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Abstract. — We present the recent result in [3] concerning the existence of Cantor families of

small amplitude, linearly stable, time quasi-periodic standing water wave solutions – i.e. periodic
and even in the space variable x – of a bi-dimensional ocean with finite depth under the action of

pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptoti-
cally full measure.
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1. Introduction

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect,
incompressible, inviscid, irrotational fluid under the action of gravity, filling an
ocean with finite depth h and with space periodic boundary conditions, namely
the fluid occupies the region

Dh :¼ fðx; yÞ a T� R : �h < y < hðt; xÞg; T :¼ Tx :¼ R=2pZ:

In this note we present the result and the main ideas of [3] concerning the exis-
tence and the linear stability of small amplitude quasi-periodic in time solutions
of the pure gravity water waves system

qtFþ 1
2 j‘Fj2 þ gh ¼ 0 at y ¼ hðxÞ

DF ¼ 0 in Dh

qyF ¼ 0 at y ¼ �h

qth ¼ qyF� qxh � qxF at y ¼ hðxÞ

8>>><
>>>:

ð1:1Þ

where g > 0 is the acceleration of gravity. The unknowns of the problem are the
free surface y ¼ hðxÞ and the velocity potential F : Dh ! R, i.e. the irrotational
velocity field v ¼ ‘x;yF of the fluid. The first equation in (1.1) is the Bernoulli
condition stating the continuity of the pressure at the free surface. The last equa-

1The purpose of this paper is to announce and present results which are to appear (see reference
[3] in the paper).



tion in (1.1) expresses the fact that the fluid particles on the free surface always
remain part of it. With no loss of generality we can suppose that the gravity
g ¼ 1.

Following Zakharov [16] and Craig–Sulem [10], the evolution problem (1.1)
may be written as an infinite-dimensional Hamiltonian system in the unknowns
ðhðxÞ;cðxÞÞ where cðt; xÞ ¼ Fðt; x; hðt; xÞÞ is, at each instant t, the trace at the
free boundary of the velocity potential. Given the shape hðt; xÞ of the domain
top boundary and the Dirichlet value cðt; xÞ of the velocity potential at the top
boundary, there is a unique solution Fðt; x; y; hÞ of the elliptic problem

DF ¼ 0 in f�h < y < hðt; xÞg
qyF ¼ 0 on y ¼ �h

F ¼ c on fy ¼ hðt; xÞg:

8<
:ð1:2Þ

As proved in [10], system (1.1) is then equivalent to the Craig–Sulem–Zakharov
system

qth ¼ GðhÞc

qtc ¼ �h� c2
x

2
þ 1

2ð1þ h2xÞ
ðGðhÞcþ hxcxÞ

2

8><
>:ð1:3Þ

where GðhÞ is the Dirichlet–Neumann operator defined as

GðhÞc :¼ fFy � hxFxgjy¼hðt;xÞ

(we denote by hx the space derivative qxh). The operator GðhÞ is linear in c, self-
adjoint with respect to the L2 scalar product and positive-semidefinite, and its
kernel contains only the constant functions. Moreover the Dirichlet–Neumann
operator is a pseudo-di¤erential operator with principal symbol D tanhðhDÞ, with
the property

GðhÞ �D tanhðhDÞ a OPS�l

when hðxÞ a Cl.
Equations (1.3) are the Hamiltonian system (see [16], [10])

qtu ¼ J‘uHðuÞ; u :¼ h

c

� �
; J :¼ 0 Id

�Id 0

� �
;ð1:4Þ

where ‘u denotes the L
2-gradient, and the Hamiltonian

Hðh;cÞ :¼ 1

2

Z
T

cGðhÞc dxþ 1

2

Z
T

h2 dxð1:5Þ

is the sum of the kinetic and potential energies expressed in terms of the variables
ðh;cÞ. The Dirichlet–Neumann operator GðhÞ and the Hamiltonian Hðh;cÞ
depend on h, but, for simplicity, we omit to denote such a dependence.
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The phase space of (1.3) is

ðh;cÞ a H 1
0 ðTÞ � _HH 1ðTÞ where _HH 1ðTÞ :¼ H 1ðTÞ=P

is the homogenous space obtained by the equivalence relation c1ðxÞPc2ðxÞ if
and only if c1ðxÞ � c2ðxÞ ¼ c is a constant. For simplicity of notation we denote
the equivalence class ½c� ¼ c. Note that the second equation in (1.3) is in _HH 1ðTÞ,
as it is natural because only the gradient of the velocity potential has a physical
meaning. Since the quotient map induces an isometry between _HH 1ðTÞ and H 1

0 ðTÞ
we shall often identify c as a function with zero average.

The water waves system (1.3) exhibits several symmetries. First of all, the
mass

R
T
h dx is a first integral of (1.3). In addition, the subspace of functions

that are even in x,

hðxÞ ¼ hð�xÞ; cðxÞ ¼ cð�xÞ;ð1:6Þ

is invariant under (1.3). In this case also the velocity potential Fðx; yÞ is even
and 2p-periodic in x and so the x-component of the velocity field v ¼ ðFx;FyÞ
vanishes at x ¼ kp, for all k a Z. Hence there is no flow of fluid through the lines
x ¼ kp, k a Z, and a solution of (1.3) satisfying (1.6) describes the motion of a
liquid confined between two walls.

Another important symmetry of the water waves system is reversibility, i.e.

H � r ¼ H; Hðh;cÞ ¼ Hðh;�cÞ; r : ðh;cÞ 7! ðh;�cÞ:ð1:7Þ

As a consequence it is natural to look for solutions of (1.3) satisfying

uð�tÞ ¼ ruðtÞ; i:e: hð�t; xÞ ¼ hðt; xÞ;ð1:8Þ
cð�t; xÞ ¼ �cðt; xÞ; Et; x a R;

namely h is even in time and c is odd in time. Solutions of the water waves equa-
tions (1.3) satisfying (1.6) and (1.8) are called gravity standing water waves.

The existence of standing water waves is a small divisor problem, which is
particularly di‰cult because (1.3) is a fully nonlinear system of PDEs. Exis-
tence of small amplitude time-periodic gravity standing wave solutions for bi-
dimensional fluids has been first proved by Plotinkov–Toland [14] in finite depth
and by Iooss–Plotnikov–Toland [12] in infinite depth. More recently the exis-
tence of time periodic gravity-capillary standing wave solutions has been proved
by Alazard–Baldi [1]. Next, both the existence and the linear stability of time
quasi-periodic gravity-capillary standing wave solutions have been proved by
Berti–Montalto [9], see also the expository paper [8].

The goal of this Note is to present the new result in [3] concerning the exis-
tence of time quasi-periodic, linearly stable, standing wave solutions of (1.3), i.e.
of a space periodic bi-dimensional fluid with finite depth under the action of pure
gravity (with zero surface tension).

