Rend. Lincei Mat. Appl. 29 (2018), 297–307 DOI 10.4171/RLM/806

Geometry — Elementary solution of an infinite sequence of instances of the Hurwitz problem, by TOM FERRAGUT and CARLO PETRONIO, communicated on December 15, 2017.

Abstract. — We prove that there exists no branched cover from the torus to the sphere with degree 3h and 3 branching points in the target with local degrees $(3, \ldots, 3), (3, \ldots, 3), (4, 2, 3, \ldots, 3)$ at their preimages. The result was already established by Izmestiev, Kusner, Rote, Springborn, and Sullivan, using geometric techniques, and by Corvaja and Zannier with a more algebraic approach, whereas our proof is topological and completely elementary: besides the definitions, it only uses the fact that on the torus a simple closed curve can only be *trivial* (in homology, or equivalently bounding a disc, or equivalently separating) or non-trivial.

KEY WORDS: Surface branched cover, Hurwitz problem

Mathematics Subject Classification: 57M12

A (topological) branched cover between surfaces is a map $f : \tilde{\Sigma} \to \Sigma$, where $\tilde{\Sigma}$ and Σ are closed and connected 2-manifolds and f is locally modeled (in a topological sense) on maps of the form $(\mathbb{C}, 0) \ni z \mapsto z^k \in (\mathbb{C}, 0)$. If $k > 1$ the point 0 in the target $\mathbb C$ is called a *branching point*, and k is called the local degree at the point 0 in the source C. There are finitely many branching points, removing which, together with their pre-images, one gets a genuine cover of some degree d . If there are *n* branching points, the local degrees at the points in the pre-image of the j-th one form a partition π_i of [d](#page-9-0) of some len[gth](#page-9-0) ℓ_i , and the following [Riemann–Hu](#page-9-0)rwitz relation holds:

$$
\chi(\tilde{\Sigma})-(\ell_1+\cdots+\ell_n)=d(\chi(\Sigma)-n).
$$

The very old *Hurwitz problem* asks whether given Σ , Σ , d , n, π_1, \ldots, π_n satisfying this relation there exists some f realizing them. (For a non-orientable Σ and/or Σ the Riemann–Hurwitz relation must actually be complemented with certain other necessary conditions, but we will not get into this here.) A number of partial solutions of the Hurwitz problem have been obtained over the time, and we quickly mention here the fundamental [4], the survey [10], and the more recent [7, 8, 2, 9, 11].

Certain instances of the Hurwitz problem recently emerged in the work of M. Zieve [12] and his team of collaborators, including in particular the case where the source surface is the torus T^2 , the target is the sphere S^2 , the degree is $d = 3h$, and there are $n = 3$ branching points with associated partitions $(3, \ldots, 3)$, $(3, \ldots, 3)$, $(4, 2, 3, \ldots, 3)$ of d. It actually turns out that this branch

datum is indeed not realizable, as Zieve had conjectured, which follows from results established in [6] using geometric techniques (holonomy of Euclidean structures). The same fact was also elegantly proved by Corvaja and Zannier [3] with a more algebraic approach. In this note we provide yet another proof of the same result. Our approach is purely combinatorial and completely elementary: besides the definitions, it only uses the fact that on the torus a simple closed curve can only be *trivial* (in homology, or equivalently bounding a disc, or equivalently separating) or *non-trivial*.

We conclude this introduction with the formal statement of the (previously known) result est[ablis](#page-9-0)hed in this note:

THEOREM. There exists no branched cover $f: T^2 \to S^2$ with degree $d = 3h$ and 3 branching points with associated partitions

$$
(3, \ldots, 3), \quad (3, \ldots, 3), \quad (4, 2, 3, \ldots, 3).
$$

1. Dessins d'enfant

In this section we quickly review the beautiful technique of dessins d'enfant due to Grothendieck [1, 5], noting that, at the elementary level at which we exploit it, it only requires the definition of branched cover and some very basic topology.

Let $f : \tilde{\Sigma} \to S^2$ be a degree-d branched cover from a closed connected surface $\tilde{\Sigma}$ to the sphere S^2 , branched over 3 points p_1 , p_2 , p_3 with local degrees $\pi_j = (d_{ji})_{i=1}^{\ell_j}$ over p_j . In S^2 take a simple arc σ with vertices at p_1 (white) and p_2 (black), and we view S^2 as being obtained from the (closed) bigon \tilde{B} of Fig. 1-left by attaching both the edges of \tilde{B} to σ so to match the vertex colors. This gives a realization of S^2 as the quotient of \tilde{B} under the identification of its two edges. Let $\lambda : \tilde{B} \to S^2$ be the projection to the quotient. Note that the complement of σ in S^2 is an open disc B, whose closure in S^2 is the whole of S^2 , but the restriction of λ to the interior of \tilde{B} is a homeomorphism with B, so we can view \tilde{B} as the abstract closure of B.

