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ABSTRACT. — We establish some properties of the classical area-preserving spline transform of
step-wise functions and propose a regularization algorithm for the positive step-wise functions whose
spline transform fails to be non negative.
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1. INTRODUCTION

There is a well-known procedure to transform a step-wise function s into a
smooth one f when we want to preserve the most important properties of s and,
at the same time, operate in an economical way. Let us briefly recall the con-
struction of such smoothing procedure. Unless otherwise specified, all functions
are defined on [a, b]. Given N = (xo, X1,...,X,_1,X,) Where a = xp < x] < -+ <
Xp—1 <b=x,and Q= (qi,...,q,) € R", we denote by s = [N, Q] the step-wise
function defined by

(1) VO =i xelvinxl, q#qu, i=l..m
and [N, Q}(xn) = qn;

where the condition ¢; # ¢;+1 just means that we choose the shortest subdivi-
sion. The integer n is called the length of [N, Q]. When N = (a, b), then [N, Q] is
constant equal to ¢;, of length one. Histograms correspond to positive step-wise
functions.

A function f € Cl[a,b] is said to be an area-preserving smoothing for s =
[N, Q] as in (1) if the area under f matches that of [N, Q] on the intervals
[xi1,xi], i =1,...,n where n = length([N, Q]), that is,

/’[f(x)dx:q,-(x,-—x,‘_l), i=1,...,n
Xi-1

The particular smoothing f of s that we will study in this paper is the unique
area-preserving smoothing of s of minimal L? variation, that is, minimizing the
functional /1 — fab (h'(1))* dt. In fact, see Theorem 1 below, / is the unique area-
preserving smoothing for [N, Q] such that:
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(CP1) The derivative of f vanishes at the extremities of the interval, that is
f'(a) = f"(b) = 0.

(CP2) The restriction of f to any of the interval [x;_1,x;], i=1,...,n, is a poly-
nomial of degree at most two.

A common way of computing f"is as follows. Setting V; = 2;21 qi(x; — xj—1)
= [N, Q](x) dx, since f is area-preserving for s, we must have

2) /Xif(x)dx:V,», i=0.....n

where the index i =0 (with V) = 0) actually adds an empty condition. If F
denotes the unique natural cubic spline F satisfying F(x;) =V;, i=0,...,n,
then we just need to take f = F’. Recall that by natural, one means that F”(a) =
F"(b) = 0. In particular, f satisfies properties (CP1) and (CP2) above. We refer
to [5, p. 121] for the definition and main properties of natural cubic interpolation
splines.

DEeFINITION 1. The function f above is called the spline transform of s = [N, Q).
It will be denoted by ¢(s) = ¢([N, Q]) or (N, Q). Its evaluation at x € [a, b] will
denoted by ¢(N, Q)(x) or ¢(N, Q, x).

It is the purpose of this paper to derive some properties, introduce some defi-
nitions and raise some problems regarding this transform. The reader may ob-
serve the effect of the smoothing procedure in Figure 1. As far as we know, the
above definition of the spline transform goes back to [2], but the idea seemed to
be in the air at that time, see [4, 8]. A Matlab code for computing the spline trans-
form is available at [1].

Of course, any space of smooth functions on [a,b] in which the interpola-
tion problem (2) has a unique solution provides another natural area-preserving
smoothing for s. We may for instance consider other spaces of spline functions.
Here, we will just mention the case of polynomials. If P is the unique polynomial

“ //\\
) 7\ /
qj / N —g

a5

a=xp X1 Xo X3 X4 ﬁxs >
Figure 1. A step-wise function s = [N, Q] and its transform ¢(s) with N = (7.5,17.5,
27.5,42.5,62.5,82.5), 0 = (3.5,7.7,5.4,8.9,1.6) (ratio y/x = 3).
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of degree at most n such that P(x;) = V;, i =0,...,n, that is, by the Lagrange
interpolation formula,

(3) P =1 [ =2,

im0 0N TN

then /' = P’ is a polynomial of degree at most n — 1 that satisfies (2). As indicated
above, the main motivation for choosing ¢(s) among all others area-preserving
smoothing is the following theorem.

THEOREM 1. The function ¢(s) is the unique area-prese;;ving smoothing for s =
[N, Q] with minimal L* variation. Thus, setting 7" (f) = [, (f"(x))? dx, we have

(4) Y (P(s)) = inf{+/"(f), f is an area-preserving smoothing for s}.

The proof is a simple adaptation of the proof of the corresponding variation
diminishing property for cubic splines, see [5], and we will omit it.

In section 3, we derive some a-priori estimates on the way the variation
7 (#(N, Q)) depends on N and Q. Such estimates rest on a simple property of
spline transforms of length two step-wise functions. Some useful observations on
the structure of spline transforms are presented in section 2. In practice, apart
from the area-preserving property, it is often desirable that the smoothing f* re-
spects, in some sense, other elements of the geometry of the graph. For instance,
one usually wishes, especially when we have histograms in mind, that the smooth-
ing be non negative. Such property, in general, is not satisfied by the spline
transform (as in Figure 1, close to the right extremity of the interval) and this
drawback lead to a rich literature where many modifications or alternatives are
investigated; the reader may, for instance, consult [3, 6, 7] and the references
therein. In this paper, we take a different point of view. The eventual negativity
of ¢(s) when s is a positive step-wise function is regarded as an exploitable indi-
cator on the structure of s. This is explained in section 4. This point of view seems
to lead to natural and interesting questions.

