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ABSTRACT. — This paper is divided in two parts: the first one is a survey about recent results on
the regularizing effect of lower order terms on solutions of nonlinear Dirichlet problems; in the sec-
ond part we prove two existence theorems (related to the results of the first part) concerning elliptic
systems.
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1. A SURVEY ON SOME RECENT RESULTS

In this paper Q is a bounded, open subset of R, with N > 2, f(x) belongs to
L"(Q), with m > 1, M(x) is a measurable matrix such that

(1.1) olé]P < M(x)EE,  |M(x)| < B,

for almost every x in Q, and for every & in RY, with 0 < « < . Furthermore

m* = (if 1 <m < N)and m*™ =5 (if | <m < N/2).

1.1. The Stampacchia—Calderon—Zygmund theory for linear operators with
discontinuous coefficients

Let us consider the following boundary value problem

{ —div(M(x)Vu) = f, inQ;

1.2
(12) u=20, on 0Q;

If fel™Q), m> ]é—ivz, existence and uniqueness of a weak solution u e
WOI’Z(Q) is a consequence of the Lax—Milgram theorem (finite energy solutions);

therefore there exists a unique u € W, *(Q) such that

(1.3) /Q M (x)VuVv = /Q f(x)o(x), Yve W, Q).

!This paper is related to a talk given at “XXVII Convegno Nazionale di Calcolo delle
Variazioni” — Levico Terme (Trento) 6-10 February, 2017.
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Moreover, G. Stampacchia (see [24]) proved the following summability theorem:

2N/(N+2)<m< N/2, thenue L™ (Q);

(1.4) if ¢ m=N/2, then u has exponential summability;
m>N/2, then u € L*(Q).
Thus the summability 24 of u is a strictly increasing function of m (recall that Q
is bounded).
However,

(1.5)  the summability of Vu is not a strictly increasing function of m (see [7]).

Note that, by a result by Meyers (see [22]), the gradient of finite energy solutions
belongs to L?(Q) for some p > 2, independent on m, and dependent on the ellip-
ticity constants o and § of M.

On the other hand, if fe L"(Q), | <m < A%—fz, we are outside of the finite
energy solutions framework and the existence of a distributional solution u such

that
(1.6 | mevave = [ o, o e 2(@),
is proved in [8] and [9], where it is also proved that (infinite energy solutions)

1,m*
(17) if{1<m<2N/(N+2), thenu e Wy (Q);

m=1, then u € Wy Y(Q), ¢ < 5.
Note that solutions in distributional sense may not be unique (see for example
[23]): in order to overcome this problem, the notion of duality solution has been
introduced by Stampacchia in [24], who then proved that it is unique.

Note that here the summability of Vu is a strictly increasing function of m,
in contrast with (1.5).

1.2. The Stampacchia—Calderon—Zygmund theory for nonlinear operators with
nonregular data

Now we consider nonlinear differential operators of the type
A(v) = —div(a(x, v, Vv)).

A is a Leray—Lions operator defined from WOLI7 (Q), 1 < p< N, into its dual
and a: Q x R x RY — R" is a Carathéodory function (that is, measurable with
respect to x in Q for every (s,&) in R x RY, and continuous with respect to
(s,¢) in R x RY for almost every x in Q). We assume that there exist two
real positive constants « and f, and a nonnegative function k(x) in L' (Q),



LOWER ORDER TERMS REGULARIZING EFFECT. OLD AND NEW 389

such that for almost every x in Q, for every s in R, for every & and # in RY

(& #n),

aél” < a(x,s, &)E,
ja(x, s, &) < Blk(x) +[s|”" + €771,
0 < [a(x,s,&) —a(x,s,n)][E —nl.

Under these assumptions, 4 is pseudomonotone, and is hence surjective (see
[21]).

The first example is the p-Laplace operator: div(a(x)|Vv|”*Vv).

If f e L"™(Q), m> (p*)', the existence of a weak solution (finite energy solu-
tions) u € Wol’p (Q) is due to Leray and Lions (see [21])

(1.8) uerp(Q)/

, (vaqu—/f o(x), Yoe WyP(Q).

