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Abstract. — We are concerned with the stability property for parabolic quasi minimizers in

metric measure spaces. More precisely we consider a doubling metric measure space X which sup-
ports a weak Poincaré inequality and a parabolic domain WT ¼ W� ð0;TÞ on the product space

X� R, where W � X is a domain whose boundary qW is regular in the sense that its complement
satisfies a uniform capacity density condition. We then show that a parabolic Q quasi minimizer of

the p energy, pb 2, with fixed initial boundary data on the parabolic boundary of WT is stable with
respect to the variation of Q and p. The manuscript at hand is an extension of the result [7] to the

setting of metric measure spaces.

Key words: Parabolic quasi minimizer, metric measure space, stability, higher integrability

Mathematics Subject Classification: 35K55, 35B65, 49N60, 30L99

1. Introduction

Let ðX; d; mÞ be a metric measure space with a doubling measure m and
which supports a weak ð1; pÞ-Poincaré inequality. For a parabolic domain
WT :¼ W� ð0;TÞ, with T > 0 and W � X being an open bounded set, we con-
sider parabolic Q-quasiminimizers of the Dirichlet p-energy. For the special case
XCRn, nb 2 and m being the Lebesgue measure, parabolic Q-quasiminimizers
of the Dirichlet p-energy are functions u a Lpð0;T ;W 1;pðWÞÞ which satisfy the
inequality
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for all test functions F a Cl
c ðWTÞ, where Qb 1 and p > 1 are fixed. In the case

Q ¼ 1, parabolic 1-minimizers for p > 2n
nþ2 are weak solutions of the parabolic

p-Laplace equation

qtu� divðjDuj p�2
DuÞ ¼ 0 on WT :

Parabolic quasiminimizers have first been introduced in the Euclidean setting in
[34] and then been defined in more general metric measure spaces in [18]. In the
past five years the investigation of parabolic quasiminimizers in metric measure
spaces has gained increasing interest, see for example [18, 19, 29, 30, 28, 31, 9].



In the case of a general metric measure space ðX; d; mÞ we are considering
here, there is no sense in speaking of a parabolic equation and the notion of par-
abolic Q-quasiminimizers involves so called p-weak upper gradients instead of
weak derivatives, see Definition 2.1 for the exact notion. In this general setting,
quasiminimizers have been introduced in the time-independent (elliptic) case in
[21] and then been studied by many authors, for example in [2, 27, 32, 26].

We are interested in stability issues for parabolic quasiminimizers. More pre-
cisely, we investigate the stability of global Q-quasiminimizers of the p-energy
with fixed initial-boundary-data h : qparWT ! R, under a variation of the param-
eters Q and p. Problems of this type have been studied first in the elliptic case
for systems of partial di¤erential equations on Rn in [24, 23] and for parabolic
systems in [20]. In the case of parabolic quasiminimizers the discussion of stability
questions is more involved since one cannot use the structure of an underlying
PDE. For time independent problems, results have first been proven in [26], where
the authors treated the Euclidean case and the more general setting of metric
measure spaces as well. Parabolic problems in the Euclidean setting have been re-
cently studied in [7] and [8]. To the best of our knowledge the manuscript at hand
is the first stability result for time dependent problems on metric measure spaces.

A fundamental ingredient for the stability proof with varying exponent p is
a higher integrability property for parabolic quasiminimizers, since it provides
uniform energy bounds for quasiminimizers and then allows to conclude con-
vergence at least for subsequences by compactness properties of the underlying
function spaces. Hence the proof of our main theorem is based on the global
(up to the boundary) higher integrability estimates for quasiminimizers, recently
shown in [6] (see also [10]), which is true only for exponents p which satisfy
p > 2n

nþ2 , where n denotes the ‘dimension’ of the metric measure space, related
to the doubling constant. This is the reason, why we do not get stability in the
case that 1 < pa 2n

nþ2 with our methods. Higher integrability for quasiminimizers
(but also for solutions of equations) can in general not be achieved for this range
of exponents. Moreover, we have to assume a weak regularity property for the
boundary qW of the domain W under consideration. In fact, counterexamples,
already for elliptic and parabolic systems show (see for example in [24, 20]) that
stability cannot hold in case of an irregular boundary qW. The boundary regular-
ity we are assuming, is formulated in terms of a capacity density condition for the
complement XnW – called uniform p thickness – and a deep self improving result
for uniform p thickness, which goes back to [22] and was carried over to the con-
text of metric measure spaces in [4].

Let us make some remarks on the proof and give some technical aspects.
To prove Theorem 2.2 we follow basically the strategy of [7]: We first prove a
Caccioppoli type estimate (Lemma 4.5) for parabolic quasiminimizers and use
then the global higher integrability results of [6] to obtain uniform energy bounds.
Starting then with a sequence fuig of parabolic Qi-quasiminimizers of the pi-
energy, we get by compactness results for parabolic spaces Lpð0;T ;N1;pðWÞÞ in
terms of Lemma 3.10 – using the Rellich Kondrachov theorem in metric measure
spaces (Lemma 3.11) and the existence of a weak time derivative qtui (Lemma
4.2) – the convergence ui ! u in LqðWTÞ for a q > p of a subsequence and also
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the weak convergence gui * g in LqðWTÞ of the sequence of minimal p-weak
upper gradients to a limit function g. Lemma 4.1 allows to identify the limit g
of this sequence as a p-weak upper gradient of the limit function u. Once having
the limit function u at hand, we show, that u satisfies the initial-boundary condi-
tions. This is done by a characterization of Newtonian functions with zero
boundary values with the help of Hardy type estimates (Lemmas 3.8 and 3.9).
In a last step we show that the limit function is indeed a parabolic Q-minimizer
of the p-energy. The proofs in the metric measure space setting is at many stages
technically more involved than the proof in the Euclidean case. A reason for this
is – in contrast to weak derivatives – the nonlinear behavior of p-weak upper
gradients, which a¤ect the proofs in many ways.

