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Number Theory — Three counterexamples concerning the Northcott property of
fields, by Arno Fehm, communicated on November 10, 2017.

Abstract. — We give three examples of fields concerning the Northcott property on elements of

small height: The first one has the Northcott property but its Galois closure does not even satisfy the
Bogomolov property. The second one has the Northcott property and is pseudo-algebraically closed,

i.e. every variety has a dense set of rational points. The third one has bounded local degree at infi-
nitely many rational primes but does not have the Northcott property.
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1. Introduction

Northcott’s theorem on the finiteness of elements of bounded height in number
fields is of central importance in diophantine geometry, for example very classi-
cally in the proof of the Mordell–Weil theorem. Motivated by that, Bombieri and
Zannier [BZ01] say that a field K � Q has the Northcott property (N) if for each
T > 0 the set

KT :¼ fa a K� : hðaÞ < Tg

is finite, where h : Q ! R denotes the absolute logarithmic Weil height. In the
same paper, the authors introduce another closely related notion: A field K has
the Bogomolov property (B) if there exists T > 0 such that KT consists only of
the roots of unity in K . Note that clearly (N) implies (B). These and related prop-
erties have since been studied by various authors, see e.g. [AZ00, DZ08, Wid11,
CW13, Hab13, Pot15, GR17].

One theme in this area is whether properties like (N) and (B) are preserved
under taking Galois closures. For example, [Wid11, Cor. 2] gives a field K � Q
with (N) whose Galois closure over Q does not have (N). Similarly, [Pot16,
Example 3.1] gives a field K � Q with (B) whose Galois closure over Q does
not have (B), and states that ‘‘It would be interesting to know whether the Galois
closure of a field with the Northcott property necessarily satisfies the Bogomolov
property.’’ Our first result is that the answer to this is negative:

Proposition 1.1. There exists an algebraic extension K=Q such that K has the
Northcott property but the Galois closure of K=Q does not have the Bogomolov
property.



The intuition being that varieties over fields with (B), or even more so, with
(N), have ‘few’ point, Amoroso, David and Zannier [ADZ14, Problem 6.1] asked
whether there exists a field K with (B) that is pseudo-algebraically closed, i.e.
every geometrically irreducible variety V over K has a K-rational point1, and
they present ‘‘some evidences for a negative answer’’. However, Pottmeyer
[Pot16, Example 3.2] showed that such fields do exist, and while this was seen as
surprising, it was apparently expected that at least there should be no pseudo-
algebraically closed fields with (N): Our second result is that such fields do in
fact exist, and can even be chosen Galois over Q (which might be interesting in
light of Proposition 1.1):

Proposition 1.2. There exists a Galois extension K=Q such that K is pseudo-
algebraically closed and has the Northcott property.

As the Northcott property implies a variety of other well-studied properties
of fields (see e.g. [CW13, Theorem 6.8]), for example on pre-periodic points
of polynomial mappings, this proposition might also give surprising counter-
examples to some of the questions there, but we will not discuss these implica-
tions here.

The construction of the example in Proposition 1.1 is completely elementary,
while the construction of the example in Proposition 1.2 uses some (known) re-
sults on specializations of covers of curves. The Northcott property in both cases
follows from a very general criterion of Widmer [Wid11], which we recall is
Section 2.

Pottmeyer [Pot15, Question 4.8] asks whether the Northcott property is im-
plied by the so-called universal strong Bogomolov property (USB). The following
example answers this questions negatively:

Proposition 1.3. There exists a Galois extension K=Q such that infinitely
many prime numbers are totally split in K but K does not have the Northcott
property.

Namely, Pottmeyer [Pot15, Theorem 4.3] shows that every Galois extension of
Q that has finite local degree at infinitely many prime numbers (in particular, any
K as in Proposition 1.3) satisfies (USB). Moreover, since by [Pot15, Lemma 4.2],
(USB) implies also the Narkiewicz property (R) (cf. [CW13, Definition 6.6]), this
shows that (N) is not implied by (R). The construction of the example in Propo-
sition 1.3 builds on a result of Bombieri and Zannier [BZ01].

