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Abstract. — In this note we study the local negativity for certain configurations of smooth

rational curves in smooth surfaces with numerically trivial canonical class. We show that for such
rational curves there is a bound for the so-called local Harbourne constants, which measure the local

negativity phenomenon. Moreover, we provide explicit examples of interesting configurations of
rational curves in some K3 and Enriques surfaces and compute their local Harbourne constants.
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1. Introduction

In this note we continue studies on the local negativity of algebraic surfaces. In
last years there is a resurgence around questions related to negative curves on
algebraic surfaces. One of the most challenging problems is the Bounded Nega-
tivity Conjecture (BNC in short).

Conjecture 1.1 (Bounded Negativity Conjecture). Let X be a smooth projec-
tive surface defined over a field of characteristic zero. Then there exists an integer
bðX Þ a Z such that for all reduced curves C � X one has C2 b�bðX Þ.

It is easy to see that the number bðXÞ can be arbitrary large depending on X .
In order to observe this phenomenon, consider the blow-up Xs of the projective
plane P2

C along sg 0 mutually distinct points P1; . . . ;Ps lying on a line l. It is
easy to see that the strict transform of l has the form ~lls ¼ H � E1 � � � � � Es,
where H is the pull back of OP2

C
ð1Þ and E1; . . . ;Es are the exceptional divisor,

and ~ll 2s ¼ �sþ 1. Moreover, it is not di‰cult to see that bðXsÞ ¼ sðsþ 1Þ. In order
to avoid such situations, we can define an asymptotic version of self-intersection
numbers. In the case of arbitrary blow-ups of the projective plane, one can divide
the self-intersection number of a reduced curve by the number of point we blown
up our surface. It turns out that this approach is more e¤ective in the context of
the BNC.

1Presented by Professor F. Catanese.



It is worth pointing out that the BNC is widely open, but there are some cases
for which bðX Þ is known. It can be shown that the BNC is true for minimal
models with Kodaira dimension equal to zero. In particular, we know that
every reduced and irreducible curve C has C2 b�2 for surfaces with Kodaira
dimension zero, as a consequence of the adjuction formula. However, it is not
known whether the BNC still holds for blow-ups of those surfaces along sets
of points.

The main aim of this note is to study the BNC for blow-ups of complex alge-
braic surfaces with numerically trivial canonical class from a point of view of
Harbourne constants, which were introduced in [2], and allow to measure the
negativity phenomenon asymptotically. Before we define the main object of this
paper, we need to recall some standard notions.

Definition 1.2 (The numbers ti). Let C be a configuration of finitely many
mutually distinct smooth curves in a projective surface X . We say that P is an
r-fold point of the configuration C, if it is contained in exactly r irreducible com-
ponents of C. The union of all r-fold points P a C for rb 2, is the set SingðCÞ
of singular points of C. We set the number tr ¼ trðCÞ to be the number of r-fold
points in C.

We will mostly deal with configurations of smooth curves having only trans-
versal intersection points. Letting C ¼ C1 þ � � � þ Cn be a configuration of such
curves on X , consider the blow-up of X along SingðCÞ, with the exceptional divi-
sors E1; . . . ;Es, where s is the cardinality of SingðCÞ. Let ~CC be the strict trans-
form of C. Then the divisor

~CC þ E1 þ � � � þ Es

is a simple normal crossing divisor on Y , meaning that

(1) it is reduced;
(2) its irreducible components are all smooth;
(3) there are at most two irreducible components going through a point of the

divisor (i.e., at the singular points, the divisor locally looks like the intersec-
tion of the coordinate axes in C2).

Simple normal crossing divisors come pretty handy, as it is quite easy to com-
pute their Chern numbers, a fact that we will employ in our computations (see the
proof of Theorem 2.1). In the present note, we are interested in (local) Harbourne
constants attached to transversal configrations, i.e., configurations of curves such
that all irreducible components are smooth and all intersections are transversal.
They can be viewed as a way to measure the average negativity coming from sin-
gular points in the configuration.

Definition 1.3 (Local Harbourne constants of a transversal configuration).
Let X be a smooth projective surface. Let C ¼

Pt
i¼1 Ci be a transversal configu-

ration of curves in X with s ¼ sðCÞ singular points. Let ~CC ¼
Pt

i¼1
eCiCi be the strict
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transform of C in the blow-up Y of X at s singular points of C, eCiCi being the strict
transform of Ci in Y . The rational number

hðX ;CÞ ¼ hðCÞ ¼
~CC2

s
¼ 1

s

�
C2 �

X
P A SingðCÞ

m2
P

�
;ð1Þ

where mP is the multiplicity of the divisor C at P, is the local Harbourne constant
of C � X .

