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ABSTRACT. — We obtain pointwise estimates for solutions of semilinear parabolic equations with a
potential on connected domains both of R” and of general Riemannian manifolds. Our results gen-
eralize to the parabolic case those shown in [10] for elliptic equations.
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1. INTRODUCTION

We are concerned with solutions of semilinear parabolic equations of the follow-
ing type:

(1.1) ou—Au+TVul = f in Qr :=Qx (0, 7],

where Q C M is a connected domain on a complete Riemannian manifold, the
potential V' = V(x, ¢) and the source term f = f(x, ) are given continuous func-
tions in Q7. Moreover, we suppose that f > 0, f # 0, while } can be signed. We
consider both the case ¢ > 0 and # > 0, and that ¢ < 0 and u > 0.

The elliptic counterpart of equation (1.1), that is

(1.2) —Au+Vul = f inQ,

with " and f continuous functions defined in Q, has been largely investigated in
the literature. In particular, in [10] pointwise estimates for the solutions of (1.2)
have been obtained. Indeed, in [10] also more general divergence form elliptic op-
erators with smooth coefficients have been addressed. Assume that the Dirichlet
Green function of —A in Q exists, and denote it by G(x, y); clearly, it exists if
0Q is smooth enough. Set

H(x) = /Q GO(x, )f () du(y):

! Presented by A. Tesei.
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assume that H(x) < oo for all x € Q, and that

H(x) = /Q GO, ) H(3)V () du(y)

is well-defined. Note that if Q is relatively compact, then G*(x,-) € L'(Q), hence
H(x) < oo, for each f € L*(Q).

In [10] it is shown that if ¢ > 0, then u satisfies a pointwise estimate from
below, in terms of the functions H and H. On the other hand, if ¢ < 0, then u
satisfies a similar pointwise estimate from above. Moreover, using similar in-
equalities, sufficient conditions for the existence of positive solutions of equation
(1.2) have been obtained, provided Q is relatively compact. Observe that in par-
ticular cases the results established in [10] have been already shown in the litera-
ture (see, e.g., [3], [4], [5], [8], [9], [11]). However, in the remarkable paper [10] it
is given a unified approach for treating all the values of ¢ € R\{0}, a general
signed potential V', and a general divergence form operator, also on domains of
Riemannian manifolds.

Recently, also parabolic equations with a potential on Riemannian manifolds
have been investigated (see, e.g., [2], [12], [13], [14]); however, it seems that in gen-
eral pointwise estimates for solutions of equation (1.1) have not been addressed.
In this paper we aim at obtaining pointwise estimates for solutions of (1.1), in the
same spirit of the results in [10], concerning elliptic equations.

Let p the heat kernek in Q (see Section 2); for any f € C(Qr), define for all

(X, [) € QT
(1.3) 7o) o= | t [ =)0 dut) as

provided that

t
(1.4) //p(x,y,t—s)|f(y,s)|d,u(y)ds<oo forevery x € Q, t € (0, T].
0o Jo

Furthermore, for any uy € C(Q) n L*(Q), up > 0, define for all (x,7) € Qr

(15) 22 () = OS] (x0) + /Q p(x, 7, Duo(y) du(y).

We prove that for ¢ > 0 any solution of problem

(1.6) {@u—Au—kquzf, u>0, inQr

u > up in Q x {0}

satisfies a certain pointwise estimate from below in terms of the functions
R(f;up) and S [h9V], provided that #[h?|V|] < co in Qr, where

(1.7) h=2°f;u] in Qr.
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Moreover, if ¢ < 0, then for any solution of problem

Ou—Au+Vul < f, u>0, inQr
(1.8) u=0 in 0Q x (0, 7]
u < ug in Q x {0},

a similar estimate from above is obtained. Indeed, note that in the case ¢ < 0, as
well as in the elliptic case, a suitable extra pointwise condition at infinity for the
solution is required. However, in the parabolic case, if M is stochastically com-
plete, such a condition can be replaced by a growth condition at infinity, which is
a weaker assumption.

Moreover, when Q is relatively compact, we give sufficient conditions for
existence of positive solutions of problem

O —Au+ Vul = f 1in Qr
(1.9) u=0 in 0Q x (0, 7|
u =y in Q x {0},

that are based on estimates analogous to those described above. We should note
that all our results seem to be new also in the case that M = R”".

In order to prove our results, we adapt to parabolic equations the methods
used in [10]. At first we prove our pointwise estimates assuming that Q is a rela-
tively compact connected domains, and replacing / defined in (1.7) by a function
(e C*1(Qr) n C(Q7) that satisfies

(1.10) 0l —AL=0 inQr,
(1.11) (>0 inQx[0,T]

To do that the main step is to consider the equation solved by uv, where

=),

¢ being an appropriate smooth function. Then a suitable approximation proce-
dure is used to obtain the desired estimates in possibly not relatively compact
domain Q, with /1 defined in (1.7). In our arguments a special role is played by
an appropriate comparison result, that is applied to the function uv. Note that
the proof of such a comparison result is quite different from that in [10] for the
elliptic case. Furthermore, on a special class of Riemannian manifolds, including
the stochastically completes ones, we can show a refined comparison result. In
view of this, we can show the estimates from above in the case ¢ < 0, only assum-
ing growth conditions at infinity on the solutions of (1.1).

The paper is organized as follows. In Section 2 we recall some basic notions
in Riemannian Geometry and in Analysis on manifolds that will be used in the
sequel. Then we state our main results in Section 3. In Section 4 we show some
preliminary results, including the comparison results mentioned above, that will
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be essential in the proofs of the main theorems, that can be found in Sections 5
and 6.

2. MATHEMATICAL FRAMEWORK

Let M be an n-dimensional Riemannian manifold with a Riemannian metric ten-
sor g = (g;). In any chart with coordinates xi, x, ..., x,, the associated Laplace—
Beltrami operator is given by

Au det ggijax/u)7

1 n
L
Vdetyg UZ]

where detyg is the determinant of the matrix g = (g;), (¢7) is the inverse matrix
of (g;), and u € C*(M). The Riemannuan measure dy in the same chart reads
by

du = +/detgdx; ...dxy;

furthermore, the gradient of a function u € C'(M) is

(Vi)' =" glogu (i=1,....n).
Jj=1

For any f,g € C*(M) we have
(2.1) A(fg) = fAg + 2KV, Vg) + ghf .
Moreover, for any w € C2(M) and ¢ € C2(IR) there holds
(2.2) Alp(w)] = ¢' () Aw + ¢ (w) V],

We denote by 0., M the infinity point of the one-point compactification of M
(see for example [19, Sec. 5.4.3]). For any function u : Q C M — R we write

xllﬁr}f?M u(x) =0

to indicate that u(x) — 0 as d(x,0) — o0, 0 € M being a fixed point; here and
hereafter d(x, y) denotes the geodesic distance from x to y. Similarly we mean
equalities and inequalities involving lim inf and lim sup.

