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Abstract. — This paper is divided in two parts: the first one is a survey about recent results on

the regularizing e¤ect of lower order terms on solutions of nonlinear Dirichlet problems; in the sec-
ond part we prove two existence theorems (related to the results of the first part) concerning elliptic

systems.
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1. A survey on some recent results

In this paper W is a bounded, open subset of RN , with N > 2, f ðxÞ belongs to
LmðWÞ, with mb 1, MðxÞ is a measurable matrix such that

ajxj2 aMðxÞxx; jMðxÞja b;ð1:1Þ

for almost every x in W, and for every x in RN , with 0 < aa b. Furthermore
m� ¼ mN

N�m
(if 1 < m < N) and m�� ¼ mN

N�2m (if 1 < m < N=2).

1.1. The Stampacchia–Calderon–Zygmund theory for linear operators with
discontinuous coe‰cients

Let us consider the following boundary value problem

�divðMðxÞ‘uÞ ¼ f ; in W;

u ¼ 0; on qW;

�
ð1:2Þ

If f a LmðWÞ, mb 2N
Nþ2 , existence and uniqueness of a weak solution u a

W 1;2
0 ðWÞ is a consequence of the Lax–Milgram theorem (finite energy solutions);

therefore there exists a unique u a W
1;2
0 ðWÞ such thatZ

W

MðxÞ‘u‘v ¼
Z
W

f ðxÞvðxÞ; Ev a W
1;2
0 ðWÞ:ð1:3Þ

1This paper is related to a talk given at ‘‘XXVII Convegno Nazionale di Calcolo delle
Variazioni’’ – Levico Terme (Trento) 6–10 February, 2017.



Moreover, G. Stampacchia (see [24]) proved the following summability theorem:

if

2N=ðN þ 2Þ < m < N=2; then u a Lm��ðWÞ;
m ¼ N=2; then u has exponential summability;

m > N=2; then u a LlðWÞ:

8<
:ð1:4Þ

Thus the summability mN
N�2m of u is a strictly increasing function of m (recall that W

is bounded).
However,

the summability of ‘u is not a strictly increasing function of m ðsee [7]Þ:ð1:5Þ

Note that, by a result by Meyers (see [22]), the gradient of finite energy solutions
belongs to LpðWÞ for some p > 2, independent on m, and dependent on the ellip-
ticity constants a and b of M.

On the other hand, if f a LmðWÞ, 1am < 2N
Nþ2 , we are outside of the finite

energy solutions framework and the existence of a distributional solution u such
that Z

W

MðxÞ‘u‘j ¼
Z
W

f ðxÞjðxÞ; Ej a DðWÞ;ð1:6Þ

is proved in [8] and [9], where it is also proved that (infinite energy solutions)

if
1 < m < 2N=ðN þ 2Þ; then u a W 1;m�

0 ðWÞ;
m ¼ 1; then u a W

1;q
0 ðWÞ; q < N

N�1 :

(
ð1:7Þ

Note that solutions in distributional sense may not be unique (see for example
[23]): in order to overcome this problem, the notion of duality solution has been
introduced by Stampacchia in [24], who then proved that it is unique.

Note that here the summability of ‘u is a strictly increasing function of m,
in contrast with (1.5).

1.2. The Stampacchia–Calderon–Zygmund theory for nonlinear operators with
nonregular data

Now we consider nonlinear di¤erential operators of the type

AðvÞ ¼ �divðaðx; v;‘vÞÞ:

A is a Leray–Lions operator defined from W
1;p
0 ðWÞ, 1 < p < N, into its dual

and a : W� R� RN ! RN is a Carathéodory function (that is, measurable with
respect to x in W for every ðs; xÞ in R� RN , and continuous with respect to
ðs; xÞ in R� RN for almost every x in W). We assume that there exist two
real positive constants a and b, and a nonnegative function kðxÞ in Lp 0 ðWÞ,
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such that for almost every x in W, for every s in R, for every x and h in RN

ðxA hÞ,

ajxj p a aðx; s; xÞx;
jaðx; s; xÞja bðkðxÞ þ jsj p�1 þ jxj p�1Þ;

0 < ½aðx; s; xÞ � aðx; s; hÞ�½x� h�:

Under these assumptions, A is pseudomonotone, and is hence surjective (see
[21]).

