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Probability Theory — Stochastic heat equations with values in a Riemannian
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Abstract. — The main result of this note is the existence of martingale solutions to the stochastic

heat equation (SHE) in a Riemannian manifold by using suitable Dirichlet forms on the correspond-
ing path/loop space. Moreover, we present some characterizations of the lower bound of the Ricci

curvature by functional inequalities of various associated Dirichlet forms.
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1. Introduction

This work is motivated by Tadahisa Funaki’s pioneering work [8] for regular
noise and Martin Hairer’s recent construction [12] with singular noise of a natu-
ral evolution on the loop space over a Riemannian manifold ðM; gÞ. Both con-
sider the formal Langevin dynamics associated to the energy

EðuÞ ¼ 1

2

Z
S 1

guðxÞðqxuðxÞ; qxuðxÞÞ dx;

for smooth functions u : S1 ! M. One would like to build a Markov process
u taking values in loops over M with invariant (even symmetrizing) measure for-
mally given by expð�2EðuÞÞDu. A natural way of interpreting expð�2EðuÞÞDu is
to think of it as the Brownian bridge measure on M. See [1] for proofs that nat-
ural approximations of expð�2EðuÞÞDu do indeed converge to Wiener measure
on Cð½0; 1�;MÞ.

Processes with invariant (even symmetrizing) measure given by Wiener mea-
sure on Cð½0; 1�;MÞ were first constructed in the nineties by using the Dirichlet
form given by the Malliavin gradient on path and loop spaces over Riemannian
manifolds, see [7, 2]. In this case, we call the associated Dirichlet form O-U
Dirichlet form. For an alternative approach, not based on Dirichlet forms, see
[15]. After that there were several follow-up papers concentrating on non-
compact Riemannian manifold, see [5, 19]. In particular, when M ¼ Rd these
processes correspond to the Ornstein-Uhlenbeck processes from Malliavin cal-
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culus. When M ¼ Rd the stochastic heat equation also admits Wiener measure as
the invariant measure. To construct the solution to the stochastic heat equation
on Riemannian manifold, in [12] Martin Hairer wrote the equation in local coor-
dinates informally as:

_uua ¼ q2xu
a þ Ga

bgðuÞqxubqxu
g þ sa

i ðuÞxi;ð1:1Þ

where Einstein’s convention of summation over repeated indices is applied and
Ga
bg are the Christo¤el symbols for the Levi–Civita connection of ðM; gÞ, sa

i

are the local coordinates for the vector fields si on M satisfying guðh; hÞ ¼P
i guðh; siÞguðh; siÞ for h; h a TuM, and xi is a collection of independent space-

time white noises. Equation (1.1) may be considered as some kind of a multi-
component version of the KPZ equation. By regularity structure theory, recently
developed in [11, 3, 4], local well-posedness of (1.1) has been obtained in [12].

In this note, we construct a new Dirichlet form (L2-Dirichlet form) such
that the associated Markov process solves the stochastic heat equation (SHE)
with values in a Riemannian manifold. Moreover, we obtain some new charac-
terizations of the lower bound of the Ricci curvature in terms of L2-gradient
and functional inequalities associated to the above Dirichlet form. In addition,
we also prove the logarithmic Sobolev inequality holds on the path space over
a Riemannian manifold with lower bounded Ricci curvature. As a consequence,
for the process we have L2-exponential ergodicity, recurrent irreducibility and the
strong law of large numbers.

In Sections 2 and 3 below, we present and discuss these results in detail and
explain the framework. We also sketch some proofs. The details of the proofs
are contained in [16].

2. A diffusion process on path space

Throughout this article, suppose that M is a complete and stochastically com-
plete Riemannian manifold with dimension d, and r be the Riemannian distance
on M. Fix o a M and T > 0. The based path space WoðMÞ ¼ fg a Cð½0; 1�;MÞ :
gð0Þ ¼ og, which is a Polish space under the uniform distance

dlðg; sÞ :¼ sup
t A ½0;1�

rðgðtÞ; sðtÞÞ; g; s a WoðMÞ:

In order to construct Dirichlet forms associated to stochastic heat equations
on Riemannian path space, we need to introduce the following L1-distance,
which is a smaller distance than the above uniform distance dl on WoðMÞ:

~ddðg; hÞ :¼
Z 1

0

rðgs; hsÞ ds; g; h a WoðMÞ:

Let E denote the closure of WoðMÞ in fh : ½0; 1� ! M;
R 1

0 rðo; hsÞ ds < lg with
respect to the distance ~dd. Then E is a Polish space.
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Let OðMÞ be the orthonormal frame bundle over M, and let p : OðMÞ ! M
be the canonical projection. Choosing a standard othornormal basis fHigd

i¼1 of
horizontal vector fields on OðMÞ, and consider the following SDE,

dUt ¼
Pd

i¼1 HiðUtÞ � dBi
t ; tb 0

U0 ¼ uo;

�
ð2:1Þ

where uo is a fixed orthonormal basis of ToM and B1
t ; . . . ;B

d
t are independent

Brownian motions on R. Then xt :¼ pðUtÞ, tb 0 is the Brownian motion on M
with initial point o, and U� is the (stochastic) horizontal lift along x�. Let mo be the
distribution of x½0;1�, then mo is a probability measure on WoðMÞ.

Let FC1
b be the space of bounded Lipschitz continuous cylinder functions on

WoðMÞ; i.e. for every F a FC1
b , there exist some mb 1, gi a LipðMÞ, m a N,

f a C1
b ðRmÞ such that

FðgÞ ¼ f
�Z 1

0

g1ðs; gsÞ ds;
Z 1

0

g2ðs; gsÞ ds; . . . ;
Z 1

0

gmðs; gsÞ ds
�
;ð2:2Þ

g a WoðMÞ;

where

LipðMÞ :¼ fg : ½0; 1� �M ! R; jgðs; hsÞ � gðs; gsÞjaCrðhs; gsÞ;
s a ½0; 1�; h; g a Eg:

For any F a FC1
b with (2.2) form and h a H :¼ L2ð½0; 1�;RdÞ, the directional

derivature of F with respect to h is given by

DhFðgÞ ¼
Xm
j¼1

q̂qj f ðgÞ
Z 1

0

3U�1
s ðgÞ‘gjðs; gsÞ; hs4Rd ds; g a WoðMÞ;

where

q̂qj f ðgÞ :¼ qj f
�Z 1

0

g1ðs; gsÞ ds;
Z 1

0

g2ðs; gsÞ ds; . . . ;
Z 1

0

gmðs; gsÞ ds
�
;

and for g a EnWoðMÞ we define DhF ðgÞ ¼ 0. By Riesz’s representation theorem,
there exists a gradient operator DF ðgÞ a H such that 3DFðgÞ; h4H ¼ DhFðgÞ,
g a E, h a H. In particular, for g a WoðMÞ, DFðgÞ ¼

Pm
j¼1 q̂qj f ðgÞU�1

s ðgÞ �
‘gjðs; gsÞ: We call DF the L2-gradient of F on path space. Denote by H the
Cameron-Martin space:

H :¼ h a C1ð½0; 1�;RdÞ j hð0Þ ¼ 0; khk2H :¼
Z 1

0

kh 0ðsÞk2 ds < l

� �
:
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Taking fekg � H such that it is an orthonormal basis in H, consider the following
symmetric quadratic form

EðF ;GÞ :¼ 1

2

Z
E

3DF ;DG4H dmo ¼
1

2

Xl
k¼1

Z
E

DekFDekG dmo; F ;G a FC1
b :

Theorem 2.1. The quadratic form ðE;FC1
b Þ is closable and its closure ðE;DðEÞÞ

is a quasi-regular Dirichlet form on L2ðE; moÞ ¼ L2ðWoðMÞ; moÞ.

Sketch of the proof. For the compact Riemannian manifold, we can derive
the closability of ðE;FC1

b Þ by the integration by parts formula in [7] along each
ek. By a localization technique, the integration by parts formula in [7] also can
be extended to the general Riemannian manifolds, which implies the closability
in the general case. The quasi-regularity of the Dirichlet form follows essentially
by the same argument as in [13]. r

By using the theory of Dirichlet forms (refer to [13]), we obtain:

Theorem 2.2. There exists a conservative (Markov) di¤usion process M ¼
ðW;F;Mt; ðX ðtÞÞtb0; ðPzÞz AEÞ on E properly associated with ðE;DðEÞÞ, i.e. for
u a L2ðE; moÞBBbðEÞ, the transition semigroup PtuðzÞ :¼ Ez½uðX ðtÞÞ� is a E-
quasi-continuous version of Ttu for all t > 0, where Tt is the semigroup associated
with ðE;DðEÞÞ.