The dynamics of the pure gravity and gravity-capillary water waves equations
is very di¤erent, since in the first case the linear frequencies grow at infinity as

217kam for gravity water waves in finite depth



P
ffiffi
j

p
, see (1.12), while in the presence of surface tension they grow asPj3=2. The

sub/super linear growth of the dispersion relation at high frequencies induces
quite a relevant di¤erence for the development of KAM theory. As is well known,
the abstract infinite-dimensional KAM theorems available in literature, e.g. [13],
require that the eigenvalues of the linear constant coe‰cient di¤erential operator
grow as j d , db 1. The reason is that, in presence of a sublinear growth of the
linear frequencies, one may impose only very weak Melnikov non-resonance
conditions, see e.g. (2.10), which produce strong losses of derivatives along the
iterative KAM scheme. Such a di‰culty is overcome in [3] by a regularization
procedure performed on the linearized PDE at each approximate quasi-periodic
solution. This a very general idea, which can be applied in a broad class of situa-
tions, and which we shall explain in Section 2.3.

1.1. Main result

We look for small amplitude solutions of (1.3). Of main importance is therefore
the dynamics of the system obtained linearizing (1.3) at the equilibrium ðh;cÞ ¼
ð0; 0Þ, namely

qth ¼ Gð0Þc
qtc ¼ �h

�
ð1:9Þ

where Gð0Þ ¼ D tanhðhDÞ is the Dirichlet–Neumann operator at the flat surface
h ¼ 0. In the compact Hamiltonian form as in (1.4), system (1.9) reads

qtu ¼ JWu; W :¼ 1 0

0 Gð0Þ

� �
:ð1:10Þ

The standing waves solutions of the linear system (1.9) are

hðt; xÞ ¼
X
jb1

aj cosðojtÞ cosð jxÞ; cðt; xÞ ¼ �
X
jb1

ajo
�1
j sinðoj tÞ cosð jxÞ;ð1:11Þ

with linear frequencies of oscillation

oj :¼ ojðhÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
; jb 1:ð1:12Þ

Note that, since j 7! j tanhðhjÞ is monotone increasing, all the linear frequencies
are simple.

Fix an arbitrary finite subset Sþ � Nþ :¼ f1; 2; . . .g (tangential sites) and
consider the solutions of the linear system (1.9)

hðt; xÞ ¼
X
j ASþ

ffiffiffiffi
xj

q
cosðojtÞ cosð jxÞ;

cðt; xÞ ¼ �
X
j ASþ

ffiffiffiffi
xj

q
o�1

j sinðojtÞ cosð jxÞ; xj > 0;

ð1:13Þ
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which are Fourier supported on Sþ. Denote by n :¼ jSþj the cardinality of Sþ.
We look for quasi-periodic solutions uð ~ootÞ ¼ ðh;cÞð ~ootÞ of (1.3), with frequency
~oo a Rn (to be determined), close to the solutions (1.13) of (1.9), in the Sobolev
spaces of functions HsðTnþ1;R2Þ :¼ fu ¼ ðh;cÞ : h;c a Hsg where

Hs :¼ HsðTnþ1;RÞ

¼ f ¼
X

ðl; jÞ AZ nþ1

flje
iðl�jþjxÞ : k f k2s :¼

X
ðl; jÞ AZ nþ1

j fljj23l; j42s < l

8<
:

9=
;

and 3l; j4 :¼ maxf1; jlj; j jjg. For sb s0 :¼ nþ1
2

� �
þ 1 a N, one has HsðTnþ1;RÞ

� LlðTnþ1;RÞ, and HsðTnþ1;RÞ is an algebra.

Theorem 1.1 (KAM for gravity water waves in finite depth, [3]). For every

choice of the tangential sites Sþ � Nnf0g, jSþj < l, there exist s >
jSþjþ1

2 ,

e0 a ð0; 1Þ such that for every jxja e20 , x :¼ ðxjÞj ASþ , xj > 0 for all j a Sþ, there
exists a Cantor-like set G � ½h1; h2� with asymptotically full measure as x ! 0,
i.e.

lim
x!0

jGj ¼ h2 � h1;

such that, for any h a G, the gravity water waves system (1.3) has a time quasi-
periodic solution uð ~oot; xÞ ¼ ðhð ~oot; xÞ;cð ~oot; xÞÞ, with Sobolev regularity ðh;cÞ a
HsðTn � T;R2Þ, of the form

hðt; xÞ ¼
X
j ASþ

ffiffiffiffi
xj

q
cosð ~oojtÞ cosð jxÞ þ r1ð ~oot; xÞ;

cðt; xÞ ¼ �
X
j ASþ

ffiffiffiffi
xj

q
o�1

j sinð ~oojtÞ cosð jxÞ þ r2ð ~oot; xÞ
ð1:14Þ

with a Diophantine frequency vector ~oo :¼ ð ~oojÞj ASþ a Rn satisfying ~ooj ! ojðhÞ,
j a Sþ, as x ! 0, and the functions r1ðj; xÞ, r2ðj; xÞ are oð

ffiffiffiffiffi
jxj

p
Þ-small in

H sðTn � T;RÞ, i.e. kriks=
ffiffiffiffiffi
jxj

p
! 0 as jxj ! 0 for i ¼ 1; 2. The solution ðh;cÞ is

even in x, h is even in t and c is odd in t. In addition these quasi-periodic solutions
are linearly stable.

This is the first result concerning time quasi-periodic solutions for the pure-
gravity water waves equations. We remark that no global in time existence results
concerning the initial value problem of the water waves equations (1.3) under
periodic boundary conditions are known so far. For the local existence theory
we refer to Alazard–Burq–Zuily [2].

The Nash–Moser-KAM iterative procedure implemented to prove Theorem
1.1 selects many values of the parameter h a ½h1; h2� which give rise to the quasi-
periodic solutions (1.14), which are defined for all times. By a Fubini-type argu-
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ment it also results that, for most values of h a ½h1; h2�, there exist quasi-periodic
solutions of (1.3) for most values of the amplitudes jxja e20 . The fact that we find
quasi-periodic solutions restricting to a proper subset of parameters is not a tech-
nical issue, because the gravity water waves equations (1.3) are expected to be not
integrable, see for example [11] in the case of infinite depth.

Let us make some further comments on Theorem 1.1.

1. The parameter h varies in the finite interval ½h1; h2� with 0 < h1 < h2 < þl.
The result does not pass to the limit of zero depth (h1 ! 0þ), nor of infinite
depth (h2 ! þl). Di¤erent phenomena arise.

2. From a physical point of view, it is also natural to consider the depth h of the
ocean as a fixed physical quantity and to look for quasi-periodic solutions for
most values of the space wavelength 2pl. This can be achieved by rescaling
properly time, space and the amplitude of ðh;cÞ.

3. The linear frequencies (1.12) admit the following asymptotic expansionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
¼

ffiffi
j

p
þ rð j; hÞ where jqk

h rð j; hÞjaCke
�hj Ek a N; Ejb 1;

uniformly in h a ½h1; h2�, where the constant Ck depends only on k and h1.
Even though h moves the frequencies of exponentially small quantities, we
shall be able to use the finite depth parameter h to impose the required non-
resonance conditions.

