we necessarily

have e < b� xn�1.
(IS) s has an interior singularity when f has a (strictly) negative relative minima

in �a; b½.
In fact, since, see Lemma 2, f is monotone on the ½a; x1� and on ½xn�1; b�,

such a minima can only appear in ½x1; xn�1�. Thus, in presence of an interior
singularity, on some �c; d½ with a < c and d < b and, for some e > 0 fb 0
on ½c� e; c�A ½d; d þ e½. Such subinterval jc; d½ cannot contain the whole of
an interval �xi; xiþ1½.
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For instance, the step-wise function in Figure 1, which we will regularize
below (Fig. 2 (B)), has a right singularity and the step-wise function in Figure 2
(B) has one interior singularity and a right singularity. Typically, interior singu-
larities appear when small values of qi alternate with big ones.

Lemma 8.

(1) All step-wise functions of length 1 are regular.
(2) Step-wise functions of length 2 may have only one (left or right) singularity.
(3) A step-wise function of length 3 cannot have both an interior singularity and a

left (or right) singularity.

Proof. The claim is obvious in the case of length 1. The second claim follows
from the fact that if s is of length two then fðsÞ is either increasing when q1 < q2
or decreasing when q2 < q1, see Lemma 5. Now, assume that s is of length 3 and
has an interior singularity. It has a strict local (negative) minimum, say at c and,
according to Lemma 2, no other strict extrema in �a; b½. Since fðcÞ < 0, f is
decreasing on �a; c½ and increasing on �c; a½ and therefore possesses no left or right
singularity. r

4.2. Dealing with singularities

We will describe a regularization procedure that enables to obtain a positive
functions starting from singular step-wise functions. Let us first concentrate on
the simplest case of length two step-wise functions. Suppose that s ¼ ½ða;w; bÞ;
ðq1; q2Þ� with q2 < q1 has a right singularity so that, writing f ¼ fðsÞ and using
(9), we have

fðbÞ ¼ �q1ðb� wÞ þ q2ð�wþ 3b� 2aÞ
2ðb� aÞ < 0 ) q2 < q1

b� w

3b� w� 2a
:

In particular, since, 3b� w� 2a > 3ðb� wÞ, we must have 3q2 < q1. We set
bðuÞ ¼ wþ uðb� wÞ and q2ðuÞ ¼ q2=u so that for u a �0; 1�, q2ðb� wÞ ¼
q2ðuÞðbðuÞ � wÞ. The function f : �0; 1� C u 7! fðbðuÞÞ satisfies f ð1Þ ¼ fðbÞ < 0
by hypothesis and a simple calculation shows that 3ðbðuÞ � aÞ f ðuÞ ¼ q1ðw� aÞ
> 0. Hence f vanishes for some u? between 3q2=2q1 and 1 so that the step-wise
function

½ða;w; bðu?ÞÞ; ðq1; q2ðu?ÞÞ�

is regular (with rectangles of same area as ½ða;w; bÞ; ðq1; q2Þ�). This provides a reg-
ularization for ½ða;w; bÞ; ðq1; q2Þ�.

More generally, the following lemma is useful to deal with right singularities.
Of course, a similar result holds for left singularities because

½ðx0; . . . ; xnÞ; ðq1; . . . ; qnÞ�
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has a left singularity if and only if

½ð�xn; . . . ;�x0Þ; ðqn; . . . ; q0Þ�

has a right singularity.

Lemma 9. Let ½N;Q� be a strictly positive step-wise function of length n on ½a; b�.
We denote by f its spline transform. If

(1) fðxn�1Þ > 0, fðxn�2Þ > 0,
(2) 2qn b 3qn�1 > 0,

then f is increasing (or constant) on the interval ½xn�1; b�.

Since, fðxn�1Þ > 0, it follows that f is positive on ½xn�1; b�.

Proof. Let r ¼ fðxn�1Þ and s ¼ f 0ðxn�1Þ. Recall that by Lemma 2, f is mono-
tone on ½xn�1; b�. It su‰ces to show that ra qn. Indeed, if this occurs, f must be
increasing or constant as claimed for, otherwise, the area-preserving condition on
½xn�1; xn� could not be satisfied. We prove that the reverse inequality r > qn leads
to a contradiction. In fact, the inequality r > qn together with Lemma 2 implies
that f is decreasing (not constant) on ½xn�1; b�, hence s < 0. This means that f is
decreasing on some interval ½c; xn�1� and, since qn�1 < qn (see assumption 2), in
order to satisfy the area-preserving condition, it must be increasing on ½xn�2; c�,
where xn�2 < c < xn�1. Hence f is concave on ½xn�2; xn�1�. On this interval, it is
of the form