The first example is the p-Laplace operator: divð~aaðxÞj‘vj p�2‘vÞ.
If f a LmðWÞ, mb ðp�Þ0, the existence of a weak solution (finite energy solu-

tions) u a W
1;p
0 ðWÞ is due to Leray and Lions (see [21])

u a W
1;p
0 ðWÞ :

Z
W

aðx; v;‘uÞ‘v ¼
Z
W

f ðxÞvðxÞ; Ev a W
1;p
0 ðWÞ:ð1:8Þ

Moreover

• if m > N=p (respectively m > N=p) the results of [24] says that u belongs to
LlðWÞ (respectively u has exponential summability);

• if ðp�Þ0 < m < N=p, in [13] is proved that u a L½ðp�1Þm�� � ðWÞ.

If f a LmðWÞ, 1am < ðp�Þ0, the Calderon–Zygmund theory for linear operators
with nonregular data is studied in [8], [9], [11], where the existence of distribu-
tional solution is proved:

• if N
Nðp�1Þþ1 < m < Np

pNþp�N
¼ ðp�Þ0, then there exists a distributional solution u

of

u a W
1;q
0 ðWÞ :

Z
W

aðx; v;‘uÞ‘j ¼
Z
W

f ðxÞjðxÞ; Ej a DðWÞ;ð1:9Þ

where

q ¼ ðp� 1Þm�;ð1:10Þ

• if m ¼ N
Nðp�1Þþ1 , then there exists a distributional solution u of (1.9), and

u a W
1;1
0 ðWÞ; a radial example shows that u B W

1;q
0 ðWÞ, for every q > 1;

• if 1am < N
Nðp�1Þþ1 , a definition of solution u B W

1;1
0 ðWÞ, weaker than distribu-

tional solution and which uses the truncation, is needed: this part is studied in
[3], where also a suitable definition of gradient is introduced.

Here we recall the definition of the truncation TkðsÞ and of GkðsÞ:

TkðsÞ ¼ maxð�k;minðs; kÞÞ; GkðsÞ ¼ s� TkðsÞ ¼ ðjsj � kÞþ sgnðsÞ:
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1.3. The impact of some lower order terms

In this subsection we will recall how the presence of lower order terms may lead
to an improvement of the summability of the solutions.

1.3.1. Semilinear problems. Here we consider the following boundary value
problem, which can be seen as a perturbation of (1.2):

�divðMðxÞ‘uÞ þ gðuÞ ¼ f ; in W;

u ¼ 0; on qW;

�
ð1:11Þ

where gðsÞ is a continuous increasing (without growth conditions) real function,
with gð0Þ ¼ 0.

The existence of a solution u a W
1;2
0 ðWÞ, such that ugðuÞ a L1ðWÞ, is con-

tained in the existence results of [18], if f a LmðWÞ, m > 2N
Nþ2 .

Moreover, in [20] is proved (even in a more general setting) the regularizing
e¤ect of a polynomial lower order term gðsÞ ¼ sjsjr�1. Indeed for the boundary
value problem

�divðMðxÞ‘uÞ þ ujujr�1 ¼ f a LmðWÞ; in W;

u ¼ 0; on qW;

�
ð1:12Þ

it is possible to prove the existence of weak solutions, even beyond the natural
duality pairing; that is: there exists a weak solution u a W 1;2

0 ðWÞBLðr�1ÞmðWÞ, if

r 0 am <
2N

N þ 2
; r > 2�:ð1:13Þ

Remark 1.1. Other regularizing e¤ects are studied in [14], [10], [12].