2. Statements and theorems

In this manuscript, let ðX; m; dÞ be a locally linearly convex metric measure
space which satisfies the doubling property with doubling constant cd b 1 and
which supports a weak ð1; pÞ-Poincaré inequality. We say that ðX; m; dÞ is called
a locally linearly convex metric measure space if there exist positive constants
C > 0 and r� > 0 such that, for all balls BrðxÞ � X with r a ð0; r��, every two
points y1; y2 a B2rðxÞnBrðxÞ can be connected by a curve lying in the annulus
B2CrðxÞnBC�1rðxÞ, where BrðxÞ :¼ fy a X : dðy; xÞ < rg denotes the open ball
of radius r and center x with respect to the metric d and BrðxÞ is the closure of
BrðxÞ with respect to the metric d. See [4] and [14]. Furthermore, the doubling
property of the measure m means the following: There exists a constant cb 1
such that

0 < mðB2rðxÞÞa c � mðBrðxÞÞ < þl;ð2:1Þ

for all radii r > 0 and all x a X. We define the doubling constant

cd :¼ inffc a ð1;lÞ : ð2:1Þ holdsg:ð2:2Þ

We denote with n :¼ log2 cd the dimension from below of the metric measure
space. Following the concept of Cheeger [5], Heinonen and Koskela [14], a
Borel-function g : X ! ½0;l� is called an ‘upper gradient’ for an extended real-
valued function u : X ! ½�l;þl�, if for all rectifiable curves g : ½0; lg� ! X
there holds

juðgð0ÞÞ � uðgðlgÞÞja
Z
g

g ds;ð2:3Þ

and g is called a p-weak upper gradient of u if (2.3) holds for p-almost every path,
which means that it fails only for a path family G on X satisfying

ModpðGÞ :¼ inf

Z
X

% p dm : %b 0;

Z
g

% dsb 1 for all g a G

� �
¼ 0:
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We define for 1a p < l and for a fixed open subset W � X the vector
space

~NN1;pðWÞ :¼ fu a LpðWÞ : there exists a p-integrable p-weak upper gradient of ug:

This space can be endowed with a norm

kuk ~NN1; pðWÞ :¼ kukL pðWÞ þ inf
g
kgkL pðWÞ ¼ kukL pðWÞ þ kgukL pðWÞ;

where the infimum is taken over all p-integrable p-weak upper gradients of u, and
gu denotes the minimal p-weak upper gradient of the function u. Introducing the
equivalence relation

uP v : , ku� vk ~NN 1; pðWÞ ¼ 0;ð2:4Þ

we define the Newtonian space N 1;pðWÞ as the quotient space

N1;pðWÞ :¼ ~NN1;pðWÞ=P:ð2:5Þ

In a standard way one may also define the spaces N1;p
o ðWÞ and N

1;p
loc ðWÞ and we

refer the reader to [3] for more details on Newtonian spaces.

Poincaré inequality and Sobolev embedding

We demand that the metric measure space ðX; d; mÞ supports a weak ð1; pÞ-
Poincaré inequality in the sense that there exist constants cP > 0 and G > 1 such
that for all open balls B%ðxoÞ � BG%ðxoÞ � X, for all p-integrable functions u on
X and all upper gradients g of u there holdsZ

B%ðxoÞ
ju� u%;xo j dma cP%

Z
BG%ðxoÞ

g p dm

" #1
p

;ð2:6Þ

where the symbol

u%;xo :¼
Z
B%ðxoÞ

u dm :¼ 1

mðB%ðxoÞÞ

Z
B%ðxoÞ

u dm

denotes the mean value integral of the function u on the ball B%ðxoÞ with respect
to the measure m. The distance in the space X is denoted by d and in the usual
way we define the distance between a point x and a set Y � X as well as between
two sets Y1;Y2 � X.

By Hölder’s inequality it directly follows that if a metric space supports a
weak ð1; pÞ-Poincaré inequality, then it supports a weak ð1; qÞ-Poincaré inequal-
ity for all qb p. On the other hand it was shown in [16] that if a complete metric
space is endowed with a doubling measure and supports a weak ð1; pÞ-Poincaré
inequality, then it supports also a weak ð1; p� eÞ-Poincaré inequality for some
eC eðcP;G; cd ; pÞ > 0, and therefore also a weak ð1; qÞ-Poincaré inequality for
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all q a ½p� e; p�. Moreover, from [12] we know that if we assume a weak ð1; pÞ-
Poincaré inequality, then the Sobolev embedding theorem holds and hence a
weak ðq; pÞ-Poincaré inequality holds for all qa p�, with

p� :¼
pn

n� p
; p < n;

þl; pb n:

8<
:ð2:7Þ

On the other hand it was shown in [21], see also [14, 11, 12], that in this case for
every u a N 1;pðB2G%ðxoÞÞ with B2G%ðxoÞ � X the following Sobolev-type inequal-
ity holds:Z

B%ðxoÞ
ju� u%;xo j

q dm

" #1
q

a c�%

Z
B2G%ðxoÞ

g p
u dm

" #1
p

; for all 1a qa p�:ð2:8Þ

The constant c� in the above inequality depends only on cd and on the constant
cP in the weak ð1; pÞ-Poincaré inequality.

Poincaré and Sobolev inequalities hold also on more general domains. More
precisely, the Poincaré inequality holds on bounded measurable subsets E of the
metric space X such that the p-capacity of the complement XnE does not vanish.
In detail we have Z

E

juj p dmaCE

Z
E

g p
u dm;

for every function u a N 1;p
o ðEÞ and for every bounded measurable set E � X with

cappðXnEÞ > 0. See (2.13) for the definition of capacity. The constant CE de-
pends on cP, cd , p and E.

Parabolic Newtonian spaces

Since we are dealing with time-dependent problems, we have to introduce the
parabolic Newtonian space Lpð0;T ;N1;pðWÞÞ or its local version, respectively.
We consider the product space X� R, which we endow with the ‘parabolic
distance’

dparðz1; z2Þ :¼ maxfdðx1; x2Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt1 � t2j

p
g;

for points zi ¼ ðxi; tiÞ a X� R. We will consider functions on a parabolic do-
main WT :¼ W� ð0;TÞ � X� R with an open bounded set W � X (with respect
to the metric d) and T > 0. For such a set we denote the parabolic boundary of
WT by

qparWT :¼ ðW� ft ¼ 0gÞA ðqW� ð0;TÞÞ:

The parabolic Newtonian space

Lpð0;T ;N1;pðWÞÞ
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consists in all functions u : W� ð0;TÞ ! R for which uð�; tÞ a N1;pðWÞ for
almost all t a ð0;TÞ and moreoverZ T

0

kuð�; tÞkp

N1; pðWÞ dt < l:

The minimal p-weak upper gradient of a function u a Lpð0;T ;N1;pðWÞÞ has
to be understood in the sense that

guðx; tÞ ¼ guð�; tÞðxÞ:ð2:9Þ

We equip the space Lpð0;T ;N1;pðWÞÞ with the norm

kukL pð0;T ;N1; pðWÞÞ :¼ kukL pðWT Þ þ kgukL pðWT Þ;

where gu denotes the minimal p-weak upper gradient of the function u.