By standard results (see, e.g., [6]) the fheat kernel in Q, p(x, y,1), is well-
defined. For each fixed y € Q, p(x,y,t) is the smallest positive solution of
equation

(2.3) op—Ap=0 inQrp,
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such that

lim p(x, y,1) =9,

t—0+

where 6, is the Dirac delta concentrated at y. Moreover, p e C*(Q x Q x
(0, 0)),

p(x,y,t) >0 foranyx,ye Q,t>0,
p(x, 1) = p(y,x,1) foranyx,yeQ, >0,

px,7,1) = / P 2,8)p(z,y.t — s)du(y) forany1>0,0<s<1,xyeQ,
Q
/ p(x,y,t)du(y) <1 forany x e Q, t> 0.
Q

Furthermore, (see [7, Theorem 7.16]) for any uy € C(Q) n L*(Q), the function

o(v.0) = [ pl.y () du(s), ¥ Q. 1> 0

belongs to C*(Q x Q x (0, c0)), satisfies equation (2.3), and
v(x, 1) — up(x) ast— 07 locally uniformly w.r.t. x € Q.
In addition, if 0Q is smooth, then v € C(Q7), and
v=0 1indQ x (0,T].

As usual, we say that f is locally Holder continuous in Qr, if there exists
o € (0, 1) such that for any compact subset K C Q, 0<t< T

1f(x,0) = f(y,9)] < Lld(x,p)" + |t —s]"] forallx,peK, t,s€(r,T),

for some L = Lg . > 0. We set

2

0“u ..
c>Y(0r) = {u : 01 — [RR' M, o e C(Qr) forany i, j = 1,...,n}.

We have that (see, e.g. [1]) if (1.4) holds and f is locally Holder continuous
in Or and uy € C(Q) nL*(Q), then the function / defined in (1.7) satisfies
he C*»'(Qr) and

(2.4) ou—Au=f in Qr.
Moreover, if /'€ L*(Qr) and uy € C(Q) n L*(Q), then h € C(Q x [0, T]) and
h=uy inQ x {0}.
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Finally, if 0Q is smooth and f € C(Qy), then
h=0 1indQ x (0, 7).

3. STATEMENTS OF THE MAIN RESULTS

Set

1 ifu(x) >0
7ulX) = {O if u(x) <0.

We can prove the pointwise estimates for solutions of (1.1) contained in the
following theorem.

THEOREM 3.1. Let Q C M be an open connected subset. Suppose that V, f €
COr), f=0, f#£0 in Qr, upe C(Q NL*(Q), up >0. Assume that ue
C>1(Qr) n C(Qy) satisfies (1.6) if ¢ > 0, or that u satisfies problem (1.8) and

3.1 Iim sup u(x,t) =0,
(3.1) xﬁame(O’T]( )

if ¢ < 0. Let (1.4) be satisfied, and let h be defined by (1.7). Moreover, assume that
SRV (x,1) < 00 forall (x,t) € Qr, if ¢q<0orqg=>1,
or that
(3.2) S\ VI(x, 1) < 00 forall (x,t) e Qr, if 0<g<1.
Then the following statements hold for all (x,t) € Qr.
(i) If g =1, then
(3.3) u(x, 1) > hix, t)e w0,

(ii) If' g > 1, then

(3.4) —(q = DIhV](x,1) < h(x, 1),
and
(3.5) w(x, 1) > hix, 1

SV (x, 4/+1
{1+ (g - et

(iii) If0 < g < 1, then

Q V1 (x =
I L
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(iv) If ¢ <0, then (3.4) holds, and

1

Qrpq i
(3.7) u(x, 1) < h(x, z){1 —(1- q)%} 7

Furthermore, in the case that / = 0, we can prove the following estimates.

THEOREM 3.2. Let Q C M be an open connected subset. Let V € C(Qr). Sup-
pose that u € C>'(Qr) satisfies either

(3.8) Ou—Au+Vu?>0, u>0inQr, if ¢>0,
or
(3.9) ou—Au+Tu? <0, u>0inQr, if¢q<0.

Moreover, assume that
FUAV(x, 1) < o forall (x,t) e Qr, if g<0orqg=>1,
or that

(3.10) 79y,

|(x, 1) < 00 forall (x,t) € Qr, if 0<qg<1,
Then the following statements hold.

(i) Ifq=1ue C(Qr)

(3.11) u>1 in[0Qx (0,T]]u[Qx{0}],
(3.12) lxlincinﬁgtel(%fﬂu(x ) > 1

then

(3.13) u(x, 1) > e VD for all (x,1) € Or.

(i) Ifg > 1 and

(3.14) hm inf u(x,t) = oo, lim  inf wu(x,t) = oo,
—0t xeQ d(x,0Q)—01e(0,T]

lim inf wu(x,?) = oo,
x—0,M 1e(0,T)

then
(3.15) SUV](x,1) > 0,
and

(3.16) u(x,t) > {(g — DSV(x, )} .
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(iii) If0 < g < 1, then

1

(3.17) u(x, 1) = {=(1 = )1, V](x, )}
(iv) If ¢ <0,ue C(Qr),
(3.18) u=0 in[0Q x (0, 7] U[Q x {0}],

and (3.1) is satisfied, then

(3.19) FEV](x,1) <0,
and
(3.20) u(x, 1) < {—(1 — q)F2V](x, 1)}

In the next theorem, we give sufficient conditions for the existence of non-
negative solutions of problem (1.9), in the case that Q is relatively compact, and
up € C(Q), with ug = 0 on 0Q. Note that the last compatibility condition allows
us to construct solutions that attain continuously zero on the whole parabolic
boundary. Moreover, we establish two-sided pointwise estimates for such solu-
tions.

THEOREM 3.3. Let Q C M be a connected relatively compact subset with bound-
ary 0Q of class C'. Suppose that  and V are locally Holder continuous in Qr,
and that f € C(Qy), f =0, f #£0. Assume that uy € C(Q), up =0 on 0Q. Let
(1.4) be satisfied, and let h be defined by (1.7). Then the following statements
hold.

(i) Suppose that ¢ > 1, V < 0, and that

(3.21)  —LhIV)(x,1) < (1 —é)qq_%h(x, t) forall (x,t) € Or.

