
Rend. Lincei Mat. Appl. 29 (2018), 289–296
DOI 10.4171/RLM/805

Number Theory — On the existence of covers of P1 associated to certain permuta-
tions, by Pietro Corvaja and Umberto Zannier, communicated on Novem-
ber 10, 2017.

Abstract. — In this short note we prove the impossibility of realizing finite topological covers

of the Riemann sphere minus three points, associated to certain explicit combinatorial (permu-
tation) data. This comes from a question of M. Zieve and falls in the framework of the so-called

‘‘Hurwitz problem’’, asking for a ‘‘simple’’ description of the combinatorial data which can be so
realized.
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1. Introduction

The present brief note is concerned with the existence (and description) of cer-
tain finite connected covers of P1nf0; 1;lg (where by P1 we shall always mean
P1ðCÞ).

It is well known that any such topological cover may be in fact realized as a
cover of Riemann surfaces, and that it may be compactified as a branched cover
of P1 by a compact Riemann surface; in turn, this yields a cover of complete
smooth complex algebraic curves.

It is also well known (see [5], [6]) that every such cover, of degree say n, corre-
sponds up to isomorphism to a triple of permutations s0; s1; sl a Sn, taken up to
conjugacy by a single element of Sn, such that

(i) s0, s1, sl generate a transitive subgroup of Sn and
(ii) s0s1sl ¼ 1.1

Moreover, the cycle decompositions of these permutations correspond to the
respective branchings above 0, 1, l, in the sense that the cycles which appear
represent the inertia groups, thus the lengths being equal to the respective ramifi-
cation indices. In this way we obtain three partitions of the degree n as sum of

1 Indeed, the group generated by the permutations is a homomorphic image of p1ðP1 �
f0; 1;lgÞ, which is a free group on two generators; then the quotient of the universal cover of
ðP1 � f0; 1;lgÞ by the action of the kernel of the said homomorphism yields the Galois closure of

the topological cover in question, the cover itself then corresponds to the stabiliser of a point in the
permutation action.



positive integers. The set of data of these partitions is usually referred to as a
branching type.

One may also extend this to covers of P1 branched above more than three
points.

It is an open problem attributed to Hurwitz to ‘describe’ in simple terms all
the possible branching types which may occur, the problem being significant (for
several reasons, including especially Belyi’s Theorem) already in the special but
important case of three branching points, which shall be the only case appearing
below.

Several papers obtained some necessary or su‰cient conditions, and we do
not try here to give any sort of complete account on this; but see for instance
the paper [2] by the two of us and C. Petronio, where we give a number of refer-
ences and where examples appear showing that occasionally there may be subtle
arithmetical restrictions for a triple to occur.

Recently, M. Zieve and a group of collaborators went ahead with this prob-
lem (also for more than three permutations). In particular, they listed certain in-
finite families of triples and quadruples, for both the existence and non-existence
situations. For instance, by an ingenious argument they could exclude the
branching types of degree 2m, with four branch points, when the cycle decompo-
sition of three of the permutation is of type ð2; 2; . . . ; 2Þ (m times) whereas the
fourth one is of type ð1; 3; 2; . . . ; 2Þ.2

Zieve considered some other infinite families of branching types, this time with
three branch points, for which experimental evidence suggested impossibility,
which however had not yet been demonstrably excluded. Here are the three fam-
ilies in question, where m denotes any positive integer, and where for instance by
‘‘½13; 2m; 5�’’ we mean a permutation whose cycle structure consists of three fixed
points, m transpositions and a 5-cycle.

deg ¼ 3m: ½3m�; ½3m�; ½2; 4; 3m�2�;ð1Þ
deg ¼ 4m: ½22m�; ½4m�; ½3; 5; 4m�2�;ð2Þ
deg ¼ 6m: ½23m�; ½32m�; ½5; 7; 6m�2�:ð3Þ

The first and main purpose of this paper is to prove the impossibility of these
branching types, as expected by Zieve:

Theorem 1.1. The branching types represented in (1), (2), (3) are all impossible:
in each case, given any integer m > 0 there do not exist permutations s0, s1, sl
with the respective cycle structure and satisfying (ii) above.