4. The quasi-periodic solutions (1.14) are mainly supported in Fourier space on
the tangential sites Sþ. The dynamics of the water waves equations (1.3) on
the symplectic subspaces

HSþ :¼ v ¼
X
j ASþ

hj
cj

� �
cosð jxÞ

8<
:

9=
;;

H?
Sþ :¼ z ¼

X
j ANnSþ

hj
cj

� �
cosð jxÞ a H 1

0 ðTxÞ

8<
:

9=
;;

ð1:15Þ

is quite di¤erent. We shall call v a HSþ the tangential variable and z a H?
Sþ the

normal one. On the finite dimensional subspace HSþ we shall describe the
dynamics by introducing the action-angle variables ðy; IÞ a Tn � Rn in Section
2.1.

Linear stability. The quasi-periodic solutions uð ~ootÞ ¼ ðhð ~ootÞ;cð ~ootÞÞ found in
Theorem 1.1 are linearly stable. This is not only a dynamically relevant informa-
tion but also an essential ingredient of the existence proof (it is not necessary for
time periodic solutions as in [1], [12]). Let us state precisely the result. By Theo-
rem 1 in [7], around each invariant torus there exist symplectic coordinates

ðf; y;wÞ ¼ ðf; y; h;cÞ a Tn � Rn �H?
Sþ
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in which the water waves Hamiltonian reads

o � yþ 1

2
K20ðfÞy � yþ ðK11ðfÞy;wÞL2ðTxÞ þ

1

2
ðK02ðfÞw;wÞL2ðTxÞ þ Kb3ðf; y;wÞ

where Kb3 collects the terms at least cubic in the variables ðy;wÞ. In these coor-
dinates the quasi-periodic solution reads t 7! ðot; 0; 0Þ (for simplicity we denote
the frequency ~oo of the quasi-periodic solution by o) and the corresponding line-
arized water waves equations are

_ff ¼ K20ðotÞ½y� þ KT
11ðotÞ½w�

_yy ¼ 0

_ww ¼ JK02ðotÞ½w� þ JK11ðotÞ½y�:

8><
>:

Thus the actions yðtÞ ¼ yð0Þ do not evolve in time and the third equation reduces
to the linear PDE

_ww ¼ JK02ðotÞ½w� þ JK11ðotÞ½yð0Þ�:ð1:16Þ

The self-adjoint operator K02ðotÞ turns out to be the restriction to H?
Sþ of the

linearized water waves operator qu‘HðuðotÞÞ, explicitly written in (2.21), up to
a finite dimensional remainder.

In [3] we prove the existence of a bounded and invertible ‘‘symmetrizer’’ map
such that, for all j a Tn,

WlðjÞ : ðHsðTx;CÞ �HsðTx;CÞÞBH?
Sþð1:17Þ

! ðHs�1
4ðTx;RÞ �Hsþ1

4ðTx;RÞÞBH?
Sþ ;

W�1
l ðjÞ : ðHs�1

4ðTx;RÞ �Hsþ1
4ðTx;RÞÞBH?

Sþð1:18Þ
! ðHsðTx;CÞ �HsðTx;CÞÞBH?

Sþ ;

and, under the change of variables

w ¼ ðh;cÞ ¼ WlðotÞwl; wl ¼ ðwl;wlÞ;

equation (1.16) transforms into the diagonal system

qtwl ¼ �iDlwl þ flðotÞ;ð1:19Þ

flðotÞ :¼ W�1
l ðotÞJK11ðotÞ½yð0Þ� ¼

flðotÞ
flðotÞ

� �

where i is the imaginary unit and, denoting S0 :¼ Sþ A ð�SþÞA f0g � Z and
Sc

0 :¼ ZnS0, the operator

Dl :¼ Dl 0

0 �Dl

� �
; Dl :¼ diagj AS c

0
fmlj g; mlj a R;ð1:20Þ
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is a Fourier multiplier operator of the form

mlj :¼ ml
1
2
j jj

1
2 tanh

1
2ðhj jjÞ þ rlj ; j a Sc

0; rlj ¼ rl�j;

where, for some a > 0,

ml
1
2
¼ 1þOðjxjaÞ; sup

j AS c
0

j jj
1
2jrlj j ¼ OðjxjaÞ:

Actually by (2.8)–(2.9) and (2.12) we also have a control of the derivatives of
ml

1
2

and rlj with respect to ðo; hÞ. The numbers imlj are the Floquet exponents of

the quasi-periodic solution. The second equation of system (1.19) is actually the
complex conjugate of the first one, and (1.19) reduces to the infinitely many de-
coupled scalar equations

qtwl; j ¼ �imlj wl; j þ fl; jðotÞ; Ej a Sc
0:

By variation of constants the solutions are

wl; jðtÞ ¼ cje
�iml

j
t þ vl; jðtÞð1:21Þ

where vl; jðtÞ :¼
X
l AZ n

fl; j;le
io�lt

iðo � lþ mlj Þ ; Ej a Sc
0:

Note that the first Melnikov conditions (2.10) hold at a solution so that vl; jðtÞ
in (1.21) is well defined. Moreover (1.17) implies k flðotÞkH s

x�H s
x
aCjyð0Þj. As

a consequence the Sobolev norm of the solution of (1.19) with initial condition
wlð0Þ a H s0ðTxÞ �H s0ðTxÞ, for some s0 a ðs0; sÞ (in a suitable range of values),
satisfies

kwlðtÞkH s0
x �H

s0
x
aCðsÞðjyð0Þj þ kwlð0ÞkH s0

x �H
s0
x
Þ;

and, for all t a R, using (1.17), (1.18), we get

kðh;cÞðtÞk
H

s0�1
4

x �H
s0þ1

4
x

aCkðhð0Þ;cð0ÞÞk
H

s0�1
4

x �H
s0þ1

4
x

;

which proves the linear stability of the torus.
Clearly a crucial point is the diagonalization of (1.16) into (1.20). With respect

to the pioneering works of Plotnikov–Toland [14] and Iooss–Plotnikov–Toland
[12] dealing with time periodic solutions, this requires to analyze more in detail
the linearized operator in two respects:

1. We have to perform a reduction of the linearized operator into a constant co-
e‰cient pseudo-di¤erential operator, up to smoothing remainders, via changes
of variables that are quasi-periodic transformations of the phase space, so
that the dynamical system nature of the transformed systems is preserved. We
shall perform such reductions by changes of variables generated by pseudo-
di¤erential operators, di¤eomorphisms of the torus, and ‘‘semi-Fourier inte-
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gral operators’’ (namely pseudo-di¤erential operators of type
�
1
2 ;

1
2

�
in the

notation of Hörmander), inspired by [1], [9].
2. Once the above regularization has been performed, we implement a KAM

iterative scheme which completes the diagonalization of the linearized opera-
tor. This scheme uses very weak second order Melnikov non-resonance
conditions – which lose derivatives –, which are compensated by the smooth-
ing nature of the variable coe‰cients remainders.