Then a nonnegative solution u e C>'(Qr)n C(Q7) of problem (1.9) exists;
moreover,

(3.22) hx, 1) ~ <u(x,1) < qilh(x, 1)
SV (x,1) a1 -
{1+(6]_1) h(x,1) }
forall (x,t) € Qr.

(i) Suppose that ¢ <0, V = 0, and that

(3.23) yﬂ[hqv}(x,z)s(l—g)q—qh(x,g forall (x,1) € Or.
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Then a positive solution u e C*'(Qr) n C(Qy) of problem (1.9) exists; moreover,
forall (x,t) € Qr

SRV (x, )|
i e

3.1. Further results for ¢ <0

(3.24) 111h(x,t) < u(x,1) S{l—(l—q)
q

Consider domains Q that are not relatively compact. If ¢ < 0, under suitable
hypotheses, we can remove condition (3.1) and then getting Theorem 3.1-(iv)
and Theorem 3.2-(iv).

We assume that there exist # > 0 and a subsolution Z of equation

(3.25) AZ =uZ inQ,

such that

(3.26) supZ < oo, lim Z(x) = —o0.
Q X—00 M

By a subsolution of (3.25) we mean a function Z € C*(Q) such that
(3.27) AZ > uZ inQ.

Observe that our results remain true if Z is continuous in Q and satisfies (3.27)
in the distributional sense. Note that, in the case Q = M, the existence of such a
subsolution Z implies that M is stochastically complete (see [6]), i.e.

/ p(x,y,t)du(y) =1 forallxe M, t>0.
M

We refer the reader to [6] for sufficient and necessary condition for the existence
of such subsolution Z. We limit ourselves to observe that such a subsolution Z
exists for instance on R”, n > 3, and on the hyperbolic space H", n > 2.

THEOREM 3.4. Let q < 0. Let Q C M be an open not relatively compact con-
nected subset. Suppose that V,f € C(Qr), f >0, f#0 in Qr, up € C(Q)n
L*(Q), up > 0. Assume that u € C*>'(Qr) n C(Qy) satisfies (1.8). Let conditions
(1.4) and (3.2) be satisfied, and let h be defined by (1.7). Let there exist u > 0 and
a subsolution Z of equation (3.25), which satisfies (3.26). Moreover, suppose that

. supte(O.T]hq(xa t)[ul_q(xv l) _hl—q(x7 [)]
3.28 1
(3.28) m sup Z@)]

Then (3.4) and (3.7) hold.

THEOREM 3.5. Let q < 0. Let Q C M be an open not relatively compact con-
nected subset. Let V € C(Qr). Suppose that u e C>'(Qr) n C(Qy) satisfies (3.9)
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and (3.18). Let condition (3.10) be satisfied. Let there exist u > 0 and a subsolution
Z of equation (3.25), which satisfies (3.26). Moreover, suppose that

l—¢
. SUP:e(o, T U (X, t)
3.29 lim su <0.
(3.29) w1z

Then (3.19) and (3.20) hold.
REMARK 3.6. It is easily seen that both condition (3.28) and (3.29) are weaker
than condition (3.1).

4. AUXILIARY RESULTS

This section is devoted to some preliminary results that will be used to prove
Theorems 3.1, 3.2, 3.3.

LEMMA 4.1. Let v,h e C*Y(Qr), ¢ € C*(I) with v(Qr) C I, I being an interval
in IR. Then in Qr

(4.1)  afhé(v)] — Alh(v)]

= §(0)[04(he) — A(i)] — ¢ (@) Vol + [4(0) — o (0))(04h — AR).
In particular, if ' # 0 in I, then in Or
(4.2) 0:(hv) — A(hv)

_ Olhg(v)] = Alhg(v)] | ¢"(v) Vol?h+ (U _ ¢(U)>(ath — Ah).

¢
¢'(v) ¢'(v) ¢'(v)

PrOOEF. Clearly,

(4.3) 0[hg(v)] = ¢'(v):(hv) + [¢(v) — v’ (v)]0h.

Moreover, in view of (2.1) with f = h, g = ¢(v), and in view of (2.2) with w = v
we get

Alhd(v)] = $(0) A + B (V) Av + ¢" (0)|Vo]?] + 24 () <V, VU

Thus
(4.4) Alhg(v)] = ¢ (v)A(hv) + ¢" (0) Vol h + [¢(v) — vg' (v)]Ah.
From (4.3) and (4.4) we easily obtain (4.1), and then (4.2). O

LEMMA 4.2. Let I C R be an interval. Let ¢ € C*(I), ¢ >0, ¢' >0 in I. Let
v,h e C>1(Qr) with h > 0, v(Q) C I. Set

u = he(v).
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Let V € C(Qr), g € R\{0}. If

(4.5) Ou—Au+ Vu? > 0,h — Ah  in Qr,
then
$(v)*
(4.6) 0:(hv) — A(hv) + h1V e
gv) — 1 ¢"(v) ,

> (v W )(6,h — Ah) + 70 \Vo|*h in Q7.
If
(4.7) Ou — Au+ Vul < 0,h— Al in Qr,
then
(4.8) 0,(hv) — Alhv) + h9V ﬁq((;’;

< (u - ¢§],>(U_) 1) (01 — Ah) + Z((Zj)) Vol in Q7.

PROOF. From (4.5) with u = hg(v) it follows that
(4.9) 2,hp(v)] — Alhd(v)] = —Vhig(v)? + d,h — Ah.
Therefore, by (4.2) and (4.9),

0,(hv) — A(hv)

H)? () 1 +v¢'(v) — $(v)
$'(v) 4 (v) ¢'(v)

So, (4.6) follows. The second claim can be proved in the same way. O

> —Vh! IVo*h +

(0.1 — Ah).

LeMMA 4.3. Let assumptions of Lemma 4.2 be satisfied. Moreover, suppose that
0 € I, and that

(4.10) oh—Ah>=0 inQr.
If
(4.11) #(0) = 1
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then

pv)* ,
(4.13) 0i(hv) — A(hv) + hV e >0 inQr.
If (4.11) holds, and
(4.14) ¢ >0, ¢"<0 inl,
then

pv)* ,
(4.15) 0:(hv) — A(hv) + hV e <0 inQr.
PRrOOE. 1t is direct to see that (4.11) and (4.12) imply that
(4.16) v—¢(;,)(_)1 >0 forallvel.

v

From (4.6), (4.10) and (4.16) we obtain (4.13). Inequality (4.15) can be deduced
similarly. |

REMARK 4.4. Note that if 6,4 — Ah =0 in Qr, then in Lemma 4.3 condition
(4.11) can be removed.