2. BASIC PROPERTIES OF THE SPLINE TRANSFORM ¢
2.1. Some useful observations

The following easy properties follow directly from the definition or the character-
ization properties. Given

N = (a>xl>"'7xn717b)7

the map ®y:R"3 Q0+ ¢(N,Q,-) € C!([a,b]) is linear and one-to-one. It
is worth observing that ¢(N,Q + k) =¢(N,Q) +k with Q+ k= (q1 +k,...,
gn + k). This is because the right-hand side satisfies the properties (CP1) and
(CP2) of ¢(N, Q + k) as well as the area-preserving property. In fact, if #(x) is a
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polynomial of degree at most two then ¢(N, Q) + ¢ is a spline transform if and
only if 7 is constant (otherwise the conditions on the derivative at the extremities
of the interval are not fulfilled).

For k € R,

(5) ¢(N+k,Q,X):¢(N,Q,X—k) xe[a+k,b+k],
where N +k:=(a+k,x1+k,....,xp,o1 +k,b+k) if N=(a,x1,...,x,-1,b).

Equivalently, letting 7; denote the translation x — x+k, ¢(1x(N), Q) o1 =
#(N, Q). There is also an immediate invariance relation with respect to scale

transformations. For instance, if ¢ > 0 and /,[N, Q] := [(0a,0x1,...,0X,_1,0b),
Q] then
(6) $(hs[N, 0))(x) = $(N, Q,07'x),  x € hy([a, b)).

From (5) and (6), we deduce that the map ¢ is invariant under bijective affine
maps in a natural sense. In particular, ¢(s) reproduces the standard symmetries
that may possess the graph of s.

LEMMA 2. Let s = [N, Q] be a step-wise function of length n on |a, b].

(1) On the first and on the last interval, §(s) is monotone ( possibly constant).
(2) ¢(s) has at most n — 2 local strict extrema in |a, b|.
(3) We have

b
max [s(x) ~ $(3)(0)] < max V=¥ x\/ J RO

Thus, the variation, that is ¥"(¢(N, Q)), actually controls the uniform approx-
imation of [N, Q] by ¢(N, Q).

PRrOOE. (1) In fact, on both intervals, we have a polynomial of degree at most
two whose derivative vanishes at one extremity. Unless it is constant, it cannot
vanish somewhere else on one of these intervals.

(2) On each of the (n —2) intervals [x;, x;11], i=1,...,n—2, ¢(s) is a poly-
nomial of degree at most two and therefore possesses at most one strict local ex-
trema and, according to the previous lemma, there is no strict local extrema in
]aa Xl] Y [xnflvb[-

(3) Write ¢ = ¢(s). Let x € [x;_j,x;] fori=1,...,n— 1 (when i = n, we may
have x = x,). Since

1
L / $(x) dx = g,
Xi = Xi—1 Jx,

by the mean value theorem, there exists ¢ € |x;_1, x;[ such that ¢(c) = ¢;. Hence,

) ) = o3) = ) — a1 = ) — o) = [ () dx.
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Using Cauchy-Schwarz inequality, we have

® sl < [ Weldr< i [ @) e

The claim readily follows. O
2.2. Reducibility

We now investigate whether the ¢-map is one-to-one. To do that, we require the
following definitions.

DEFINITION 2. A step-wise function s = [N, Q] is said to be reducible if there
exists a step-wise function § = [N’, Q’] such that

(1) length(s) < length(s),
(2) B(3) = b(s).

Non reducible step-wise functions are irreducible.

If length(s) is minimal among all those § such that ¢(s5) = ¢(s) then §=
[N, Q'] is called a reduction for s = [N, Q]. The problem of describing the reduc-
tion of a given s is readily answered once we introduce the following definition.

DEFINITION 3. The points of ]a, b at which ¢(s) is not twice differentiable are
the nodal points of s = [N, Q.

The nodal points of s are obviously among the interior entries of N. We will
see that, in most cases, they are exactly the interior entries of N. By interior entry
of N, we mean the nodes x; for 0 < i < n.

THEOREM 3. Every step-wise function s = [N, Q| admits one and only one reduc-
tion s = [N', Q'] and the interior entries of N' are exactly the nodal points of s.

LeEMMA 4. If length(s) > 1 then ¢(s) is not constant.

ProoOF. Indeed, there are at least two different successive values, say ¢; and ¢,
see (1), so that

1 X1 X2
e Ry O
and ¢(s) cannot be constant. O

PRrROOF OF THEOREM 3. Let § = [N’, Q'] be a reduction of s. If length(s) =1
then ¢@(s) = ¢(3) is constant, and, according to the previous lemma, length(s) =
1, but, in that case, s is irreducible, § = s and the assertion of the theorem trivially
holds true.
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We assume that length(s) =n > 1 so that N' = (a,x{,...,x, ,,b) and we
prove that the points x| are nodal points for s. In fact, if ¢(s) = §(5) was twice
differentiable at x/, 1 <i<n — 1, then the same polynomials of degree at most
two would define ¢(5) on [x; |, x/] and on [x/,x; ;] (both polynomials would
share the same j-th derivative at x; for j =0, 1,2). But, in that case, we could
further reduce § to § = [N"”, Q"] by removing x/ from N’, that is, taking

" / / ! /
N" = (a,x},..., %1, X[, 1,...,X,_1,b)

and

(xi = Xi-1)q) + (Xiy1 — Xi)q; 4
Xit1 — Xi—1

Q”:<Qi7""q1{717 )CI,{+27~-7%/1>’

and this would contradict the minimality of the length of s.