2. Widmer’s criterion

We start by quoting the criterion of Widmer [Wid11, Theorem 3] and state a spe-
cial case that is su‰cient for our constructions:

1This property first occurred in the work of Ax on the elementary theory of finite fields. The term
pseudo-algebraically closed was coined by Frey.
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Theorem 2.1. Let K0 � K1 � � � � be a tower of number fields with

inf
Ki�1

�M�Ki

NKi�1=QðDM=Ki�1
Þð½M:K0�½M:Ki�1�Þ�1

! l as i ! l;

where the infimum is taken over intermediate fields M, and DM=Ki
denotes the rela-

tive discriminant. Then K :¼
Sl

i¼0 Ki has (N).

Corollary 2.2. Let K0 � K1 � � � � be a tower of number fields and let
ki ¼ ½Ki : Q�. If for each intermediate field Ki�1 �M � Ki there exists a prime

number p > ik
2
i that is unramified in Ki�1 but ramified in M, then K :¼

Sl
i¼0 Ki

has (N).

Proof. Let Ki�1 �M � Ki. If p is ramified in M but not in Ki�1, there is
a prime p of Ki�1 over p that ramifies in M. Then pjDM=Ki�1

, hence pjN :¼
NKi�1=QðDM=Ki�1

Þ. Thus Nb p > ik
2
i , hence N ð½M:K0�½M:Ki�1�Þ�1

b i, so Theorem 2.1
applies. r

3. Proof of Proposition 1.1

Let K0 be any proper finite extension of Q in Q. We fix an algebraic integer
0A a a K0 and s a GalðQ=QÞ such that b :¼ sa=a is not a root of unity
(this is always possible, but take for example K0 ¼ QðiÞ, a ¼ 2þ i and com-
plex conjugation as s). Choose a sequence of prime numbers li with li ! l
and let ki ¼ ½K0 : Q� � l1 � � � li. We now construct a certain tower of number
field K0 � K1 � � � � with ½Ki : Q� ¼ ki. Suppose we already constructed K0; . . . ;
Ki�1. Fix a prime number pi > ik

2
i that in addition does not ramify in Ki�1 and

does not divide NK0=QðaÞ, let gi be an li-th root of pia in Q and define
Ki ¼ Ki�1ðgiÞ.

We claim that K :¼
S

i Ki has the desired properties: For each i, pi ramifies in
Ki but not in Ki�1, and there are no other intermediate fields Ki�1 �M � Ki.
Therefore, Corollary 2.2 applies and gives that K has (N). However, if K̂K denotes
the Galois closure of K over Q, then for each i, K̂K contains both gi and sgi and
therefore also

sgi
gi
, which satisfies

�sgi
gi

�li
¼ sðpiaÞ

pia
¼ sa

a
¼ b:

So since b is not a root of unity, neither is
sgi
gi
, and h

�sgi
gi

�
¼ 1

li
hðbÞ ! 0, hence K̂K

does not satisfy (B).

4. Proof of Proposition 1.2

We want to construct a certain field K � Q and prove that it is pseudo-
algebraically closed. It is well-known that for this it su‰ces to show that every
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geometrically irreducible curve X over Q has a K-rational point, see [FJ08, The-
orem 11.2.3]. Moreover, since every curve admits a finite cover which is itself a
Galois cover of P1 (see [FJ08, Theorem 18.9.3]), it su‰ces to prove the statement
for the latter curves. Therefore, let X1;X2; . . . be an enumeration of the geometri-
cally irreducible curves over Q that admit a Galois morphism to P1.

For each i we will construct a suitable finite Galois extension Ni of Q of de-
gree ni such that XiðNiÞA j, let Ki be the compositum of N1; . . . ;Ni, and K the
union of the Ki (i.e. the compositum of all Ni). Suppose we already constructed
N1; . . . ;Ni�1 of degrees n1; . . . ; ni�1. Fix a Galois morphism ji : Xi ! P1, which
induces a Galois extension of function fields F :¼ QðP1Þ � QðXiÞ ¼: E. Let
ni :¼ degðjiÞ ¼ ½E : F � and di :¼ n1 � � � ni.