Parabolic quasiminimizers and statement of the main theorems

For the whole manuscript, let ðX; d; mÞ be a metric measure space with all
the properties mentioned above. We first introduce the concept of parabolic
Q-quasiminimizers:

Definition 2.1 (Global parabolic Q-minimizer). Let Qb 1, p > 1 and W � X
be a bounded open set and T > 0. We say that u a Lpð0;T ;N1;pðWÞÞ is a
global parabolic Q-minimizer of the p-energy with initial-boundary data h a
Lpð0;T ;N1;pðWÞÞ if

�
ZZ

WT

uqtF dm dtþ 1

p

ZZ
sptF

g p
u dm dta

Q

p

ZZ
sptF

g
p
u�F dm dt;ð2:10Þ

for all test functions F a LipcðWTÞ and moreover

uð�; tÞ � hð�; tÞ a N1;p
o ðWÞ for almost every t a ð0;TÞ;

lim
h!0

1

h

Z h

0

Z
W

ju� hj2 dm dt ¼ 0:

8><
>:ð2:11Þ

Before stating our main theorems, we define the uniform p-thickness of a
domain. The uniform p-thickness of the complement XnW is a major assumption
in our theorem. It means that there exist positive constants m and ro such that

cappððXnWÞBBrðxÞ;B2rðxÞÞb m cappðBrðxÞ;B2rðxÞÞ;ð2:12Þ

for all x a XnW and r a ð0; roÞ. Here capp denotes the variational p-capacity,

which is defined for an open set O � X and a subset E � O as follows:

cappðE;OÞ :¼ inf
fb1 on E

f AN1; p
o ðOÞ

Z
O

g
p
f dm;ð2:13Þ
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where gf denotes the minimal p-weak upper gradient of f . We refer the reader to
[3] for more details on the capacity in metric spaces. The uniform p-thickness is
a weak regularity property: Domains satisfying (2.12), do not have thin external
cusps. A deep self-improving property of the uniform p-thickness has been proved
in [22, 4] and says that for every set E � X which is uniformly p-thick there exists
q < p such that E is also uniformly q-thick. This property plays an essential role
in stability estimates since we only assume for the domain W that XnW is uni-
formly p-thick, there p is the limit exponent of the sequence fpig. However note
that for Lipschitz domains this property is always satisfied.

Our main theorem reads as follows:

Theorem 2.2. Let T > 0, p > 2n
nþ2 , where n ¼ log2 cd . Let W � X be such that

XnW is uniformly p-thick. Moreover, let fpigi AN and fQigi AN be two sequences
with pi >

2n
nþ2 and Qi b 1 such that

pi ! p

Qi ! Q

�
as i ! l:

Let ui a Lpið0;T ;N1;piðWÞÞ be a parabolic Qi-minimizer of the pi-energy in the
sense that

�
ZZ

WT

uiqtF dm dtþ 1

pi

ZZ
sptF

g pi
ui
dm dta

Qi

pi

ZZ
sptF

g
pi
ui�F dm dt;

for all test functions F a LipcðWTÞ, with initial-boundary data h a LipðWTÞ in the
sense of (2.11). Suppose that there exists a strongly measurable function u such
that

lim
i!l

uiðx; tÞ ¼ uðx; tÞ for almost every ðx; tÞ a WT :

Then u a Lpð0;T ;N1;pðWÞÞ and moreover it is a global parabolic Q-minimizer of
the p-energy with initial boundary data h in the sense of Definition 2.1.

Remark 2.3. The proof of Theorem 2.2 shows that for the sequence fuigi of Qi

quasiminimizers holds that

ui ! u strongly in LpðWTÞ; and gui * g weakly in LpðWTÞ;

as i ! l, where g denotes a p-weak upper gradient of u, not necessarily the min-
imal one.

In the case that Q ¼ 1, the limit function in the above Theorem 2.2 is a
parabolic minimizer of the p energy. For this case we get the following stronger
result:
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Theorem 2.4. Under the assumptions of Theorem 2.2 we get: If Q ¼ 1, then
additionally to the assertions of Theorem 2.2 there holds

gui ! gu strongly in L pðWTÞ

as i ! l, where gu is the minimal p-weak upper gradient of the function u.

Remark 2.5. The strong Lp convergence in Theorem 2.4 means thatZZ
WT

jgui � guj p dm dt ! 0

as i ! l. In particular, we do not get the strong convergenge gui�u ! 0 in
LpðWTÞ and hence we cannot conclude that ui ! u in Lpð0;T ;N1;pðWÞÞ.

3. Preliminaries

We start with a number of properties of parabolic Newtonian spaces, which are
essential for the stability proofs.

Definition 3.1 (Parabolic Newtonian space). We denote by Lpð0;T ;
N1;pðWÞÞ the space of all functions u : W� ð0;TÞ ! R such that ð0;TÞ C
t 7! uð�; tÞ a N1;pðWÞ is strongly measurable and the functions ð0;TÞ C t 7!
kuð�; tÞkN1; pðWÞ are contained in Lpð0;TÞ.

Remark 3.2. Strongly measurable means that there exists a sequence of simple
functions uk : ð0;TÞ ! N1;pðWÞ such that

kuð�; tÞ � ukð�; tÞkN1; pðWÞ ! 0; as k ! l:

Definition 3.3 (Dual space). The dual space ½Lpð0;T ;N1;p
o ðWÞÞ�� of the par-

abolic Newtonian space Lpð0;T ;N1;p
o ðWÞÞ is defined as the space of continuous

linear functionals on Lpð0;T ;N1;p
o ðWÞÞ.

Remark 3.4. We do not have characterizations of dual spaces in terms of inte-
gration by parts formulas, so we cannot obtain an identification like

½W 1;p
o ðWÞ�� GW�1;qðWÞ; 1

p
þ 1

q
¼ 1;

as we have it for Sobolev spaces, however since the space N1;pðWÞ is reflexive for
any p > 1, there holds

½Lpð0;T ;N1;p
o ðWÞÞ�� GLqð0;T ; ½N1;p

o ðWÞ��Þ; 1

p
þ 1

q
¼ 1;
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where the dual pairing between Lqð0;T ; ½N1;p
o ðWÞ��Þ and Lpð0;T ;N1;p

o ðWÞÞ is

3u; v4 ¼
Z T

0

3uð�; tÞ; vð�; tÞ4� dt:

Here 3� ; �4� denotes the dual pairing between ½N1;p
o ðWÞ�� and N1;p

o ðWÞ.

Definition 3.5 (Weak time derivative). We call a function v a ½Lpð0;T ;
N1;p

o ðWÞÞ�� weak time derivative of u a Lpð0;T ;N1;pðWÞÞ – and write v ¼ qtu
in the weak sense – if

3v; j4 ¼ �
ZZ

WT

uðqtjÞ dm dt;

for all j a LipcðWTÞ.