Conversely, since ¢(5) = ¢(s), the singular points of the derivative of ¢(s) are
singular for the derivative of ¢(§), the nodal points of [N, Q] must therefore
appear in N’. The fact that ¢(§) is an area-smoothing for s next forces the value
for Q', namely if N' = (a,x;,...,x;,b) with 1 <ij <ip <--- <ix <m with
m = length([N, Q]) then

[ —1
s (X = x)g
q, = . O

Xy — Xi

ExampPLE 1. Let N = (a,xy,...,x,—1,b) with a <x; <---<x,_1 <b and
n > 2. The sets of Q € R” for which [N, Q] is reducible is a union of n — 1 hyper-
planes. In particular it is of empty interior and its Lebesgue measure is null.

ProOOF. Indeed, to be reducible, there must be at least one of the x;, i =1,...,
n — 1, which is not a nodal point for [N, Q]. But to say that x; is not nodal means
that, say, both constants ¢" (N, Q)((x; — x;_1)/2) and ¢" (N, Q)((xir1 — x:)/2)
coincide. Hence, Q is in the kernel of the linear form

R"3 Q> D? 0 Oy((x; — xi-1)/2) — D 0 Oy ((xis1 — x;)/2) € R,

which is an hyperplane H; (D? is used for the second derivative and the linear
map @y in defined in subsection 2.1. a

Let us denote by SW (or SW(a, b)) the class of irreducible step-wise functions
on [a,b] and by SP, (or SPy(a, b)) the class of functions in C'([a, b]) which co-
incide with a polynomial of degree at most 2 on each interval of a subdivision of
[a,b] and with horizontal tangents at the extremities. Clearly, SW is the quotient
set (that is, is in canonical one-to-one relation with the quotient set) of the equiv-
alence relation [N, Q] = [M, T] if (N, Q) = (M, T). Hence, SW is isomorphic
to the range of the map [N, Q] — ¢(N, Q) which is SP,.

Let us briefly explain how to obtain the pre-image of f € SP,. We first select
the points (in ]a, b[) where f is not twice differentiable. This set may be empty
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(when and only when f is constant) but, by definition of SP», it is necessarily
finite. We assume that there exists at least one such point and form N = (x,...,
xn—1) by correctly ordering them. Next, we set

1
qi_—/ f(X)dX, izlv"'vny
Xi = Xi—1Jx;4
where xp = a and x, = b. We have ¢(N, Q) = f.

2.3. Application

It seems reasonable to say that a data [N, Q], that is a step-wise function s =
[N, Q] of length n, in particular a histogram, is ¢-redundant when [N, Q] is re-
ducible, since a smaller data would return the same spline transform. For com-
putational reasons, exact reducibility, in general, cannot be neither verified nor
expected and we should instead introduce a measure of redundancy based on
the singular points of the second derivative of the spline transform of s = [N, Q).
On [x;, x;1[, #(s) is of the form a;;1x> + b; 1x + ¢;,1, the above discontinuity is
measured as |a;.2 — a1

DEFINITION 4. The ¢-redundancy coefficients g; and g of [N, Q] are defined
as

_ lai2 — aii]

gi = )
maxi:l,...,n|ai|

=0,...,n—2, and g= min g,
i=0,...,n—2

The redundancy coefficient g for the step-wise function in Figure 1 is about
0.7 while the coefficient for (N, Q) = ((1,2,3,4,5),(2,3,6,8)) is about 0.06, the
redundancy arising at x3 = 4.

3. BOUNDING THE VARIATION

To compute a spline transform, following the method sketched in the introduc-
tion, we need to solve a cubic spline interpolation problem which amounts to
solve a tri-diagonal linear system of order n (or, directly the linear system given
below in (19)). This is a reasonably simple computational problem, at least when
n is not too big. Yet, one cannot expect a simple closed general expression for
#(N, Q) and it is therefore interesting to derive a-priori estimates for the variation
77 (¢(N, Q)) of a spline transform. To do that, we first concentrate on the sim-
plest cases.

3.1. Length two case
When length([N, Q]) = 1, s = [N, Q] is constant and equal to its spline transform.

Here is a reasonably simple formula when length(s) = 2, that is N = (a,w,b)
with a < w < b. It confirms the intuition that the variation — essentially given by
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the coeflicients of the squared terms — depends on the differences between the ¢;
and that, keeping it fixed, it grows as w get closer to one of the extremity.