Here for the notion of E-quasi-continuity we refer to [13, Chapter III, Defini-
tion 3.2]. By Fukushima’s decomposition we have

Theorem 2.3. There exists a properly E-exceptional set S � E, i.e. moðSÞ ¼ 0
and Pz½X ðtÞ a EnS; Etb 0� ¼ 1 for z a EnS, such that Ez a EnS under Pz, the
sample paths of the associated process M ¼ ðW;F;Mt; ðXðtÞÞtb0; ðPzÞz AEÞ on E
satisfy the following: for u a DðEÞ

uðXtÞ � uðX0Þ ¼ Mu
t þNu

t Pz � a:s:;ð2:3Þ

where Mu is a martingale with quadratic variation process given by
R t

0 jDuðXsÞj2H ds
and Nu is a zero quadratic variation process. In particular, for u a DðLÞ, N u

t ¼R t

0 LuðXsÞ ds, where L is the generator of ðE;DðEÞÞ.

Remark 2.4. (a) If we choose uðgÞ ¼
R r2
r1
uaðgsÞ ds a FC1

b , with local coordi-

nates ua on M, then the quadratic variation process for Mu is the same as
that for the martingale part in (1.1).

(b) Theorems 2.2–2.3 still hold if the path space is replaced by the loop space
(or the free path and free loop cases) and Wiener measure is replaced by the
associated measure under some suitable conditions.
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3. Properties of SHE

In this section, we will study properties of Xt, tb 0, constructed in Section 2.
First we present the logarithmic Sobolev inequality for the damped gradient ~DDF
assuming M is stochastically complete, which implies the logarithmic Sobolev
inequality for the Dirichlet form considered in Section 2.

For any F a FC1
b , we define the damped gradient ~DDF of F by

~DDF ðtÞ ¼ M�1
t

Z 1

t

MsðDFðsÞÞ ds;

where Mt is the solution of the equation

d

dt
Mt þ

1

2
Mt RicUt

¼ 0; M0 ¼ I :

Suppose that Ricb�K for K a R. Define the quadratic form corresponding to
~DDF by

~EEðF ;GÞ ¼ 1

2

Z
E

3 ~DDF ; ~DDG4H dmo; F ;G a FC1
b :

Theorem 3.1 [Log-Sobolev inequality]. Suppose that Ricb�K for K a R.
The log-Sobolev inequality holds for ð ~EE;Dð ~EEÞÞ, i.e.,

moðF 2 logF 2Þa 2 ~EEðF ;FÞ; F a FC1
b ; moðF 2Þ ¼ 1:

In particular, we have

moðF 2 logF 2Þa 2CðKÞEðF ;FÞ; F a FC1
b ; moðF 2Þ ¼ 1

where CðKÞ ¼ eK�1�K
K 2 bC0ðKÞ with

C0ðKÞ ¼
4
K 2 ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e

K
2 � eK

p
Þ; if K < 0;

2
K 2 ðeK � 2e

K
2 þ 1Þ; if K > 0:

8<
:

Remark 3.2. (i) In fact, Theorem 3.1 had first been proved in [10]. Compared
to the results in there, our constant CðKÞ is smaller. By comparing the clas-
sical O-U Dirichlet form and the L2-Dirichlet form, we note that the the LSI
associated to the two Dirichlet forms are essentially di¤erent, the former
requires upper and lower bounds of the Ricci curvature of M, and the latter
only needs a lower bound for the Ricci curvature.

(ii) According to [17], the log-Sobolev inequality implies hypercontractivity of
the associated semigroup Pt, in particular, the L2-exponential ergodicity of
the process: kPt f �

R
f dmok

2
L2 a e�t=CðKÞkFk2L2 :

(iii) The log-Sobolev inequality also implies the irreducibility of the Dirichlet
form ðE;DðEÞÞ. It is obvious that the Dirichlet form ðE;DðEÞÞ is recurrent.
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Combining these two results, by [FOT94, Theorem 4.7.1], for every nearly
Borel non-exceptional set B,

PxðsB � yn < l; Enb 0Þ ¼ 1; for q:e: x a X :

Here sB ¼ infft > 0 : Xt a Bg, y is the shift operator for the Markov process
X , and for the definition of nearly Borel non-exceptional set we refer to
[FOT94]. Moreover by [FOT94, Theorem 4.7.3] we obtain the following
strong law of large numbers: for f a L1ðE; moÞ

lim
t!l

1

t

Z t

0

f ðXsÞ ds ¼
Z

f dmo; Px � a:s:;

for q.e. x a E.