We now apply a version of Hilbert’s irreducibility theorem that allows some
control on the ramification. While there are several such results in the literature,
we intend to use [Leg16, Corollary 3.3]. For this, list the intermediate fields2
F �M � E that are Galois over F as M1; . . . ;Mr and observe that each Mj=F
ramifies in some branch point aj a A1ðQÞ ¼ Q by the Riemann–Hurwitz for-
mula. In particular, there is a corresponding inertia subgroup I � GalðE=FÞ not
contained in GalðE=MjÞ. Pick g a InGalðE=MjÞ and let Cj :¼ gGalðE=FÞ be the
conjugacy class of g. If mj a Q½X � denotes the minimal polynomial of aj over
Q, by the Chebotarev density theorem there are infinitely many prime numbers
p such that mj a ZðpÞ½X � and mj has a zero modulo p. We can therefore choose
primes p1; . . . ; pr that are

(1) pairwise distinct,
(2) greater than i d

2
i ,

(3) not among the finitely many bad primes of the cover ji (cf. [Leg16, Def. 2.6]),
(4) not among the finitely many prime numbers that ramify in Ki�1,
(5) and such that mj has a zero modulo pj for j ¼ 1; . . . ; r.

Now [Leg16, Corollary 3.3] gives x a P1ðQÞ such that the fiber j�1
i ðxÞ is irreduc-

ible with function field a Galois extension Ni of Q with GalðNi=QÞGGalðE=FÞ
and such that the inertia group at each pj is generated by an element of Cj. In
particular, ½Ni : Q� ¼ ni and in each (not necessarily Galois) subextension Q �
M � Ni, one of the p1; . . . ; pr ramifies.

Note that Ki ¼ N1 � � �Ni satisfies ki :¼ ½Ki : Q�a di, and let K ¼
S

i Ki. By
construction, XiðKÞ � XiðNiÞA j for each i, so K is pseudo-algebraically closed.
Moreover, K satisfies (N) as the conditions of Corollary 2.2 are met: Each
Ki�1 �M � Ki ¼ Ki�1Ni is of the form M ¼ Ki�1M0 for some Q �M0 � Ni,

and by construction there is a prime p > i d
2
i b ik

2
i that ramifies in M0 (and there-

fore in M ) but not in Ki�1.

Remark 4.1. Lukas Pottmeyer pointed out to me that replacing i d
2
i in (2) by

ði þ 1Þ4d
2
i will achieve that Klogð2Þ ¼ f0;e1g, i.e. a ¼ 2 is of smallest positive

height in K .

2 In fact, it would su‰ce to work with the minimal such fields.
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5. Proof of Proposition 1.3

For a prime number p we denote by Q tp the field of totally p-adic numbers, i.e.
the maximal Galois extension of Q in which p is totally split. We first recall a
result of Bombieri and Zannier [BZ01, Example 2]. They prove that for any finite
set of prime numbers p1; . . . ; pn, the intersection L :¼

Tn
i¼1 Q tpi does not have

(N). More precisely, they show that

lim inf
a AL

hðaÞa
Xn

i¼1

log pi

pi � 1
:ð1Þ

To start our construction, fix any T > 0 and choose a sequence d1; d2; . . . such

that di > e for each i and
Pl

i¼1
log di
di�1 < T . We want to construct an infinite se-

quence of primes p1; p2; . . . and pairwise distinct elements x1; x2; . . . a
Tl

i¼1 Qtpi

with pi > di and hðxiÞ < T for each i. Suppose we already constructed primes
p1; . . . ; pn�1 and x1; . . . ; xn�1 a

Tn�1
i¼1 Q tpi with pi > di and hðxiÞ < T for i ¼

1; . . . ; n� 1. By the Chebotarev density theorem, there are infinitely many primes
p such that p is totally split in the Galois closure of Qðx1; . . . ; xn�1Þ, in other
words, x1; . . . ; xn�1 a Q tp. Choose such a prime pn > dn and note that x1; . . . ;
xn�1 a

Tn
i¼1 Q tpi . Now by (1), there exists xn a

Tn
i¼1 Q tpinfx1; . . . ; xn�1g with

hðxnÞa
Xn

i¼1

log pi

pi � 1
a

Xn

i¼1

log di
di � 1

< T :

Continuing this construction, we arrive at K :¼
Tl

i¼1 Q tpi with KT � fx1; x2; . . .g
infinite, so K does not satisfy (N). As di ! l, the set fp1; p2; . . .g is infinite.
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