In the sequel, we often use the next comparison result.

PROPOSITION 4.5. Let Q C M be an open subset. Assume that g € C(Qr), and
that

(4.17) Slgl] < o in Qr.
Let v e C?(Qr) n C(Qy) be a supersolution of problem

ow—Av=g inQr
(4.18) v=20 in 0Q x (0, T]
v=0 in Q x {0}.

Furthermore, if Q is not relatively compact, suppose that

(4.19) liminf inf o(x,7) > 0.
x—0,M 1e(0,T)

Then

(4.20) v(x, 1) = S gl(x,1) forevery x e Q, t € [0, T].
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PRrOOF. Choose a sequence of functions {g,} such that g, is locally Lipschitz
continuous in Qr for every n e N,

(4.21) gn <9, 9gn<gnt1 1inQr foreveryne N;
(4.22) gn — ¢ 1InQrasn— oo.

Let us only consider the case when Q is not relatively compact; the case when Q
is relatively compact is easier and it will be omitted.

Let k € N that will be taken arbitrary large later on. Fixed a point 0 € M, by
(4.19), we find a radius R; such that

(4.23) b> —% on (Q 0B, (0)) x (0, T].

Since v € C(Q7) we can therefore take Q; C Q N Bg, (0) so that
1
vz on 0y x (0,T1].

For each k fixed, the construction of Q. can be carried out just observing that v
is uniformly continuous in Q N Bg, (0) and exploiting the boundary datum. With
no loss of generality we may and do assume that R,y — oo,  is smooth and

(4.24) =0
keN

Therefore, by construction, we have that v is a supersolution of the problem

ow—Av=yg, inQ x(0,T]
(4.25) v> k! in 0Q x (0, T
0= k' inQx {0}

Let now v, i be the solution of the problem

ov—Av=yg, inQ x(0,T]
(4.26) v=0 in 0Qy x (0, T
v=20 in Q; x {0}.

We have that

t
(427)  oap(x, 1) = / / e, 3ot — $)gu(y,s) drdp(y), x € Q. 1€ [0,T),
0 Q.

where p; is the heat kernel in Q;, completed with zero homogeneous Dirichlet
boundary conditions. It is known that (see, e.g., [6]), by (4.24), it follows that

(4.28) klim pe=p InMxMx(0,00).



268 L. MONTORO, F. PUNZO AND B. SCIUNZI
Therefore, using (4.17), (4.22) and (4.28), we can infer that

(4.29) lim v, = 7%g] in Qr.

n— o0, k— oo
On the other hand, the function v,  — k=" is a subsolution of problem

ow—Av=yg, inQy x(0,T]
(4.30) v< —k7! in 0Q x (0, T
v< —k7! in Q x {0}.

By the comparison principle, taking into account (4.25) and (4.30), we deduce
that

(4.31) v=v,k— k' in Qg x [0, T].
In view of (4.29), letting k — oo, n — oo, we obtain (4.20). O
We also use the next comparison result.

PROPOSITION 4.6. Let Q C M be an open subset. Assume that g € C(Qr)
and that (4.17) is satisfied. Let v e C*(Qr) n C(Qy) be a subsolution of problem
(4.18). Furthermore, if Q is not relatively compact, suppose that

(4.32) limsup sup v(x,?) <0.
x—0,M 1€(0,T)
Then
(4.33) v(x, 1) < S gl(x,1) forevery x e Q, t € [0, T).

The proof of Proposition 4.6 is analogous to that of Proposition 4.5; the only
difference is that the sequence {g,} satisfies

(4.34) gn =g, Ygn=gu1 in Qr foreveryn e N,

instead of (4.21).
Moreover, we use the next refined comparison principles.

PRrROPOSITION 4.7. Let Q C M be an open, not relatively compact subset. Assume
that g € C(Qr), and that (4.17) is satisfied. Let v e C*(Qr)n C(Q7) be a sub-
solution of problem (4.18). Assume that there exists a subsolution Z of equation
(3.25) such that (3.26) is satisfied. Furthermore, suppose that

. SUP; ¢ (0, 7] v(x, 1)
4.35 limsup ——M——~ < 0.
(4.35) msup = 209

Then (4.33) holds.
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ProoOF. First of all we observe that we can assume that, for some H > 0,
(4.36) Z<-H<0 Q.
In fact, if supg Z > 0, then instead of Z we can consider the function

Z:=7Z—-sup”Z—1,
Q

that clearly satisfies (3.25), (3.26) and (4.36).

Choose now a sequence of functions {g,} such that g, is locally Lipschitz
continuous in Qr for every n € N, (4.34) and (4.22) hold. Let k£ € N that will be
taken arbitrary large later on and fix a point 0 € M. We set

Vi(x, 1) .= =k 'Z(x)e"  ((x,1) € Or).

In view of (4.36), since u > 0, we have that
H
(437) Vi > ? >0 in QT~

By (4.35), we find a radius Ry such that

(4.38) v < Vi in (0Bg,(0) nQ) x (0, T].

Since v € C(Q7) we can therefore take Q; C Q N Bg, (0) so that
(4.39) v< Vi on 0y x (0,T].

With no loss of generality we may and do assume that R, — oo, Q; is smooth
and

(4.40) Ua=a
keN

With such a construction we let v, , and py as in (4.27). It is now easy to verify
that V is a supersolution of the problem

Ou—Au=0 1inQy x (0,7
(4.41) u="Vy in 0Q x (0, T
u= "V in Q; x {0}.

Inequalities (4.37) and (4.38) and (4.39) easily yield that
(4.42) V—Upk < Vi in [0Q x (0, T]] U [Qk x {0}].

Exploiting (4.42) and (4.34) we can infer that v — v,  is a subsolution of prob-
lem (4.41) and, by the comparison principle, we obtain that

(4.43) V— Ui < Vi inQy x (0,7T].
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Letting n — o0, k — o0 in (4.43) we deduce that
v< 9%g] in Qr. O
Similarly, the next refined comparison principle can also be shown.

PROPOSITION 4.8. Let Q C M be an open, not relatively compact subset. Assume
that g € C(Qr) and that (4.17) is satisfied. Let v e C*(Qr) n C(Qy) be a super-
solution of problem (4.18). Let there exist a subsolution Z of equation (3.25) such
that (3.26) is satisfied. Furthermore, suppose that

.. inf,e oy v(x, 1)
(444) m inf = )

> 0.

Then (4.20) holds.

