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Partial Di¤erential Equations — Eigenvalue problem for fractional Kirchho¤
Laplacian, by J. Tyagi, communicated on June 15, 2017.

Abstract. — In this note, we discuss the isolatedness, simplicity and nodal estimate for the first

eigenvalue of fractional Laplacian of Kirchho¤ type. This work is motivated by the recent works on
the fractional eigenvalues.
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1. Introduction

In this note, we are interested to discuss the eigenvalue problem for the following
fractional Laplacian of Kirchho¤ type

M
�ZZ

R2n

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
ð�DÞsuðxÞ ¼ Lu in W;

u ¼ 0 in Rn=W;

8><
>:ð1:1Þ

where W is an open bounded subset of Rn with smooth boundary, n > 2s
ð0 < s < 1Þ and ð�DÞs stands for the fractional Laplacian. Let us assume that

(H) M : Rþ ! Rþ is a continuous function which satisfies

MðtÞbm0; Etb t0:

Let u : Rn ! R, the fractional Laplacian of u is defined as follows:

ð�DÞsuðxÞ ¼ Cn; sP:V :

Z
Rn

uðxÞ � uðyÞ
jx� yjnþ2s

dy ¼ Cn; s lim
e!0

Z
RnnBeðxÞ

uðxÞ � uðyÞ
jx� yjnþ2s

dy;

where

Cn; s ¼
�Z

Rn

1� cos z

jzjnþ2s
dz

��1

;

which is a normalization constant, see Section 3 [5].
One can also write the above singular integral as follows:



ð�DÞsuðxÞ ¼ �Cn; s

2

Z
Rn

uðxþ yÞ þ uðx� yÞ � 2uðxÞ
jyjnþ2s

dy;ð1:2Þ

Ex a Rn; u a SðRnÞ;

see [5]. When s < 1
2 and f a C0;aðRnÞ with a > 2s, or if f a C1;aðRnÞ, 1þ 2a >

2s, the above integral is well-defined.
Following [14], suppose X denotes the linear space of Lebesgue measurable

functions from Rn to R such that the restriction to W of any function g in X
belongs to L2ðWÞ and the map

ðx; yÞ :! gðxÞ � gðyÞ
jx� yj

n
2þs

a L2ðR2nnðCW� CWÞÞ;

where CW ¼ RnnW: Moreover,

X0 ¼ fg a X : g ¼ 0 a:e: in RnnWg:

Let Q ¼ R2nnðCWÞ � ðCWÞ: The space X is endowed with the norm defined as

kgkX ¼ kgkL2ðWÞ þ
�Z

Q

jgðxÞ � gðyÞj2

jx� yjnþ2s
dx dy

�1
2

:ð1:3Þ

One can see easily that k:kX is a norm on X : Using a sort of Poincaré-Sobolev
inequality for functions in X0 (see [14]), one can see that

kukX0
¼
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�1
2ð1:4Þ

is a norm on X0 and is equivalent to the norm defined in (1.3). Since v a X0, so
v ¼ 0 a.e. in RnnW and therefore the integral in (1.4) can be extended to all R2n:
It is easy to see that ðX0; k:kX0

Þ is a Hilbert space with the scalar product

3u; v4X0
:¼

ZZ
R2n

ðuðxÞ � uðyÞÞðvðxÞ � vðyÞÞ
jx� yjnþ2s

dx dy;

see [14] for the details.
One can rewrite (1.1) simply as follows:

Mðkuk2X0
Þð�DÞsuðxÞ ¼ Lu in W;

u ¼ 0 in Rn=W;

(
ð1:5Þ

where kuk2X0
¼

RR
R2n

juðxÞ�uðyÞj2

jx�yjnþ2s dx dy:

We say that L is an eigenvalue of (1.5) if there exists a nontrivial weak solu-
tion u a X0 to (1.5), i.e.,

Mðkuk2X0
Þ
Z
Rn

ð�DÞ
s
2u:ð�DÞ

s
2f dx ¼

Z
W

Luf dx; Ef a X0:ð1:6Þ
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When s ! 1�, then using the asymptotics of the constant Cn; s, the equation in
(1.1) becomes the elliptic equation of Kirchho¤ type