Now set $D = f^{-1}(\sigma)$. Then D is a graph with white vertices of valences $(d_{1i})_{i=1}^{\ell_1}$ and black vertices of valences $(d_{2i})_{i=1}^{\ell_2}$, and D is bipartite (every edge has a white and a black end). Moreover the complement of D in Σ is a union of open discs $(R_i)_{i=1}^{\ell_3}$, where R_i is the interior of a polygon with $2d_{3i}$ vertices of alternating white and black color. This means that, if \tilde{R}_i is the polygon of Fig. 1-right (with $2d_{3i}$ vertices), there exists a map $\lambda_i : \mathbf{R}_i \to \Sigma$ which restricted to the interior of \mathbf{R}_i is a homeomorphism with R_i , and restricted to each edge is a homeomorphism

Figure 1. A bigon and a polygon.

with an edge of D matching the vertex colors. So R_i can be viewed as the abstract closure of R_i . The map λ_i may fail to be a homeomorphism between \tilde{R}_i and the closure of R_i in $\tilde{\Sigma}$ if R_i is multiply incident to some vertex of D or doubly incident to some edge of D. We say that R_i has embedded closure if λ_i is injective, hence a homeomorphism between \tilde{R}_i and the closure of R_i in $\tilde{\Sigma}$.

We will say that a bipartite graph D in $\tilde{\Sigma}$ with valences $(d_{1i})_{i=1}^{\ell_1}$ at the white vertices and $(d_{2i})_{i=1}^{\ell_2}$ at the black ones, and complement consisting of polygons having $(2d_{3i})_{i=1}^{\ell_3}$ edges, *realizes* the branched cover $f : \tilde{\Sigma} \to S^2$ with 3 branching points and local degrees π_1 , π_2 , π_3 over them, where $\pi_j = (d_{ji})_{i=1}^{\ell_j}$. This terminology is justified by the fact that f exists if and only if \overrightarrow{D} does.

2. Proof of the Theorem

Suppose by contradiction that a branched cover $f: T^2 \to S^2$ as in the statement exists, and let D be a dessin d'enfant on T^2 realizing it, as explained in the previous section, with white and black vertices corresponding to the first two partitions, so the complementary regions are one square S , some hexagons H and one octagon O, shown abstractly in Fig. 2. Let \hat{D} be the graph dual to D (which is well-defined because the complement of D is a union of open discs), and let Γ be the set of all simple loops in \hat{D} which are simplicial (concatenations of edges), and non-trivial (non-zero in $H_1(T^2)$, or, equivalently, not bounding a disc on T^2 , or, equivalently, not separating T^2). Since $T^2\backslash\hat{D}$ is also a union of open discs, the inclusion $\hat{D} \hookrightarrow T^2$ induces a surjection $H_1(\hat{D}) \to H_1(T^2)$. Moreover $H_1(\hat{D})$ is generated by simple simplicial loops, so Γ is non-empty. We now define Γ_n as the set of loops in Γ consisting of *n* edges, and we prove by induction that $\Gamma_n = \emptyset$, thereby showing that $\Gamma = \emptyset$ and getting the desired contradiction.

For $n = 1$ we prove the slightly stronger fact (needed below) that every region has embedded closure, namely, that its closure in T^2 is homeomorphic to its abstract closure. Taking into account the symmetries (including a color switch) this may fail to happen only if some edge a in Fig. 2 is glued to b or c of the same region (if two vertices of a region are glued together then two edges also are, since the vertices have valence 3). The case $b = a$ implies V has valence 1, so it is impossible. If $c = a$ in H we have the situation of Fig. 3-left, and each of the neighboring regions already has 3 vertices of one color, so it cannot be S. If it is an H, it also has a gluing of type $c = a$. Iterating, we have a tube of H's as in Fig. 3-centre that at some point must hit O from both sides, which is impossible

Figure 2. The regions. The notation V , a , b , c , is only needed for the base step of our induction argument.

Figure 3. A tube of H's cannot end at an O from both sides. A non-embedded O gives a non-embedded H.

Figure 4. The ways γ can cross a region. Note that the vertex colors may be switched.

Figure 5. Impossible configurations.

because the terminal region already contains 5 vertices of each color. If $c = a$ in O then we have Fig. 3-right, so a neighboring region also has non-embedded closure, which was already excluded.