4.1. Pointwise estimates in relatively compact domains with general smooth
supersolutions

Let i e C>'(Qr) n C(Q7) be a function that satisfies (1.10), (1.11). Consider the
following inital-boundary value inequalities

Owu—Au+ Vu? > 0,h —Ah in Qr

u>h in 0Q x (0, 7]

4.45 >0
(4.45) u>h nax 70
u> 0 in QT7

and
azu - Au + qu S ath - Ah ln QT
u<h in 6Q x (0, T]
4.46 <0
(4.46) w<h naxp <Y
u>0 in Or.

The next result has a crucial role in the proof of Theorem 3.1. In fact, it
gives the estimates (3.3)—(3.7), under the extra assumption that Q is relatively
compact; moreover, a general smooth function / that satisfies (1.10)—(1.11) is
used.

THEOREM 4.9. Let Q C M be a relatively compact connected subset. Let h be
any function belonging to C*>'(Qr) n C(Qy) that satisfies (1.10)—(1.11). Let u €
C>1(Qr1) N C(Qy) be a solution of either (4.45) or (4.46).

Moreover, assume that

SRV |(x,1) < o0 forall (x,t) e Qr, if ¢q<0orq=>1,
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or that

SV <o forall (x,t) e Qr, if 0<q< 1.
Then (3.3)—(3.7) hold for all (x,t) € Q7.
PrROOF OF THEOREM 4.9. To begin with, we further assume that
(4.47) h>0, u>0 inQp, and Ve C(Qr).

Following the proof of [10, Theorem 3.2], we choose a function ¢ to solve the
initial value problem

(4.48) #(s) = 4(5)%, $0) = 1.
For ¢ = 1 we have

(4.49) Pp(s) =¢', seR,

while for ¢ # 1 we obtain

(4.50) §s) =11 —g)s+ 177, sel,
where the interval /, is given by

(—oo,L) iftg>1,

q—1
(4.51) I, =< R ifg=1,
(—q—ll,oo) if g < 1.
There holds
a4 2q-1
(4.52) ¢'(s) = [(1—q)s + 1], ¢"(s) = q[(1 —g)s +1]77.

In particular, we have
(4.53) ¢' >0 inly;

consequently, the inverse function ¢! : (0, c0) — R is well-defined. Moreover,

(4.54) ¢"(s) >0 inl,if ¢ >0,
whereas
(4.55) ¢"(s) <0 inl,if ¢ <O.

Indeed, for 0 < ¢ < 1, we extend the domain of ¢ to all s < —ﬁ, by putting
#(s) = 0, so that

(4.56) #(s) =[(1 —q)s+ l}f" for all s € R.
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Due to (4.47), we can define
. =
(4.57) vi=¢ 1(5) in Oy

we have that v e C>!(Q7) n C(Qy). Let ¢ > 0. From (1.10) and (4.45) we have
that the function u = h¢(v) satisfies

(4.58) o —Au+ Vu! > 0,h —Ah >0 in Qr.
Thanks to (4.58), Lemma 4.3 and (4.48) we get
(4.59) 0i(hv) — A(hv) = —h?V  in Qr.

Since u > h in [0Q x (0, T]] U [Q x {0}], we have that
(4.60)  ho=he! (%) >hg ' (1) =0 in[0Q x (0, T]) U [Q x {0}].

So, hv is a supersolution of problem (4.18) with g = —A?V. Since Q is relatively
compact, by Proposition 4.5,

(4.61) h > —72%h'V] in Qr.
Thus,
(4.62) v> f%y[hq V] in Qr.

As a consequence of (4.57) and (4.62) we obtain that, for ¢ > 1,

Hence, for each g > 0, we can apply ¢ to both sides of (4.62) to obtain
u 1 oy .
(4.64) L <o(—57%mV]) inor,

which implies (3.3), (3.5), (3.6). Moreover, from (4.63) it follows (3.4).
Now, assume that ¢ < 0. Then we have

Ot — Au+ Vu? < 0;h — Ah in Qr.
Thanks to Lemma 4.3 and (4.15) we have

(4.65) 0:(hv) — A(hv) < —=h?V  in Qr.
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Since u < hin [0Q x (0, T]] U [Q x {0}], we have that
(4.66)  ho=hs”! (%) <h (1) =0 in[0Q x (0, T]] U [Q x {0}].

So, hv is a subsolution of problem (4.18) with g = —h9V. Since Q is bounded, by
Proposition 4.6,

ho < —%hiV] in QOr.

Thus,
(4.67) v < —%yﬂ[w] in Q7.

In view of (4.67), it follows (3.4). Moreover, applying ¢ to both sides of (4.67) we
get

(4.68) > ¢<—%,¢Q[h‘1V]> in Or,

RN

and then (3.7).

Now we can remove the extra assumptions in (4.47). We extend the domain
I, of ¢ to the endpoints of I, by taking the limits of ¢ at the endpoints. So, the
extended domain of ¢ is the interval

[—oo,ﬁ] if g>1,
—w,0] ifg=1,
[—qu,oo] if ¢ < 1.

I, =

Moreover, when 0 < g < 1, we extend ¢ to all s € [—oc0, 0] by using (4.56).
Hence (3.3), (3.5) and (3.6) can be written in the form (4.64), while (3.20) in the
form (4.68).

Take ¢ > 0. Let us show (4.64). To this purpose, for every ¢ > 0 set

U = uU-+e
and define
1 /U .
v, = ¢ 1(#’) in Q7.

Note that since u, > 0 and 2 > 0 in Qr, the function v, is well-defined in Q7 and
v. € C>1(Qr); moreover, v,(Qr) C I,. From (4.2) it follows that
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(4.69) 0,(hv,) — A(hv,)
_ aulhg ()] — Alhg(v,)]
¢’ (v.)
¢//(US) 2 B ¢(U£) B 0
ey Vel o+ (vg 7 (Ua)) (0 — AR) i Or.
Since
6t[h¢(1)8)] - A[hﬂﬁ(va)] = Oy — Au, = 0,u — Au in Qr,

we get

(4.70)  0,(hv,) — A(hv,)

ou—Au  ¢"(ve) P(ve) .
= ien + 7 (00) Vo, h + <vc — ¢,(US>>(8,/1 — Ah) in Q7.
By (4.48),
(471) §'(0) = ()" = (F)"

From (4.70), (4.71) and (4.45) we obtain
0,(hvg) — A(hv,)

uN9 ¢”(Ue) ¢(Uﬂ) —1 ;
> —h‘f(u_) Vs Vouh - (ug i )(ath —Ah) in Or.