LEMMA 5 (Spline transform for length-two step-wise functions). Let a < w < b,
N = (a,w,b) and Q = (qi1,q2) the spline transform of s = [N, Q| is given by

©) ¢(s)(x)

(@042 =30 4 grla = ) 3= s )’
2(b —a) 2(b—a)(w—a)
+(q1(w—b)+q2(—w+3b—2a) 3(q2—q1)(x—b)2

20 —a) T vy — )charfun(x,w,b),

) charfun(x, a, w)

where charfun(x, u, v) denotes the characteristic function of the interval [u,v]. The
variation is particularly simple and does not depend on w:

b . 2
) = [ <<¢<s>>'<x>>2dx—%'

PRrROOF. One checks that the right hand side of (9) is an area-preserving smooth-
ing which satisfies the properties (CP1) and (CP2) characterizing ¢(N, Q). The
computations are easily done with the help of a computer algebra software. (We
used Maxima.) O

ExAMPLE 2. Step-wise functions of length 2 are irreducible.

PRrROOF. In view of Theorem 3, it suffices to show that w is nodal and this follows
from a direct computation with (9). O

Observe that (9) shows that ¢(s) is increasing when ¢; < ¢, and decreasing
when q; > ¢».

3.2. Lower bounds

Lemma 5 enables one to derive simple lower bounds for the variation of any
spline transform. In fact, if s = [N, Q] is a step-wise function of length #, the re-
striction of @(s) to [x;_1,X;+1] is an area-preserving smoothing for the step-wise
function [(x;_1,X;, Xi11), (¢i,gi+1)] on the interval [x; 1, x;,1]. Its L?-variation is
therefore bigger (or equal) than that of

¢((xi71 s Xis xi+1)7 (Qi, qi+1)7 x)'

Hence, in view of Lemma 5,

Xit+1 . — 42
(10) [ wo. 0, %)% dx > 3411 4"

Xiol Xitl — Xi—1
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where, of course, ¢'(N, Q, x) denotes the derivative of ¢(N, Q) with respect to x.
More generally, if 0 < i < j < k < n, using that ¢(s) is an area smoothing for the
step-wise function

J k
[(xiv xh Xk), ( Z ch(Xerl - xS)7 Z q‘v(strl - xs)>‘| on [xi; xk]>
s=i+1 s=j+1

we obtain the following bound.

THEOREM 6. Let [N, Q] be a step-wise function of length n and 0 <i< j <
k <n. We have

) i )
(Z§:i+1 qs(x.H-l - xs) - Es:j-H qs(x.H-l - xs))

Xk — Xi

[ ez

It follows from (10) that
A (¢i+2 — 4i)
12 1 1
( ) Z xl+2 - xl

and a similar lower bound holds for odd indices. More generally, if the right hand
side of (11) is denoted by 77(i,j,k) and 0 =iy < i} <i» < -+ < iy = n, using
Theorem 6, we have

V2S) =V oy i1, i2) + ¥ (iny i3, 0a) + -+ + ¥ (-2, bav-1, 2y

Of course, the best lower bound based on Lemma 5 would be obtained by taking
the maximum of the right hand side over all sub-subdivisions of N.

ExaMPLE 3. From Theorem 6, it follows that if a sequence of step-wise func-

tions [N Q9], N = (x¢,...,x n) Q7= (q?,...,q%), is such that, for some
O<i<j<k,
(Z L]J H—l Z qs H—l ) d— 0,
l s=i+1 s=j+1
then

lim 7 (4(N?, 0%)) = 0.

d— o
In particular, we obtain the intuitively obvious fact that if min{x?, o —xi=
0,...,n—1} goes to 0 as d tends to infinity and Q¢ remains constant then the
Varlatlon goes to o0.
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3.3. Upper bounds

As for bounding the variation from above, we may use the following obser-
vation.

THEOREM 7. Let s =[N, Q] be a step-wise function of length n on [a,b] and
0<i<j<k<n We denote by §=[N,Q] the step-wise function obtained by
deleting the last entries of N and Q. We have

24(qy — anl)z
(b — X,,,l)

PROOF. Let ¢ = ¢(5) and define 1 on [a, b] by

24()(,,,1 — xnfz)

2
(13) v (¢(S)) = (b - xnfl)

+(1+ )12 (66)).

#(x) (a <x<x,-1)
Pxao1) +c(x = xu-1)”  (xao1 X< D),

1=

where ¢ 1s chosen so that
b
(14) f(x)dx = q,(b— x,_1).
Xn—1

Thanks to the fact that ¢'(x,_1) = 0 (the derivative of a spline transform always
vanishes at the extremities of its interval which is here [, x,_;] by definition of §),
we have that f is C! on [a,b], which, together with the definition of ¢, ensures
that f is an area-preserving smoothing for s. It follows that

b
(15) 12(B(5) < V2() = 1 2(96) +/_ (f"(x))* dx.

Now, we have

b CZ N
(16) | et =20 -x)’

Xn—1

and, from (14) one readily checks that ¢ = T 3 ¥ (g0 — #(xn_1)), so that
o

(qn — ¢(xn—l))2a

12

oo
(17) | weard= gt
and, using the inequality (o + )% < 2(a? + %),

b
18) [ () e = G (e = #0400 4i))
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Now, since ¢,—1 = §(x,—1), a use of inequality (8) in the proof of Lemma 2 yields

(a1 = $len-1)? < (vt = xa2) 72 ($(3))-
Thus, in view of (18), we have

b ~
| 0y = - a0+ (it = 32 G D),

and, turning to (15), we arrive at (13). O

We may now use repeatedly the above theorem as follows. Setting

2
ACIi — (% q:—l) and Axi — Xi—1 — Xi=2

)

Xi — Xi—1 Xi — Xi-1
we have
n—4
PPN, Q) < Y 24Ag,; [[(1 +24Ax, )
i=0 j<i
2
+ 77 (P((x0, x1,%2), (q1,.92))) ] (1+24Ax,.),
j<n=3
hence, in view of Lemma 5,
772 Z 24Aq,; (1 + 24Ax, 32— a)” —a) [T (1 +24Ax,))
! Jj<i ] (CZ - Xz) j<n-3 -

where, as usual, an empty product is taken to be one.