3.1. Smoothing in time

We consider regularizations of parabolic quasi minimizers in the time variable.
For e > 0 we denote by seðsÞ :¼ e�1sðs=eÞ with a standard smoothing kernel
s a Cl

c with spt s � ð�1; 1Þ. For F : W� ð0;TÞ ! R we denote the smoothed
function

½F�eðx; tÞ :¼
Z
R

Fðx; t� sÞseðsÞ ds:

Note that if F a Lpð0;T ;N1;pðWÞÞ, we have that ½F�eðx; �Þ a Clð0;TÞ for
almost all x a W and

kFðx; �Þ � ½F�eðx; �ÞkL pð0;TÞ ! 0 as e ! 0; a:e: on W:

Testing (2.10) with ½F�e instead of F and using an integration by parts in the time
variable, we obtainZZ

WT

qt½u�eF dm dtþ 1

p

ZZ
spt½F�e

g p
u dm dta

Q

p

ZZ
spt½F�e

g
p

u�½F�e
dm dt;ð3:1Þ

for all F a LipcðWTÞ and e > 0 small enough. Here ½u�e denotes the smoothing
of u with respect to the time variable. On the other hand, from [29, Lemma 2,
Corollary 1] we know that for any function c a Lp

c ð0;T ;N1;p
o ðWÞÞ and every

e > 0 there exists a function f a LipcðWTÞ such that

kc� fkL pð0;T ;N1; pðWÞÞ < e; kc� fkL2ðWT Þ < e; jspt fnsptcj < e:

Using this we can easily conclude that (3.1) holds also for all test functions
F a Lp

c ð0;T ;N1;p
o ðWÞÞ.

The following approximation Lemma is proved in [31]:
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Lemma 3.6 (Smoothing). Let u a L
p
locð0;T ;N1;p

loc ðWÞÞ and ½u�e be the mollifica-
tion with respect to the time variable. Then gu�½u�e ! 0 in L

p
locðWTÞ and pointwise

ðm�L1Þ-almost everywhere on WT .

3.2. Netwonian spaces with zero boundary values

In order to prove that the limit function attains the boundary values h, we use the
following characterization of Newtonian spaces with zero boundary values, which
has been shown for Sobolev spaces in [13] and for Newtonian spaces in [26].

Lemma 3.7. Let ðX; m; dÞ be a doubling metric measure space which supports a
weak ð1; qÞ-Poincaré inequality for some 1a q < l. Let p > q and let W � X be
an open bounded set such that XnW is uniformly p-thick. Then

N1;p
o ðWÞ ¼ N1;pðWÞB

\
s<p

N1; s
o ðWÞ:

An important characterization of Newtonian spaces with zero boundary
values uses a Hardy type inequality. It has been proved for X ¼ RN in [1, 22]
and on metric measure spaces in [4, 17].

Lemma 3.8. Let W � X be a bounded open set and assume that XnW is uniformly
p-thick for some p > 1. Then there exists a constant cC cðW; pÞ > 0 such thatZ

W

� juðxÞj
distðx;XnWÞ

�p

dma ckuk p

N1; pðWÞ;

for all u a N1;p
o ðWÞ.

Lemma 3.9. Let W � X be an open set. If u a N1;pðWÞ satisfiesZ
W

� juðxÞj
distðx;XnWÞ

�p

dm < l;

then u a N1;p
o ðWÞ.

3.3. Compactness properties

We have to apply Simon’s compactness result on parabolic spaces to our setting
of Newtonian spaces. Therefore let us make some remarks. The statement of
Simon, [33, Corollary 8] goes as follows:

Lemma 3.10. Let X, B, Y be Banach spaces with X � B � Y, the embedding
X ! B being compact, the embedding B ! Y being continuous and there exist
constants y a ð0; 1Þ and C such that

kvkBaCkvk1�y
X kvky

Y ; for all v a X :ð3:2Þ
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Moreover, let 1a po al, 1a r1 al and let fuigi be a bounded sequence in
L poð0;T ;XÞ such that fqtuigi is bounded in Lr1ð0;T ;Y Þ, and yð1� 1=r1Þa
ð1� yÞ=po. Then the sequence fuigi is relatively compact in the space L pð0;T ;BÞ
for all p < p�, where 1=p� ¼ ð1� yÞ=po � yð1� 1=r1Þ.

To apply the above Lemma in the parabolic setting, we also have to use the
following compactness result of Rellich–Kondrachov type in the metric space set-
ting, which has ben shown in [12]:

Lemma 3.11. Let ðX; d; mÞ be a metric measure space with a doubling measure
m and n :¼ log2 cd, which supports a weak ð1; pÞ-Poincaré inequality with dilation
constant Gb 1. Then the following holds true: Let B be a fixed ball and fui; gig
be a sequence of functions ui with p-weak upper gradients gi such that kuikL1ðBÞ þ
kgikL pð5GBÞ is uniformly bounded. Then there exists a subsequence of fuigi that con-
verges strongly in LqðBÞ for each 1a qa np=ðn� pÞ when p < n and for each
qb 1 when pb n.

3.4. Higher integrability up to the boundary

To establish uniform global energy bounds for the sequence of parabolic quasi
minimizers, a fundamental ingredient is the following global higher integrability
result, which was proved in [6].

Lemma 3.12. Let W � X be a bounded open set such that XnW is uniformly

p-thick. For fixed Qb 1, p > 2n
nþ2 and given initial-boundary-data h a LipðWTÞ let

u a Lpð0;T ;N1;pðWÞÞ be a parabolic Q-minimizer of the p-energy, satisfying the
conditions (2.11). Then there exists a constant dC dðn; p;Q;WÞ > 0 such that

u a Lpþdð0;T ;N1;pþdðWÞÞ

and furthermore ZZ
WT

g pþd
u dm dtaC;

for a constant C which depends only on n, p, Q, W, d, h and kgukL pðWT Þ.

Remark 3.13. The constant in the above Lemma depends also on Q. However,
a close look at the proof of the statement in [6] shows that it is stable with re-
spect to the variation of Q in a compact interval ½1;Qo� and therefore can be also
replaced by a constant which depends only on Qo. Since we are interested in sta-
bility estimates for Q varying in such a compact interval (in particular we do not
consider the case Q ! l), the dependence upon Q is not crucial for our purpose.

4. Proof of the stability theorem

We start our proof with a convergence result for p-weak upper gradients, which is
well known in the elliptic setting (see for example [15, Lemma 3.1]). However, we
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could not find this result for the parabolic case and this is why we state this result
as a first step.