Let us now assume that $n \geq 2$ and $\Gamma_m = \emptyset$ for all $m < n$. By contradiction, take $\gamma \in \Gamma_n$. From now on in our figures we will use for γ a thicker line than that used for D. We first note that γ cannot enter a region through an edge and leave it from an adjacent edge (otherwise we could reduce its length), so the only ways γ can cross a region are those shown in Fig. 4. Therefore γ is described by a word in the letters S, H_d , H_f , H_r , O_d , O_f , O_f , O_f , O_R , from which we omit the H_d 's for simplicity. The vertex coloring implies that the total number of S, H_{ℓ} , H_r , O_d , O_L , O_R in γ is even.

We now prove that any subword H_rH_r , $H_\ell H_\ell$, SH_r or SH_ℓ is impossible in γ , as shown in Fig. 5 (here the thick dashed line gives a new γ contradicting the minimality of the original one). This already implies the former of the following claims:

- (1) No $\gamma \in \Gamma_n$ can contain S but not O;
- (2) There exists $\gamma \in \Gamma_n$ consisting of H's only.

To establish the latter, we suppose $O \in \gamma \in \Gamma_n$ and list all the possible cases up to symmetry (which includes switching colors and/or reversing the direction of γ):

For each of these cases we show in Fig. 6 to 9 a modification of γ which gives a new loop γ' isotopic to γ (and hence in Γ), and not longer than γ . When γ' is shorter than γ we have a contradiction to the minimality of γ , so the case is impossible. To conclude we must show that γ' does not contain \overline{O} in the cases where it is as long as γ . To do this, suppose that γ' contains O, and construct two loops y_1 , by applying one of the three moves of Fig. 10. Note that whatever move ap-

Figure 6. $\gamma = O_d H_r (H_\ell H_r)^p \Rightarrow \exists \gamma' \dots$ (left); $\gamma = O_r (H_r H_\ell)^p \Rightarrow \exists \gamma' \dots$ (centre for $p > 0$ and right for $p = 0$). On the right, as in many figures below, we decorate some edges to indicate that they are glued in pairs.

Figure 7. $\gamma = O_R H_r (H_\ell H_r)^p$ impossible (left); $\gamma = O_R H_\ell (H_r H_\ell)^p \Rightarrow \exists \gamma' \dots$ (right).

Figure 8. $\gamma = SO_d (H_r H_\ell)^p \Rightarrow \exists \gamma' \dots$ (left); $\gamma = H_r SO_r (H_r H_\ell)^p$ impossible (centre); $\gamma =$ $H_{\ell}SO_r (H_{\ell} H_r)^p \Rightarrow \exists \gamma' \dots$ (right).

Figure 9. $SO_R \in \gamma$ impossible: if in γ there are m copies of H outside the word SO_R , we treat separately the cases $m \ge 2$ (left), $m = 1$ (centre), and $m = 0$ (right). In the last case, if there are not even H_d 's between S and O_R , the absurd comes from the fact that a bigon is created.

Figure 10. If O appears in γ and immediately to the right of γ , we can construct two loops $\gamma_{1,2}$ of which γ is the homological sum.

plies, γ is the homological sum of γ_1 and γ_2 , so at least one of them is non-trivial. If one of the moves of Fig. 10-left/centre applies, the total length of γ_1 and γ_2 is 1 plus the length of γ , but we know that there is no length-1 loop at all (trivial or not), so both γ_1 and γ_2 are shorter than γ , a contradiction. If only the move of Fig. 10-right applies then we are either in Fig. 7-right, or Fig. 8-left or Fig. 8-right

Figure 11. Reducing the number of turns.

and O is the region where γ' makes a left turn; in this case the total length of γ_1 and γ_2 is 2 plus the length of γ , but γ_1 and γ_2 both have length at least 3, so they are both shorter than γ , and again we have a contradiction.

Our next claim is the following:

(3) There exists $\gamma \in \Gamma_n$ described by a word $(H_\ell H_r)^p$ with $p \leq 1$.

By (2) and the fact that subwords $H_\ell H_\ell$ or $H_r H_r$ are impossible in $\gamma \in \Gamma_n$, we have a $\gamma \in \Gamma_n$ described by a word $(H_\ell H_r)^p$. Now suppose $p \geq 2$, consider a portion of γ described by $H_r H_f H_f H_f$ as in Fig. 11-left and try to construct the two loops γ_{ℓ} and γ_r as in Fig. 11-centre by repeated application of the moves in Fig. 11-right. If one of γ_{ℓ} or γ_r exists it belongs to Γ_n and it is described by $(H_{\ell}H_r)^{p-1}$, so we can conclude recursively. The construction of γ_{ℓ} or γ_{r} may fail only if when we apply an elementary move as in Fig. 11-right to $\alpha \in \Gamma_n$ the region B is ...