We can also express the local Harbourne constant in terms of the ti’s as
follows:

hðCÞ ¼ 1

s

�
C2 �

X
rb2

r2tr

�
:

Notice that the notion of local Harbourne constant is a natural variation of the
original Harbourne constant in [2], the latter to be understood as a global version
of the first one. In fact, the local Harbourne constant defined in the present paper
considers only one reduced curve, while the Harbourne constant of [2] is computed
by considering all curves in X at once.

2. A bound on local Harbourne constants

We would like to focus on the case of configurations of smooth rational curves in
complex surfaces with numerically trivial canonical class, having only transversal
intersection points. We start with the following result which is a generalization of
a result due to Miyaoka [12, Section 2.4].

Theorem 2.1. Let X be a smooth complex projective surface with numerically
trivial canonical class and let C � X be a configuration of smooth rational curves
having n irreducible components and only transversal intersection points. Then

4n� t2 þ
X
rb3

ðr� 4Þtr a 3c2ðX Þa 72:

Proof. Let C ¼ C1 þ � � � þ Cn be a configuration of smooth rational curves
in X . If SingðCÞ denotes the set of singular points of the configuration, we define
S ¼ fpjgk

j¼1 to be the subset of points in SingðCÞ with multiplicityb 3. Consider
the blow-up of X at the points of S, namely

s : Y ! X ;

under pull-back along s, the configuration C on X yields a configuration s�C
which consists of the strict transforms of the Ci’s and the exceptional divisors.
Notice that s�C is again a configuration of smooth rational curves that admits
double points only as singularities. Following [12, Section 2.4], we set M :¼
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~CC1 þ � � � þ ~CCn. The idea is to use the Bogomolov–Miyaoka–Yau inequality

3c2ðYÞ � 3eðMÞb ðKY þMÞ2;

and thus we now need to compute the terms in the above inequality. We see that

c2ðY Þ ¼ c2ðXÞ þ k;

eðMÞ ¼ 2n� t2;

which yield c2ðY Þ � eðMÞ ¼ c2ðXÞ þ k � 2nþ t2. If E :¼
Pk

j¼1 Ej is the sum of
all exceptional divisors, we have

KY þM ¼ s�ðKX þ CÞ �
Xk

j¼1

ðmj � 1ÞEj;

ðKY þMÞ2 ¼ C2 �
Xk

j¼1

ðmj � 1Þ2:

Notice that

KY þM ¼ ðs�KX þ EÞ þM ¼ s�KX þ ðE þMÞ;

and as KX is numerically trivial, also s�KX is, and thus KY þM is numeri-
cally equivalent to an e¤ective divisor. This allows us to use the Bogomolov–
Miyaoka–Yau inequality according to [12, Corollary 1.2]. Moreover,

C2 ¼ �2nþ 2
X
i<j

Ci:Cj

¼ �2nþ 2
X
rb2

r

2

� �
tr

¼ �2nþ 2t2 þ 2
X
rb3

r

2

� �
tr:

It follows that

ðKY þMÞ2 ¼ �2nþ 2t2 þ 2
X
rb3

r

2

� �
tr �

Xk
j¼1

ðmj � 1Þ2

¼ �2nþ 2t2 þ 2
Xk

j¼1

mj

2

� �
�
Xk

j¼1

ðmj � 1Þ2

¼ �2nþ 2t2 þ
Xk

j¼1

ðmj � 1Þ:
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By plugging into the Bogomolov–Miyaoka–Yau inequality, we see that

3c2ðX Þb 4n� t2 � 3k þ
Xk

j¼1

ðmj � 1Þ

¼ 4n� t2 þ
Xk
j¼1

ðmj � 4Þ

¼ 4n� t2 þ
X
rb3

ðr� 4Þtr;

and the result follows from the fact that c2ðX Þ ¼ 12ð1� qðX Þ þ pgðX ÞÞa 24,
and equality holding if and only if X is a K3 surface. r

Now we can prove the main result of this paper.