Lemma 4.1. Let fuigi AN be a sequence of functions on the parabolic domain WT

with ui a LpðWTÞ for all i a N. Let fguigi AN be a sequence such that gui a LpðWTÞ
is a p-weak upper gradient of ui for every i a N. Moreover let

ui * u and gui * g both weakly in L pðWTÞ:

Then g a LpðWTÞ is a p-weak upper gradient of u.

Proof. We use (twice) Mazur’s Lemma (see for example [3, Lemma 6.2]) on the
Banach space LpðWTÞ as follows: There exist convex combinations

gj :¼
XNj

i¼j

aj; igui ; ~uuj :¼
XNj

i¼j

aj; iui;

with Nj a N for every j, aj; i b 0 and
PNj

i¼j aj; i ¼ 1 such that

~uuj ! u; gj ! g both strongly in LpðWTÞ; as j ! l;

and moreover by the basic calculus rules for p-weak upper gradients we have that
gj is a p-weak upper gradient of ~uuj for every j. Passing to a subsequence we there-
fore get that

~uujð�; tÞ ! uð�; tÞ; gjð�; tÞ ! gð�; tÞ; strongly in LpðWÞ;

for almost all t a ð0;TÞ. We apply now [3, Proposition 2.3] to conclude that
gð�; tÞ is a p-weak upper gradient of uð�; tÞ for almost all t a ð0;TÞ and this im-
plies (by definition of parabolic p-weak upper gradients) that g is a p-weak upper
gradient of the function u. r

We next show that parabolic quasi-minimizers possess a time derivative in a
weak sense.

Lemma 4.2. Let W � X be bounded and open, p > 1, T > 0 and Qb 1. Let
u a Lpð0;T ;N1;pðWÞÞ be a parabolic Q-minimizer in the sense of (2.10). Then

qtu a ½Lpð0;T ;N1;p
o ðWÞÞ��

and

j3qtu; j4ja
2 pQ

p
kuk p�1

L pð0;T ;N1; pðWÞÞkgjkL pðWT Þ;

for all j a Lpð0;T ;N1;p
o ðWÞÞ.
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Proof. We define v ¼ qtu as the continuous linear functional on LipcðWTÞ such
that

v½j� :¼ 3v; j4 ¼ �
ZZ

WT

uqtj dm dt:

In order to extend this functional on the whole space Lpð0;T ;N1;pðWÞÞ we first
prove that Z T

0

Z
W

uqtj dm dt

����
����a ckuk p�1

L pð0;T ;N1; pðWÞÞ;ð4:1Þ

for all j a LipcðWTÞ. We may assume that kukL pð0;T ;N1; pðWÞÞA 0 because other-

wise there is nothing to prove. Let j a LipcðWTÞ be a test function satisfying
kDjkL pðWT Þ ¼ 1 and set F :¼ kukL pð0;T ;N1; pðWÞÞj. By the quasi minimizing prop-

erty (2.10) of u we get

kukL pð0;T ;N1; pðWÞÞ

Z T

0

Z
W

uqtj dm dt

¼
Z T

0

Z
W

uqtFdm dt

b�Q

p

ZZ
spt j

g
p
u�F dm dt

b� 2 p�1Q

p

ZZ
spt j

ðg p
u þ g

p
FÞ dm dt

b� 2 p�1Q

p

ZZ
spt j

ðg p
u þ kuk p

L pð0;T ;N1; pðWÞÞjDjj pÞ dm dt

b� 2 pQ

p
kukL pð0;T ;N1; pðWÞÞ:

Here we have used that g
p
F a kuk p

L pð0;T ;N1; pðWÞÞg
p
j , moreover gj ¼ jDjj since

j a LipðWTÞ and in the very last step that kDjkL pðWT Þ ¼ 1. Hence we obtain

Z T

0

Z
W

uqtj dm dtb� 2 pQ

p
kuk p�1

L pð0;T ;N1; pðWÞÞ:

On the other hand, replacing F by �F in the above argument, we also get

Z T

0

Z
W

uqtj dm dta
2 pQ

p
kuk p�1

L pð0;T ;N1; pðWÞÞ;
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and therefore we finally conclude (4.1) with a constant cC 2 pQ
p
. Since LipcðWTÞ

is dense in the space Lpð0;T ;N1;p
o ðWÞÞ (see Thm. 5.45 in [3]), we can now

extend the functional by (4.1) to a continuous linear functional on the space
Lpð0;T ;N1;p

o ðWÞÞ and therefore we get that v ¼ qtu a ½Lpð0;T ;N1;p
o ðWÞÞ�� to-

gether with the desired estimate. r

Remark 4.3. We may repeat the argument above with the mollified func-
tion ½u�e for e > 0 to conclude the following: Being u a Lpð0;T ;N1;pðWÞÞ the
parabolic Q-minimizer of Lemma 4.2, there exists eC eðp; kukL pð0;T ;N1; pðWÞÞÞ
such that

j3qt½u�e; j4ja
3 pQ

p
kuk p�1

L pð0;T ;N1; pðWÞÞkgjkL pðWT Þ;

for all j a Lpð0;T ;N1;p
o ðWÞÞ. To see this we argue as follows: We may again

assume that kukL pð0;T ;N1; pðWÞÞ > 0, because otherwise by definition of the mollifi-

cation there would be again nothing to prove. Since u is a parabolic Q-minimizer,
the mollified function ½u�e fulfills the inequality (3.1). Using this instead of
(2.10) and testing with F :¼ kukL pð0;T ;N1; pðWÞÞj, where j a LipcðWTÞ such that
kDjkL pðWT Þ ¼ 1, we get with a similar argument

k½u�ekL pð0;T ;N1; pðWÞÞ

Z T

0

Z
W

½u�eqtj dm dt

b� 2 p�1Q

p
ðkuk p

L pð0;T ;N1; pðWÞÞ þ k½u�ek
p

L pð0;T ;N1; pðWÞÞÞ:

Repeating the same argument with �j instead of j we therefore obtainZ T

0

Z
W

½u�eqtj dm dt
����

����a 2 p�1Q

p

�
kuk p�1

L pð0;T ;N1; pðWÞÞ þ
k½u�ek

p

L pð0;T ;N1; pðWÞÞ
kukL pð0;T ;N1; pðWÞÞ

�
:

By the definition of the Lp �N1;p-norm we have

jkukL pð0;T ;N1; pðWÞÞ � k½u�ekL pð0;T ;N1; pðWÞÞj
a ku� ½u�ekL pðWT Þ þ kgu�½u�ekL pðWT Þ:

Choosing now e > 0 small enough, by Lemma 3.6 we may achieve that

ku� ½u�ekL pðWT Þ þ kgu�½u�ekL pðWT Þ a
1

2
kukL pð0;T ;N1; pðWÞÞ;

and therefore

1

2
kukL pð0;T ;N1; pðWÞÞ a k½u�ekL pð0;T ;N1; pðWÞÞ a

3

2
kukL pð0;T ;N1; pðWÞÞ:ð4:2Þ

356 y. fujishima and j. habermann



Hence eC eðp; kukL pð0;T ;N1; pðWÞÞÞ. Plugging this into the previous expression on

the right hand side we then obtain the desired estimate.