In view of (1.10), (1.11) and (4.12), the previous inequality implies

4.72) d,(hvy) — Alhv,) > —hq(uﬁ)qv in Or.
If g >0, g # 1, from (4.50) we have that
1—-q _ 1
—1 o S
¢ (s) = e s> 0,
hence
EYECAVEE qyl=a _ i
(4.73) ho, = he (h) =, = k) in0r.

Let (xo,10) € [0Q x (0, T]] U [Q x {0}]. Since u,h € C(Qr), in view of (4.45) we
have that

(4.74) us(x0, t0) = h(xo,t0) + & > h(xo, to).
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From (4.73) and (4.74) we deduce that

(4.75) lim  A(x, t)v,(x, 1) = L[;ﬂ(x()’ to)uslfq(xo, to) — h(xo, )] = 0.

(x,1)—(x0, 10) 1—gq

For ¢ = 1, we have that ¢ ' (s) = logs, hence

U\ .
(4.76) hv, = hlog(E) in Or.
If A(x9, 1) > 0, then we have
. uz(xo, 1)
4.77 lim  A(x, Hv.(x,t) = h(xo, tp) log(—————) > 0,
( ) (x,8)=(x0, t0) (% )03, 1) (x0, o) g(h(xm IO))

while if /(xo, tp) = 0, then from (4.76), since u, > ¢, we have that

(4.78) lim  A(x, f)v.(x,1) = 0.

(x,l‘)—>(x0Al‘o)
From (4.75), (4.77) and (4.78) we can infer that iv, € C>'(Q7) n C(Q7), and
(4.79) ho, =0 in [0Q x (0, T]] U [Q x {0}].

Note that since
IPTEA Qrpq
1% [h (u) |V|] < 72V,

we can infer that yg[hq(ul—i)qV] < o0 in Qr; furthermore, hq(u%)qV e C(Qr).
Hence, in view of (4.72) and (4.79), we can apply Proposition 4.5 to obtain

>~ (2)'v| in g,
Therefore,
(4.80) v, > —%yg [hq(u%)qr/} in 0.
We claim that, if ¢ > 1, then
(4.81) u>0 inOr.

In fact, from (4.80) we obtain

(4.82) v, > —%yﬂ[lﬂ v+ in Qr.
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Observe that
A 1 _
v, :qu(%) el =79V C 0,0 C T,

Hence we can apply ¢ to both sides of (4.82) to get
1 Qrpq1/+
(4.83) U, > h¢(—zy A% ]).
Letting ¢ — 0™ in (4.83) we have
1 oo
(4.84) u> h¢(—zy hv }) in Or.

Since S [h9V*](x,1) < oo for every (x,) € Qr, from (4.84) we can infer that
(4.81) is satisfied, and the Claim has been shown.
Now, observe that since

I o AN _
vel, -39 [h (u_) V} el,
we can apply ¢ to both sides of (4.80) to get
L ol g1\ .
(4.85) U, > h¢<—zy {h (H_c) V}) in Qr.

In view of (4.81), we have that

u .
——1 inQrase—0".
U

Hence, by monotone convergence theorem,
(4.86) g9 [hq(1>qr/] — S2nIV] in Qrase — 0.
ul;'

In particular, we have that

1 2V (x, 1) -
(4.87) e h(x1) el,.

Letting ¢ — 0" in (4.85) we get

> h¢<—%5ﬁg[th]> in Or,
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from which (4.64) immediately follows. Hence (3.3) and (3.5) have been proved.
Furthermore, if ¢ > 1, from (4.64) we have

¢(—%y9[hﬂ/]) <<,
thus
—lyﬂ[;ﬂV] <—,
h qg—1
which gives (3.4).

Assume that 0 < ¢ < 1. By the same arguments as in the case ¢ > 1 we can
arrive to (4.80). We can apply ¢ to both sides of (4.80) to get

I o LAY
(4.88) ugths(—zsﬂ [h (u—) VD
We have
uﬁ—w(u inQrase—0".

This combined with (4.88) gives
1 Q .
(4.89) u> hqﬁ(—zy [}(uth]) in Qr,

which is equivalent to (3.6).
Assume now that ¢ < 0. For every ¢ > 0 we define

Ug = ¢71 (h%) in Or,

where h, := h + ¢. Since hl > 0 in Q7, we obtain v, € C>'(Qr). We extend the
function ’

(4.90) ¢ (s) = — 5> 0,

by putting ¢'(0) :—ﬁ. Since ;- € C(Qr), - =0 in O, we have that

v, € C(Qp).
From (4.46) we have that

u<h<h, in[0Qx (0,T]]u[Qx{0}].
Hence

v < (1) =0 in[0Q x (0,T] U [Q x {0}],
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therefore,
(4.91) hv, <0 in [0Q x (0, T]] u [Q x {0}].
In view of (4.46) we have that u = h.¢(v,) satisfies
(4.92) o — Au+ Vul < 6h, — Ah, 1in Qr.
Hence from Lemma 4.3 and (4.48) we have that
(4.93) 0:(hevs) — A(hv,) < —h1V  in Q.
Since ¢ < 0 we have

ARV < V] in Or,

so #9hV] < oo in Qr. Thus, in view of (4.93) and (4.91) we can apply Propo-
sition 4.6 with g = —hJ V" to get

hoo, < —%hIV] in Qr,

therefore
1
(4.94) v, < —h—yﬂ[hg V] in Qr.
&
Since v, > —ﬁ, it follows that
(4.95) ] SV < 0
. 1 - q hs ¢ a ’

So, we can apply ¢ to both sides of (4.94), and we obtain

OE ¢(—%y9[hg v)) inor,

that is

u< hg[l —(1- q)h%yg[hjl/]]ﬁ in Or.
Therefore,
(4.96)  u<h [1 - (1= q)h%yg[héfw] +(1— q)higyﬁ[hgrf—]}']_q

Since 0 < h < h, in Q7 and g < 0, we have that

ly“[hg =

; Sh1V7] in Or.

NS
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Letting ¢ — 07, by the monotone convergence theorem we obtain

(4.97) SRV — PRV in Qr.

Since 7[h7V] is well-defined in Qr, letting ¢ — 0% in (4.96), we have (3.7).

Since we have assumed that u > 0 in Qr, from (3.7) it follows (3.4). O
5. PROOFS OF THEOREMS 3.1, 3.2 AND 3.3

ProOOF OF THEOREM 3.1. At first, let us show that it is not restrictive to suppose
that f is locally Lipschitz continuous in Q7. In fact, suppose only that 1 is con-
tinuous in Qr. Let ¢ > 0. Choose a sequence of nonnegative locally Lipschitz
functions {f,} such that

(5.1) fi<f inOr,

and

(5.2) fo— f inQrasn— .
Set

(5.3) hy = A°( ).

