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Geometry — Elementary solution of an infinite sequence of instances of the Hur-
witz problem, by Tom Ferragut and Carlo Petronio, communicated on
December 15, 2017.

Abstract. — We prove that there exists no branched cover from the torus to the sphere with

degree 3h and 3 branching points in the target with local degrees ð3; . . . ; 3Þ, ð3; . . . ; 3Þ, ð4; 2; 3; . . . ; 3Þ
at their preimages. The result was already established by Izmestiev, Kusner, Rote, Springborn, and

Sullivan, using geometric techniques, and by Corvaja and Zannier with a more algebraic approach,
whereas our proof is topological and completely elementary: besides the definitions, it only uses the

fact that on the torus a simple closed curve can only be trivial (in homology, or equivalently bound-
ing a disc, or equivalently separating) or non-trivial.
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A (topological) branched cover between surfaces is a map f : ~SS ! S, where ~SS
and S are closed and connected 2-manifolds and f is locally modeled (in a topo-
logical sense) on maps of the form ðC; 0Þ C z 7! zk a ðC; 0Þ. If k > 1 the point 0
in the target C is called a branching point, and k is called the local degree at the
point 0 in the source C. There are finitely many branching points, removing
which, together with their pre-images, one gets a genuine cover of some degree
d. If there are n branching points, the local degrees at the points in the pre-image
of the j-th one form a partition pj of d of some length lj, and the following
Riemann–Hurwitz relation holds:

wð~SSÞ � ðl1 þ � � � þ lnÞ ¼ dðwðSÞ � nÞ:

The very old Hurwitz problem asks whether given ~SS;S; d; n; p1; . . . ; pn satisfying
this relation there exists some f realizing them. (For a non-orientable ~SS and/or
S the Riemann–Hurwitz relation must actually be complemented with certain
other necessary conditions, but we will not get into this here.) A number of par-
tial solutions of the Hurwitz problem have been obtained over the time, and we
quickly mention here the fundamental [4], the survey [10], and the more recent
[7, 8, 2, 9, 11].

Certain instances of the Hurwitz problem recently emerged in the work of
M. Zieve [12] and his team of collaborators, including in particular the case
where the source surface is the torus T 2, the target is the sphere S2, the degree
is d ¼ 3h, and there are n ¼ 3 branching points with associated partitions
ð3; . . . ; 3Þ, ð3; . . . ; 3Þ, ð4; 2; 3; . . . ; 3Þ of d. It actually turns out that this branch



datum is indeed not realizable, as Zieve had conjectured, which follows from
results established in [6] using geometric techniques (holonomy of Euclidean
structures). The same fact was also elegantly proved by Corvaja and Zannier [3]
with a more algebraic approach. In this note we provide yet another proof of the
same result. Our approach is purely combinatorial and completely elementary:
besides the definitions, it only uses the fact that on the torus a simple closed curve
can only be trivial (in homology, or equivalently bounding a disc, or equivalently
separating) or non-trivial.

We conclude this introduction with the formal statement of the (previously
known) result established in this note:

Theorem. There exists no branched cover f : T 2 ! S2 with degree d ¼ 3h and
3 branching points with associated partitions

ð3; . . . ; 3Þ; ð3; . . . ; 3Þ; ð4; 2; 3; . . . ; 3Þ:

1. Dessins d’enfant

In this section we quickly review the beautiful technique of dessins d’enfant due
to Grothendieck [1, 5], noting that, at the elementary level at which we exploit it,
it only requires the definition of branched cover and some very basic topology.

Let f : ~SS ! S2 be a degree-d branched cover from a closed connected sur-
face ~SS to the sphere S2, branched over 3 points p1, p2, p3 with local degrees
pj ¼ ðdjiÞlji¼1 over pj. In S2 take a simple arc s with vertices at p1 (white) and p2
(black), and we view S2 as being obtained from the (closed) bigon ~BB of Fig. 1-left
by attaching both the edges of ~BB to s so to match the vertex colors. This gives a
realization of S2 as the quotient of ~BB under the identification of its two edges. Let
l : ~BB ! S2 be the projection to the quotient. Note that the complement of s in S2

is an open disc B, whose closure in S2 is the whole of S2, but the restriction of l
to the interior of ~BB is a homeomorphism with B, so we can view ~BB as the abstract
closure of B.