�M
�Z

W

j‘uj2 dx
�
Du ¼ Lu in W;ð1:7Þ

where W is a smooth domain, see Section 5 [5] for the complete details.
This is called an eigenvalue problem for Kirchho¤ equation because it is a

generalization of the well-known D’Alembert wave equation

rutt �
�P0

h
þ E

2L

Z L

0

juxj2 dx
�
uxx ¼ Lu;ð1:8Þ

which was first proposed by Kirchho¤ in [9] for free vibrations of elastic strings,
where L is the length of the string, h is the area of cross section, E is the Young
modulus of the material and P0 is the initial tension, L is a parameter which
denotes the eigenvalue of the problem. This work is inspired by the recent works
on the eigenvalue problem for fractional p-Laplace equation [8, 11], where the
authors investigate several interesting properties and asymptotic behavior of the
eigenvalue. For the linear fractional Laplace equation, the isolatedness, simplicity
and nodal estimate for the first eigenvalue has been established in a number of
references, see for instance, [14, 6]. For the simplicity, nodal estimate and other
qualitative properties of the first eigenvalue of fractional p-Laplace equation, we
refer to [8, 11]. For other related results to linear fractional Laplacian, we refer
to [7, 10, 16] and for improved Sobolev embeddings, profile decomposition and
related qualitative results for fractional Sobolev spaces, we refer to [12]. We refer
to [5] and references therein for an elementary introduction on this subject. Moti-
vated by the above research works, it is natural to ask whether one can obtain
similar results for the first eigenvalue of fractional Kirchho¤ Laplacian. In this
note, we answer this question. In fact, we show a relationship between the eigen-
values of linear fractional Laplacian and fractional Kirchho¤ Laplacian and
using this, we establish the isolatedness, simplicity and other related properties
of the first eigenvalue of fractional Kirchho¤ Laplacian. More precisely, we state
the main theorem, which we will prove in this paper.

Theorem 1.1. Let 2s < n < 4s, 0 < s < 1 and (H) hold. Then

(i) ðL1; u1Þ is the first eigenpair of (1.1), where

L1 ¼ Mðt2kfk2X0
Þl1; and u1 ¼ tf1; for some t > 0;

where ðl1; f1Þ is the first eigenpair of (1.9).
(ii) Any eigenfunction ~vv a X0 associated to a positive eigenvalue 0 < LAL1 of

(1.1) changes sign. Moreover, if N is a nodal domain of ~vv, then

jNjb
�m0

cl

�n
2s

;
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where c is some constant depending on n and j j denotes the Lebesgue measure
of the set.

(iii) Any eigenfunction corresponding to 0 < LAL1 has only a finite number of
nodal domains.

(iv) L1 is isolated.
(v) L1 is simple.

Remark 1.2. We remark that in the above theorem, we have assumed that
n < 4s: This is essentially needed to get the better regularity of the solution in
view of fractional Sobolev embeddings.

Remark 1.3. We remark that one can even consider the above questions for
a more general integro-di¤erential operator. More precisely, replacing the frac-
tional Laplacian in (1.1) with the integro-di¤erential operator given by

LKuðxÞ ¼ PV

Z
Rn

ðuðxþ yÞ þ uðx� yÞ � 2uðxÞÞKðyÞ dy; x a Rn;

where the symmetric function K is a Gagliardo-type kernel with measurable co-
e‰cients. We believe that Theorem 1.1 holds for an eigenvalue problem involving
the above type of operators. We consider this question in the next project and
refer to the recent works [1, 4] and the reference therein dealing with such frac-
tional operators.

Let l1 > 0 be the first eigenvalue of ð�DÞs in W and f1 > 0 be the correspond-
ing eigenfunction (first eigenfunction), i.e.,

ð�DÞsf1 ¼ l1f1 in W;

f1 > 0 in W;

f1 ¼ 0 in RnnW:

8<
:ð1:9Þ

The variational characterization of l1 is given by

l1 ¼ inf

Z
Rn

jð�DÞ
s
2vj2 dx : v a X0 and

Z
W

v2 dx ¼ 1

� �
:ð1:10Þ

Lemma 1.4. Let ðl1; f1Þ be the first eigenpair to (1.9). Then ðL1; u1Þ is the first
eigenpair of (1.1), where

L1 ¼ Mðt2kfk2X0
Þl1; and u1 ¼ tf1; for some t > 0:

Proof. Taking u1 ¼ tf1, t > 0 in (1.5) yields that L1 ¼ Mðt2kfk2X0
Þl1: This

completes the proof. r

We will use the following embedding theorem in next proposition.