Note that for every ne N, h, e C>'(Qr) n C(Qy) solves (1.10) and (1.11).
Moreover, we have that

(5.4) hy,<h, h,—h inQrasn— o0,
where /4 is defined in (1.7). Since
SV <20V in Qr,

we obtain that ?[h9V] < o in Q7 for every n € N. We have that
(5.5) FEYhIV] — hIV]  in Qr,
and that

StV — S V] in Or.
In view of (5.1) we deduce that
(5.6) Ou—Au+ Vu? > f, in Qr.

Therefore, if (3.3)—(3.6) hold with /4 replaced by A, given by (5.3) and f replaced
by f,, then, thanks to (5.4) and (5.5), we have that (3.3), (3.5) and (3.6) hold with
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h given by (1.7). Moreover, we get
(5.7) —(g—-1D)ZhV]<h inQr.
However, from (3.5) it follows that (5.7) must hold with a strict inequality; thus,
(3.4) has been shown.

If ¢ < 0, then the claim follows arguing in the same way, if instead of condi-

tion (5.1) we require that

(5.8) fu=f inQr.

Hence, for all ¢ # 0, we can assume that f is locally Lipschitz continuous in Q7.
Now, let ¢ > 0. Choose a sequence of subsets {Q2,} CC Q such that

(5.9) Q, is relatively compact, connected, open and with 6Q,, smooth,

(5.10) Q,C Q.. foreveryne N, U Q,=Q.
n=1

We have that &, := 2% [ f;ug] € C>'(Q, x (0, T]) n C(Q, x [0, T]), and

Othy — Ahy, = f inQ, x (0,T]
(5.11) h, =0 in 0Q, x (0, T]
hy, = ug in Q, x {0}.

We can always take n big enough so that f # 0 in Q,, and so,
0<h, <o inQr.
By the monotone convergence theorem,
hy — h=2f;uy] in Qr, asn — oo.
In view of (1.6) and (5.11) we have that

O — Au+ Vut > 0,h, — Ah, in Q, x (0,T]

(5.12) u>h, in 06 x (0,7]
) ush in Q, x {0}
1,[20 inQnX(OvT]'
By Theorem 4.9,
hne‘#-‘/’“” [ V] if g=1

Q -4 .
(5.13) u> ¢ A1+ (g =D RV e ifg>1
{1+ (g — 1) -5 [, hdV]} 7T if0<q<1,
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in Q, x (0, T}, where z, := y,|q - Moreover,

1
(5.14) 1+ (q— 1)h—y9~ [hiV] > 0.

By the monotone convergence theorem,
FURIVE — SURIVE in Qr asn — oo,
and
SOy hIVE — Py, h7VE in Qr asn — .
Passing to the limit as n — oo in (5.13) gives (3.3), (3.5) and (3.6). Let ¢ > 1.
Then from (5.14) we have that
1+ (q— 1)%%’[}141/] > 0.

However, since — %1 < 0and } < oo, the previous inequality yields (3.4).

It remains to prove (3.6). Let ¢ < 0. Note that since f is locally Lipschitz
in Or, 2°[f] € C>'(Qr). In fact, for every relatively compact subset Q' C Q
with 0Q’ smooth, we clearly have that 2% [f] € C>!(Q’ x (0, T]). Moreover, the
function w := #%[f] — #%'[f] solves in the weak sense

(5.15) ow—Aw=0 inQ x(0,T].

Hence, by standard regularity results, w € C>!'(Q’ x (0, T]). Therefore, Z[f] €
C>1(Q' x (0, T)). Since Q' was arbitrary, the claim follows. For any ¢ > 0 define

hy :=e+ %Q[f; uo}.
We have that
0thy — Ah, = f in Qr.

Since u > 0, h, > 0 in Q7, the function v, := ¢*l(ﬁe) e C>1(Qr). By the same
arguments as in the proof of Theorem 4.9, we obtain

(5.16) 0(hgvs) — A(hyv,) < —h1V  in Q.
From (4.90) we get
1—-q _ hlfq
— (MY _ g qH &
(5.17) hov, = hu (h) =h

Observe that

(5.18) u=0 1indQ x (0,71,
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and

(5.19) u(x,0) < up(x) forall x e Q.
Moreover,

(5.20) he >¢ indQx (0,T],
and

(5.21) he(x,0) =¢+4uy forall x € Q.

From (5.17), (5.18)—(5.21) we can infer that
(5.22) heo, <0 in [0Q x (0, T U [Q x {0}].
Moreover, from (3.1) and fact that /2, > ¢ it follows that

(5.23) lim  sup /.(x,t)v,(x,¢) =0.

X =00 M te (0, T]
Therefore, we can apply Proposition 4.6 with g = —h?V to get
(5.24) hov, < —ShIV] in Q.

Letting ¢ — 07, the thesis follows by the same arguments as in the proof of
Theorem 4.9-(iv). This completes the proof. O

PrOOF OF THEOREM 3.2. Let {Q,} be a sequence of domains as in (5.9)—(5.10).
Let ¢ > 1. For every ne N, let h, € C>'(Qr) n C(Q7) be the solution of
problem

Oihy — Ahy =0 in Q, x (0, 7]
hy =u in 0Q, x (0, 7]
hy =u in Q, x {0}.

In view of (3.12) and (3.14), by the maximum principle,
h, >0 in QT-
Thanks to (4.81), we can infer that u(x) > 0 for all x € Q,, ¢ € (0, T]; therefore,
u(x) > 0 for all (x,¢) € Or.
Letg=1.Seth =1, v:=logu. As in the proof of Theorem 4.9, we have
ow—Av> -V in Qr.
From (3.12) we can deduce that

v>0 1in [0Q x (0,T]] U [Q x {0}],
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and

liminf inf o(x,7) > 0.
x—0,M te(0,T)

Thus, we can apply Proposition 4.5 with g = —J/, and we have
(5.25) logu(x,t) = v(x, 1) = —[V](x,t) forall (x,1) € Qr.

From (5.25), inequality (3.13) immediately follows.
Now, let ¢ > 1. Set

oy 1= inf u.
(09, % (0, T])U[Q, x {0}]

In view of (3.14) we have that

(5.26) lim o, = c0.

n—o0

We can apply Theorem 4.9 with & = o,,. Therefore,

(5.27) R O i )
— {2, 4 (g DIV inQ, x (0,7],

and

(5.28) —(q—1D)F*WV] <oV inQ, x (0, 7).