1.3.2. Regularizing e¤ect of the interplay between coe‰cients. In [1] the regula-
rizing e¤ect of the interaction between the coe‰cient of the zero order term and
the datum in some nonlinear elliptic problems is studied.

The simplest example is the linear problemZ
W

MðxÞ‘u‘jþ
Z
W

aðxÞuj ¼
Z
W

f ðxÞj;

Ej a W
1;2
0 ðWÞBLlðWÞ;

8><
>:
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where 0a aðxÞ a L1ðWÞ. Even if f ðxÞ only belongs to L1ðWÞ, in [1] it is proved
that the assumption

there exists Q > 0 such that j f ðxÞjaQaðxÞð1:14Þ

implies the existence of a weak solution u belonging to W
1;2
0 ðWÞ and such that

juðxÞjaQ:

u a W 1;2
0 ðWÞBLlðWÞ :Z

W

MðxÞ‘u‘jþ
Z
W

aðxÞuj ¼
Z
W

f ðxÞj;

Ej a W
1;2
0 ðWÞBLlðWÞ;

8>>><
>>>:

ð1:15Þ

Outline of the proof. Formally: we use GQðuÞ as test function and we de-
duce the inequality (we drop the first positive term and we use the assumption
(1.14)) Z

W

aðxÞjuj jGQðuÞja
Z
W

j f ðxÞj jGQðuÞjaQ

Z
W

aðxÞjGQðuÞj;

that is Z
fjuj>Qg

aðxÞ½juj �Q�2 a 0;

which implies

jujaQ: r

Moreover a simple radial example shows the above boundedness result is
sharp.

Moreover in [15] it is possible to find an example showing that the bounded
solution u of (1.15) is not Hölder-continuous.

The case where Q in (1.14) is not a constant, but a function belonging to some
Lebesgue space, is studied in [2].

2. New results concerning elliptic systems related to models for

chemotaxis

2.1. A system with bounded solutions

In this section, we study the existence of solutions u, j of the system (see also [6]
and the references therein)

�divðAðxÞ‘uÞ þ rðxÞu ¼ �divðuMðxÞ‘jÞ þ f ðxÞ; in W;

�divðMðxÞ‘jÞ ¼ gðxÞu; in W;

u ¼ 0 ¼ j; on qW;

8<
:
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where A and M are elliptic matrices satisfying (1.1) and f , r, g are functions
belonging to L1ðWÞ and such that

j f ðxÞjaQrðxÞ; 0a gðxÞaRrðxÞ;ð2:1Þ

where Q and R belong to Rþ are such that

0 < QR <
1

4
:ð2:2Þ

Theorem 2.1. If (2.1) and (2.2) hold, there exists u a W
1;2
0 ðWÞ and j a W

1;q
0 ðWÞ,

q < N
N�1 , such that for every v, w smooth:

Z
W

AðxÞ‘u‘vþ
Z
W

rðxÞuv ¼
Z
W

uMðxÞ‘j‘vþ
Z
W

f ðxÞvðxÞ;Z
W

MðxÞ‘j‘w ¼
Z
W

gðxÞuðxÞwðxÞ:

8>>><
>>>:

ð2:3Þ

Proof. Our starting point is the following approximate system

�divðAðxÞ‘unÞ þ rnðxÞun
¼ �div

� un

1þ 1
n
junj

MðxÞ‘jn
�
þ fnðxÞ; in W;

�divðMðxÞ‘jnÞ ¼ gnðxÞ
un

1þ 1
n
junj

; in W;

un ¼ jn ¼ 0; on qW;

8>>>>>>><
>>>>>>>:

ð2:4Þ

where

rnðxÞ ¼
rðxÞ

1þ 1
n
jrj

; fnðxÞ ¼
f ðxÞ

1þ 1
nQ

j f j
; gnðxÞ ¼

gðxÞ
1þ 1

nR
jgj

:

We prove the existence of solutions un and jn by means of the Schauder fixed
point theorem. Let n a N be fixed. For every gðxÞ in W