Moreover

e if m > N/p (respectively m > N /p) the results of [24] says that u belongs to
LOO(Q) (respectively u has exponential summability);

e if (p*) <m < N/p, in [13] is proved that u € LI(r=Dm"T(Q),

If fe L"(Q), 1 <m < (p*), the Calderon-Zygmund theory for linear operators

with nonregular data is studied in [8], [9], [11], where the existence of distribu-

tional solution is proved:

o iffm <m< m = (p*)’, then there exists a distributional solution u

(1.9)  ue WyiQ) :/a(x,v,Vu)V(p:/Qf(x)(p(x), Vo e 2(Q),

Q
where
(1.10) q=(p—1)m"
o if m= then there exists a distributional solution u of (1.9), and

(p 1)+1 ’
ue W HQ); a radial example shows that u ¢ W 1(Q), for every ¢ > 1,
eifl <m< W’ a definition of solution u ¢ W 1(Q), weaker than distribu-
tional solution and which uses the truncation, is needed: this part is studied in

[3], where also a suitable definition of gradient is introduced.
Here we recall the definition of the truncation Ty (s) and of G(s):

Ti(s) = max(—k, min(s, k)), Gi(s) = s — Ti(s) = (|s| — k)" sgn(s).
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1.3. The impact of some lower order terms

In this subsection we will recall how the presence of lower order terms may lead
to an improvement of the summability of the solutions.

1.3.1. Semilinear problems. Here we consider the following boundary value
problem, which can be seen as a perturbation of (1.2):

(1.11) { —div(M (x)Vu) + g(u) = f, inQ;
. u=0, on 0Q;

where ¢(s) is a continuous increasing (without growth conditions) real function,
with g(0) = 0.

The existence of a solution u € WOI’2 (Q), such that ug(u) € L'(Q), is con-
tained in the existence results of [18], if /€ L™(Q), m > %

Moreover, in [20] is proved (even in a more general setting) the regularizing
effect of a polynomial lower order term g(s) = s|s|"'. Indeed for the boundary

value problem

—div(M (x)Vu) +ulu|" = f e L"(Q), inQ;
(1.12)

u=>0, on 0Q;

it is possible to prove the existence of weak solutions, even beyond the natural
duality pairing; that is: there exists a weak solution u € W,*(Q) n LU="(Q), if

(1.13) r'<m< r> 2%

a N+2’
REMARK 1.1. Other regularizing effects are studied in [14], [10], [12].

1.3.2. Regularizing effect of the interplay between coefficients. In [1] the regula-
rizing effect of the interaction between the coefficient of the zero order term and
the datum in some nonlinear elliptic problems is studied.

The simplest example is the linear problem

/QM(x)VuV(p—i—/Qa(X)u(ﬂ:/Qf(x)%
Vo € Wy (Q) AL (Q),
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where 0 < a(x) € L'(Q). Even if f(x) only belongs to L!(Q), in [1] it is proved
that the assumption

(1.14) there exists Q > 0 such that |f(x)| < Qa(x)

implies the existence of a weak solution u belonging to WOI’Z(Q) and such that
u(x)| < @
ue Wy Q) nL*(Q) :

(1.15) /QM(x)VuV(p—i—/ X)up = /f

Vo € W, Q) n L7(Q),

OUTLINE OF THE PROOF. Formally: we use Ggo(u) as test function and we de-
duce the inequality (we drop the first positive term and we use the assumption

(1.14))
| a6t < [ 1£)11Go(w) < € [ a()[Golw

/ a(x)[Jul — O <0,
{lul>0}

that is

which implies
ul < Q. O

Moreover a simple radial example shows the above boundedness result is
sharp.

Moreover in [15] it is possible to find an example showing that the bounded
solution u of (1.15) is not Holder-continuous.

The case where Q in (1.14) is not a constant, but a function belonging to some
Lebesgue space, is studied in [2].

2. NEW RESULTS CONCERNING ELLIPTIC SYSTEMS RELATED TO MODELS FOR
CHEMOTAXIS

2.1. A system with bounded solutions

In this section, we study the existence of solutions u, ¢ of the system (see also [0]
and the references therein)

—div(A4(x)Vu) + p(x)u = —div(uM (x)Ve) + f(x), inQ;
—div(M (x)Vp) = g(x)u, in Q;
u=0= 0, on 69,
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where A and M are elliptic matrices satisfying (1.1) and f, p, g are functions
belonging to L'(Q) and such that

2.1) ()] < Op(x),  0=<g(x) < Rp(x),

where Q and R belong to R are such that

(2.2) 0< QR<%.

THEOREM 2.1. If(2.1) and (2.2) hold, there exists u € WOI’Z(Q) and ¢ € Wol’q(Q),
q< %, such that for every v, w smooth:

/Q A(x)VuVo + /Q p(x)up = /Q UM (x)VoVo + /Q 7)),

(2.3)
/QM(X)V(/)Vw:/Qg(x)u(x)w(x).