Theorem 2.2. Let X be a smooth complex projective surface with numerically
trivial canonical class and let C be a configuration of smooth rational curves having
n irreducible components and only sb 1 transversal intersection points. Then

hðX ;CÞb�4þ 2nþ t2 � 3c2ðXÞ
s

b�4þ 2nþ t2 � 72

s

Proof. If C ¼ C1 þ � � � þ Cn, the Harbourne constant is computed by ~CC2=s,
where ~CC is its strict transform in the blow-up at s singular points of the configu-
ration. We observe that

~CC2=s ¼
C2 �

P
j m

2
j

s
¼ �2nþ Id �

P
rb2 r

2tr

s
;

where Id :¼ 2
P

i<j Ci:Cj is the number of incidences of the configuration C. By
the definition of Id , it is straightforward to see that

Id �
X
rb2

r2tr ¼ �
X
rb2

rtr;

and moreover we can rephrase the bound in Theorem 2.1 in the following way:

�
X
rb2

rtr b�4sþ 4nþ t2 � 3c2ðXÞ:

This yields

hðX ;CÞb�4þ 2nþ t2 � 3c2ðXÞ
s

;

which completes the proof. r
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Let us now define the following number.

Definition 2.3. Let X be a smooth complex projective surface with numeri-
cally trivial canonical class. The real number

HrationalðXÞ ¼ inf
C

hðX ;CÞ;

where the infimum is taken over all transversal configurations of smooth rational
curves C � X is the global rational Harbourne constant of X .

Corollary 2.4. In the setting of Theorem 2.2, one has

HrationalðXÞb�45:

Proof. Let us consider a configuration C ¼ C1 þ � � � þ Cn of n rational curves
in X . If sb 2, then we obtain the following chain of inequalities:

hðX ;CÞb�4þ 2nþ t2 � 72

s
¼ �4� 72

s
þ 2nþ t2

s
b�40:

We are now left with dealing with the case s ¼ 1. We assume firstly that our
configuration C is connected (i.e. there is no isolated rational curve that does
not intersect others). In this situation, Theorem 2.2 has the form hðX ;CÞb
�76þ 2nþ t2. Using the local Harbourne constant of C, we get

�2n�
X
rb2

rtr b�76þ 2nþ t2:

As
P

rb2 rtr ¼ n, we get that na 15, which implies hðX ;CÞ ¼ �3nb�45.
Suppose now that we are given an arbitrary configuration, and let m be the

positive integer such that there exist exactly n�m curves of C which do not
intersect any other component of C (in other words, the configuration contains
n�m isolated rational curves). By looking at the local Harbourne constant of
C, it is straightforward to see that

hðX ;CÞ ¼ �2n�
X
rb2

rtr ¼ �2m�
X
rb2

rtr � 2ðn�mÞ ¼ �m� 2n:

Now, by the argument for connected configurations, we get ma 15. By The-
orem 2.2, we deduce the following:

�m� 2n ¼ hðX ;CÞb�76þ 2nþ t2 b�76þ 2n;

which gives 4nþma 76. This implies, in particular, that na 18. Therefore, we
obtain the following restrictions on the configuration C:

na 18; ma 15; 4nþma 76:
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If n ¼ 18, then 2ama 4. In fact, 3ama 4, as otherwise there would be
n�m ¼ 16 mutually disjoint rational curves on X , which are also disjoint from
the subconfiguration of C consisting of m lines meeting at a single point, contra-
dicting a result due to Miyaoka [12, Proposition 2.1.1]. In this situation, one has
hðX ;CÞb�40.

If n ¼ 17, then 2ama 8, from which one sees that hðX ;CÞb�42. If
n ¼ 16, we get that 2ama 12, which implies hðX ;CÞb�44. Finally, if na 15,
then necessarily 2ama 15 (by the argument for connected configurations), and
thus hðX ;CÞb�45. r

3. Examples

We now give some examples of interesting configurations of smooth rational
curves in complex K3 and Enriques surfaces. We will use Theorem 2.1 to give a
lower bound for their Harbourne constants.

Example 3.1 (Six general lines in P2). In the complex projective plane P2, con-
sider six lines in general position, and denote this configuration by L.

This configuration has only double points as singularities, and their number is
the maximum possible of 15. Let Y denote the 2 :1 cover of P2 branched over the
configuration L. It is a normal surface with 15 singularities of type A1, namely
the points sitting over the intersection of the six lines in L. We can resolve the
singularities of Y by blowing up once at each singular point; this yields a smooth
surface X , which is a K3 surface by general theory. Alternatively, we could have
first blown-up P2 at the singular points of L, and then taken a 2 :1 cover
branched over the strict transforms of the six lines (which are disjoint after per-
forming a blow-up).