Now set D ¼ f �1ðsÞ. Then D is a graph with white vertices of valences
ðd1iÞl1i¼1 and black vertices of valences ðd2iÞl2i¼1, and D is bipartite (every edge has
a white and a black end). Moreover the complement of D in ~SS is a union of open
discs ðRiÞl3i¼1, where Ri is the interior of a polygon with 2d3i vertices of alternating
white and black color. This means that, if ~RRi is the polygon of Fig. 1-right (with
2d3i vertices), there exists a map li : ~RRi ! ~SS which restricted to the interior of ~RRi

is a homeomorphism with Ri, and restricted to each edge is a homeomorphism

Figure 1. A bigon and a polygon.
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with an edge of D matching the vertex colors. So ~RRi can be viewed as the abstract
closure of Ri. The map li may fail to be a homeomorphism between ~RRi and the
closure of Ri in ~SS if Ri is multiply incident to some vertex of D or doubly incident
to some edge of D. We say that Ri has embedded closure if li is injective, hence a
homeomorphism between ~RRi and the closure of Ri in ~SS.

We will say that a bipartite graph D in ~SS with valences ðd1iÞl1i¼1 at the white
vertices and ðd2iÞl2i¼1 at the black ones, and complement consisting of polygons

having ð2d3iÞl3i¼1 edges, realizes the branched cover f : ~SS ! S2 with 3 branching
points and local degrees p1, p2, p3 over them, where pj ¼ ðdjiÞlji¼1. This terminol-
ogy is justified by the fact that f exists if and only if D does.

2. Proof of the Theorem

Suppose by contradiction that a branched cover f : T 2 ! S2 as in the statement
exists, and let D be a dessin d’enfant on T 2 realizing it, as explained in the pre-
vious section, with white and black vertices corresponding to the first two parti-
tions, so the complementary regions are one square S, some hexagons H and one
octagon O, shown abstractly in Fig. 2. Let D̂D be the graph dual to D (which is
well-defined because the complement of D is a union of open discs), and let G
be the set of all simple loops in D̂D which are simplicial (concatenations of edges),
and non-trivial (non-zero in H1ðT 2Þ, or, equivalently, not bounding a disc on
T 2, or, equivalently, not separating T 2). Since T 2nD̂D is also a union of open discs,
the inclusion D̂D ,! T 2 induces a surjection H1ðD̂DÞ ! H1ðT 2Þ. Moreover H1ðD̂DÞ is
generated by simple simplicial loops, so G is non-empty. We now define Gn as the
set of loops in G consisting of n edges, and we prove by induction that Gn ¼ j,
thereby showing that G ¼ j and getting the desired contradiction.

For n ¼ 1 we prove the slightly stronger fact (needed below) that every region
has embedded closure, namely, that its closure in T 2 is homeomorphic to its
abstract closure. Taking into account the symmetries (including a color switch)
this may fail to happen only if some edge a in Fig. 2 is glued to b or c of the
same region (if two vertices of a region are glued together then two edges also
are, since the vertices have valence 3). The case b ¼ a implies V has valence 1,
so it is impossible. If c ¼ a in H we have the situation of Fig. 3-left, and each of
the neighboring regions already has 3 vertices of one color, so it cannot be S. If it
is an H, it also has a gluing of type c ¼ a. Iterating, we have a tube of H’s as in
Fig. 3-centre that at some point must hit O from both sides, which is impossible

Figure 2. The regions. The notation V , a, b, c; is only needed for the base step of our
induction argument.
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because the terminal region already contains 5 vertices of each color. If c ¼ a in
O then we have Fig. 3-right, so a neighboring region also has non-embedded clo-
sure, which was already excluded.

Let us now assume that nb 2 and Gm ¼ j for all m < n. By contradiction,
take g a Gn. From now on in our figures we will use for g a thicker line than
that used for D. We first note that g cannot enter a region through an edge and
leave it from an adjacent edge (otherwise we could reduce its length), so the only
ways g can cross a region are those shown in Fig. 4. Therefore g is described by
a word in the letters S, Hd , Hl, Hr, Od , Ol, OL, Or, OR, from which we omit the
Hd ’s for simplicity. The vertex coloring implies that the total number of S, Hl,
Hr, Od , OL, OR in g is even.

We now prove that any subword HrHr, HlHl, SHr or SHl is impossible in
g, as shown in Fig. 5 (here the thick dashed line gives a new g contradicting the
minimality of the original one). This already implies the former of the following
claims:

(1) No g a Gn can contain S but not O;
(2) There exists g a Gn consisting of H’s only.

Figure 3. A tube of H’s cannot end at an O from both sides. A non-embedded O gives a
non-embedded H.