Lemma 4.4. Let x a Lipcð0;T ;LlðWÞÞ. Assume that u a Lpð0;T ;N1;pðWÞÞ and
qtu a ½Lpð0;T ;N1;p

o ðWÞÞ�� with p > 2n
nþ2 . Then qtðxuÞ a ½Lpð0;T ;N1;p

o ðWÞÞ�� and
there exists a constant c > 0 such that

j3qtðxuÞ; j4ja kxkLlðWT Þkqtuk½L pð0;T ;N1; p
o ðWÞÞ� �kjkL pð0;T ;N1; pðWÞÞð4:3Þ

þ ckqtxkLlðWT ÞkukL pð0;T ;N1; pðWÞÞkjkL pð0;T ;N1; pðWÞÞ

for every function j a Lpð0;T ;N1;p
o ðWÞÞ.

Proof. Since WT � X� R is bounded we have that jx a LipcðWTÞ for every
j a LipcðWTÞ. Then we have

3qtu; xj4 ¼ �
ZZ

WT

u � qtðxjÞ dm dt ¼ �
ZZ

WT

ðujqtxþ xuqtjÞ dm dt:

Since the Sobolev embedding theorem and p > 2n
nþ2 shows that L

pð0;T ;N1;p
o ðWÞÞ

� L2ðWTÞ is continuous, by the Hölder inequality we see thatZZ
WT

ujqtx dm dt

����
����a kqtxkLlðWT ÞkukL2ðWT ÞkjkL2ðWT Þ

a ckqtxkLlðWT ÞkukL pð0;T ;N1; pðWÞÞkjkL pð0;T ;N1; pðWÞÞ;

where c > 0 is a constant independent of u and j. On the other hand, we have

j3qtu; xj4ja kxkLlðWT Þkqtuk½L pð0;T ;N1; p
o ðWÞÞ� �kjkL pð0;T ;N1; pðWÞÞ;

therefore we obtainZZ
WT

xuqtj dm dt

����
����a kxkLlðWT Þkqtuk½L pð0;T ;N1; p

o ðWÞÞ��kjkL pð0;T ;N1; pðWÞÞ

þ ckqtxkLlðWT ÞkukL pð0;T ;N1; pðWÞÞkjkL pð0;T ;N1; pðWÞÞ

for all j a LipcðWTÞ. This implies that (4.3) holds for all j a LipcðWTÞ. Then
we approximate j a Lpð0;T ;N1;pðWÞÞ by a sequence of fjng � LipcðWTÞ and
obtain (4.3) actually holds for all j a Lpð0;T ;N1;pðWÞÞ. This completes the
proof of Lemma 4.4. r

In the next step we prove a global Caccioppoli type inequality for quasi
minimizers.

Lemma 4.5. For any d > 0 there exists a constant cC cðdÞ such that for all i a N
there holds
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sup
t A ð0;TÞ

Z
W

juið�; tÞ � hð�; tÞj2 dmþ
ZZ

WT

g pi
ui
dm dt

a c

ZZ
WT

jqthj
pi

pi�1 dm dtþ Q

ZZ
WT

g pi
h dm dtþ d

ZZ
WT

jui � hj pi dm dt:

Here Q denotes the upper bound of fQig.

Proof. The proof is similar to the one in the Euclidean case, see [6, Lemma 4.1].
Therefore we are focussing only on the di¤erences to the Euclidean case. We test
the quasi minimality with the function

Fh
e ðx; tÞ :¼ wh;h

s ðtÞð½ui�e � ½h�eÞ a Lipcð0;T ;N1;pi
o ðWÞÞ;

for 0 < s < T fixed and hf 1, where we denote for this proof and and also for
later proofs the piecewise a‰ne function in time

wh;k
s ðtÞ :¼

0 0a ta h;
t�h
h

ha ta 2h;

1 2ha ta s� k;
s�t
k

s� ka ta s;

0 sa taT :

8>>>>><
>>>>>:

ð4:4Þ

(3.1) then gives

�
ZZ

WT

½ui�eqtFh
e dm dtþ

1

pi

ZZ
spt½Fh

e �e
g pi
ui
dm dta

Qi

pi

ZZ
spt½Fh

e �e
g
pi

ui�½Fh
e �e

dm dt:

The first term on the left hand side is estimated exactly as in the Euclidean case
and we obtain for every d > 0

lim
e;h!0

ZZ
WT

½ui�eqtFh
e dm dtb

Z
W

juið�; sÞ � hð�; sÞj2 dm

� d

ZZ
WT

jui � hj pi dm dt� c

ZZ
W

jqthj
pi

pi�1 dm dt:

To estimate the term on the right hand side we have to use properties of upper
gradients to get in a first step

gui�½Fh
e �e a gui�½½ui �e�e þ g½½ui �e�e�½Fh

e �e :

The first term on the right hand side goes to zero as e ! 0, since gui�½½ui �e�e ! 0

in Lp. To treat the second term we note that ½½ui�e�e � ½Fh
e �e ¼ ½½h�e�e on ½2hþ e;

s� 2h� e� and therefore we get
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ZZ
spt½Fh

e �e
g
pi

½½ui �e�e�½Fh
e �e

dm dta

ZZ
spt½Fh

e �eB½2hþe; s�2h�e�
g
pi
½½h�e�e

dm dt

þ
ZZ

spt½Fh
e �eBð½h�e;2hþe�A½s�2h�e; s�hþe�Þ

g
pi

½½ui �e�e�½Fh
e �e

dm dt

The second term on the right hand side converges to 0 as e ! 0 and h ! 0 (by
dominated convergence), whereas for the first term holds

lim
e;h!0

ZZ
spt½Fh

e �eB½2hþe; s�2h�e�
g
pi
½½h�e�e

dm dta

ZZ
sptðui�hÞ

g pi
h dm dt;

and hence we get

lim
e;h!0

ZZ
spt½Fh

e �e
g
pi

ui�½Fh
e �e

dm dta

ZZ
WT

g pi
h dm dt:

Now combining these estimates, the proof follows exactly as in the Euclidean
case. r