We note at once that we need not assume (i) above to obtain the impossibility:
as we shall repeat in the proof, given permutations with those data and satisfying

2Zieve tells us that his impossibility proof depends on the fact that if the cycle decomposition

of two permutations involves only transpositions then in their product every length appears an even

number of times.
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(ii), the transitivity of the action would be achieved in all the three cases by re-
stricting to an appropriate orbit.

Our method is extremely simple, just a ‘trick’, and we briefly comment below
on it. Also, we shall illustrate another simple application of a similar principle,
this time not to an impossibility proof, but to single out a certain property
of the corresponding covers. For this, we shall consider covers with branching
type ½3m�, ½3m�, ½3m�, hence somewhat similar to (1). Such covers however are
well known and our purpose here is only to show another instance of the same
trick.

We give a description of them which leads to rather complete results concern-
ing e.g. the Galois closure of the covers and the fields of definition of the involved
curves (now of genus 1). In general, the fields of definition of the covers have
been studied in particular in connection with the theory of the so-called dessins
d’enfants, emphasised by Grothendieck. The present case is one of the few where
information can be obtained which can be considered satisfactory. (See [1] for the
study of covers which includes our special one.)

Before stating our result, let F denote the (Fermat) elliptic curve defined
a‰nely by

F : u3 ¼ f ð1� f Þ;ð4Þ

where we choose the point at infinity as origin. Note the equation ð2f � 1Þ2 ¼
4u3 þ 1. This curve has Complex Multiplication by a primitive cubic root of
unity y, with EndðFÞGZ½y� ¼: O. We have:

Theorem 1.2. For each integer m, there is a connected cover E ! P1 of degree
3m, with branching type ½3m�, ½3m�, ½3m�. All such covers have E of genus 1 and

factor as E !f F !f P1. In particular, EGF=F for a finite subgroup F � F ðCÞ of
order m. In this isomorphism, the Galois closure of E=P1 is F=FB yFB y2F, so
E=P1 is Galois if EGF. Also, the degree over P1 of the Galois closure is at most
3m2.

Conversely, given a rational map g : E ! F of degree m, where E has genus 1,
the composed cover f � g (of degree 3m) has the said branching type.

Remark 1.3. In particular, the description of these covers amounts to describe
the isogenies E ! F and the representation EGF=F allows to count easily the
number of non isomorphic covers of given degree. Also, any isogeny can be fac-
tored as a multiplication map by an integer, and a cyclic isogeny. Then, basic
theory of Complex Multiplication allows to describe their fields of definition.
Here the situation is di¤erent depending on the residue class of primes p modulo
3. Just to mention an instance, take a cyclic isogeny of degree p. If pC 1 ðmod3Þ
the isogeny is is either an endomorpishm (defined over QðyÞ), or the field of
definition has degree p� 1; if instead pC 2 ðmod3Þ, the field of definition has
degree pþ 1.

As another instance of what can be said, when m ¼ x2 þ xyþ y2 for integers
x, y there is always a cover as above of degree m, with E isomorphic to F , so
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defined over Q. (The cover map however shall be defined in general only over
QðyÞ.)

See also [2] for other examples related to Complex Multiplication, which
appears to give rise to quite peculiar constraints. Moreover, as detailed in [2]
for CM by i (rather than y), the corresponding covers of P1 by curves of genus
1 give rise, through appropriate substitutions, to other covers P1 ! P1, again
unbranched outside 0, 1, l and with special branching types.

Note finally that, as generally happens, the degree of the Galois closure is the
order of the subgroup generated in Sn by the three permutations in question.

1.1. About the methods

In principle, the Hurwitz problem is of a purely combinatorial nature, on per-
mutations of a finite set (as is the above theorem). However experience has
shown (see e.g. [2]) that sometimes other, more involved, methods are required to
deal with these issues. Naturally this reflects the geometrical significance of the
structures which underly the existence of the permutations in question: this has
a purely topological aspect, but also a metrical one, an analytical one, and an
algebro-geometrical one. For instance certain proofs rely on the fact that the per-
mutations correspond to certain triangulation of compact topological surfaces.

Our proof method is very simple to describe, relying on basic properties of
elliptic curves. A completely di¤erent, rather longer and more complicated,
approach has been suggested in [4], depending on pure topology. After the pres-
ent note was conceived, Zieve brought to our attention the paper [3], relying on
the viewpoint of triangulations. Such paper apparently is concerned with di¤erent
problems, but it turns out that the impossibility one of the above three patterns
falls as a corollary.3

2. Proofs

2.1. Proof of Theorem 1.1

Proof. Let us start by showing the impossibility of the branching type (1). If
this is realisable, we would have three permutations a, b, c on f1; 2; . . . ; 3mg,
with cycle structures resp. ½3m�, ½3m�, ½2; 4; 3m�2� and such that abc ¼ 1.