ExamPLE 4. If [N9 Q] is a sequence of stepwise functions of length 7 (Q fixed)
— such that minog,-gn,l(xl.‘il — xid) tends to 0 as d — oo but max,<;<, Axid re-
mains bounded — then 7" (¢(N¢, Q)) tends to 0 as d — 0.

We mention still another way of obtaining elementary upper bounds. Let s =
[N, Q] be a stepwise function of length n as above. For 1 <i <n—1, we write
N[:(a,XI,...,X[,Z,X[,]), Qi:(‘ha--wa ) N' = (xlaxl+l7"'7xn717b)s Ql:
(Gis1s--->qn), ¢; = d(N:, Q) and ¢' = (N, Q") then we have

V2PN, Qla,b)) < 772(g;) + 772 (p) + 1729

where p is the unique polynom1al of degree 4 which is tangent to ¢; at x;_j, to
¢" at x; and such that f i p x)dx = q;(x;i — x;—1). (The existence and uniqueness
of such polynomial is easﬂy shown) Again, the estimate follows from the fact
that the function obtained on suitably glueing ¢;, p and ¢' is a preserving-area
smoothing for [N, Q], so that its variation is not smaller than that of ¢(N, Q).
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4. REGULARITY AND REGULARIZATION

As explained in the introduction, it is often desirable that the smoothing ¢ = ¢(s)
of a (strictly) positive step-wise function s = [N, Q] be not negative and this prop-
erty is not guaranteed by the spline transform, see the example in Figure 1 (close
to the right extremity). This may be interpreted in two different ways. We may
consider that the spline transform is not, at least in these cases, a suitable
smoothing procedure and may therefore look for other techniques. One might
for instance look for splines minimizing more involved kernels than the plain
f— fab (f’ (1))? dt used here, or one might try to use other types of approximants.
We refer to the references indicated in the introduction for more on these ap-
proaches. Here, we look at the eventual negativity of ¢(s), not as a defect of the
spline transform, but as an indicator that the definition of s is defective, that is,
that the subdivision N is not well adapted to the data Q. We provide an algo-
rithm which gives a plausible redistribution (refining the original one) of the data
v, 0.

Let us point out that, when s is obtained, for instance, from experimental
data or from a practical problem, the pertinence of the redistribution provided
by our algorithm must be analysed in light of the experiment which produced
the data.

4.1. Singularities

We define the three forms of negativity that a spline transform may exhibit, each
of them leading to a different kind of singularity which will be handled in a dif-
ferent way.

DEFINITION 5. A (strictly) positive step-wise function [N, Q] on [a, b] is said to
be regular or ¢-regular when its spline transform is positive (or null) on [a, b].
Non regular step-wise functions are singular.

We will distinguish three types of singularities. Let s = [N, Q] be a strictly pos-
itive step-wise function of length n and ¢ = ¢(N, Q) its spline transform.

(LS) s has a left singularity when ¢(a) < 0.

Thus, by continuity, there exists ¢ > 0 such that ¢ < 0 on [, a + ¢[. Since

fuxfl #(x) dx = q1 > 0, we necessarily have ¢ < a — x.
(RS) Likewise, s has a right singularity when ¢(b) < 0.

There exists ¢ > 0 such that ¢ < 0 on [b — ¢, b]. As above, we necessarily
have e < b — x,,_1.

(IS) s has an interior singularity when ¢ has a (strictly) negative relative minima
in |a, b|.

In fact, since, see Lemma 2, ¢ is monotone on the [a, x|| and on [x,_1, ],
such a minima can only appear in [xj, x,—]. Thus, in presence of an interior
singularity, on some |c, d[ with a < ¢ and d < b and, for some ¢ >0 ¢ >0
on [c — & c] U [d,d + ¢[. Such subinterval |c, d| cannot contain the whole of
an interval |x;, x;,1[.
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For instance, the step-wise function in Figure 1, which we will regularize
below (Fig. 2 (B)), has a right singularity and the step-wise function in Figure 2
(B) has one interior singularity and a right singularity. Typically, interior singu-
larities appear when small values of ¢; alternate with big ones.

LEMMA 8.

(1) All step-wise functions of length 1 are regular.

(2) Step-wise functions of length 2 may have only one (left or right) singularity.

(3) A step-wise function of length 3 cannot have both an interior singularity and a
left (or right) singularity.