198 j. tyagi



Theorem 1.5 ([5]). The following embeddings are continuous:

(1) HsðRnÞ ,! LqðRnÞ, 2a qa 2n
n�2s , if n > 2s,

(2) HsðRnÞ ,! LqðRnÞ, 2a qal, if n ¼ 2s,
(3) HsðRnÞ ,! C

j
bðRnÞ, if n < 2ðs� jÞ:

Moreover, for any R > 0 and any p a ½1; 2�ðsÞÞ the embedding HsðBRÞ ,!,!
LpðBRÞ is compact, where

C
j
bðR

nÞ ¼ fu a C jðRnÞ : Dku is bounded on Rn for jkja jg:

Proposition 1.6. Let 2s < n < 4s, 0 < s < 1 and (H) hold. Then any eigenfunc-
tion ~vv a X0 associated to a positive eigenvalue 0 < LAL1 of (1.1) changes sign.
Moreover, if N is a nodal domain of ~vv, then

jNjb
�m0

cl

�n
2s

;ð1:11Þ

where c is some constant depending on n and j j denotes the Lebesgue measure of
the set.

Proof. Let v be an eigenfunction associated with a positive eigenvalue 0 < lA
l1, of the eigenvalue problem

ð�DÞsu ¼ lu in W; u ¼ 0 in RnnW:ð1:12Þ

Then by Prop. 3.6 [6], v changes sign in W: Since ~vv a X0 is an eigenfunction asso-
ciated to the positive eigenvalue 0 < LAL1 of (1.1), so from Lemma 1.4, we
may assume that ~vv ¼ tv and L ¼ Mðt2kvk2X0

Þl for some t > 0: Since lA l1, so
using the fact that cf is also an eigenfunction of (1.12) associated with l1 for any
non-zero scalar c, one can see easily that LAL1, and ~vv also changes sign in W:

Now we prove the estimate (1.11). Assume that ~vv > 0 in N, the case ~vv < 0 can
be dealt similarly. Since 2s < n < 4s, 0 < s < 1, so using the similar arguments as
in [3, 13, 15], we have ~vv a CðRnÞBX0: Then ~vvjN a Hs

0ðNÞ and therefore the func-
tion h defined as

hðxÞ ¼ ~vvðxÞ; x a N;

0; x a RnnN

�

belongs to X0: Now using h as a test function in the weak formulation of (1.1), we
get

Mðk~vvk2X0
Þ
Z
Rn

ð�DÞ
s
2~vv:ð�DÞ

s
2h dx ¼ L

Z
W

~vv:h dx; Eh a X0:

This implies that
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Mðk~vvk2X0
Þ
Z
N

jð�DÞ
s
2~vvj2 dxð1:13Þ

¼ L

Z
N

~vv2 dx

a

�Z
N

~vv
2n

n�2s dx
�n�2s

n jNj
2s
n

¼ lk~vvk2
L

2n
n�2s

jNj
2s
n

a clk~vvk2H s
0
ðNÞjNj

2s
n

ðby Theorem 1:5; where c is an embedding constantÞ;

¼ cl
�Z

N

jð�DÞ
s
2~vvj2 dx

�
jNj

2s
n :

Since MðtÞbm0, Etb 0, so from the last inequality, it implies that

m0

Z
N

jð�DÞ
s
2~vvj2 dxa cl

�Z
N

jð�DÞ
s
2~vvj2 dx

�
jNj

2s
nð1:14Þ

which yields

jNjb
�m0

cl

�n
2s

:

This proves the estimate. r

Corollary 1.7. Let 2s < n < 4s, 0 < s < 1 and (H) hold. Then any eigenfunc-
tion corresponding to 0 < LAL1 has only a finite number of nodal domains.