fðxÞ ¼ rþ sðx� xn�1Þ þ gðx� xn�1Þ2;

and

minffðxÞ x a ½xn�2; xn�1�g ¼ minffðxn�2Þ; fðxn�1Þg ¼ fðxn�2Þ;

the last equality because of the area-preserving condition on ½xn�2; xn�1� and the
fact that qn�1 < qn. In fact, the area-preserving condition on ½xn�2; xn�1� readily
yields an expression for g in terms of r and s,

g ¼ 3ðxn�1 � xnÞsþ 6ðqn�1 � rÞ
2ðxn�1 � xn�2Þ2

:

This equation in turn gives

fðxn�2Þ ¼ ðxn�1 � xn�2Þs=2þ ð3qn�1 � 2rÞ:

Since s < 0, the positivity of fðxn�2Þ, see assumption (1), implies 3qn�1 � 2r > 0
or 3qn�1 > 2r and since rb qn this gives 3qn�1 > 2qn which is contrary to the
assumption. r
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For instance, in Figure 1, we took q5 ¼ 1:6 and q4 ¼ 8:9 so that the second
assumption is not satisfied and, in fact, fðN;QÞ is not positive on the last interval
while it is positive on the previous one.

Lemma 10. Let Nb ¼ ða; x1; . . . ; xn�1; bÞ with xn�1 < ba b,

Qb ¼
�
q1; . . . ; qn�1; qn

b� xn�1

b � xn�1

�
;

and sb ¼ ½Nb;Qb�. We denote by fb the spline transform of sb. The function
b ! fbðbÞ is continuous on �xn�1; b�.

Proof. The function fb can be written as fbðxÞ ¼ c0 þ c1xþ c2x
2 þPn�1

j¼1 cj¼2ðx� xjÞ2þ where the ðnþ 2Þ coe‰cients cj are given by the conditions

f 0
bðx0Þ ¼ 0;

Z xi

xi�1

fbðxÞ dx ¼ qiðxi � xi�1Þ; 1a ia n� 1;ð19Þ

Z b

xn�1

fbðxÞ dx ¼ qnðb� xnÞ; f 0
bðbÞ ¼ 0:

Figure 2. Examples of singular and regularized step-wise functions.
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To prove the claim, it su‰ces to show that C ¼ ðc0; . . . ; cnþ1Þ depends continu-
ously on b where C is the solution of the linear system AB ¼ C corresponding
to (19). Observe that B does not depend on b. So, it su‰ces to show that the
coe‰cients of A (which is invertible for every b a �xn�1; b�) depend continuously
on b. Only the last two lines of A (the conditions being ordered as in (19)) depend
on b,

A ¼
� � � � � � � �

ðb � xn�1Þ
b2�x2

n�1

2

b3�x3
n�1

3
ðb�x2Þ3�ðxn�1�x1Þ3

3 � � � ðb�xn�1Þ3
3

0 c1 2b 2ðb � x2Þ � � � 2ðb � xn�1Þ

0
B@

1
CA;

and the continuity follows. r

4.3. A regularization algorithm

Let s ¼ ½N;Q� be a step-wise function of length n and f ¼ fðsÞ. We present an
algorithm which, when f is singular, returns a sum of non negative spline trans-
forms of certain natural re-arrangements of s, obtained by replacing the value of
s by zero on certain subintervals, while keeping the same area on each original
interval. Such function is itself area-preserving for the initial s but it is not, in gen-
eral, smooth (see however the comments below). Two di¤erent regularizations of
a singular step-wise function are drawn in Figure 4.

The general strategy is as follows.
In the case of an interior singularity, say on ½xj ; xjþ1�, we separate ½N;Q� in

two distinct step-wise functions ½N1;Q1� and ½N2;Q2�, the first one on ½a; a 0� and
the second one on ½a 0; b� with xj < a 0 < xjþ1 and

N1 ¼ ða; x1; . . . ; xj; a 0Þ; Q1 ¼ ðq1; . . . ; qj�1; q
0Þ; and

N2 ¼ ða 0; xjþ1; . . . ; xn�1; bÞ; Q2 ¼ ðq 00; qjþ1; . . . ; qnÞ;

where

q 0ða 0 � xjÞ þ q 00ðxjþ1 � a 0Þ ¼ qjðxjþ1 � xjÞ:

The case where a 0 is one of the entries of N is easily treated, see Line 6 in Algo-
rithm 1. In case of multiple interior singularities, Algorithm 1 starts with the
deepest negative value. Another reasonable choice would be to cut where the neg-
ative area is maximal. We might also decide to cut at its centre the interval con-
taining the worst (in one of the above senses) singularity.