Such a diagonalization is not required for the search of time-periodic solu-
tions, as in [1], [12], [14]. In such a case a Neumann series argument is su‰-
cient to invert the linearized operator. The key di¤erence is that, for the search
of periodic solutions, a su‰ciently regularizing operator in the space variable
is also regularizing in the time variable, on the Fourier indices ðl; jÞ a Z� Z
that correspond to the small divisors, thus olP

ffiffiffiffiffi
j jj

p
. This is not true for

quasi-periodic solutions as we explain in Remark 2.5.

2. Ideas of the proof

There are three major di‰culties for proving the existence of time quasi-periodic
solutions of the gravity water waves equations (1.3):

1. The water waves equations (1.3) are a fully-nonlinear system, which is a sin-
gular perturbation of the linearized system (1.10).

2. The dispersion relation (1.12) of the linear water waves equations is sub-
linear, i.e. oj P

ffiffi
j

p
for j ! þl. This is a relevant di¤erence with respect

to the capillary-gravity case studied in [9] where the linear frequencies areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kj2Þ j tanhðhjÞ

p
P

ffiffiffi
k

p
j3=2.

3. We have to verify all the Melnikov non-resonance conditions required on
the frequencies by the KAM scheme. Notice that the parameter h moves the

frequencies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
of exponentially small quantities of order Oðe�hjÞ (on

the contrary, in the case with capillarity, the surface tension parameter kmoves
the frequencies of polynomial quantities Oð j3=2Þ).

We present below the key ideas of the paper to solve these three major
problems.

2.1. Nash–Moser theorem of hypothetical conjugation

Rescaling the variable u 7! eu, we write (1.3) as

qtu ¼ JWuþ eXPe
ðuÞð2:1Þ

where JW is the linearized Hamiltonian vector field in (1.10) and XPe
ðuÞ is the

Hamiltonian vector field generated by the Hamiltonian

PeðuÞ :¼
e�1

2

Z
T

cðGðehÞ � Gð0ÞÞc dx:
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Then we decompose the phase space

H 1
0; even :¼ fu :¼ ðh;cÞ a H 1

0 ðTxÞ � _HH 1ðTxÞ; uðxÞ ¼ uð�xÞg ¼ HSþ aH?
Sþ

as the direct sum of the symplectic subspaces HSþ and H?
Sþ in (1.15), and we

introduce action-angle variables on the tangential sites by setting

hj :¼
ffiffiffi
2

p

r
o

1=2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xj þ Ij

q
cosðyjÞ; cj :¼ �

ffiffiffi
2

p

r
o

�1=2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xj þ Ij

q
sinðyjÞ; j a Sþ;

where xj > 0, j a Sþ, and jIjj < xj. We leave unchanged the normal component
z. Hence the Hamiltonian system (2.1) transforms into the new Hamiltonian
system

_yy ¼ qIHeðy; I ; zÞ; _II ¼ �qyHeðy; I ; zÞ; zt ¼ J‘zHeðy; I ; zÞ

generated by the Hamiltonian

He :¼ e�2H � eAð2:2Þ

where

Aðy; I ; zÞ :¼ vðy; IÞ þ z :¼
X
j ASþ

ffiffiffi
2

p

r
o

1=2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xj þ Ij

p
cosðyjÞ

�o
�1=2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xj þ Ij

p
sinðyjÞ

 !
cosð jxÞ þ z:

We denote by XHe
:¼ ðqIHe;�qyHe; J‘zHeÞ the Hamiltonian vector field in the

variables ðy; I ; zÞ a Tn � Rn �H?
Sþ . The involution r in (1.7) becomes

~rr : ðy; I ; zÞ 7! ð�y; I ; rzÞ:ð2:3Þ

In these new coordinates, by (1.5) and (2.2) the Hamiltonian He reads (up to a
constant)

He ¼ Nþ eP; N :¼ ~ooðhÞ � I þ 1

2
ðz;WzÞL2 ; P :¼ Pe � A;ð2:4Þ

where ~ooðhÞ :¼ ðojðhÞÞj ASþ and W is defined in (1.10). We look for an embedded
invariant torus

i : Tn ! Tn � Rn �H?
Sþ ; j 7! iðjÞ :¼ ðyðjÞ; IðjÞ; zðjÞÞ

of the Hamiltonian vector field XHe
filled by quasi-periodic solutions with

Diophantine frequency o a Rn (and which will satisfy also first and second order
Melnikov-non-resonance conditions as in (2.10)).

Since the expected quasi-periodic solutions of the autonomous Hamiltonian
system (2.4) will have shifted frequencies ~ooj – to be found – close to the linear
frequencies ~ooðhÞ, it is convenient to introduce a a Rn as a free parameter, con-
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sidering the modified Hamiltonian

Ha :¼ Na þ eP; Na :¼ a � I þ 1

2
ðz;WzÞL2 :ð2:5Þ

We first look for zeros of the nonlinear operator

Fði; aÞ :¼ Fði; a;o; h; eÞ :¼ o � qjiðjÞ � XHa
ðiðjÞÞ

¼ o � qjiðjÞ � ðXNa
þ eXPÞðiðjÞÞ

:¼
o � qjyðjÞ � a� eqIPðiðjÞÞ
o � qjIðjÞ þ eqyPðiðjÞÞ

o � qjzðjÞ � JðWzðjÞ þ e‘zPðiðjÞÞÞ

0
B@

1
CA

where YðjÞ :¼ yðjÞ � j is ð2pÞn-periodic. Thus j 7! iðjÞ is an embedded torus,
invariant for the Hamiltonian vector field XHa

and filled by quasi-periodic solu-
tions with frequency o.

Each Hamiltonian Ha in (2.5) is reversible, i.e. Ha � ~rr ¼ Ha where the involu-
tion ~rr is defined in (2.3), and we look for reversible solutions of Fði; aÞ ¼ 0,
namely satisfying

yð�jÞ ¼ �yðjÞ; Ið�jÞ ¼ IðjÞ; zð�jÞ ¼ ðrzÞðjÞ:ð2:6Þ

The norm of the periodic component of the embedded torus IðjÞ :¼ iðjÞ �
ðj; 0; 0Þ :¼ ðYðjÞ; IðjÞ; zðjÞÞ, YðjÞ :¼ yðjÞ � j, is

kIkk0; g
s :¼ kYkk0; g

H s
j

þ kIkk0; g
H s

j
þ kzkk0; g

s ;

where kzkk0; g
s ¼ khkk0; g

s þ kckk0; g
s and kukk0; g

s :¼
P

jkjak0
gjkjkqk

o;huks. We define

k0 :¼ k�
0 þ 2;

where k�
0 is the index of non-degeneracy provided by Proposition 2.3, which

only depends on the linear unperturbed frequencies. Thus k0 is considered as an
absolute constant, and we will often omit to explicitly write the dependence of the
various constants with respect to k0. We look for quasi-periodic solutions with
frequency o belonging to a d-neighborhood (independent of e)

W0 :¼ fo a Rn : distðo; ~oo½h1; h2�Þ < dg; d > 0;

of the unperturbed linear frequencies ~oo½h1; h2� where ~ooðhÞ :¼ ðojðhÞÞj ASþ . For a

function rðo; hÞ with values in Rn we set jrjk0; g :¼
P

jkjak0
gjkjjqk

o;hrj.