PrOOF. The claim is obvious in the case of length 1. The second claim follows
from the fact that if s is of length two then ¢(s) is either increasing when ¢; < ¢»
or decreasing when ¢, < ¢;, see Lemma 5. Now, assume that s is of length 3 and
has an interior singularity. It has a strict local (negative) minimum, say at ¢ and,
according to Lemma 2, no other strict extrema in |a,b|[. Since ¢(c) <0, ¢ is
decreasing on ]a, ¢[ and increasing on |c, a[ and therefore possesses no left or right
singularity. O

4.2. Dealing with singularities

We will describe a regularization procedure that enables to obtain a positive
functions starting from singular step-wise functions. Let us first concentrate on
the simplest case of length two step-wise functions. Suppose that s = [(a, w,b),
(q1,42)] with ¢» < ¢; has a right singularity so that, writing ¢ = ¢(s) and using
(9), we have

= qi(b—w) 4+ q2(—w + 3b — 2a) b—w
#b) = 2(b—a) <O:>q2<ql3b—w—2a'

In particular, since, 3b —w — 2a > 3(b — w), we must have 3¢, < q;. We set
b(u)=w+u(b—w) and ¢»(u) =q>/u so that for uel0,1], g(b—w)=
¢2(u)(b(u) —w). The function f :]0,1] > u+— ¢(b(u)) satisfies f(1) =¢(b) <0
by hypothesis and a simple calculation shows that 3(b(u) — a)f(u) = q1(w — a)
> 0. Hence f vanishes for some u* between 3¢,/2¢; and 1 so that the step-wise
function

[(a,w,b(u™)), (1, q2(u))]

is regular (with rectangles of same area as [(a, w, b), (¢1, ¢2)]). This provides a reg-
ularization for [(a,w,b), (q1,42)].

More generally, the following lemma is useful to deal with right singularities.
Of course, a similar result holds for left singularities because

[(X0y5 -y Xn)s (q15- -5 qn)]



186 J.-P. CALVI AND L. TILATTI
has a left singularity if and only if

[(_xna ) _XO)v (q}'h ) q0)]

has a right singularity.

LEMMA 9. Let [N, Q] be a strictly positive step-wise function of length n on [a, b).
We denote by ¢ its spline transform. If

(1) P(xp—-1) >0, ¢(xp—2) >0,
(2) 2qn > 3qn_1 > 0,

then ¢ is increasing (or constant) on the interval [x,_1,b).
Since, @(x,-1) > 0, it follows that ¢ is positive on [x,_1, b].

PROOF. Let r= ¢(x, 1) and s = ¢'(x,_1). Recall that by Lemma 2, ¢ is mono-
tone on [x,_p,b|. It suffices to show that r < ¢,. Indeed, if this occurs, ¢ must be
increasing or constant as claimed for, otherwise, the area-preserving condition on
[X4—1, x,] could not be satisfied. We prove that the reverse inequality r > ¢, leads
to a contradiction. In fact, the inequality r > ¢, together with Lemma 2 implies
that ¢ is decreasing (not constant) on [x,_;, b], hence s < 0. This means that ¢ is
decreasing on some interval [c, x,_;] and, since ¢, < ¢, (see assumption 2), in
order to satisfy the area-preserving condition, it must be increasing on [x,_», c],
where x,_» < ¢ < x,_1. Hence ¢ is concave on [x,_2, x,—1]. On this interval, it is
of the form

d(x) =r+s(x—x4-1) +p(x — xn_l)z,
and
mln{q)(x) X € [xn—Zyxn—l]} - min{¢<xn—2)a ¢<xn—l)} - ¢(xn—2)7

the last equality because of the area-preserving condition on [x,_2,X,_1] and the
fact that ¢,_; < g,. In fact, the area-preserving condition on [x,_», x,_1] readily
yields an expression for y in terms of r and s,

3(xn—l - )C,,)S + 6(%1—1 - V)

y =
2(xn—l - xn—Z)2

This equation in turn gives
¢(xn—2) = (xn—l - xn—z)S/z + (3Qn—1 - 2r)-
Since s < 0, the positivity of ¢(x,_»), see assumption (1), implies 3¢, | —2r > 0

or 3¢g,_1 > 2r and since r > ¢, this gives 3¢,_; > 2¢, which is contrary to the
assumption. =]
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15

The step-wise
function s = [N, Q]
with N =
0,2,4,6,8,10,12)

A
(A) / and
4 Q=04,8,1,9,15,2)

and its spline
' —\ } ' ' ; | transform.
b 2 4 6 8 10 \12

©w©

=N

. M The function ¢(s)
8.9 in Figure 1, near
/ the right extremity,
\ together with a
‘ regularization
® 9,5= N,

¢(5),5=[N,Q]
. with N =
385 N (7.5,17.5,27.5,42.
\.\ ] 5,62.5,78.43), and
4042 62 8082 Q=

(3.5,7.7,5.4,8.9,2).

Figure 2. Examples of singular and regularized step-wise functions.

For instance, in Figure 1, we took ¢s = 1.6 and ¢4 = 8.9 so that the second
assumption is not satisfied and, in fact, ¢(N, Q) is not positive on the last interval
while it is positive on the previous one.

LeMMA 10. Let Ng = (a,x1,...,Xu—1, ) with x,_1 < < b,

]

and sp = [Ng, Qp|. We denote by ¢y the spline transform of sp. The function
B — ¢p(B) is continuous on |x,1,b].