First, note that we may reduce to the case when the group generated by a, b, c
acts transitively on f1; 2; . . . ; 3mg. In fact, since the group contains e.g. a, which
has order 3 and no fixed points, each orbit of the group has cardinality divisible
by 3; then there must exist an orbit containing both cyclic orbits of c of lengths
coprime with 3, i.e. the orbits of lengths 2, 4, and it now su‰ces to replace the set
f1; 2; . . . ; 3mg with this orbit.

3The paper [3] also uses elliptic curves to present a possible proof of a certain holonomy theorem;

this has surely some analogy with our method; however our argument is far more direct and avoids
appeal to such a theorem. The main methods of [3] are of purely geometrical nature.
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Now, by what has been recalled above, the said cycle structure corresponds
to a branched cover f : E ! P1, where E is a smooth complex curve, and f is a
rational map of degree 3m, unbranched outside f0; 1;lg, with the said branch-
ing type above the three points.

For the genus g of E, the Hurwitz formula gives 2g� 2 ¼ �6mþ ð3m�mÞ þ
ð3m�mÞ þ ð3m� ðm� 2Þ � 2Þ ¼ 0, hence g ¼ 1.

The main point is to look now at the divisors divð f Þ, divð f � 1Þ, divðdf Þ. All
of these divisors are linearly equivalent to 0, the first two by definition, the last
one because E has genus 1 (hence there is on it a di¤erential with 0 divisor).

Let us then write

divð f Þ ¼ 3A� 3C; divð f � 1Þ ¼ 2Pþ 4Qþ 3B� 3C;

where P, Q are the (distinct) points on E corresponding to the cycles of length
2, 4, and where A, B, C are certain positive divisors of degrees resp. m, m� 2, m.

Then we immediately find that divðdf Þb 2Aþ Pþ 3Qþ 2B� 4C. But the
right side has degree 0 so there must be equality; this is a crucial point in the
proof.

All of this implies that at the level of linear equivalence, denotedP, we have

3AP 3C; 2Pþ 4Qþ 3BP 3C; 2Aþ Pþ 3Qþ 2BP 4C:

Summing the first two of these relations, doubling, and subtracting three times
the third we obtain PPQ, which is impossible.

For the branching type (2) things are similar. As above we obtain positive
divisors A, B, C of degrees resp. 2m, m� 2, m and points PAQ on a smooth
curve of genus 1 such that

2AP 4C; 3Pþ 5Qþ 4BP 4C; Aþ 2Pþ 4Qþ 3BP 5C:

Multiplying the third by four and subtracting the second multiplied by three and
the first multiplied by two we obtain again PPQ, a contradiction.

Finally, arguing in a completely similar way, for the branching type (3) we
first obtain

2AP 3C; 5Pþ 7Qþ 6BP 3C; Aþ 4Pþ 6Qþ 5BP 4C;

for divisors A, B, C of degrees resp. 3m, m� 2, 2m and points PAQ on E, of
genus 1.

Summing the triple of the first with five times the second and subtracting six
times the third, we obtain once more PPQ, which is impossible.

This concludes the proof of Theorem 1.1. r

Remark 2.1. Since the assertion of Theorem 1.1 regards merely permutations,
it would be desirable, and an amusing challenge, to obtain a ‘direct’ proof, in-
volving only combinatorial and algebraic properties of Sn. Our proof is simple
but relying on somewhat demanding tools, like Riemann Existence Theorem. A
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more elementary proof is in [4]. However, this relies on topology, so again does
not represent exactly what we are thinking of; moreover, it is not very short and
requires familiarity with certain topological configurations which one can ‘draw’
but which are not easy to describe otherwise.