Proof. Let u be an eigenfunction corresponding to L > 0: Let Nj be a compo-
nent of one of the sets fx a W : uðxÞ > 0g and fx a W : uðxÞ < 0g, then u a X0:
Now it follows from (1.11) that

jWjb
X
j

jNjjb
�m0

cl

�n
2s
X
j

1

so that the number of nodal domains is bounded by jWj
�
m0

cl

�� n
2s and this completes

the proof. r

Proposition 1.8. Let 2s < n < 4s, 0 < s < 1: Let (H) hold. Then L1 is isolated,
that is, there exists d > 0 such that there are no other eigenvalues of (1.1) in the
interval ðL1;L1 þ dÞ:

Proof. We will prove this proposition by the method of contradiction. Suppose
that there exists a sequence of eigenvalues Ln of (1.1) with 0 < Ln & L1: Let Un
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be a sequence of eigenfunctions associated with Ln, i.e,

MðkUnk2X0
Þð�DÞsUn ¼ LnUn in W;

Un ¼ 0 in RnnW:

(
ð1:15Þ

Since

0 < MðkUnk2X0
Þ
Z
Rn

jð�DÞ
s
2Unj2 dx ¼ Ln

Z
W

U 2
n dx;

we can define

Vn :¼
MðkUnk2X0

ÞUn�R
W U 2

n dx
�1
2

:

It is easy to see that Vn is bounded in X0: So there exists a subsequence (still, we
denote it by Vn) and V a X0 such that

Vn * V in X0:

Vn ! V in Lp; p a ½1; 2�ðsÞÞ:
VnðxÞ ! VðxÞ a:e: x a W:

ð1:16Þ

It is easy to see that
R
W V 2 dx ¼ 1 andZ

Rn

jð�DÞ
s
2V j2 dxa lim inf

n!l

Z
Rn

jð�DÞ
s
2Vnj2 dx ¼ L1

and therefore L1 ¼
R
Rn jð�DÞ

s
2V j2 dx: This implies that V is an eigenfunction

associated with L1: Now one can see that jV j is also an eigenfunction associated
with L1 and by strong maximum principle [2], jV j > 0 in W: This implies that ei-
ther V > 0 or V < 0: Let us take V > 0 (the proof in the case V < 0 is dealt sim-
ilarly). Let W�

n ¼ fx a W : VnðxÞ < 0g: Now by the Egorov’s theorem, Vn ! v
uniformly on W with the exception of the set of arbitrarily small measure. This
implies that

jW�
n j ! 0 as n ! l;ð1:17Þ

but this contradicts to the estimate (1.11) for W�
n and hence the proof is

completed. r

It has been proved that l1 is simple in the sense that the eigenfunctions asso-
ciated to it are merely a constant multiple of each other, see for instance [14]. We
will be assuming that l1 is simple and prove the simplicity of the first eigenvalue
of L1 of (1.1) in next proposition.

Proposition 1.9. L1 is simple.
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Proof. Since l1 is simple so let w1 and w2 a X0 be eigenfunctions associated
with l1: Then by the simplicity of l1, w1 ¼ cw2, for some non zero scalar c: Let
u1 ¼ t1w1 and u2 ¼ t2w2 for some t1 > 0, t2 > 0: Now from Lemma 1.4, we have

L1 ¼ Mðt21kw1k2X0
Þl1 ¼ Mðt22kw2k2X0

Þl1

and u1 and u2 are eigenfunctions of (1.1) corresponding to L1, i.e.,

Mðku1k2X0
Þð�DÞsu1 ¼ L1u1 and Mðku2k2X0

Þð�DÞsu2 ¼ L1u2:

Now we have

u1 ¼ t1w1 ¼ t1cw2 ¼ t1c
u2

t2
¼ t1c

t2
u2 ¼ ~ccu2;

which proves the claim. r

2. Proof of Theorem 1.1

Proof. The proof follows from Lemma 1.4, Prop. 1.6, Cor. 1.7, Prop. 1.8 and
Prop. 1.9. r

Acknowledgments. Author thanks the referee for useful comments.
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