Theorem 2.1 (Nash–Moser theorem of hypothetical conjugation). Fix finitely
many tangential sites Sþ � Nþ and let n :¼ jSþj. Let tb 1. There exist positive
constants a0, e0, k1, C depending on Sþ, k0, t such that, for all g ¼ ea, 0 < a < a0,
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for all e a ð0; e0Þ, there exist a k0 times di¤erentiable function

al : Rn � ½h1; h2� 7! Rn; alðo; hÞ ¼ oþ reðo; hÞ; with jrejk0; gaCeg�1;ð2:7Þ

a family of embedded tori il defined for all o a Rn and h a ½h1; h2� satisfying the
reversibility property (2.6) and

kilðjÞ � ðj; 0; 0Þkk0; g
s0

aCeg�1;

a sequence of k0 times di¤erentiable functions mlj : Rn � ½h1; h2� ! R, j a NþnSþ,
of the form

mlj ðo; hÞ ¼ ml
1
2
ðo; hÞð j tanhðhjÞÞ

1
2 þ rlj ðo; hÞð2:8Þ

satisfying

jml
1
2
� 1jk0; g aCeg�1; sup

j ANþnSþ
j
1
2jrlj jk0; g aCeg�k1ð2:9Þ

such that for all ðo; hÞ in the Cantor like set

Cg
l :¼ fðo; hÞ a W� ½h1; h2� : jo � ljb 8g3l4�t; El a Znnf0g;ð2:10Þ

jo � lþ mlj ðo; hÞjb 4gj
1
23l4�t; El a Zn; j a NþnSþ;

jo � lþ mlj ðo; hÞ þ mlj 0 ðo; hÞjb 4gð j 12 þ j 0
1
2Þ3l4�t;

El a Zn; j; j 0 a NþnSþ;

jo � lþ mlj ðo; hÞ � mlj 0 ðo; hÞjb 4gj�dj 0�d3l4�t;

El a Zn; j; j 0 a NþnSþ; ðl; j; j 0ÞA ð0; j; jÞg

the function ilðjÞ :¼ ilðo; h; eÞðjÞ is a solution of Fðil; alðo; hÞ;o; h; eÞ
¼ 0. As a consequence the embedded torus j 7! ilðjÞ is invariant for the Ham-
iltonian vector field XHalðo; hÞ and it is filled by quasi-periodic solutions with fre-
quency o.

The very weak second Melnikov non-resonance conditions in the last line of
(2.10) can be verified for most parameters if d is large enough, i.e. d > 3

4 k
�
0 , see

Theorem 2.2 below. The loss of derivatives produced by such small divisors will
be compensated in the reducibility scheme by the fact that we will reduce the lin-
earized operator to constant coe‰cients up to very regularizing terms OðjDxj�MÞ
for some M :¼ Mðd; tÞ large enough with respect to d and t. We shall explain in
detail this procedure below.

Theorem 2.1 is proved by means of an iterative Nash–Moser scheme whose
main step is the analysis of the linearized operator at a non trivial approximate
solution that we describe in Section 2.3. We first discuss how to deduce Theorem
1.1 from Theorem 2.1.
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2.2. Measure estimates

In order to prove the existence of quasi-periodic solutions of the water waves
equations (1.3), and not only of the system with modified Hamiltonian Ha with
a :¼ alðo; h; eÞ, we have to prove that the curve of the unperturbed linear
frequencies

½h1; h2� C h 7! ~ooðhÞ :¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
Þj ASþ a Rn

intersects the image alðCg
lÞ, under the map al of the set Cg

l, for ‘‘most’’ values
of h a ½h1; h2�. By (2.7) the function alð�; hÞ from W into the image alðW; hÞ is
invertible:

b ¼ alðo; hÞ ¼ oþ reðo; hÞ , o ¼ a�1
l ðb; hÞ ¼ b þ �rreðb; hÞð2:11Þ
with j�rrejk0; g aCeg�1:

Theorem 2.2 below states that, for ‘‘most’’ values of h a ½h1; h2�, the vector
ða�1

l ð~ooðhÞ; hÞ; hÞ is in Cg
l. Hence, for such values of h we have found an em-

bedded invariant torus for the Hamiltonian He in (2.4), filled by quasi-periodic
solutions with Diophantine frequency o ¼ a�1

l ð~ooðhÞ; hÞ.

Theorem 2.2 (Measure estimates, [3]). Let

g ¼ ea; 0 < a < minfa0; 1=ðk0 þ k1Þg; t > k�
0 ðnþ 4Þ; d >

3k�
0

4
;ð2:12Þ

where k�
0 is the index of non-degeneracy given by Proposition 2.3 and k0 ¼ k�

0 þ 2.
Then the measure of the set

Ge ¼ fh a ½h1; h2� : ða�1
l ð~ooðhÞ; hÞ; hÞ a Cg

lgð2:13Þ

satisfies jGej ! h2 � h1 as e ! 0.

Let us give an idea of the proof. By (2.11) the vector

oeðhÞ :¼ a�1
l ð~ooðhÞ; hÞ ¼ ~ooðhÞ þ reðhÞ; reðhÞ :¼ �rreð~ooðhÞ; hÞ;ð2:14Þ

satisfies jqk
h reðhÞjaCeg�k�1 for all 0a ka k0. We also denote, with a small

abuse of notation, for all j a NþnSþ,

mlj ðhÞ :¼ mlj ðoeðhÞ; hÞ :¼ ml
1
2
ðhÞð j tanhðhjÞÞ

1
2 þ rlj ðhÞ;ð2:15Þ

where ml
1
2

ðhÞ :¼ ml
1
2

ðoeðhÞ; hÞ and rlj ðhÞ :¼ rlj ðoeðhÞ; hÞ. By (2.10), (2.14), (2.15),

the Cantor set Ge in (2.13) becomes
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Ge :¼ fh a ½h1; h2� : joeðhÞ � ljb 8g3l4�t; El a Znnf0g;ð2:16Þ
joeðhÞ � lþ mlj ðhÞjb 4gj

1
23l4�t; El a Zn; j a NþnSþ;

joeðhÞ � lþ mlj ðhÞ þ mlj 0 ðhÞjb 4gð j 12 þ j 0
1
2Þ3l4�t;

El a Zn; j; j 0 a NþnSþ;

joeðhÞ � lþ mlj ðhÞ � mlj 0 ðhÞjb
4g3l4�t

jdj 0d
;

El a Zn; j; j 0 a NþnSþ; ðl; j; j 0ÞA ð0; j; jÞg:

To prove the measure estimate for Ge in (2.13) the key point is to prove the fol-
lowing transversality property.