2.2. Proof of Theorem 1.2

Proof. For any integer m > 0 the existence of a connected cover of P1 with the
branching type ½3m�, ½3m�, ½3m� may be established just by producing the corre-
sponding three permutations in S3m, as illustrated above. Here is a possibility:

ð1; 2; 3Þð4; 5; 6Þ . . . ð3m� 2; 3m� 1; 3mÞð5Þ
� ð2; 3; 4Þð5; 6; 7Þ . . . ð3m� 1; 3m; 1Þ

¼ ð2; 1; 3mÞð5; 4; 3Þ . . . ð3m� 1; 3m� 2; 3m� 3Þ:

However our argument gives more, and we can produce and describe quite
explicitly all of the covers with the said branching type.

Let then f : E ! P1 be one such (connected) cover, of degree 3m. A calcula-
tion as in the the proof of Theorem 1.1 shows that E has genus 1, so becomes an
elliptic curve if we choose an origin, and we do this by choosing a marked pole
of f .

Note that the Fermat curve F of equation (4) corresponds to the case m ¼ 1,
and to complete the proof of the theorem we have to show that our cover map f
factors through F ; in turn, for this it su‰ces to show that there is a function
u a CðEÞ satisfying u3 ¼ f ð f � 1Þ. To prove this last claim, we use the same
simple argument as in the proof of the former theorem.

Write the divisors of f and f � 1 in the shape divð f Þ ¼ 3A� 3C, divð f � 1Þ
¼ 3B� 3C, where A, B, C are positive divisors on E of degree m, which we can
do because of the branching conditions.

Then, as in the proof of Theorem 1.1, we find that divðdf Þ ¼ 2Aþ 2B� 4C,
so we obtain the linear equivalences

3AP 3BP 3C; 2Aþ 2BP 4C:

Summing the first two, we deduce that 3ðAþ BÞP 6C, whence, subtracting
the third, Aþ BP 2C. Therefore there is a rational function u on E with
divðuÞ ¼ Aþ B� 2C. But then divðu3Þ ¼ 3Aþ 3B� 6C ¼ divð f ð f � 1ÞÞ. Hence
u3=f ð f � 1Þ is a constant, which we may assume to be 1 by rescaling u, as
required.

Remark 2.2. Another proof of the said claim is as follows. We have the map
p : ðu; f Þ 7! f on F . If f : E ! P1 does not factor as asserted, then the fiber
product X :¼ F �p; f E over P1, with respect to the maps p, f , would be an irre-
ducible curve, and let ~XX denote a complete smooth model of it. The branching
conditions ensure that the projection ~XX ! F would be unramified, so that ~XX
would have genus 1 and after a suitable choice of the origin would become an
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elliptic curve isogenous to F . Now, the kernel of the isogeny would be a sub-
group of ~XX of order 3m, and the fiber product situation shows that this would
contain the kernel of the isogeny ~XX ! E of degree 3: for otherwise the map
~XX ! F would induce on E an unramified map of degree 3m, which would be f ,
a contradiction. But then after all we would find the sought factorisation of f
through F .

Conversely, it is immediately checked that composing any isogeny E ! F
with the f -map on F we obtain a cover E ! P1 with the required branching
type.

To conclude the proof of Theorem 1.2, we have only to inspect the Galois
closure of a cover with the branching type in question. We have proved that the

cover factors as E !f F !f P1. As in the statement, we find that E is isogenous
to F through f (of degree m) and there is an isogeny f̂f : F ! E dual to f, hence
with the same degree m and such that f � f̂f ¼ ½m� (the multiplication-by-m map
on F ). If F :¼ ker f̂f, we find EGF=F.

Now, we contend that the composite cover f � f � f̂f ¼ f � ½m� : F ! P1 is
Galois. Indeed, it su‰ces to show that each automorphism of f : F ! P1 extends
to an automorphism of f � ½m� : F ! F ! P1. This is clear, because any auto-
morphism of the first degree-3 cover is induced by y on F (in fact, f � y ¼ f ).
But then it su‰ces to consider y on the ‘top’ F , and observe that ½m�, y
commute.

From this, all the other observations follow from simple Galois theory, since
E is an intermediate cover. r

As a final remark, we also note that the Galois group of the last cover is a
semidirect product ðZ=ðmÞÞ2 zZ=ð3Þ, represented as a group of a‰ne transfor-
mations x 7! yrxþ u, for x a F , r a Z=ð3Þ and u a F a torsion point of order m.
This also allows to recover explicitly the three permutations through actions on
suitable sets of points. (See also [2] for similar considerations concerning however
Complex Multiplication by i.)
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