On the K3 surface X , we have a new configuration of curves, which we call
C, given by the union of the strict transforms of the six lines and the exceptional
divisors. Notice that C consists of 6þ 15 ¼ 21 ð�2Þ-curves which intersect at 30
points of multiplicity two, thus n ¼ 21, t2 ¼ 30 and tr ¼ 0 for all rb 3. We can
compute the Harbourne constant:

hðX ;CÞ ¼ 18� 120

30
Q�3:4666;

Figure 1. Six lines in general position in P2.
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which together with the lower bound of Theorem 2.2 yields

�4a hðX ;CÞ ¼ �102=30Q�3:4666:

Example 3.2 (Vinberg configuration 1). In [16], Vinberg described the two
most algebraic K3 surfaces: these are the K3 surfaces X4 and X3 of transcen-
dental lattice

2 0

0 2

� �
and

2 1

1 2

� �
;

respectively. Thanks to results of Shioda and Mitani [10], Shioda and Inose [9],
and to the fact that the class groups of discriminants �4 and �3 are trivial, it
follows that X4 and X3 are the unique K3 surfaces of maximum Picard number
and discriminant with the minimum absolute value possible.

We start considering the surface X4, and we recall how to build a model for it
which is pretty convenient for our purposes. In the complex projective plane P2,
we consider the configuration L of lines given by

L : xyzðx� yÞðx� zÞðy� zÞ ¼ 0:

This configuration has three double points and four triple points. By blowing up
P2 in the four triple points, we obtain a del Pezzo surface S with a configuration
of ten ð�1Þ-curves, namely the strict transforms of the six lines of L together
with the four exceptional divisors. These ten ð�1Þ-curves form a divisor B on S,
which is simple normal crossing, with only 15 double points as singularities. After
blowing up these 15 double points, we get a surface S 0, with 15 ð�1Þ-curves (the
exceptional divisors) and 10 ð�4Þ-curves (the strict transforms of the irreducible
components of B, which are now mutually disjoint). By taking a 2 :1 cover of S 0

branched along the 10 ð�4Þ-curves, we obtain the K3 surface X4, equipped with
a configuration V of 25 smooth rational curves and 30 double points, which is
described by the Petersen graph in Figure 2.

Figure 2. The Petersen graph.
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The 15 edges of the graph correspond to the exceptional divisors and the 10
red dots correspond to curves from B; therefore, n ¼ 25, t2 ¼ 30 and tr ¼ 0 for
all rb 3. We now compute the Harbourne constant for this configuration, we
have:

hðX ;VÞ ¼
ðC1 þ � � � þ C25Þ2 �

P
j m

2
j

s
¼ 10� 120

30
Q�3:666;

as we somehow expected from the devilish shape of the Petersen graph; together
with the bound in Theorem 2.2, this yields

�3:7333Q�112=30a hðX ;VÞ ¼ �110=30Q�3:666:

Vinberg’s X4 surface appears also in a di¤erent interesting context of the maximal
possible cardinality of a finite complete family of incident planes in P5 – we refer
to [6] for details and results.

Example 3.3 (Vinberg configuration 2). Turning to the K3 surface X3, Vinberg
[16] provides the reader with a particularly nice birational model, a complete in-
tersection of a quadric and a cubic in P4 ¼ P4

ðx1:x2:x3:y:zÞ, which we call Y :

y2 ¼ x2
1 þ x2

2 þ x3
3 � 2ðx2x3 þ x1x3 þ x1x2Þ

z3 ¼ x1x2x3

�
:

This model contains 9 singular points of type A2, namely:

p1 ¼ ½0 : 1 : 0 : 1 : 0�; p2 ¼ ½0 : 1 : 0 : �1 : 0�; p3 ¼ ½0 : 1 : 1 : 0 : 0�;
p4 ¼ ½1 : 1 : 0 : 0 : 0�; p5 ¼ ½0 : 0 : 1 : 1 : 0�; p6 ¼ ½0 : 0 : 1 : �1 : 0�;
p7 ¼ ½1 : 0 : 1 : 0 : 0�; p8 ¼ ½1 : 0 : 0 : 1 : 0�; p9 ¼ ½1 : 0 : 0 : �1 : 0�:

There are 6 lines lying in X3, each of which contains three of the singular points,
in such a way that each singular point is the intersection point of exactly two of
the lines. More precisely, the lines are

Lijk : z ¼ xi ¼ y� ðxj � xkÞ ¼ 0;

for any i; j; k a f1; 2; 3g, iA jAkA i.
The configuration consisting of these 6 lines is shown in Figure 3.
We can resolve the singularities of Y by blowing up twice each singular point,

in order to get a smooth K3 surface, namely X3: resolving each singularity yields
two exceptional divisors, which are in fact ð�2Þ-curves as X3 is a K3 surface. The
exceptional divisors together with the strict transforms of the six lines on Y yields
a new configuration, which we call W. It consists of n ¼ 6þ 2 � 9 ¼ 24 smooth
rational curves and it has only double points as singularities, thus t2 ¼ 3 � 9 ¼ 27
and tr ¼ 0 for all rb 3. We now get the Harbourne constant:

hðX ;WÞ ¼
ðC1 þ � � � þ C24Þ2 �

P
rb2 r

2tr

s
¼ 6� 27 � 4

27
Q�3:777;
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and, by Theorem 2.2, it follows that

�3:888Q�35=9a hðX ;WÞ ¼ �3:777:

Example 3.4 (166-configuration). Let A be an abelian surface with an irreduc-
ible principal polarization. We are going to be interested in the singular Kummer
surface K given by the quotient of A by the involution ð�1ÞA (for a detailed ac-
count, see [3, Chapter 10, Section 2]). Suppose L is a symmetric line bundle on X
defining the principal polarization, then the map jL2 : X ! P3 defined by the lin-
ear system jL2j factors through an embedding of K in P3. The singular Kummer
surface K � P3 has 16 ordinary double points as singularities, namely the images
of the 2-divison points. Moreover, the 16 line bundles algebraically equivalent to
L yield 16 planes which are tangent to K and intersect K along 16 conics (these
planes are typically called tropes). This gives rise to the 166-configuration in the
Kummer surface: there are 16 points and 16 planes, each point is contained in
exactly 6 planes, and each plane contains exactly 6 points. The points at which
each pair of conics intersects are points of transversal intersection, as the conics
lie in di¤erent planes.

Consider the blow-up at the 16 singular points of K � P3. As these are
ordinary double points, one blow-up at each point is enough to resolve the
singularities of K , and so we obtain a smooth K3 surface X . Since the conics
of K intersect transversally, locally over the blown-up points we get a tree of
smooth rational ð�2Þ-curves which consists of the exceptional divisor being in-
tersected by the strict transforms of the six conics (which are now mutually
disjoint).

Consider the configuration C ¼ C1 þ � � � þ C32 of ð�2Þ-curves in X consisting
of the 16 exceptional divisors and the strict transforms of the 16 conics on K :
these curves only meet in double points because we have blown-up all the inter-
section points of the conics, and the number of double points is exactly 6 � 16 ¼
96. Therefore, for the configuration C we have n ¼ 32, t2 ¼ 96 and tr ¼ 0 for
rb 3. The Harbourne constant is then

hðX ;CÞ ¼
ðC1 þ � � � þ C32Þ2 �

P
rb2 r

2tr

s
¼ �8=3Q�2:666;

Figure 3. Dual graph of the six lines Lij on Y .
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and together with the lower bound of Theorem 2.2 this shows that

�3:08333Q�296=96a hðX ;CÞ ¼ �8=3Q�2:666:

Example 3.5 (Schur quartic surface). Let S be the quartic surface in P3 given
by

S : x4 � xy3 ¼ z4 � zw3:

The surface S is called the Schur quartic surface, and it is the surface that
achieves the upper bound of 64 lines for quartic surfaces (see, for example, [15]).
The 64 lines on S are divided into two classes, namely lines of the 1st kind and of
the 2nd kind. Lines of di¤erent kind can be distinguished according to the singu-
lar fibers of the fibration they induce on S; the singular fibers of an elliptic fibra-
tion induced by a line of the 1st or 2nd kind are depicted in Figures 4 and 5.

The configuration S of lines on S counts 64 lines, 8 quadruple points, 64
triple points, and 336 double points. We can extract a subconfiguration �SS of S,
which is obtained by only considering the lines of the 2nd kind: this configuration
consists of 16 lines and has only 8 quadruple points as singularities. We can now
compute the Harbourne constant in this case:

hðS; �SSÞ ¼ �8:

Figure 4. Singular fibers induced by a line of 1st kind.