Proposition 2.3 (Transversality). There exist k�
0 a N, r0 > 0 such that, for any

h a ½h1; h2�,

max
kak �

0

jqk
h f~ooðhÞ � lgjb r03l4; El a Znnf0g;ð2:17Þ

max
kak �

0

jqk
h f~ooðhÞ � lþWjðhÞgjb r03l4; El a Zn; j a NþnSþ;ð2:18Þ

max
kak �

0

jqk
h f~ooðhÞ � lþWjðhÞ þWj 0 ðhÞgjb r03l4;ð2:19Þ

El a Zn; j; j 0 a NþnSþ;

max
kak �

0

jqk
h f~ooðhÞ � lþWjðhÞ �Wj 0 ðhÞgjb r03l4;ð2:20Þ

El a Znnf0g; j; j 0 a NþnSþ;

where ~ooðhÞ ¼ ðojðhÞÞj ASþ , ojðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
, and WjðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j tanhðhjÞ

p
, j a

NþnSþ. We recall the notation 3l4 :¼ maxf1; jljg. We call ( following [15]) r0
the ‘‘amount of non-degeneracy’’ and k�

0 the ‘‘index of non-degeneracy’’.

Note that in (2.20) we exclude the index l ¼ 0. In this case we directly have
that, for all h a ½h1; h2�

jWjðhÞ �Wj 0 ðhÞjb c1j
ffiffi
j

p
�

ffiffiffi
j 0

p
j ¼ c1

j j � j 0jffiffi
j

p
þ

ffiffiffi
j 0

p Ej; j 0 a Nþ;

where c1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðh1Þ

p
. The above conditions are stable under perturbations

which are small in Ck �
0
þ2 norm and therefore we get:

Lemma 2.4 (Perturbed transversality). For e small enough, for all h a ½h1; h2�,

max
kak �

0

jqk
h foeðhÞ � lgjb

r0
2
3l4 El a Znnf0g;

max
kak �

0

jqk
h foeðhÞ � lþ mlj ðhÞgjb r0

2
3l4 El a Zn; j a NþnSþ : j

1
2 aC3l4;
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max
kak �

0

jqk
h foeðhÞ � lþ mlj ðhÞ � mlj 0 ðhÞgjb

r0
2
3l4;

El a Znnf0g; j; j 0 a NþnSþ : j j 12 � j 0
1
2jaC3l4;

max
kak �

0

jqk
h foeðhÞ � lþ mlj ðhÞ þ mlj 0 ðhÞgjb

r0
2
3l4;

El a Zn; j; j 0 a NþnSþ : j
1
2 þ j 0

1
2 aC3l4;

where k�
0 is the index of non-degeneracy given by Proposition 2.3.

Therefore using Rüssmann Theorem 17.1 in [15] we deduce a measure esti-
mate for the sublevels of the functions in (2.16) and finally (2.13).

The key transversality Proposition 2.3 is proved by extending the arguments
of degenerate KAM theory of [6], [9], using in an essential way the fact that the
maps h 7! ojðh4Þ are analytic and simple – namely injective in j – on the sub-
space of the even functions, they grow asymptotically as j1=2 and they satisfy a
suitable non-degeneracy condition (to be essentially non-planar) in the sense of
[6]. This is verified by analyticity and a generalized Van der Monde determinant.

2.3. Analysis of the linearized operators

The other crucial point is to prove that the linearized operators obtained at any
approximate solution along the Nash–Moser iterative scheme are, for most
values of the parameters, invertible, and that their inverse satisfies tame estimates
in Sobolev spaces (with, of course, loss of derivatives). This is the key assumption
to implement a convergent di¤erentiable Nash–Moser iterative scheme in scales
of Sobolev functions.

Linearizing the water waves equations (1.3) at a time-quasi-periodic approxi-
mate solution ðh;cÞðot; xÞ, and changing qt into the directional derivative o � qj,
we obtain the operator

L ¼ o � qj þ
qxV þ GðhÞB �GðhÞ

ð1þ BVxÞ þ BGðhÞB Vqx � BGðhÞ

� �
ð2:21Þ

where the functions B, V are

B :¼ Bðh;cÞ :¼ hxcx þ GðhÞc
1þ h2x

; V :¼ Vðh;cÞ :¼ cx � Bhx:

It turns out that ðV ;BÞ ¼ ‘x;yF is the velocity field evaluated at the free surface
ðx; hðxÞÞ.

By the symplectic procedure developed in Berti–Bolle [7] for autonomous
PDEs, and implemented in [4], [9], it is su‰cient to prove the approximate invert-
ibility of (a finite rank perturbation of ) the operator L restricted to the normal
subspace H?

Sþ introduced in (1.15).
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The main goal is to conjugate the operator L in (2.21) to a diagonal system
of infinitely many decoupled, constant coe‰cients, scalar linear equations, see
(2.23) below. Our approach involves two well separated procedures that we shall
describe in detail:

1. Symmetrization and diagonalization of L up to smoothing operators. The first
task is to conjugate L to an operator of the form

o � qj þ im1
2
jDj

1
2 tanh

1
2ðhjDjÞ þ irðDÞ þR0ðjÞð2:22Þ

where m1
2
Q1 is a real constant, independent of ðj; xÞ, the symbol rðxÞ is real

and independent of ðj; xÞ, of order S�1=2, and the remainder R0ðjÞ, as well as
qb
jR0 for all jbja b0 large enough, is a small, still variable coe‰cient operator,
which is regularizing at a su‰ciently high order, and satisfies tame estimates in
Sobolev spaces.

2. KAM reducibility. The second task is to implement an iterative diagonaliza-
tion scheme to reduce quadratically the size of the perturbation R0ðjÞ in
(2.22), completing the conjugation of L to a diagonal, constant coe‰cient sys-
tem of the form

o � qj þ iOpðmjÞð2:23Þ

where mj ¼ m1
2
j jj

1
2 tanh

1
2ðhj jjÞ þ rð jÞ þ ~rrð jÞ are real and ~rrð jÞ are small. The

numbers imj are the perturbed Floquet exponents of the quasi-periodic
solution.

We underline that all the transformations used to achieve these tasks are quasi-
periodically time-dependent changes of variables acting in phase spaces of func-
tions of x (quasi-periodic Floquet operators). Therefore, they preserve the dy-
namical system structure of the conjugated linear operators.

Moreover all these changes of variables are bounded and satisfy tame esti-
mates between Sobolev spaces. As a consequence, the estimates that we shall ob-
tain on the final system (2.23) directly provide good tame estimates for the inverse
of the operator (2.21) in the original physical coordinates.

We also note that the original system L is reversible and even and that all the
transformations that we perform are reversibility preserving and even. The pres-
ervation of these properties ensures that in the final system (2.23) the numbers
mj are real. Under this respect, the linear stability of the quasi-periodic standing
wave solutions proved in Theorem 1.1 is obtained as a consequence of the revers-
ible nature of the water waves equations.