PrROOEF. Our starting point is the following approximate system

—div(A4(x)Vu,) + p,(x)u,
__diV( ul,, M(x)V(pn) + fu(x), inQ
(2.4) Lt fnl
u
—div(M(x)Vg,) = gn(x) —— in Q;
WMO¥R) =) T
un:(pnzo7 on GQ,
where
p(x) S(x) g9(x)
o) = L =L gy = I
= M= Y ST

We prove the existence of solutions u, and ¢, by means of the Schauder fixed
point theorem. Let 7 € N be fixed. For every y(x) in W, *(Q), let Z be the unique
solution of the linear Dirichlet problem

7(x)
1+1py]

Ze WO]"Z(Q) : —div(M (x)VZ) = gu(x)

Then let I' be the unique solution of the linear Dirichlet problem

[ Wy (Q) : ~div(A(x)VE) 4+ p, (x)T = —div 5 i(?lﬂ M(X)VZ) + fi(x).
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Choosing Z as test function in the first equation, one gets (since the right hand
side is bounded by a constant times 1?)

1
oc/ vz gnz/ 1Z] < Conz(/ |VZ|2)',
Q Q Q

where in the last passage we have used Sobolev inequality. Therefore,
(2.5) / VZ|* < Cin.
Q

Choosing I as test function in the second equation, one then obtains (dropping a
positive term)

oc/Q|VF|2 Sn/QM(x)VZVF—Fn/QH
sﬁn</Q|VZ|2>%(/Q|VF|2)%+C2n</Q|VF|2)2

where once again we used the Sobolev inequality. Therefore, recalling (2.5), we
obtain

(2.6) / IV['|> < C3n®,
Q

which implies that ||| i) < Cy4n?, independently of y; hence the ball of radius

Cyn® in W1 2(Q) is 1nvar1ant for the map X:y — I'. Moreover, the map X is
completely contmuous in W, 2(Q) since it is continuous and if there exists d in
y(x)

+ 517
y — Z is compact in W (@), and 50 the map Z ~ F is compact in W 2(Q).

Thus we proved that there exists (u,,¢,) in W 2(Q) x WOl 2(Q), solutlon of
the system (2.4).

The first step is the proof of an a priori estimate on the sequence {u,} in
L*(Q).

Let 7> 0 and j > 0 be fixed. In (2.4), we use as test functions D(u,) (in the
first equation) and H,(u,) (in the second equation), where D(s) = T} (G;(s)) and

H,,(s):/o D

1
n

R such that |\y||W1 2 =4, then is compact in W ~12(Q); hence the map

Note that
S 0 if |1 < J,
s)|§/ (| (2) de =, (0) = 5L i < |l <j+h,
’ W+ ] > 4k,
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If we define Bj ={xeQ:j<|u| <j+h} and 4; ={xe Q:|u,| > j}, we
have

(2.7) /B. A(x)VunVun—l—/A.p(x)unTh(Gj(un))

-/ s LA / ATHG )
and
(2.8) /B M)V, Vi) = /A G ()t H ().

Jih J

Substituting this identity in the first one, dropping the positive first term and
dividing by /4, we obtain

/_pn(X)unw < /A_pn(x)lunllp”h}fu”) —l—//l.fw

4;

<R [ a5 50 [ 0

Letting 4 tend to zero, T’Tm tends to sign(s) and %’T“) tends to j. Therefore

[, et <8 [ pilul +@ [ pit),

J

that is

/A pa)I(1 = Rj)|u] — 0] < 0.

J

Let 0 < j < 4, so that

(29) (1= R)j =0l [ p ) <0,

4;

Now we look for j such that [(1 — Rj)j — Q] > 0, that is

- JT—40R . 1+.T—40R
2R <J< 2R ’

1-+/1-40R 1+4/1-40R
Observe that 0 < 3R 9 and h SR 9 <
have that

1
with the condition QR < 1

1-40R
—ar > We

+. If we define Cp g =

(2.10) HunHLf(Q) < Co.r-
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The second step is the proof of an a priori estimate on the sequence {u,} in
WOI’Z(Q). In the first part of this proof, we choose as test functions in (2.4) u,
(in the first equation) and H,(u,) (in the second equation) with now

N T
H,(s) = —dr
(5) /0 1—|—%|r|

we have

(2.11) / A(x)Vu,Vu, + / plx)u = / uilnM(x)VgonVun + / Sty
Q Q ol +|ul Q

and, thanks to (2.10) and to the assumption (2.1),

(2.12) /Q M(x)V, Vi H (1,) < R /Q p(3)Co.xH,(Co ).

Substituting this inequality in (2.11), we have

. /Q Vil® < [RCo xHa(Co 1) + OCo 1] /Q p(x).

Thus there exist u € W (Q) and a sequence still denoted by {u,} such that {u,}
weakly converges in W ?(Q) and a.e. to u.