Figure 5. Singular fibers induced by a line of 2nd kind.
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The lower bound given by Theorem 2.2 finally yields

�9a hðS; �SSÞ ¼ �8:

It is interesting to notice that the same numerical values are achieved by means
of the Bauer configuration of lines on the Fermat quartic surface

F : x4 þ y4 þ z4 þ w4 ¼ 0;

as it is shown in [14, Example 4.3]. Bauer configuration consists of 16 lines and
has only 8 quadruple points as singularities, so both the Harbourne constant and
the lower bound given by Theorem 2.2 are the same as above, namely

�9a hðS;FÞ ¼ �8:

However, we remark that, in the case of the Fermat surface, all lines are of the
1st kind.

Example 3.6 (Double Kummer pencil). Let E and E 0 be two elliptic curves.
Recall that any elliptic curve is a 2 :1 cover of P1 ramified at 4 points, and that
the 4 ramification points are exactly the 2-torsion points of the elliptic curve (to
see this, work with an elliptic curve in Legendre form). Consider the product
(abelian) surface E � E 0, which comes with two projections onto the factors. We
can see a configuration E of 8 elliptic curves on E � E 0: these are the fibers of
p over the 2-torsion points of E, which we call Ci (1a ia 4), together with the
fibers of p 0 over the 2-torsion points of E 0, denoted by Dj (1a ja 4). Each Ci

intersects all Dj ’s, and viceversa, thus SingðEÞ consists of 16 points, which in
turn are the 2-torsion points of E � E 0. We can now consider the K3 surface
KmðE � E 0Þ, the Kummer surface of E � E 0, obtain by first quotienting by the
action of ð�1ÞE�E 0 and then resolving the 16 singularities of type A1. The con-
figuration E yields a configuration K of ð�2Þ-curves on KmðE � E 0Þ, which con-
sists of the images of the curves Ci and Dj (1a i; ja 4) in KmðE � E 0Þ and the
16 exceptional divisors (with their reduced structure). The configuration K is the
double Kummer pencil configuration, and it consists of n ¼ 24 ð�2Þ-curves inter-
secting only at t2 ¼ 2 � 16 ¼ 32 double points (see Figure 6).

Figure 6. The double Kummer pencil configuration.
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This yields the following Harbourne constant:

hðKmðE � E 0Þ;KÞ ¼ �14=4Q�3:5;

which combined with Theorem 2.2 results in

�3:75 ¼ �15=4a hðX ;KÞ ¼ �14=4 ¼ �3:5:

Example 3.7 (Enriques surfaces covered by symmetric quartic surfaces). This
example is borrowed from a recent paper of Mukai and Ohashi [13]. Let X be
the quartic in P3 given as the zero locus of

X :
�X

i<j

xixj

�2
¼ kx0x1x2x3:

This is a singular hypersurface, with four singularities of type D4, namely the ver-
tices of the fundamental tetrahedron. The coordinate planes cut X in conics with
multiplicity two, which are also called tropes, and each one of these conics passes
through 3 of the singular points. After resolving the D4-singularities, we obtain
a K3 surface X , which is equipped with an interesting configuration C of ð�2Þ-
curves, namely the exceptional divisors coming from the resolution of the sin-
gularities and the strict transforms of the tropes. The configuration C is described
by the dual graph in Figure 7, where all the intersections are points of multi-
plicity two, thus n ¼ 20, t2 ¼ 24 and tr ¼ 0 for all rb 3. We can compute the
Harbourne constant for this configuration:

hðX ;CÞ ¼ �11=3Q3:666;

and thanks to Theorem 2.2 we also see that

�4:333Q�13=3a hðX ;CÞ ¼ �11=3Q3:666:

From the K3 surface X , we can construct an Enriques surface with an inter-
esting configuration of smooth rational curves. The singular surface X is en-
dowed with the standard Cremona transformation

e : ½x0 : x1 : x2 : x3� 7! ½x�1
0 : x�1

1 : x�1
2 : x�1

3 �;

Figure 7. The configuration C of smooth rational curves on X .
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which extends to a morphism on the blown-up surface X . For general values of k
(precise conditions are given in [13, Page 1]), there are no fixed points of e on X ,
and thus the quotient X=e ¼: S is an Enriques surface. The morphism e acts on
the cube-shaped diagram in Figure 7 by point symmetry (i.e., symmetry with re-
spect to the center of the cube), and thus the quotient diagram is the tetrahedron
graph in Figure 8, also known as the 10A configuration in Mukai–Ohashi’s
notation.