As for the values of q 0 and q 00, we may for instance divide the area of the rect-
angle of base ½xi; xi�1� into the two new rectangles of base ½xj; a 0� and ½a 0; xjþ1�
proportionally to the length of the new rectangles, that is q 0 ¼ qjþ1 and q 00 ¼ qjþ1.
This is the strategy implemented in Algorithm 1. Another one would be to allo-
cate half of the area independently from the length of the bases. In general, such
cutting transforms an interior singularity into a right singularity for ½N1;Q1� and
a left singularity for ½N2;Q2�. It may happens, however, that there remains only
one left (or right) singularity after cutting.
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Figure 3. Regularization algorithm
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Table 1 summarizes a few natural cutting strategies. We assume as above that
a negative minima is reached at a 0 a �xj; xjþ1½. To deal with singularities at an
extremity, we use length reduction of the interval. For instance, in the case of a
right singularity at b ¼ xn, starting from N ¼ ðx0; . . . ; xnÞ and Q ¼ ðq1; . . . ; qn�1;
qnÞ, we set

N 0 ¼ ðx0; . . . ; xn�1; xn � eÞ and Q 0 ¼
�
q1; . . . ; qn�1; qn

xn�1 � xn

xn�1 � xn � e

�
;ð20Þ

so that

qnðxn � xn�1Þ ¼
Z xn

xn�1

fðN;QÞðxÞ dx ¼
Z xn�e

xn�1

fðN 0;Q 0ÞðxÞð21Þ

¼ q 0
nðxn � e� xn�1Þ:

Lemma 9 shows that a su‰cient reduction will provide positiveness. However,
it does not rule out (though it seems to be unlikely) that the process of reduction
brings about a new interior singularity and the algorithm takes this point into
account. The algorithm uses a rude reduction step e. In practice, we took e as
0:5 percent of the length of the original interval. In an optimized algorithm, it is
advisable to adapt e to the level of negativity encountered and (or) to refine a
rough positive value using a bisection algorithm (based on Lemma 10). In fact,
by suitably adapting the algorithm, when starting with a negative value, it pro-
duces a solution which is actually null at the (moving) extremity of the reduced
interval (the ‘‘first’’ available solution when performing a reduction). The exis-
tence of such exact value follows from the continuity of the function b 7! fbðbÞ
proved in Lemma 10. The cutting strategy ON, see Table 1, is intended for the
computation of such type of regularization.

Old N ! New N1;N2 Old Q ! New Q1;Q2

P: Proportional N1 ¼ ðx0; . . . ; xj; a 0Þ,
N2 ¼ ða 0; xjþ1; . . . ; xnÞ

Q1 ¼ ðq1; . . . ; qj; qjþ1Þ;
Q2 ¼ ðqjþ1; . . . ; qn�1; qnÞ

ON: Optimized
for Negativity

N1 ¼ ðx0; . . . ; xj; a 0Þ,
N2 ¼ ða 0; xjþ1; . . . ; xnÞ

Q1 ¼ ðq1; . . . ; qj; a 0Þ,
Q2 ¼ ða 00; . . . ; qn�1; qnÞ where a 0 ¼
aqjþ1

xjþ1�xj
a 0�xj

and a 00 ¼ ð1� aÞqjþ1
xjþ1�xj
xjþ1�a 0

where a a �0; 1½ is chosen to ensure
negativity of both spline transforms at a 0.

PC: Proportional
at Center

N1 ¼ ðx0; . . . ; xj;mjÞ,
N2 ¼ ðmj; xjþ1; . . . ; xnÞ
with mj ¼ ðxj þ xjþ1Þ=2:

Q1 ¼ ðq1; . . . ; qj; qjþ1Þ,
Q2 ¼ ðqjþ1; . . . ; qn�1; qnÞ

OV: Overlapping N1 ¼ ðx0; . . . ; xj; xjþ1Þ,
N2 ¼ ðxj; xjþ1; . . . ; xnÞ

Q1 ¼ ðq1; . . . ; qj; qjþ1=2Þ,
Q2 ¼ ðqjþ1=2; . . . ; qn�1; qnÞ

Table 1. Some cutting strategies
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The algorithm obviously terminates since fðsÞ has a finite number of negative
minima. Any regularization algorithm based on a cutting strategy (not necessar-
ily of one the type made explicit in Table 1 coupled with a length reduction pro-
cess will be called a cutting-reduction algorithm. Our algorithm (and any of its
variants) returns a sum of spline transforms of step-wise functions of smaller
lengths and disjoint supports. Because of the reduction process, when the func-
tion does not coincide with its regularization, it is (a priori) defined on a strict
subset X of ½a; b�. We may extend it as 0 on ½a; b�nX (as in done in Figure 4)
and denote by RfðsÞ. Note that, in general, RfðsÞ is discontinuous at each junc-
tion point. Thus, we have a relation of the form