Remark 2.5. The above procedure – which we explain in detail below – is
quite di¤erent with respect to the approach developed in the pioneering works
of Plotnikov–Toland [14] and Iooss–Plotnikov–Toland [12] for time periodic
gravity waves, as mentioned at the end of Section 1.1. In particular the item
2 of KAM reducibility is not required for the search of periodic solutions.
Let us roughly explain why. The diagonal operator o � qj þD, where D :¼
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im1
2
jDj

1
2 tanh

1
2ðhjDjÞ þ irðDÞ, can be inverted assuming a diophantine condition

as jo � lþ ðm1
2
j jj

1
2 tanh

1
2ðhj jjÞ þ rð jÞÞjb g3l4�t. In such a case its inverse

ðo � qj þDÞ�1 is an unbounded operator which loses t derivatives. Actually it
acts as a Fourier multiplier Oðg�13qj4

tÞ on the subspace of functions which
are Fourier supported on the indices ðl; jÞ a Zn � Z such that o � lP

ffiffiffiffiffi
j jj

p
. In

the periodic case n ¼ 1 and o � l ¼ olP
ffiffiffiffiffi
j jj

p
, so that 3qj4

t P3Dx4
t
2 where

3Dx4 is the Fourier multiplier with symbol 3x4. If the remainder R0 in (2.22) is
a su‰ciently regularizing operator, i.e. R0 P3Dx4

�d for db t=2, then the oper-
ator ðoqj þDÞ�1R0 P3Dx4

t
2�d is bounded and oqj þDþR0 can be inverted

by a Neumann series argument. In the quasi-periodic case, i.e. nb 2, the modulus
jlj is not equivalent to

ffiffiffiffiffi
j jj

p
and the previous argument fails.

We now explain in detail the steps for the conjugation of the quasi-periodic
linear operator (2.21) to an operator of the form (2.23).

1. Linearized good unknown of Alinhac. The first step is to introduce the linear-
ized good unknown of Alinhac, as in [1], [9]. The outcome is the more sym-
metric system

L0 ¼ o � qj þ
qxV �GðhÞ
a Vqx

� �
ð2:24Þ

¼ o � qj þ
Vqx 0

0 Vqx

� �
þ Vx �GðhÞ

a 0

� �
;

where the Dirichlet–Neumann operator admits the expansion

GðhÞ ¼ jDj tanhðhjDjÞ þRG

and RG is an OPS�l pseudo-di¤erential smoothing operator. Such a repre-
sentation can be obtained for example by transforming the elliptic problem
(1.2), which is defined in the variable fluid domain f�ha ya hðxÞg, into an-
other elliptic problem, defined on a straight strip f�h� caY a 0g, which
can be solved by an explicit integration.

2. Straightening the first order vector field o � qj þ Vðj; xÞqx. The next step is to
conjugate the variable coe‰cients vector field (we regard equivalently a vector
field as a di¤erential operator)

o � qj þ Vðj; xÞqx

to the constant coe‰cient vector field o � qj on the torus Tn
j � Tx for Vðj; xÞ

small. This is a perturbative problem of rectification of a close to constant
vector field on a torus, which is a classical small divisor problem. For pertur-
bation of a Diophantine vector field this problem was solved at the begin-
ning of KAM theory. Notice that, despite the fact that o a Rn is Diophantine,
the constant vector field o � qj is resonant on the higher dimensional torus
Tn

j � Tx. We exploit in a crucial way the reversibility property of Vðj; xÞ, i.e.
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Vðj; xÞ is odd in j, to prove that it is possible to conjugate o � qj þ Vðj; xÞqx
to the constant vector field o � qj without changing the frequency o.

From a functional point of view we have to solve the linear transport
equation

o � qjbðj; xÞ þ Vðj; xÞð1þ bxðj; xÞÞ ¼ 0;

which depends on time in a quasi-periodic way. Actually we solve the equation

o � qj �bbðj; yÞ ¼ Vðj; yþ �bbðj; yÞÞð2:25Þ

for the inverse di¤eomorphism

xþ bðj; xÞ ¼ y , x ¼ yþ �bbðj; yÞ; Ex; y a R; j a Tn:

This problem amounts to proving that all the solutions of the quasi-
periodically time-dependent scalar characteristic equation _xx ¼ Vðot; xÞ are
quasi-periodic in time with frequency o.

Remark 2.6. A geometric interpretation of equation (2.25) is the following:
under a di¤eomorphism of Tn � T as

j

x

� �
¼ c

yþ �bbðc; yÞ

� �
; the system

d

dt

j

x

� �
¼ o

Vðj; xÞ

� �

transforms into

d

dt

c

y

� �
¼

o

f�o � qj �bbðc; yÞ þ Vðj; yþ �bbðc; yÞÞgð1þ �bbyðc; yÞÞ
�1

� �
:

The vector field in the new coordinates reduces to ðo; 0Þ if and only if (2.25)
holds. In the new variables the solutions are simply given by yðtÞ ¼ c, c a R,
and all the solutions of the scalar quasi-periodically forced di¤erential equa-
tion _xx ¼ Vðot; xÞ are time quasi-periodic of the form xðtÞ ¼ cþ �bbðot; cÞ.

We solve (2.25) using a Nash–Moser implicit function theorem for V small.
After inverting the corresponding linearized operator at an approximate solu-
tion we apply the Nash–Moser–Hörmander Theorem proved in Baldi–Haus
[5]. The main advantage of this approach is to provide the optimal higher
order regularity estimates of the solution in terms of V .

We remark that, when searching for time periodic solutions as in [12], [14],
the corresponding transport equation is not a small-divisor problem and has
been solved in [14] by a direct ODE analysis.

Applying this change of variable to the whole operator L0 in (2.24), the
new conjugated system has the form

L1 ¼ o � qj þ
a1 �a2jDj tanhðhjDjÞ þR1

a3 0

� �
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where ai ¼ aiðj; xÞ are functions (i.e. multiplication operators) and the re-
mainder R1 is in OPS�l.

3. Change of the space variable. We introduce a change of variable induced by a
di¤eomorphism of Tx (independent of j) of the form

y ¼ xþ aðxÞ , x ¼ yþ �aaðyÞ:ð2:26Þ

Conjugating L1 by the change of variable uðxÞ 7! uðxþ aðxÞÞ, we obtain an
operator of the same form

L2 ¼ o � qj þ
a4 �a5jDjTh þR2

a6 0

� �
; Th :¼ tanhðhjDjÞ;

where R2 is in OPS�l, and the functions a5, a6 are given by

a5 ¼ ½a2ðj; xÞð1þ axðxÞÞ�jx¼yþ�aaðyÞ; a6 ¼ a3ðj; yþ �aaðyÞÞ:

We shall choose later the function aðxÞ in order to eliminate the space depen-
dence from the highest order coe‰cients. The advantage to introduce at this
step the di¤eomorphism (2.26) is that it is easy to study the conjugation under
this change of variable of di¤erentiation and multiplication operators, Hilbert
transform, and integral operators in OPS�l.

4. Symmetrization at order 1=2. We apply two simple conjugations (with a
Fourier multiplier and a multiplication operator) whose goal is to obtain a
new operator of the form

L3 ¼ o � qj þ
�aa4 �a7jDj

1
2T

1
2
h

a7jDj
1
2T

1
2
h 0

 !
þ � � �

up to lower order operators. The function a7 is close to 1 and �aa4 is small in e.
In the complex unknown h ¼ hþ ic such an operator reads

ðh; hÞ 7! o � qjhþ ia7jDj
1
2T

1
2

hhþ a8hþ P5hþQ5h;

(here we neglect a projector p0 on the constants) where P5ðjÞ is a j-dependent
families of pseudo-di¤erential operators of order �1=2, and Q5ðjÞ of order 0.
We shall call the former operator ‘‘diagonal’’, and the latter ‘‘o¤-diagonal’’,
with respect to the variables ðh; hÞ.