Figure 4. The ways g can cross a region. Note that the vertex colors may be switched.

Figure 5. Impossible configurations.
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To establish the latter, we suppose O a g a Gn and list all the possible cases up
to symmetry (which includes switching colors and/or reversing the direction of g):

S B g Od a g ) g ¼ OdHrðHlHrÞ p

Or a g ) g ¼ OrðHrHlÞ p

OR a g g ¼ ORHrðHlHrÞ p

g ¼ ORHlðHrHlÞ p

S a g ) SO a g Od a g ) g ¼ SOdðHrHlÞ p

Or a g g ¼ HrSOrðHrHlÞ p

g ¼ HlSOrðHlHrÞ p

OR a g

For each of these cases we show in Fig. 6 to 9 a modification of g which gives
a new loop g 0 isotopic to g (and hence in G), and not longer than g. When g 0 is
shorter than g we have a contradiction to the minimality of g, so the case is im-
possible. To conclude we must show that g 0 does not contain O in the cases where
it is as long as g. To do this, suppose that g 0 contains O, and construct two loops
g1;2 by applying one of the three moves of Fig. 10. Note that whatever move ap-

Figure 6. g ¼ OdHrðHlHrÞ p ) bg 0 . . . (left); g ¼ OrðHrHlÞ p ) bg 0 . . . (centre for p > 0
and right for p ¼ 0). On the right, as in many figures below, we decorate some edges to
indicate that they are glued in pairs.

Figure 7. g ¼ ORHrðHlHrÞ p impossible (left); g ¼ ORHlðHrHlÞ p ) bg 0 . . . (right).
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plies, g is the homological sum of g1 and g2, so at least one of them is non-trivial.
If one of the moves of Fig. 10-left/centre applies, the total length of g1 and g2 is
1 plus the length of g, but we know that there is no length-1 loop at all (trivial or
not), so both g1 and g2 are shorter than g, a contradiction. If only the move of
Fig. 10-right applies then we are either in Fig. 7-right, or Fig. 8-left or Fig. 8-right

Figure 8. g ¼ SOdðHrHlÞ p ) bg 0 . . . (left); g ¼ HrSOrðHrHlÞ p impossible (centre); g ¼
HlSOrðHlHrÞ p ) bg 0 . . . (right).

Figure 9. SOR a g impossible: if in g there are m copies of H outside the word SOR, we
treat separately the cases mb 2 (left), m ¼ 1 (centre), and m ¼ 0 (right). In the last case, if
there are not even Hd ’s between S and OR, the absurd comes from the fact that a bigon is
created.

Figure 10. If O appears in g and immediately to the right of g, we can construct two loops
g1;2 of which g is the homological sum.
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and O is the region where g 0 makes a left turn; in this case the total length of g1
and g2 is 2 plus the length of g, but g1 and g2 both have length at least 3, so they
are both shorter than g, and again we have a contradiction.

Our next claim is the following:

(3) There exists g a Gn described by a word ðHlHrÞ p with pa 1.

By (2) and the fact that subwords HlHl or HrHr are impossible in g a Gn, we
have a g a Gn described by a word ðHlHrÞ p. Now suppose pb 2, consider a por-
tion of g described by HrHlHrHl as in Fig. 11-left and try to construct the two
loops gl and gr as in Fig. 11-centre by repeated application of the moves in Fig.

11-right. If one of gl or gr exists it belongs to Gn and it is described by ðHlHrÞ p�1,
so we can conclude recursively. The construction of gl or gr may fail only if when
we apply an elementary move as in Fig. 11-right to a a Gn the region B is . . .

• the square S; this would contradict (1), so it is impossible;

• already in a; but then B is not one of A1, A2, A3 because all regions are em-
bedded, and it easily follows that a is homologous to the sum of two shorter
loops, which is absurd because at least one of them would be non-trivial;

• the octagon O; this is indeed possible, but it cannot happen both to the left and
to the right, otherwise we would get a simplicial loop in D̂D intersecting g trans-
versely at one point, whence non-trivial, and shorter than g (actually, already at
least by 1 shorter than the portion of g described by HrHlHrHl).

We now include again the Hd ’s in the notation for the word describing a loop.
It follows from (3) that there exists g a Gn of shape H

q
d or HlH

q
dHrH

t
d . To con-

clude the proof we set gl ¼ gr ¼ g and we apply to gl and gr as long as possible
the following moves (that we describe for gl only):

Figure 11. Reducing the number of turns.
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• If O is not incident to the left margin of gl we entirely push gl to its left, as in
Fig. 12-left;

• If g has shape HlH
q
dHrH

t
d and O is incident to the left margin of gl but not to

Hl, we note that O is not incident to either Ht
dHl or to HlH

q
d , and we partially

push gl to its left so not to include O, as in Fig. 12-right (this is the case where
O is not incident to Ht

dHl).