1;2
0 ðWÞ, let Z be the unique

solution of the linear Dirichlet problem

Z a W
1;2
0 ðWÞ : �divðMðxÞ‘ZÞ ¼ gnðxÞ

gðxÞ
1þ 1

n
jgj

:

Then let G be the unique solution of the linear Dirichlet problem

G a W
1;2
0 ðWÞ : �divðAðxÞ‘GÞ þ rnðxÞG ¼ �div

� gðxÞ
1þ 1

n
jgj

MðxÞ‘Z
�
þ fnðxÞ:
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Choosing Z as test function in the first equation, one gets (since the right hand
side is bounded by a constant times n2)

a

Z
W

j‘Zj2 a n2
Z
W

jZjaC0n
2
�Z

W

j‘Zj2
�1

2

;

where in the last passage we have used Sobolev inequality. Therefore,Z
W

j‘Zj2 aC1n
4:ð2:5Þ

Choosing G as test function in the second equation, one then obtains (dropping a
positive term)

a

Z
W

j‘Gj2 a n

Z
W

MðxÞ‘Z‘Gþ n

Z
W

jGj

a bn
�Z

W

j‘Zj2
�1

2
�Z

W

j‘Gj2
�1

2 þ C2n
�Z

W

j‘Gj2
�1

2

;

where once again we used the Sobolev inequality. Therefore, recalling (2.5), we
obtain Z

W

j‘Gj2 aC3n
6;ð2:6Þ

which implies that kGk
W

1; 2
0

ðWÞ aC4n
3, independently of g; hence the ball of radius

C4n
3 in W

1;2
0 ðWÞ is invariant for the map S : g ! G. Moreover, the map S is

completely continuous in W
1;2
0 ðWÞ, since it is continuous and if there exists d in

R such that kgk
W 1; 2

0
ðWÞ a d, then

gðxÞ
1þ 1

n
jgj

is compact in W�1;2ðWÞ; hence the map

g ! Z is compact in W
1;2
0 ðWÞ, and so the map Z ! G is compact in W

1;2
0 ðWÞ.

Thus we proved that there exists ðun; jnÞ in W
1;2
0 ðWÞ �W

1;2
0 ðWÞ, solution of

the system (2.4).
The first step is the proof of an a priori estimate on the sequence fung in

LlðWÞ.
Let h > 0 and j > 0 be fixed. In (2.4), we use as test functions DðunÞ (in the

first equation) and HnðunÞ (in the second equation), where DðsÞ ¼ ThðGjðsÞÞ and

HnðsÞ ¼
Z s

0

t

1þ 1
n
jtj

D 0ðtÞ dt:

Note that

jHnðsÞja
Z s

0

jtjD 0ðtÞ dt ¼ cj;hðtÞ ¼
0 if jtja j;
t2�j 2

2 if ja jtja j þ h;

hj þ h2

2 if jtjb j þ h;

8>><
>>:
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If we define Bj;h ¼ fx a W : ja junj < j þ hg and Aj ¼ fx a W : junjb jg, we
have Z

Bj; h

AðxÞ‘un‘un þ
Z
Aj

rðxÞunThðGjðunÞÞð2:7Þ

¼
Z
Bj; h

un

1þ 1
n
junj

MðxÞ‘jn‘un þ
Z
Aj

fnThðGjðunÞÞ:

and Z
Bj; h

MðxÞ‘jn‘unH 0
nðunÞ ¼

Z
Aj

gnðxÞunHnðunÞ:ð2:8Þ

Substituting this identity in the first one, dropping the positive first term and
dividing by h, we obtainZ

Aj

rnðxÞun
ThðGjðunÞÞ

h
a

Z
Aj

rnðxÞjunj
cj;hðunÞ

h
þ
Z
Aj

f
ThðGjðunÞÞ

h

aR

Z
Aj

rnðxÞjunj
cj;hðunÞ

h
þQ

Z
Aj

rnðxÞ:

Letting h tend to zero, ThðsÞ
h

tends to signðsÞ and cj; hðsÞ
h

tends to j. ThereforeZ
Aj

rnðxÞjunjaRj

Z
Aj

rnðxÞjunj þQ

Z
Aj

rnðxÞ;

that is Z
Aj

rnðxÞ½ð1� RjÞjunj �Q�a 0:

Let 0 < j < 1
R
, so that

½ð1� RjÞ j �Q�
Z
Aj

rnðxÞa 0:ð2:9Þ

Now we look for j such that ½ð1� RjÞ j �Q� > 0, that is

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4QR

p

2R
< j <

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4QR

p

2R
; with the condition QR <

1

4
:

Observe that 0 <
1�

ffiffiffiffiffiffiffiffiffiffiffi
1�4QR

p
2R and

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1�4QR

p
2R < 1

R
. If we define CQ;R ¼ 1�4QR

4R , we
have that

kunkLlðWÞ aCQ;R:ð2:10Þ
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The second step is the proof of an a priori estimate on the sequence fung in
W

1;2
0 ðWÞ. In the first part of this proof, we choose as test functions in (2.4) un

(in the first equation) and HnðunÞ (in the second equation) with now

HnðsÞ ¼
Z s

0

t

1þ 1
n
jtj

dt

we have Z
W

AðxÞ‘un‘un þ
Z
W

rðxÞu2n ¼
Z
W

un

1þ 1
n
junj

MðxÞ‘jn‘un þ
Z
W

fnun:ð2:11Þ

and, thanks to (2.10) and to the assumption (2.1),

Z
W

MðxÞ‘jn‘unH 0
nðunÞaR

Z
W

rðxÞCQ;RHnðCQ;RÞ:ð2:12Þ

Substituting this inequality in (2.11), we have

a

Z
W

j‘unj2 a ½RCQ;RHnðCQ;RÞ þQCQ;R�
Z
W

rðxÞ:

Thus there exist u a W
1;2
0 ðWÞ and a sequence still denoted by fung such that fung

weakly converges in W
1;2
0 ðWÞ and a.e. to u.

Moreover the estimate (2.10) and the assumption (2.1) say that the right hand
side of the second equation is bounded in L1ðWÞ, since

gnðxÞ
un

1þ 1
n
junj

�����
�����a jgðxÞunjaRrCQ;R;

so that the theory of Dirichlet problems in L1ðWÞ gives the boundedness of the
sequence fjng in W

1;q
0 ðWÞ, for q < N

N�1 . Thus there exist j a W
1;q
0 ðWÞ and a

sequence still denoted by fjng such that fjng weakly converges in W
1;q
0 ðWÞ and

a.e. to j.
Since the principal parts of the di¤erential operators are linear, we can pass

to the limit in the weak formulation of (2.4), even with the weak convergences
of the sequences fung and fjng, and we have the existence of u, j solutions of
(2.3). r

Remark 2.2. Since u belongs to LlðWÞ the summability of j depends only
on the summability of r; in particular, j a W

1;2
0 ðWÞ if r a LmðWÞ, with mb 2N

Nþ2 .

2.2. A second system

In this section we study the following system, which is similar to the previous one,
but for the fact that the ‘‘bad’’ divergence term is now on the left hand side of the
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equation (i.e., it has the ‘‘good’’ sign):

�divðAðxÞ‘uÞ þ u� divðuMðxÞ‘jÞ ¼ f ðxÞ; in W;

�divðA�ðxÞ‘jÞ þ j ¼ juj p; in W;

u ¼ j ¼ 0; on qW;

8<
:

where A and M are elliptic matrices satisfying (1.1), 0a f a LmðWÞ, m > 2 and
mb pþ 1, p > 0.

