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Functional Analysis — On the Moser–Trudinger inequality in fractional Sobolev–
Slobodeckij spaces, by Enea Parini and Bernhard Ruf, communicated on
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Abstract. — We give a contribution to the problem of finding the optimal exponent in the

Moser–Trudinger inequality in the fractional Sobolev–Slobodeckij space ~WW s; p
0 ðWÞ, where W � RN

is a bounded domain, s a ð0; 1Þ, and sp ¼ N. We exhibit an explicit exponent a�
s;N > 0, which does

not depend on W, such that the Moser–Trudinger inequality does not hold true for a a ða�
s;N ;þlÞ.
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1. Introduction

Let W � RN be a bounded, open domain with Lipschitz boundary. A celebrated
result by Trudinger [15] and Moser [9] (see also the contributions by Yudovich

[16], Pohozaev [12] and Strichartz [13]) states that functions in W
1;N
0 ðWÞ enjoy

summability of exponential type: more precisely, there exists an exponent aN > 0
such that

sup

Z
W

expðajuj
N

N�1Þ j u a W
1;N
0 ðWÞ; k‘ukLN a 1

� �
< þlð1Þ

holds true for every a a ½0; aN �, and fails for a a ðaN ;þlÞ. This optimal expo-
nent is given by aN ¼ NðNoNÞ

1
N�1, where oN is the volume of the N-dimensional

unit ball. Subsequently, Adams [1] was able to extend the results to higher order
Sobolev spaces W

k;p
0 ðWÞ with kp ¼ N. His proof is based on expressing func-

tions belonging to the space as Riesz potentials of their gradients of order k.
This approach can be extended to Bessel potential spaces of fractional order.
Martinazzi considered in [8] the space ~HHs;pðWÞ, which is defined for s a ð0; 1Þ
and p a ð1;þlÞ as

~HHs;pðWÞ :¼ fu a LpðRNÞ j ð�DÞ
s
2u a LpðWÞ; uC 0 in RNnWg:

1This paper is related to a talk given at ‘‘XXVII Convegno Nazionale di Calcolo delle
Variazioni’’ – Levico Terme (Trento) 6–10 February, 2017.



In [10] we investigated the case of the fractional Sobolev–Slobodeckij space
~WWs;p

0 ðWÞ, defined as the completion of Cl
c ðWÞ with respect to the norm

u 7! ðkuk p

L pðWÞ þ ½u� p
W s; pðRN ÞÞ

1
p;

where

½u�W s; pðRN Þ :¼
Z
RN

Z
RN

juðxÞ � uðyÞj p

jx� yjNþsp
dx dy:

If W has a Lipschitz boundary, this space can also be equivalently defined as

~WWs;p
0 ðWÞ :¼ u a LpðRNÞ

����
Z
RN

Z
RN

juðxÞ � uðyÞj p

jx� yjNþsp
dx dy < þl; uC0 in RNnW

( )
:

It is important to observe that the Sobolev–Slobodeckij space ~WWs;p
0 ðWÞ is in gen-

eral di¤erent from the Bessel potential spaces ~HHs;pðWÞ, unless p ¼ 2. Here the
precise statement of the main result.

Theorem 1.1. Let W be a bounded, open domain of RN ðNb 2Þ with Lipschitz
boundary, and let s a ð0; 1Þ, sp ¼ N. Then there exists a� ¼ a�ðs;WÞ > 0 such that

sup

Z
W

expðajuj
N

N�sÞ j u a ~WWs;p
0 ðWÞ; ½u�W s; pðRN Þ a 1

� �
< þl for a a ½0; a�Þ:

Moreover,

sup

Z
W

expðajuj
N

N�sÞ j u a ~WWs;p
0 ðWÞ; ½u�W s; pðRN Þ a 1

� �
¼ þl for a a ða�

s;N ;þlÞ;

where

a�
s;N :¼ N

�2ðNoNÞ2Gðpþ 1Þ
N!

Xl
k¼0

ðN þ k � 1Þ!
k!

1

ðN þ 2kÞ p
� s

N�s

:

The proof of the validity of the Moser–Trudinger inequality for some value of
a > 0 follows the approach by Trudinger and is essentially contained in [11].

In order to give an upper bound to the optimal exponent a such that

sup

Z
W

expðajuj
N

N�sÞ j u a ~WWs;p
0 ðWÞ; ½u�W s; pðRN Þ a 1

� �
< þlð2Þ

for a a ½0; aÞ, one shows that it is possible to restrict to the case where W is a ball.
Moreover, by a simple scaling argument it is easy to see that the optimal expo-
nent does not depend on the radius of the ball. The following formula for the
Gagliardo seminorm of a radially symmetric function u a Ws;pðRNÞ is needed
in our proofs, and can be of independent interest.
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Proposition 1.2. Let u a Ws;pðRNÞ be a radially symmetric function. Suppose
that sp ¼ N. Then,

Z
RN

Z
RN

juðxÞ � uðyÞj p

jx� yjNþsp
dx dy

¼ ðNoNÞ2
Z þl

0

Z þl

0

juðrÞ � uðtÞj prN�1tN�1 r2 þ t2

jr2 � t2jNþ1
dr dt:

Then, one considers the family of functions defined by

ueðxÞ ¼

jln ej
N�s
N if jxja e

jlnjxjj
jln ej

s
N

if e < jxj < 1

0 if jxjb 1

8>>><
>>>:

ð3Þ

whose restrictions to the unit ball B belong to ~WWs;p
0 ðBÞ. For s ¼ 1, this is the

Moser-sequence used in [9], which satisfies

k‘uek22 ¼ NoN for every e > 0:

For s a ð0; 1Þ, we cannot expect that ½ue�W s; pðRN Þ is constant, therefore it is essen-
tial to perform some lengthy calculations in order to obtain the limit as e ! 0 of
the quantity

IðeÞ :¼
Z
RN

Z
RN

jueðxÞ � ueðyÞj p

jx� yjNþsp
dx dy

¼ ðNoNÞ2
Z þl

0

Z þl

0

jueðrÞ � ueðtÞj prN�1tN�1 r2 þ t2

jr2 � t2jNþ1
dr dt:

The results obtained are consistent with the local case. For example, if N ¼ 2
we have

lim
s!1�

ð1� sÞa�
s;2 ¼ 2p2

which coincides with the optimal exponent a�
1;2 ¼ 4p (see [9]), up to the multipli-

cative constant

Kð2; 2Þ :¼ 1

2

Z
S 1

j3s; e4j2 dHN�1ðsÞ ¼ p

2

which appears in the asymptotic behaviour of Gagliardo seminorms in the limit
s ! 1� (see [2]).
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It is an open problem to determine whether the exponent a�
s;N is optimal. If

this is the case, does the Moser–Trudinger inequality hold true also for a ¼ a�
opt,

as in the classical case? And is the supremum attained, similarly to the results of
[3] and [7]? This question was addressed by a recent paper by Takahashi [14] in
the case of the space H

1
2;2ðRÞ.

We mention that Iula extended our analysis to the case N ¼ 1 in [5]. He was
able to prove that, for s ¼ 1

2 and p ¼ 2, the exponent a�
1
2;1

is equal to 2p2 and
it coincides with the optimal exponent a2 ¼ p determined in [6] for the space
~HH

1
2;2ðIÞ, up to a normalization constant relating the seminorms in the two spaces

(see [4, Proposition 3.6]).
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