Direct consequences of the Caccioppoli type estimate and the higher integra-
bility properties of Lemma 3.12 are:

Corollary 4.6. For the sequence of Theorem 2.2 there holds

sup
i AN

sup
t A ð0;TÞ

kuið�; tÞk2L2ðWÞ þ kuik pi
L pi ðWT Þ þ kguik

pi
L pi ðWT Þ

" #
< l;

and

kguik
p�q

L p�qðWT Þ a c½kuik p�q

L pi ðWT Þ þ kqthk
p�q

pi�1

L pi=ð pi�1ÞðWT Þ
þ khk p�q

L pi ð0;T ;N1; pi ðWÞÞ�;

for every q a ð0; p� 1Þ and with a constant cC cðn; supi pi;WTÞ, and moreover,
there exists a constant d > 0 such that

M :¼ sup
i AN

ðkuik pþd

L pþdðWT Þ þ kguik
pþd

L pþdðWT ÞÞ < l:ð4:5Þ

Proof. The estimates are direct consequences of the Caccioppoli type inequal-
ity in Lemma 4.5, higher integrability in terms of Lemma 3.12 and Hölder’s
inequality. r

We will now conclude suitable convergence properties of the sequence fuigi.

Lemma 4.7. For the sequence fuigi of Theorem 2.2 there exists a subsequence,
which we denote again by fuigi and a weak upper gradient g of u such that

ui ! u in L pþdðWTÞBL2ðWTÞ; gui * g weakly in L pþdðWTÞ;
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as i ! l. Moreover we have that qtu a ½Lpþdð0;T ;N1;pþd
o ðWÞÞ�� and

qtui *
�
qtu in the weak-� topology on ½Lpþdð0;T ;N1;pþd

o ðWÞÞ��:

Remark 4.8. By lower semi continuity we then directly obtain for the minimal
weak upper gradient of u:

kgukLqðWT Þ a lim inf
i!l

kguikLqðWT Þ;

for all q < pþ d.

Proof. First we note that by Lemma 4.2 and the uniform bound (4.5) we obtain
that

sup
i AN

kqtuik½L pþdð0;T ;N1; pþd
o ðWÞÞ� � < l:ð4:6Þ

Next we will apply Lemma 3.10 for the both cases pb 2 and 2n
nþ2 < p < 2 as

follows: In the case pb 2 we choose

X ¼ N1;pþdðWÞ; Y ¼ ½N1;pþd
o ðWÞ��; B ¼ LpþdðWÞ:

The inclusion N1;pþdðWÞ � LpþdðWÞ is compact by the Rellich–Kondrachov
theorem in the metric version in terms of Lemma 3.11. The second inclusion
LpþdðWÞ � ½N1;pþd

o ðWÞ�� is continuous, as one can see by Hölder’s inequality
(note that pþ d > 2). By [25, Theorem 4.1] and [25, Corollary 3.1] (3.2) holds
for this choice of spaces. In the case 2n

nþ2 < p < 2 we apply Lemma 3.10 with the
spaces

X ¼ N1;pðWÞ; Y ¼ ½N1;p
o ðWÞ��; B ¼ L2ðWÞ:

The inclusion N1;pðWÞ � L2ðWTÞ is compact again by the Rellich–Kondrachov
theorem in terms of Lemma 3.11. The second inclusion L2ðWTÞ � ½N1;p

o ðWÞ�� is
continuous with the following argument: Setting

u½j� :¼
Z
W

u � j dm;

and using Hölder’s inequality and the Sobolev embedding we identify every
u a L2ðWÞ as an element of ½N1;pðWÞ��: For every j a N1;p

o ðWÞ we have

ju½j�ja kukL2ðWÞkjkL2ðWÞ a ckukL2ðWÞ � kjkN1; pðWÞ:

Now we use once again [25, Theorem 4.1] together with [25, Corollary 3.1] to
conclude that (3.2) holds also for this choice of spaces.
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All together we conclude that in any case p > 2n
nþ2 for a subsequence there

holds

ui ! u in LpþdðWTÞBL2ðWTÞ;
gui * g weakly in LpþdðWTÞ:

�

By Lemma 4.1 g is a p-weak upper gradient of u. In order to obtain the weak-�
convergence of the time derivatives, we first see that by (4.6), we have for a sub-
sequence that

qtui *
�
v in the weak-� topology on ½Lpþdð0;T ;N1;pþd

o ðWÞÞ��;

for a function v a ½Lpþdð0;T ;N1;pþd
o ðWÞÞ�� and it remains to show that v ¼ qtu:

By the strong convergence ui ! u in LpðWTÞ we see that for every function
f a LipcðWTÞ there holds

3qtui; f4 ¼ �
ZZ

WT

uiqtf dm dt ! �
ZZ

WT

uqtf dm dt;

and on the other hand by the weak-� convergence qtui ! v we get

3qtui; f4 ! 3v; f4:

Hence we deduce

3v; f4 ¼ 3qtu; f4;

and moreover by the Poincaré inequality

j3qtu; f4ja kvk½L pþdð0;T ;N1; pþd
o ðWÞÞ��kfkL pþdð0;T ;N1; pþdðWT ÞÞ

¼ kvk½L pþdð0;T ;N1; pþd
o ðWÞÞ� � ðkfkL pþdðWT Þ þ kgfkL pþdðWT ÞÞ

a ckvk½L pþdð0;T ;N1; pþd
o ðWÞÞ� �kgfkL pþdðWT Þ:

This shows that qtu a ½Lpþdð0;T ;N1;pþd
o ðWÞÞ�� and v ¼ qtu. r

Proof (of Theorem 2.2). We prove the theorem in two steps: First we prove
that the limit function u satisfies the initial-boundary conditions (2.11), and there-
after we show that u is in fact a Q minimizer of the p energy. To prove that
uð�; tÞ � hð�; tÞ a N1;p

o ðWÞ for almost every t a ð0;TÞ we first show that there
exists eo > 0 such that

uð�; tÞ � hð�; tÞ a N1;p�e
o ðWÞ;

for almost all t a ð0;TÞ and for every e a ð0; eoÞ. To this aim, we use the Hardy
type characterization of Newtonian functions with zero boundary values in terms
of Lemmas 3.8 and 3.9 as follows: For a given e > 0 small enough, which will be
fixed later, there exists I C IðeÞ a N such that p� e < pi < pþ e for all ib IðeÞ.
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In particular there holds uið�; tÞ � hð�; tÞ a N1;p�e
o ðWÞ for almost all t a ð0;TÞ and

all ib IðeÞ. We therefore get by the pointwise almost everywhere convergence
uiðx; tÞ ! uðx; tÞ, Fatou’s Lemma, Lemma 3.8, Corollary 4.6 and Hölder’s
inequalityZZ