Qﬁ = (%»---v‘]n—h%

PRrROOF. The functlon ¢p can be written as ¢ﬁ( X) = co + c1x + cax? +

Zj" 11 Cj—a(x — ]) where the (n + 2) coefficients ¢; are given by the conditions

(19) y(x0) = /¢/; ydx = qi(x; — xi1), 1<i<n-1,

B
Pp(x) dx = qu(b — xn),  ¢p(B) =

Xn—1
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To prove the claim, it suffices to show that C = (co,...,c,+1) depends continu-
ously on f where C is the solution of the linear system 4B = C corresponding
o (19). Observe that B does not depend on f. So, it suffices to show that the
coefficients of 4 (which is invertible for every S € |x,_1,5]) depend continuously
on f. Only the last two lines of 4 (the conditions being ordered as in (19)) depend

on f,

A= (ﬁ B xn—l) ﬂzfzxi,] .53*;3,1 (/ffxz)3*gxn71*3€1)3 . ([)’7);:—1)3 ,
0 C1 Zﬁ 2(ﬁ—X2) 2(ﬁ—xn,1)
and the continuity follows. O

4.3. A regularization algorithm

Let s = [N, Q] be a step-wise function of length n and ¢ = ¢(s). We present an
algorithm which, when ¢ is singular, returns a sum of non negative spline trans-
forms of certain natural re-arrangements of s, obtained by replacing the value of
s by zero on certain subintervals, while keeping the same area on each original
interval. Such function is itself area-preserving for the initial s but it is not, in gen-
eral, smooth (see however the comments below). Two different regularizations of
a singular step-wise function are drawn in Figure 4.

The general strategy is as follows.

In the case of an interior singularity, say on [x;j, xj;1], we separate [N, Q] in
two distinct step-wise functions [Ny, Q1] and [N, @], the first one on [a,a’] and
the second one on [a’, b] with x; < a’ < xj4; and

Nl:(aaxla‘”>)(?/7al)7 le(qlw"aqulaql)u and
N2 = <a/’xj+17'~'7xn—1)b)a Q2 = (q”aqj+la"'aq;1)a

where
q'(a" —x;) +q"(xp01 — ') = gi(xp01 — X))

The case where @’ is one of the entries of NV is easily treated, see Line 6 in Algo-
rithm 1. In case of multiple interior singularities, Algorithm 1 starts with the
deepest negative value. Another reasonable choice would be to cut where the neg-
ative area is maximal. We might also decide to cut at its centre the interval con-
taining the worst (in one of the above senses) singularity.

As for the values of ¢’ and ¢”, we may for instance divide the area of the rect-
angle of base [x;,x;_1] into the two new rectangles of base [x;,a’] and [a’, x; 1]
proportionally to the length of the new rectangles, that is ¢’ = ¢;;1 and ¢” = gj1.
This is the strategy implemented in Algorithm 1. Another one would be to allo-
cate half of the area independently from the length of the bases. In general, such
cutting transforms an interior singularity into a right singularity for [Ny, Q)] and
a left singularity for [N,, Q>]. It may happens, however, that there remains only
one left (or right) singularity after cutting.
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3

4
5
6

[<-IEN |

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Data: [N, Q]

Result: A regularization of the spline transform of [N, Q]

1 Initialization : S = {[N,Ql]}, test=#sing([N,Q]), choosee>0;
2 while test > 0 do

end

for s=[(s},...,sL),(s5,...,s2_)] €S do

n

Remove s from S;
if s has a interior singularity then

[ ¢]

Choose a among the interior singularity of ¢(s) with smallest
value;

if a isa pointin sy, say a= s}, then

s [(si,...,s}),(s%,...,slz._l)]; s [(s},...,s,ll),(s?,...,si_l)];

Adjoin s' and s to S.

nd

else
Select i such that a €]s}, s

[«

z+1[’

ql—sz (sl+1—sl)/(a sl) qg—s (sl+1—sl)/( Hl—a);

s .[(sl,..., i,a),(sl,...,si_l,ql)], s
[(a,s},....s0), (g2, 8%,..., %)

Adjoin s’ and s” to S.

end

test = test + #sing(s') + #sing(s") — #sing(s)

nd
Ise if s has a right singularity then

s'=s

repeat
1 2 1 1
sh=sp—esh—sl ), 8% =52 -(sh—sh Iy -5k D)

until s’ has no right smgularzly or has an interior singularity,
Adjoin s' to S;
test = test + #sing(s') — #sing(s)

end
elseif s has a left singularity then

s'=s;
repeat
s’}:sl+€(s2 ),slzs1 (sz—sl)/(sz—sl)
until s' has no left singularity or has an interior singularity;
Adjoin s’ to S;
test = test + #sing(s’) — #sing(s)

end

end

return RP([N, Q]) (x) = ¥ ses5p(s) - charfun(x, sl’slast)

Figure 3. Regularization algorithm

189
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Old N — New N;,N,  Old Q — New 01, 0

P: Proportional Nl = (x0,...,x;,d’), =(q1,---,9,9+1),
(a Xjtly - 7xn) (qj+17"'7anlaqn)
ON: Optimized (x 0y Xj,d), Q1 = (q17...7q_,~,ac’),
for Negativity sz( S Xy Xn) Q2:( ,...,qn l,qn) where o =
ogj+1 Z,H “and o = (1 — a)gj41 r’ 11 o

where o € }0 1] is chosen to ensure
negativity of both spline transforms at a’.