Note that by construction the new gl does not contain O, so it also does not con-
tain S by (1), hence it has the same shape Hq

d or HlH
q
dHrH

t
d as the old gl. There-

fore at any time gl and gr have the same shape as the original g. We stop applying
the moves when one of the following situations is reached:

(a) The left margin of gl and the right margin of gr overlap;
(b) gl and gr have shape H

q
d and O is incident to the left margin of gl and to the

right margin of gr;
(c) gl and gr have shape HlH

q
dHrH

t
d and O is incident to the left margin of gl in

Hl and to the right margin of gr in Hr.

Case (a) with gl and gr of shape H
q
d is impossible, because the left margin of gl

and the right margin of gr would close up like a zip, leaving no space for S and O,
see Fig. 13-left. We postpone the treatment of case (a) with gl and gr of shape
HlH

q
dHrH

t
d , to face the easier cases (b) and (c). For (b), we have the situation of

Figure 12. Evolution of gl. The second move is performed so that O is not included in the
new loop.

Figure 13. Conclusion for the shape Hq
d .
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Fig. 13-right, where in the direction given by the arrow we must have a strip of
identical hexagons that can never close up. Case (c), excluding (a), is trivial: the
region that should be O cannot close up with fewer than 10 vertices, see Fig. 14-
top/left.

In case (a) for the shape HlH
q
dHrH

t
d , the left margin of gl can overlap with the

right margin of gr only along a segment as in Fig. 14-top/right – this segment has
type HrH

s
d in gl and Hs

dHl in gr, in particular it uses Hr from gl and Hl from gr,
so there is only one. Therefore the rest of gl and gr delimit an x� y rhombic area
R as in Fig. 14-bottom/left (with x� y ¼ 3� 4 in the figure), that must contain S
and O. Note that the H’s incident to qR are pairwise distinct: for the initial g the
left margin cannot be incident to the right margin, otherwise a move as in Fig.
10-left/centre would contradict its minimality, and during the construction of gl
and gr only new H’s are added. If O is not incident to one of the four sides of R
we can modify gl or gr as suggested already in Fig. 14-bottom/left. This modifi-
cation changes the shape of gl or gr, but:

• The modified loop is still minimal and does not contain O, so it does not con-
tain S;

• The area R into which O and S are forced to lie remains a rhombus,

Figure 14. Conclusion for the shape HlH
q
d HrH

t
d .
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• The H’s incident to qR are pairwise distinct (otherwise R closes up leaving no
space for O or S).

We can iterate this modification, shrinking R until O is incident to all the four
sides of qR. If R is 1� 1 of course there is space in R only for an H. If R is
1� y or x� 1 with x; yb 2, the fact that the H’s incident to qR are distinct im-
plies that the vertices of qR are distinct, so a region incident to all the four sides
or qR must have at least 10 vertices. If R is x� y with x; yb 2 then O contains
some of the germs of regions Oð�Þ in Fig. 14-bottom/right so as to touch all the
r=t=l=b sides of qR. An easy analysis shows that any identification between two
vertices of the Oð�Þ’s would force two H’s incident to qR to coincide, so it is
impossible. This implies that any Oð�Þ actually contained in O contributes to the
number of vertices of O with as many vertices as one sees in Fig. 14-bottom/right,
namely 3 for OðrÞ, OðtÞ, OðlÞ, OðbÞ, then 4 for OðtlÞ, OðbrÞ, and finally 5 for OðtrÞ,
OðblÞ. Therefore, a region can touch all of r=t=l=b with a total of no more that 8
vertices only if it includes OðtlÞ and OðbrÞ, but then the vertex colors again imply
that the number of vertices is at least 10. This gives the final contradiction and
concludes the proof.
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degli Studi di Bologna, Dipartimento di Matematica, Bologna 2010, pp. 105–120.

[11] J. Song - B. Xu, On rational functions with more than three branch points,
arXiv:1510.06291

306 t. ferragut and c. petronio

http://arxiv.org/abs/1510.06291


[12] M. Zieve, personal communication, 2016.

Received 19 May 2017,

and in revised form 6 December 2017.

Tom Ferragut
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