Sketch of the proof of Theorem 3.1. The proof follows from the follow-
ing martingale representation: for F a L2ðmoÞ,

F ¼ EðF Þ þ
Z 1

0

E M�1
s

Z 1

s

MtðDF ðtÞÞ dt
����Fs

� �
; dWs

	 

;

and some delicate estimates. Here W is the anti-development of g and fFsg is the
filtration generated by W . r

Upper and lower bounds of the Ricci curvature on a Riemannian manifold
were well characterized by the di¤usion process associated to the O-U Dirichlet
form given by the Malliavin gradient in [14]. If the O-U Dirichlet form is replaced
by our L2-Dirichlet form, then we can only obtain the following characterizations
for the lower bound of the Ricci curvature. This further indicates that these two
processes have essential di¤erences.

In fact, the results in Section 2 and Theorem 3.1 also hold when we change 1
to any T > 0. To state our results, let us first introduce some notations: For any
point y a M and T > 0, let xy; ½0;T � be the Brownian motion starting from y a M
up to time T , and mT ;y be the distribution of Brownian motion xy; ½0;T � on
WT

y ðMÞ :¼ fg a Cð½0;T �;MÞ j gð0Þ ¼ yg. For any nb 1 and G a FCT
b with

FCT
b defined as in (2.2) with 1 replaced by T , define

E K
T ;n;yðG;GÞ ¼ ð1þ nÞC1ðKÞ

Z
W T

y ðMÞ

Z T�1
n

0

jDGðgÞðsÞj2Rd dsdmT ;yðgÞ

þ
�1
n
þ 1

n2

�
C2;nðKÞ

Z
W T

y ðMÞ

Z T

T�1
n

jDGðgÞðsÞj2Rd ds dmT ;yðgÞ:

where

C1ðKÞ ¼ 1

K 2
ðTKeKT � eKT þ 1Þ

� �
4

T 2

2
; C2;nðKÞ ¼ eKT � 1

K
ð14e�

K
n Þ:
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Let pt be the Markov semigroup of the process xy given by pt f ðyÞ ¼ E½ f ðxt;yÞ�,
y a M, f a BbðMÞ, tb 0. Denote by Cl

0 ðMÞ the set of all smooth functions
with compact support on M.

Theorem 3.3. For K a R, the following statements are equivalent:

(1) Ricb�K.
(2) For every f a Cl

0 ðMÞ, T > 0 and y a M, we have

Z T

0

‘ps f ðyÞ ds
����

����a
Z T

0

e
Ks
2 psj‘f jðyÞ ds:

(3) For every y a M, T > 0, the following log-Sobolev inequality holds for every
n a N:

mT ;yðF 2 logF 2Þa 2EK
T ;n;yðF ;FÞ; F a FCT

b ; mT ;yðF 2Þ ¼ 1:

ð4Þ For every y a M, T > 0, the following Poincaré-inequality holds for every
n a N:

mT ;yðF 2ÞaEK
T ;n;yðF ;FÞ; F a FCT

b ; mT ;yðF Þ ¼ 0:

Sketch of the proof. 1) ) 2) follows from the gradient formula. Con-
versely, taking FðgÞ :¼

R T

0 f ðgsÞ ds for some function f a C1
0 ðMÞ with

f a Cl
0 ðMÞ; j‘f jðyÞ ¼ 1; Hessf ðyÞ ¼ 0;ð3:1Þ

and applying F into 2), 1) can be derived from the following formula in [18]

1

2
Ricð‘f ;‘ f ÞðyÞ ¼ lim

T#0

pT j‘f jðyÞ � j‘pT f jðyÞ
T

:

1) ) 3) follows similarly as in the proof of Theorem 3.1.
3) ) 4) is standard.
4) ) 1): For each kb 1, take FðgÞ ¼ k

R T

T�1=k f ðgsÞ ds for some f as (3.1).
Then using this formula

1

2
Ricð‘f ;‘ f ÞðyÞ ¼ lim

T#0

1

T

�pT f 2ðyÞ � ðpT f Þ2ðyÞ
2T

� j‘pT f ðyÞj2
�
;

it is not di‰cult to obtain 1). r
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