5. Symmetrization of the lower orders. We reduce the o¤-diagonal term Q5 to
a pseudo-di¤erential operator with very negative order, i.e. we conjugate the
above operator to another one whose first component has the form

ðh; hÞ 7! o � qjhþ ia7ðj; xÞjDj
1
2T

1
2
hhþ a8hþ P6hþQ6h;ð2:27Þ

where P6 is in OPS�1
2 and Q6 a OPS�M for some M large enough, in view of

the reducibility scheme.
6. Time and space reduction at order 1=2. We now eliminate the j- and the

x-dependence from the coe‰cient of the leading operator ia7ðj; xÞjDj
1
2T

1
2

h . We
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conjugate the operator (2.27) by the time-1 flow of the pseudo-PDE

qtu ¼ ibðj; xÞjDj
1
2u

where bðj; xÞ is a small function to be chosen. This kind of transformations –
which could be called ‘‘semi-Fourier integral operators’’ and correspond to
pseudo-di¤erential operators of type

�
1
2 ;

1
2

�
in the notation of Hörmander –

have been introduced in [1] and studied as flows in [9].
Choosing appropriately the functions bðj; xÞ and aðxÞ (introduced in

(2.26)), the final outcome is a linear operator of the form

L7ðh; hÞ ¼ o � qjhþ im1
2
T

1
2
h jDj

1
2hþ ða8 þ a9HÞhþ P7hþT7ðh; hÞ;

which has the constant coe‰cient m1
2
Q1 at the highest order, while H is the

Hilbert transform, P7 is in OPS�1=2 and the operator T7 is small, smoothing
and satisfies tame estimates in Sobolev spaces. The constant m1

2
collects the

quasi-linear e¤ects of the non-linearity at the highest order.
7. Reduction of the lower order terms. We further diagonalize the operator L7,

reducing it to constant coe‰cients up to regularizing smoothing operators
of very negative order 3D4�M . This is realized by applying an iterative se-
quence of pseudo-di¤erential transformations that eliminate the j- and the
x-dependence of the diagonal symbols. The final system has the form

ðh; hÞ 7! o � qjhþ im1
2
jDj

1
2 tanh

1
2ðhjDjÞhþ irjðDÞhþR0ðjÞðh; hÞð2:28Þ

where the constant Fourier multiplier rðxÞ is real, even rðxÞ ¼ rð�xÞ, satisfies

sup
j AZ

j jj
1
2jrjjk0; g kM eg�ð2Mþ1Þ;

and the variable coe‰cient operator R0ðjÞ is regularizing and satisfies tame
estimates, see more precisely properties (2.29). We also remark that this final
operator (2.28) is reversible and even, since all the previous transformations
that we performed are reversibility preserving and even.

Our next goal is to diagonalize the operator (2.28); actually, it is su‰cient
to ‘‘almost-diagonalize’’ it by a KAM iterative scheme. The expression
‘‘almost-diagonalize’’ refers to the fact that we allow to add in (2.23) some
non diagonal remainders which are small as Oðeg�2ðMþ1ÞN�a

n�1Þ.
8. KAM-reducibility scheme. In order to decrease quadratically the size of the

resulting perturbation R0 we apply a KAM diagonalization iterative scheme.
Such a scheme converges because the operators

3D4mþbR3D4mþbþ1; qs0þb
ji

3D4mþbR3D4mþbþ1; i ¼ 1; . . . ; n;ð2:29Þ

satisfy tame estimates for some b :¼ bðt; k0Þ a N and m :¼ mðk0Þ which are
large enough, independently of s. Such conditions are verified to hold assum-
ing that M (the order of regularization of the remainder) is large enough
(essentially M ¼ Oðmþ bÞ). This is the property that compensates, along the
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KAM iteration, the loss of derivatives in j and x produced by the small divi-
sors in the second order Melnikov non-resonance conditions.

The big di¤erence of the KAM reducibility scheme implemented in [3] with
respect to the one developed in [9] is that the second order Melnikov non-
resonance conditions imposed in [3] are very weak – in particular, they lose
regularity not only in the j-variable, but also in the space variable x. For this
reason we apply at each iterative step a smoothing procedure also in the space
variable.

After the diagonalization into (2.23) of the linearized operator, we invert it, by
imposing the first Melnikov non-resonance conditions. Since all the changes of
variables that we performed in the diagonalization process satisfy tame estimates
in Sobolev spaces, we finally conclude the existence of an approximate inverse of
the linearized operator which satisfies tame estimates.

Finally we implement a di¤erentiable Nash–Moser iterative scheme to prove
Theorem 2.1.
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[5] P. Baldi - E. Haus, A Nash-Moser-Hörmander implicit function theorem with applica-

tions to control and Cauchy problems for PDEs, J. Funct. Anal. 273 (2017), no. 12,
3875–3900.

[6] D. Bambusi - M. Berti - E. Magistrelli, Degenerate KAM theory for partial dif-

ferential equations, Journal Di¤. Equations, 250 (2011), no. 8, 3379–3397.

[7] M. Berti - Ph. Bolle, A Nash-Moser approach to KAM theory, Fields Institute Com-
munications, special volume ‘‘Hamiltonian PDEs and Applications’’ (2015), 255–284.

[8] M. Berti - R. Montalto, Quasi-periodic water waves, J. Fixed Point Th. Appl. 19
(2017), no. 1, 129–156.

[9] M. Berti - R. Montalto, KAM for gravity capillary water waves, Memoires of
AMS, Memo 891, to appear, preprint arXiv:1602.02411.

[10] W. Craig - C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108
(1993), no. 1, 73–83.

235kam for gravity water waves in finite depth

http://arxiv.org/abs/1708.01517
http://arxiv.org/abs/1602.02411


[11] W. Craig - P. Worfolk, An integrable normal form for water waves in infinite depth,
Phys. D, 84 (1995), no. 3–4, 513–531.

[12] G. Iooss - P. Plotnikov - J. Toland, Standing waves on an infinitely deep perfect

fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), no. 3, 367–478.

[13] S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imagi-

nary spectrum, Funktsional Anal. i Prilozhen. 2, 95 (1987), 22–37.

[14] P. Plotnikov - J. Toland, Nash-Moser theory for standing water waves, Arch.
Ration. Mech. Anal., 159 (2001), no. 1, 1–83.

[15] H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems,
Regul. Chaotic Dyn., 6 (2001), no. 2, 119–204.

[16] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep

fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190–194.

Received 18 August 2017,

and in revised form 21 August 2017.

Pietro Baldi

Dipartimento di Matematica e Applicazioni ‘‘R. Caccioppoli’’
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