PC: Proportional ~ Nj = (xo,...,x;,m;), O =(q1,---,9),qj41)s

at Center No = (mj, Xj1,- -, Xn) 0> = (gj+15- - Gn-1,4n)
with m; = (.Xj + Xj+1)/2.

ov: Overlapping Nl = (X(], oo 7-xjaxj+1)5 Ql = (q17 oo 7‘]j7Qj+1/2)a
N2:(xj7Xj+]7-"7xn) Q2:(qj+1/27"°7ql’1717qn)

Table 1. Some cutting strategies

Table 1 summarizes a few natural cutting strategies. We assume as above that
a negative minima is reached at a’ € |x;,x;;1[. To deal with singularities at an
extremity, we use length reduction of the interval. For instance, in the case of a
right singularity at b = x,, starting from N = (xy,...,x,) and Q = (q1,-..,¢n—1,
qn), We set

(0 N'= (s =) and Q= (g1 ),

so that

Q) glo—xa) = [ N, 0)(x) dx = / TN, 0 ()

Xn—1 Xn—1
/
= qn(’xn —&— xn—l)'

Lemma 9 shows that a sufficient reduction will provide positiveness. However,
it does not rule out (though it seems to be unlikely) that the process of reduction
brings about a new interior singularity and the algorithm takes this point into
account. The algorithm uses a rude reduction step ¢. In practice, we took & as
0.5 percent of the length of the original interval. In an optimized algorithm, it is
advisable to adapt ¢ to the level of negativity encountered and (or) to refine a
rough positive value using a bisection algorithm (based on Lemma 10). In fact,
by suitably adapting the algorithm, when starting with a negative value, it pro-
duces a solution which is actually null at the (moving) extremity of the reduced
interval (the “first” available solution when performing a reduction). The exis-
tence of such exact value follows from the continuity of the function b — ¢,(b)
proved in Lemma 10. The cutting strategy ON, see Table 1, is intended for the
computation of such type of regularization.
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12— Spline transf.
(P) R&gularized spline transf.
8__
4__
0 | |
0 5 10 15 20
12— Spline transf.
(ON) R&gularized spline transf.
ol :
4__
0 | |
0 5 10 15 20

Figure 4. An example of spline and regularized spline transforms for s = [N, Q], N =
(0,2,4,6,8,10,12) and Q = (4,8,1,9,15,2).

The algorithm obviously terminates since ¢(s) has a finite number of negative
minima. Any regularization algorithm based on a cutting strategy (not necessar-
ily of one the type made explicit in Table 1 coupled with a length reduction pro-
cess will be called a cutting-reduction algorithm. Our algorithm (and any of its
variants) returns a sum of spline transforms of step-wise functions of smaller
lengths and disjoint supports. Because of the reduction process, when the func-
tion does not coincide with its regularization, it is (a priori) defined on a strict
subset X of [a,b]. We may extend it as 0 on [a,b]\X (as in done in Figure 4)
and denote by Z¢(s). Note that, in general, Z¢(s) is discontinuous at each junc-
tion point. Thus, we have a relation of the form

(22) RP(s)(x) = Z P(sk)(x) for x in the support of Z¢(s),

J=1

where the ¢(s;) have disjoint supports. For instance, in the case of the P regula-
rization in Figure 4 for s =[N, Q], N = (0,2,4,6,8,10,12) and Q = (4,8, 1,9,
15,2), up to computational errors, we have kK = 3 and

s1=[(1.2799,3,7,7.3421), (1.744,8,0.4569)],

5o = [(7.6438, 8,10, 14,15.339), (0.4034,7,12,1.6217)],

s3 = [(16.1714,17,23),(1,5)].
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Observe that the ON regularization in Figure 4 looks like a smooth function on
the whole of [a, b] but it is not even continuous. In general, our algorithm will not
provide a smooth regularization on [a, b]. The reason is that when both a left and
a right singularity are to be removed, there are treated separately. For instance,
when regularizing s in Figure 4, we cut s near 7, say at a’ and near 16, say at b’ so
that at the next step we need to regularize s’ = [N', Q'] with N' = (a’, 8,10, 14,5")
with a right singularity at 5’ and a left singularity at a’. Algorithm 1 will first deal
with " and provide a modification s” = [N, Q"] of s whose spline transform
may be taken to be 0 at the last point »” of N”, hence ¢(s”) = 0 and ¢'(s”) = 0
so that ¢(s”) is smoothly extended to 0 on [b”,b']. Next we need to treat the left
singularity at ¢’ and, this will change, even if very slightly, the value at b”, thus
breaking the smoothness previously obtained. Clearly, in order to preserve
smoothness, we should deal simultaneously with both singularities and this raises
the following question.

QUESTION 1. Can we always simultaneously remove both a left and a right sin-
gularity by performing (non identical) simultaneous left and right reductions?

Yet, ON regularization may be considered as an acceptable approximation
of a smooth regularization that may suffice in applications. In any case, in the
example above, the sum of the jumps at discontinuities is clearly smaller that
that provided by the P regularization. The various natural available strategies
lead to the following questions.

QUESTION 2. Is there a cutting-reduction algorithm that minimizes the sum of
the jumps at the discontinuities of Z¢(s) for a given s?

QUESTION 3. Is there a cutting-reduction algorithm that minimizes the sum of
the variation of the spline transforms forming %Z¢(s) for a given s?
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