Moreover the estlmate (2.10) and the assumption (2.1) say that the right hand
side of the second equation is bounded in L'(Q), since

gn(x) < |g(x)un| < RpCo R,

o
1+%|un|

so that the theory of Dirichlet problems in L!'(Q) gives the boundedness of the
sequence {¢p,} in W1 1(Q), for ¢ < 5. Thus there exist ¢ € W (Q) and a

sequence still denoted by {¢,} such that {(pn} weakly converges in W 7(Q) and
a.e. to ¢.

Since the principal parts of the differential operators are linear, we can pass
to the limit in the weak formulation of (2.4), even with the weak convergences
of the sequences {u,} and {¢,}, and we have the existence of u, ¢ solutions of
(2.3). O

REMARK 2.2. Since u belongs to L*(Q) the summability of ¢ depends only

on the summability of p; in particular, ¢ € W (Q) if pe L™(Q), withm > 1\352

2.2. A second system

In this section we study the following system, which is similar to the previous one,
but for the fact that the “bad” divergence term is now on the left hand side of the
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equation (i.e., it has the “good” sign):

—div(A(x)Vu) + u — div(uM (x)Vp) = f(x), in€;
—div(4*(x)Ve) + ¢ = |u|”, in Q;
u=¢=0, on 0Q;

where 4 and M are elliptic matrices satisfying (1.1), 0 < f € L™(Q), m > 2 and
m>=p+1,p>0.

THEOREM 2.3. Under the above assumptions, there exist u € WO1 1(Q), g < nffz,
and ¢ € Wol"z(Q), such that for every v, w smooth:

/QA(x)Vqu+/QuU—/QuM(x)V(va:/Qf(x)U(x),
/QA*(x)VgonH—/ngw(x)_/Qu(x)pw(x).

PROOF. Our starting point is the boundary value problem (with the same nota-
tions of the previous case)

(2.13)

—div(A(X)Vuy) + ty — div(#l”'u' M(x)Vgon> — (%), inQ

—div(4*(x)Ve,) + ¢, = |Tu(ua)|”, in €

u, = ¢, =0, on 0Q);
The positivity of the function f(x) (hence the positivity of f,(x)) implies the
positivity of u,(x) (see [6]); so that our starting point is the boundary value

problem

u,

—div(A4(x)Vu,) + u, — div <71 n §|un| M(x)Vgon> = fu(x), inQ;
—d1V(A*(X)V(pn) + 0, = Tn(un)p; in Q;
Uy = ¢, =0, on 0Q;

We now choose ¢, as test function in the formulation for u,, and u, as test func-
tion in the formulation for ¢,. We get

U
/ A(X)Vi Vo, + / i + / M(x)Vo, Vo, — 2 = / Ftm
Q Q Q L+ L] Ja

and

/A*(X)V“nvwn+/“n¢n—/ Tn(“n)pun'
Q Q Q
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Dropping a positive term (recall that u, > 0), we then obtain the inequality

/QTn(un)’”1 < /QTn(un)”uns /anwns /Qf(ﬂn

< /o [ / w,,)'"}“"’ < 1/ oo { / Tn<un>”'”’]

Here note that pm’ < p+ 1, since m > p + 1. Thus we have

L
m’

(2.14) UQ Tn(un)’”r < 1flLmey-

Since m > 2 > 1\%—1’2, the above estimate implies that the sequence
(2.15) {T,y(u,)"} is compact in L¥3(Q),

which implies that the sequence

(2.16) {p,} is compact in W,"*(Q).

In [5] (see also [6]) is proved that since {¢,} is bounded in WOI‘Z(Q), then

2
(2.17) /'Vu”|2 <C,
o(l+u,)

which then implies the a.e. convergence of {u,(x)} to a function u(x).
Moreover, for every fixed k& > 0, (2.14) implies that, for n > k,

k™ meas({x : k < u,}) < /

k<uy,

< /Q To(n)” < [/ e,

Tn(un)m—‘/k - )Tn(un)m
<dnlun

so that the sequence {u,} is bounded in the Marcinkiewicz space M"(Q); there-
fore we have that

(2.18) {u,} strongly converges to u in L"(Q), 2 <r<m.
Then, (2.17) and (2.18) imply that there exists ¢ such that

2m

(2.19) {Vu,} is bounded in W;*(Q), 1<g< PR
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Indeed, we use the Holder inequality with exponents 2/¢ and 2/(2 — ¢) and we
have

24

vl = [ s <l [0 ]
Q o (1 + |u,)? o

which is bounded because of (2.18).
Then (2.16) and (2.18) allow us to pass to the limit in L' in

M(x)Vg,
in order to prove the existence of solutions of the system (2.13). O
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