The graph describes the interaction of the images of the rational curves on
X modulo quotient by e. We now compute the Harbourne constant for such a
configuration of curves:

hðX ; 10AÞ ¼ �11=3Q3:666:

For Enriques surfaces, the bound in Theorem 2.2 takes the stronger form

hðX ; 10AÞb�4þ 2nþ t2 � 36

s
¼ �13=3;

and thus

�4:333Q�13=3a hðX ; 10AÞ ¼ �11=3Q3:666:

Example 3.8 (A Hessian K3 surface and its Enriques quotient). The last exam-
ple we would like to present uses the construction of the Hessian K3 surface as-
sociated to a cubic surface in P3; details can be found in [4]. Let S be a smooth
cubic surface defined by the Sylvester form

S:
X4

i¼0

x3
1 ¼

X4

i¼0

xi ¼ 0:

The union of the five planes in P3 defined by xi ¼ 0 is called the pentahedron
of S. The 10 edges Lijk of the pentahedron are lines on S. We can consider the
Hessian Y of S: it is the (singular) surface defined by

Y : ðx0x1x2x3x4Þ
X4

i¼0

1

xi
¼

X4

i¼0

xi ¼ 0:

Figure 8. The 10A configuration on the Enriques surface S.
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The ten lines Lij lie on Y , and the vertices Pijk of the pentahedron are the singular
points of Y (double points). The desingularization X of Y is a K3 surface, called
the Hessian K3 surface associate to S. There are 20 rational curves on X , 10 of
which are the strict transforms of the Lij’s, and we will call them by Nij. The re-
maining ones are the curves arising from the resolution of the singularities at the
Pijk’s, and they will be denoted by Nijk.

We can find 20 more rational curves on X by looking at the Eckardt points
of S. A smooth cubic surface has 27 lines and 45 plane sections which are unions
of three lines. In case three coplanar lines meet at a single point, this point is
called an Eckardt point. Each Eckardt point on S yields a pair of lines on Y meet-
ing at one of the Pijk’s, for a total of 20 lines. The strict transforms of these extra
lines yield 20 new rational curves on X . We can read o¤ the intersection numbers
of all these curves from [4, Sections 1–2]: the configuration C given by the 40
aforementioned rational curves has 130 double points. The Harbourne constant
is

hðX ;CÞ ¼ 180� 520

130
¼ �34=13Q�2:615384;

combining with Theorem 2.2, we get

�2:9384615Q�4þ 138

130
a hðX ;CÞ ¼ �34=13Q�2:615384:

From X , we can cook up an Enriques surface X : every Hessian quartic surface
is equipped with a birational involution, which becomes a fixed-point-free mor-
phism on the Hessian K3 surface, yielding an Enriques surface by taking the quo-
tient [5]. Consider X as above, equipped with its Enriques involution t: this auto-
morphism swaps Nijk and Nlm (for fi; j; k; l;mg ¼ f0; 1; 2; 3; 4g), and it also swaps
the two rational curves arising from each Eckardt point. As none of the curves
in C is fixed by t, on the Enriques quotient X , we obtain a configuration C of
20 rational curves, meeting at 65 double points. As the local intersections are pre-
served, the Harbourne constant and its lower bound remain unchanged:

�2:9384615Q�4þ 69

65
a hðX ;CÞ ¼ �34=13Q�2:615384:
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[15] S. Rams - M. Schütt, 64 lines on smooth quartic surfaces, Math. Ann. 362 no. 1–2:
679–698 (2015).

[16] E. B. Vinberg, The two most algebraic K3 surfaces, Math. Ann. 265: 1–21 (1983).

Received 3 February 2017,
and in revised form 10 February 2017.

252 r. laface and p. pokora



Roberto Laface

Institut für Algebraische Geometrie

Leibniz Universität Hannover

Welfengarten 1

D-30167 Hannover, Germany

laface@math.uni-hannover.de

Piotr Pokora

Institut für Mathematik

Johannes Gutenberg Universität Mainz

Staudingerweg 9

D-55099 Mainz, Germany

piotrpkr@gmail.com

253on the local negativity of surfaces




	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mkEnd-page