Theorem 2.3. Under the above assumptions, there exist u a W
1;q
0 ðWÞ, q < 2m

mþ2 ,
and j a W

1;2
0 ðWÞ, such that for every v, w smooth:

Z
W

AðxÞ‘u‘vþ
Z
W

uv�
Z
W

uMðxÞ‘j‘v ¼
Z
W

f ðxÞvðxÞ;Z
W

A�ðxÞ‘j‘wþ
Z
W

jwðxÞ ¼
Z
W

uðxÞ pwðxÞ:

8>>><
>>>:

ð2:13Þ

Proof. Our starting point is the boundary value problem (with the same nota-
tions of the previous case)

�divðAðxÞ‘unÞ þ un � div
� un

1þ 1
n
junj

MðxÞ‘jn
�
¼ fnðxÞ; in W;

�divðA�ðxÞ‘jnÞ þ jn ¼ jTnðunÞj p; in W;

un ¼ jn ¼ 0; on qW;

8>><
>>:

The positivity of the function f ðxÞ (hence the positivity of fnðxÞ) implies the
positivity of unðxÞ (see [6]); so that our starting point is the boundary value
problem

�divðAðxÞ‘unÞ þ un � div
� un

1þ 1
n
junj

MðxÞ‘jn
�
¼ fnðxÞ; in W;

�divðA�ðxÞ‘jnÞ þ jn ¼ TnðunÞ p; in W;

un ¼ jn ¼ 0; on qW;

8>><
>>:

We now choose jn as test function in the formulation for un, and un as test func-
tion in the formulation for jn. We get

Z
W

AðxÞ‘un‘jn þ
Z
W

unjn þ
Z
W

MðxÞ‘jn‘jn
un

1þ 1
n
junj

¼
Z
W

fnjn;

and Z
W

A�ðxÞ‘un‘jn þ
Z
W

unjn ¼
Z
W

TnðunÞ pun:
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Dropping a positive term (recall that un b 0), we then obtain the inequality

Z
W

TnðunÞ pþ1
a

Z
W

TnðunÞ pun a
Z
W

fnjn a

Z
W

f jn

a k f kLmðWÞ

Z
W

ðjnÞ
m 0

� � 1
m 0

a k f kLmðWÞ

Z
W

TnðunÞ pm
0

� � 1
m 0

:

Here note that pm 0 a pþ 1, since mb pþ 1. Thus we have

Z
W

TnðunÞm
� �1

m

a k f kLmðWÞ:ð2:14Þ

Since m > 2 > 2N
Nþ2 , the above estimate implies that the sequence

fTnðunÞ pg is compact in L
2N
Nþ2ðWÞ;ð2:15Þ

which implies that the sequence

fjng is compact in W 1;2
0 ðWÞ:ð2:16Þ

In [5] (see also [6]) is proved that since fjng is bounded in W
1;2
0 ðWÞ, then

Z
W

j‘unj2

ð1þ unÞ2
aC;ð2:17Þ

which then implies the a.e. convergence of funðxÞg to a function uðxÞ.
Moreover, for every fixed k > 0, (2.14) implies that, for n > k,

km measðfx : k < ungÞa
Z
k<un

TnðunÞm ¼
Z
k<TnðunÞ

TnðunÞm

a

Z
W

TnðunÞm a k f km
LmðWÞ;

so that the sequence fung is bounded in the Marcinkiewicz space MmðWÞ; there-
fore we have that

fung strongly converges to u in LrðWÞ; 2 < r < m:ð2:18Þ

Then, (2.17) and (2.18) imply that there exists q such that

f‘ung is bounded in W
1;q
0 ðWÞ; 1 < q <

2m

mþ 2
:ð2:19Þ
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Indeed, we use the Hölder inequality with exponents 2=q and 2=ð2� qÞ and we
have

Z
W

j‘unjq ¼
Z
W

j‘unjq

ð1þ junjÞq
ð1þ junjÞq aCR

Z
W

ð1þ junjÞ
2q
2�q

� �2�q
2

;

which is bounded because of (2.18).
Then (2.16) and (2.18) allow us to pass to the limit in L1 in

un

1þ 1
n
un

MðxÞ‘jn

in order to prove the existence of solutions of the system (2.13). r
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