- the square S ; this would contradict (1) , so it is impossible;
- already in α ; but then B is not one of A_1 , A_2 , A_3 because all regions are embedded, and it easily follows that α is homologous to the sum of two shorter loops, which is absurd because at least one of them would be non-trivial;
- the octagon *O*; this is indeed possible, but it cannot happen both to the left and to the right, otherwise we would get a simplicial loop in \hat{D} intersecting γ transversely at one point, whence non-trivial, and shorter than γ (actually, already at least by 1 shorter than the portion of γ described by $H_r H_\ell H_r H_\ell$).

We now include again the H_d 's in the notation for the word describing a loop. It follows from (3) that there exists $\gamma \in \Gamma_n$ of shape H_d^q or $H_\ell H_d^q H_r H_d^t$. To conclude the proof we set $\gamma_{\ell} = \gamma_r = \gamma$ and we apply to γ_{ℓ} and γ_r as long as possible the following moves (that we describe for γ_{ℓ} only):

Figure 12. Evolution of γ_{ℓ} . The second move is performed so that O is not included in the new loop.

- If O is not incident to the left margin of γ_{ℓ} we entirely push γ_{ℓ} to its left, as in Fig. 12-left;
- If γ has shape $H_\ell H_d^q H_r H_d^t$ and O is incident to the left margin of γ_ℓ but not to H_{ℓ} , we note that O is not incident to either $H_d^t H_{\ell}$ or to $H_{\ell} H_d^q$, and we partially push γ_{ℓ} to its left so not to include O, as in Fig. 12-right (this is the case where O is not incident to $H_d^tH_\ell$).

Note that by construction the new γ_{ℓ} does not contain O, so it also does not contain S by (1), hence it has the same shape H_d^q or $H_\ell H_d^q H_r H_d^t$ as the old γ_ℓ . Therefore at any time γ_{ℓ} and γ_{r} have the same shape as the original γ . We stop applying the moves when one of the following situations is reached:

- (a) The left margin of γ_{ℓ} and the right margin of γ_{r} overlap;
- (b) γ_{ℓ} and γ_r have shape H_d^q and O is incident to the left margin of γ_{ℓ} and to the right margin of γ ;
- (c) γ_{ℓ} and γ_r have shape $H_{\ell}H_d^qH_rH_d^t$ and O is incident to the left margin of γ_{ℓ} in H_ℓ and to the right margin of γ_r in H_r .

Case (a) with γ_{ℓ} and γ_r of shape H_d^q is impossible, because the left margin of γ_{ℓ} and the right margin of γ_r would close up like a zip, leaving no space for S and O, see Fig. 13-left. We postpone the treatment of case (a) with γ_{ℓ} and γ_{r} of shape $H_{\ell}H_{d}^{q}H_{r}H_{d}^{t}$, to face the easier cases (b) and (c). For (b), we have the situation of

Figure 13. Conclusion for the shape H_d^q .

Figure 14. Conclusion for the shape $H_\ell H_d^q H_r H_d^t$.

Fig. 13-right, where in the direction given by the arrow we must have a strip of identical hexagons that can never close up. Case (c), excluding (a), is trivial: the region that should be O cannot close up with fewer than 10 vertices, see Fig. 14 top/left.

In case (a) for the shape $H_{\ell}H_{d}^{q}H_{r}H_{d}^{t}$, the left margin of γ_{ℓ} can overlap with the right margin of γ_r only along a segment as in Fig. 14-top/right – this segment has type $H_r H_d^s$ in γ_ℓ and $H_d^s H_\ell$ in γ_r , in particular it uses H_r from γ_ℓ and H_ℓ from γ_r , so there is only one. Therefore the rest of γ_{ℓ} and γ_r delimit an $x \times y$ rhombic area R as in Fig. 14-bottom/left (with $x \times y = 3 \times 4$ in the figure), that must contain S and O. Note that the H's incident to ∂R are pairwise distinct: for the initial γ the left margin cannot be incident to the right margin, otherwise a move as in Fig. 10-left/centre would contradict its minimality, and during the construction of γ_{ℓ} and γ_r only new H's are added. If O is not incident to one of the four sides of R we can modify γ_{ℓ} or γ_r as suggested already in Fig. 14-bottom/left. This modification changes the shape of γ_{ℓ} or γ_{r} , but:

- The modified loop is still minimal and does not contain O , so it does not contain S;
- The area R into which O and S are forced to lie remains a rhombus,

• The H's incident to ∂R are pairwise distinct (otherwise R closes up leaving no space for O or S).