RfðsÞðxÞ ¼
Xk

j¼1

fðskÞðxÞ for x in the support of RfðsÞ;ð22Þ

where the fðskÞ have disjoint supports. For instance, in the case of the P regula-
rization in Figure 4 for s ¼ ½N;Q�, N ¼ ð0; 2; 4; 6; 8; 10; 12Þ and Q ¼ ð4; 8; 1; 9;
15; 2Þ, up to computational errors, we have k ¼ 3 and

s1 ¼ ½ð1:2799; 3; 7; 7:3421Þ; ð1:744; 8; 0:4569Þ�;
s2 ¼ ½ð7:6438; 8; 10; 14; 15:339Þ; ð0:4034; 7; 12; 1:6217Þ�;
s3 ¼ ½ð16:1714; 17; 23Þ; ð1; 5Þ�:

Figure 4. An example of spline and regularized spline transforms for s ¼ ½N;Q�, N ¼
ð0; 2; 4; 6; 8; 10; 12Þ and Q ¼ ð4; 8; 1; 9; 15; 2Þ.
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Observe that the ON regularization in Figure 4 looks like a smooth function on
the whole of ½a; b� but it is not even continuous. In general, our algorithm will not
provide a smooth regularization on ½a; b�. The reason is that when both a left and
a right singularity are to be removed, there are treated separately. For instance,
when regularizing s in Figure 4, we cut s near 7, say at a 0 and near 16, say at b 0 so
that at the next step we need to regularize s 0 ¼ ½N 0;Q 0� with N 0 ¼ ða 0; 8; 10; 14; b 0Þ
with a right singularity at b 0 and a left singularity at a 0. Algorithm 1 will first deal
with b 0 and provide a modification s 00 ¼ ½N 00;Q 00� of s 0 whose spline transform
may be taken to be 0 at the last point b 00 of N 00, hence fðs 00Þ ¼ 0 and f 0ðs 00Þ ¼ 0
so that fðs 00Þ is smoothly extended to 0 on ½b 00; b 0�. Next we need to treat the left
singularity at a 0 and, this will change, even if very slightly, the value at b 00, thus
breaking the smoothness previously obtained. Clearly, in order to preserve
smoothness, we should deal simultaneously with both singularities and this raises
the following question.

Question 1. Can we always simultaneously remove both a left and a right sin-
gularity by performing (non identical) simultaneous left and right reductions?

Yet, ON regularization may be considered as an acceptable approximation
of a smooth regularization that may su‰ce in applications. In any case, in the
example above, the sum of the jumps at discontinuities is clearly smaller that
that provided by the P regularization. The various natural available strategies
lead to the following questions.

Question 2. Is there a cutting-reduction algorithm that minimizes the sum of
the jumps at the discontinuities of RfðsÞ for a given s?

Question 3. Is there a cutting-reduction algorithm that minimizes the sum of
the variation of the spline transforms forming RfðsÞ for a given s?
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1972). Birkhäuser, Basel, 1973, pp. 329–358. Internat. Ser. Numer. Math., Vol. 21.

192 j.-p. calvi and l. tilatti

http://fr.mathworks.com/help/curvefit/examples/smoothing-a-histogram.html?s_tid=gn_loc_drop#
http://fr.mathworks.com/help/curvefit/examples/smoothing-a-histogram.html?s_tid=gn_loc_drop#


[5] G. Nürnberger, Approximation by spline functions, Springer-Verlag, Berlin, 1989.

[6] J. W. Schmidt - M. Bastian-Walther, Algorithm for constructing range restricted

histosplines, Numer. Algorithms 17, 3–4 (1998), 241–260.

[7] J. W. Schmidt - S. Dietze, Unconstrained duals to partially separable constrained

programs, Math. Programming 56, 3, Ser. A (1992), 337–341.

[8] I. J. Schoenberg, Splines and histograms, In Spline functions and approximation

theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972). Birkhäuser, Basel, 1973,
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