Hence, letting n — oo in (5.28) we get #[V](x) > 0. Therefore, by the mono-
tone convergence theorem, (5.27) implies (3.16). Since u(x) < oo, (3.15) follows.
Now, let 0 < ¢ < 1. We set

b0) =[(1- )", veR.
Thus
¢'(v) >0, ¢"(v)>0 forallv>0.

Moreover, (4.48) holds. Consider a sequence {e,} C (0,00) with & — 0 as
n — oo. For every n € N define

Uy = U+ &y, Uy i= ¢_1(un).

In view of Remark 4.4 with 4 =1, by the same arguments as in the proof of
Theorem 4.9, we have

o —Avy = —(*)'V i@, x (0,T),
u
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Since
v, >0 in [0Q, x (0, T]] U [Q, x {0}],

by Proposition 4.5,

(5.29) > P [(”—)qv} inQ, x (0,T].

u
Letting n — oo, by the monotone convergence theorem we get
¢ () > —[x,V] inQr,

which is equivalent to (3.17).
Now, let ¢ < 0. For every n € N set

Vy = sup u.
[Q, x{0}u[oQ, x (0, T]]

In view of (3.18) and (3.1) we have that

(5.30) lim v, = 0.

n— oo
We can apply Theorem 4.9 in Q, with 4 = v, to obtain
(531)  u(x,t) < {11 — (1 — @) ¥[V](x,)}™ forall (x,7) € Or.

Letting » — oo in (5.31) we get (3.20). Moreover, since u > 0 in Qr, we obtain
(3.19). This completes the proof. O

In order to prove Theorem 3.3 we use the standard method of sub- and super-
solutions; namely, if there exists u, i € C>!(Qr) n C(Q7) such that

(5.32) 0<wu<i inQr,
(5.33) u=0, >0 indQ x (0,T],
(5.34) u<uy<u inQx{0}.
and

(5.35) Ou—Au+Vu?! < f in Q7
(5.36) oi—Au+Va?! > f in Qr,

then there exists a solution u € C>!(Qr) n C(Qy) of problem (1.9) such that

(5.37) u<u<u in Qr.
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PrOOF OF THEOREM 3.3. We limit ourselves to prove the statement (ii), since
the statement (i) can be proved in a similar and simpler way.
Let

In view of the regularity assumptions on f and on 0Q, we have that i e
C>'(Qr) N C(Qy) solves

u=0 in 0Q x (0, 7).
it = u in Q x {0}.

Moreover, since V' > 0, f > 0, we have that & satisfies (5.36). Hence @ is a super-
solution of problem (1.9).
Now, we look for a subsolution u of problem (1.9). To this aim, define

w:="h—229%h"v] in Qr,

where / > 0 is a positive parameter to be fixed in the sequel. Thanks to (3.23) we
have that if we take

1
q(1 —q)1

(5.38) 0<i<-H—

)

then
u>0 1in Qr.

Hence, (5.32) holds. We claim that u € C>'(Qr) n C(Q7). In fact, for every
relatively compact subset Q' C Q with Q' smooth, since 2 > 0 in Q', we have
that S [h4V] e C21(Q' x (0, T]). Moreover, the function w:= S?[h4V] —
yg/[hq V] solves (5.15) in the weak sense. Hence, by standard regularity re-
sults, w e C>1(Q' x (0, T]). Therefore, ¥*h4V] e C>1(Q' x (0, T]). Since Q'
was arbitrary, the claim follows. Furthermore, since 7 € C(Q;) and 4 =0 in
[0Q x (0, T)] U [Q x {0}], using (3.23) we can deduce that ¥?[h7V] e C(Oy)
and £2h1V] = 0in [0Q x (0, T]] U [Q x {0}].
Now, let us show that u satisfies (5.35). Note that

ou—Au+Vul = f— 2409V +u?V in QOr.
Hence, since V' > 0 and ¢ < 0, (3.24) follows, if we show that
Ah < u,
that is

(5.39) SRV <271 = A)h.
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Now, it is easily checked that (3.23) yields (5.39), by taking A = 1. Conse-

—I-
quently, there exists a solution u € C*!(Q7) n C(Qy) of problem (1.9) such that
(5.37) is satisfied. Therefore,

1\ |
uZy:h—MyQ[hQV]:h—(l—g) 15”9[th]21 hin Qr.

q

This combined with Theorem 3.1-(iv) gives (3.24). The proof is complete. O

6. PROOFS OF THEOREMS 3.4 AND 3.5

PrROOF OF THEOREM 3.4. By the same arguments as in the proof of Theorem
3.1, and using the same notations, we can infer that, for any ¢ > 0, (5.16) and
(5.22) hold. In view of (5.17) and (3.28) we have that for any ¢ > 0

SUP; ¢ o, T] hﬁ(x7 t)vg(x, t)

(6.40) lim sup <0.

Y 1Z(x)|
Due to (6.40) we can apply Proposition 4.7 with g = AV to deduce (5.24).
Thus the conclusion follows as in the proof of Theorem 3.1. |

PrROOF OF THEOREM 3.5. Choose a sequence of not relatively compact domains
{Q,},cn With smooth boundary such that

o0
Q,CQ, Q,CQ foreveryneN, UQn:Q.

n=1
For every n € N set

(6.41) Vn 1= sup -
[Q, x {0} U[2Q, x (0, T]]

In view of (3.18) we have that

(6.42) lim v, = 0.

n—oo

For each n € N set /1 := v,. Since u > 0, & > 0 in Qr, the function v:= ¢ ' () €
C>'(Qr); here ¢! is given by (4.90). By the same arguments as in the proof of
Theorem 4.9, we obtain

(6.43) 0;(hv) — A(hv) < —h?V  in Qr.
From (4.90) we get

=1 — pl-a

(6.44) ho = hg™! (7) = h1 == ;
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From (6.41) we can infer that
(6.45) hv <0 in [0Q, x (0, T]] U [Q, x {0}].

Moreover, due to (6.44) and (3.29) we have that

. Supte(O,T]h(x7 Z)U(X, t)
6.46 1 <0.
(6.46) oty Z(v)]

Therefore, for each n € N we can apply can apply Proposition 4.7 with g = —h?V
to get

(6.47) h < —%h'V] inQ, x (0,T].
Hence by Theorem 4.9 in Q, with /i = v, we obtain
(6.48)  u(x,1) < {v}1— (1 — ) [V](x,)}™ forall (x,1) € Q, x (0, T].

Letting n — o0 in (6.48), using (6.41), we get (3.20). Moreover, since u > 0 in Qr,
we obtain (3.19). This completes the proof.
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