We can iterate this modification, shrinking R until O is incident to all the four sides of ∂R . If R is 1×1 of course there is space in R only for an H. If R is $1 \times y$ or $x \times 1$ with $x, y \geq 2$, the fact that the H's incident to ∂R are distinct implies that the vertices of ∂R are distinct, so a region incident to all the four sides or ∂R must have at least 10 vertices. If R is $x \times y$ with $x, y \ge 2$ then O contains some of the germs of regions $O^{(*)}$ in Fig. 14-bottom/right so as to touch all the $r/t/\ell/b$ sides of ∂R . An easy analysis shows that any identification between two vertices of the $O^{(*)}$'s would force two H's incident to ∂R to coincide, so it is impossible. This implies that any $O^{(*)}$ actually contained in O contributes to the number of vertices of O with as many vertices as one sees in Fig. 14-bottom/right, namely 3 for $O^{(r)}$, $O^{(t)}$, $O^{(t)}$, $O^{(b)}$, then 4 for $O^{(t\ell)}$, $O^{(br)}$, and finally 5 for $O^{(tr)}$, $O^{(b\ell)}$. Therefore, a region can touch all of $r/t/\ell/b$ with a total of no more that 8 vertices only if it includes $O^{(t\ell)}$ and $O^{(br)}$, but then the vertex colors again imply that the number of vertices is at least 10. This gives the final contradiction and concludes the proof.

REFERENCES

- [1] P. B. Cohen (now P. Tretkoff), Dessins denfant and Shimura varieties, In: ''The Grothendieck Theory of Dessins dEnfants,'' (L. Schneps, ed.), London Math. Soc. Lecture Notes Series, Vol. 200, Cambridge University Press, 1994, pp. 237–243.
- [2] P. CORVAJA C. PETRONIO U. ZANNIER, On certain permutation groups and sums of two squares, Elem. Math. 67 (2012), 169–181.
- [3] P. CORVAJA U. ZANNIER, On the existence of covers of \mathbb{P}_1 associated to certain permutations, Rend. Lincei Mat. Appl. 29 (2018), 289–296.
- [4] A. L. EDMONDS R. S. KULKARNI R. E. STONG, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773–790.
- [5] A. Grothendieck, Esquisse d'un programme (1984), In: ''Geometric Galois Action'' (L. Schneps, P. Lochak eds.), 1: ''Around Grothendieck's Esquisse d'un Programme,'' London Math. Soc. Lecture Notes Series, Vol. 242, Cambridge Univ. Press, 1997, pp. 5–48.
- [6] I. Izmestiev R. B. Kusner G. Rote B. Springborn J. M. Sullivan, There is no triangulation of the torus with vertex degrees $5, 6, \ldots, 6, 7$ and related results: geometric proofs for combinatorial theorems, Geom. Dedicata 166 (2013), 15–29.
- [7] [F. Pakovich,](http://arxiv.org/abs/1510.06291) Solution of the Hurwitz problem for Laurent polynomials, J. Knot Theory Ramifications 18 (2009), 271–302.
- [8] M. A. Pascali C. Petronio, Surface branched covers and geometric 2-orbifolds, Trans. Amer. Math. Soc. 361 (2009), 5885–5920
- [9] M. A. Pascali C. Petronio, Branched covers of the sphere and the prime-degree conjecture, Ann. Mat. Pura Appl. 191 (2012), 563–594.
- [10] E. Pervova C. Petronio, Realizability and exceptionality of candidate surface branched covers: methods and results, Seminari di Geometria 2005–2009, Universita` degli Studi di Bologna, Dipartimento di Matematica, Bologna 2010, pp. 105–120.
- [11] J. Song B. Xu, On rational functions with more than three branch points, arXiv:1510.06291

[12] M. ZIEVE, personal communication, 2016.

Received 19 May 2017, and in revised form 6 December 2017.

> Tom Ferragut Département Mathématiques École Normale Supérieure de Rennes Campus de Ker Lann Avenue Robert Schuman 35170 Bruz, France Tom.Ferragut@ens-rennes.fr

> > Carlo Petronio Dipartimento di Matematica Universita` di Pisa Largo Bruno Pontecorvo, 5 56127 Pisa, Italy petronio@dm.unipi.it