WT

�juðx; tÞ � hðx; tÞj
distðx;XnWÞ

�p�e

dm dt

a lim inf
i!l

ZZ
WT

�juiðx; tÞ � hðx; tÞj
distðx;XnWÞ

�p�e

dm dt

a c sup
i AN

kui � hk p�e

L p�eð0;T ;N1; p�eðWÞÞ

a c sup
i AN

½kuik p�e
L p�eðWT Þ þ kguik

p�e
L p�eðWT Þ þ khk p�e

L p�eð0;T ;N1; p�eðWÞÞ�

a c sup
i AN

½1þ kuik p�e
L pþeðWT Þ þ khk p�e

L pþeð0;T ;N1; pþeðWÞÞ þ kqthk p�e

L
p�e

p�e�1ðWT Þ
�:

By the uniform energy bound (4.5) the right hand side of the preceding estimate is
bounded independently of the index i. This estimate implies thatZ

W

�juðx; tÞ � hðx; tÞj
distðx;XnWÞ

�p�e

dm < l;

for almost every t a ð0;TÞ. Hence, by Lemma 3.9 we conclude that uð�; tÞ� hð�; tÞ
a N1;p�e

o ðWÞ for almost every t. Moreover the above argument holds uni-
formly for every e a ð0; eoÞ so that we have uð�; tÞ � hð�; tÞ a N1;p�e

o ðWÞ for every
e a ð0; eoÞ. By Lemma 3.7 we finally conclude that uð�; tÞ � hð�; tÞ a N1;p

o ðWÞ for
almost every t a ð0;TÞ, which is the statement ð2:11Þ1.

To prove ð2:11Þ2, we test (3.1) with the test function Fh
e :¼ wh;k

t ð½ui�e � ½h�eÞ;
where wh;k

t denotes the piecewise a‰ne function in the time variable, which we
have defined in (4.4). An argument similar to the one in the proof of Lemma 4.5
together with the strong convergence ui ! u in LpþdðWTÞ and in L2ðWTÞ directly
gives us, letting first h ! 0 and using that ui attains the initial data h, and letting
then i ! l:

1

k

Z t

t�k

Z
W

ju� hj2 dm dta c sup
i AN

Z t

0

Z
W

ðg pi
ui
þ jui � hj pi þ jqthj

pi
pi�1 þ g pi

h Þ dm dt:

Since the term on the left-hand side of the preceding inequality tends toZ
W

juðx; tÞ � hðx; tÞj2 dm;

as k ! 0, we conclude the assertion ð2:11Þ2 by the global higher integrability
(4.5), since it implies that the right-hand side of the preceding inequality tends
to zero as t ! 0.
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Next, we show that the limit function u is a parabolic quasi minimizer of the p
energy, which means that it satisfies (2.10). For this aim, let F a LipcðWTÞ be an
arbitrary Lipschitz function and set K :¼ sptF. Since K TWT ¼ W� ð0;TÞ we
have that d :¼ dparðK ; dpWTÞ > 0. We consider for s < d the open sets

K s :¼ fz a WT : dparðz;KÞ < sg � WT :

For fixed a > 0 we can now find sC sðaÞ > 0 so small thatZZ
K 2snK

g pþd
u dm dt < a;ð4:7Þ

where d > 0 denotes the higher integrability exponent from Lemma 3.12. More-
over we can assume that s < d=4 to get that

KTK s
TK 2s

TWT :

Now let x a LipcðWTÞ be a Lipschitz cuto¤ function on WT with the property that
0a xa 1, xC 1 on K s=2, xC 0 on WTnK 3s=4 with Lipschitz constant LCLðsÞ <
l. Then the function t 7! xðx; tÞ is di¤erentiable for almost every t a ð0;TÞ and
every fixed x a W and jqtxjaL. Moreover there holds gx aL. We define the
function

Fi; e :¼ Fþ xð½ui�e � ½u�eÞ;

and choose the constant e > 0 small enough to have Fi; e a LipcðWTÞ with
sptFi; e TK 3s=4 and spt½Fi; e�e TK s. Then Fi; e is an admissible function for the
formulation (3.1) which gives

�
ZZ

WT

½ui�eqtðFi; eÞ dm dtþ
1

pi

ZZ
spt½Fi; e�e

g pi
ui
dm dtð4:8Þ

a
Qi

pi

ZZ
spt½Fi; e�e

g
pi
ui�½Fi; e�e

dm dt:

For fixed b > 0 we find io a N such that p� ba pi for all ib io and hence by
Hölder’s inequality and the monotonicity of the product measure m�L1 on
X� R there holdsZZ

K

g p�b
ui

dm dta

ZZ
K

g pi
ui
dm dt

� �p�b

pi

½ðm�L1ÞðWTÞ�1�
p�b

pi :

Now, by the lower semicontinuity, Remark 4.8 and since b > 0 is arbitrary, we
obtain, using also that K � spt½Fi; e�e for every i a N, thatZZ

K

g p
u dm dta lim inf

i!l

ZZ
spt½Fi; e�e

g pi
ui
dm dt:ð4:9Þ
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Now we have a look at the first integral on the left hand side of (4.8). We write in
a first stepZZ

WT

½ui�eqtðFi; eÞ dm dt ¼
ZZ

WT

½ui�eqtðFi; e �FÞ dm dtþ
ZZ

WT

½ui�eqtFdm dt

¼: I1 þ I2;

with the obvious labeling of I1 and I2. By the strong convergenve ½ui�e ! ui in
L2ðWTÞ as e ! 0 and ui ! u in L2ðWTÞ as i ! l and since F a LipcðWTÞ, we
immediately deduce

I2 !
ZZ

WT

uqtFdm dt

as e ! 0, i ! l. For the integral I1 we write

I1 ¼
ZZ

WT

½ui � u�eqtðx½ui � u�eÞ dm dtþ
ZZ

WT

½u�eqtðx½ui � u�eÞ dm dt ¼ I11 þ I12:

For the integral I11 we get by integration by parts that

I11 ¼
ZZ

WT

qtxj½ui � u�ej
2 dm dtþ

ZZ
WT

x½ui � u�eqt½ui � u�e dm dt

¼ 1

2

ZZ
WT

qtxj½ui � u�ej
2 dm dt;

and the last integral converges to 0 as e ! 0, i ! l by the strong convergence
½ui � u�e ! ui � u, ui ! u in L2ðWTÞ and the fact that jqtxjaL on WT . For the
integral I12 we write

I12 ¼
ZZ

WT

qtx½u�e½ui � u�e dm dtþ
ZZ

WT

xð½u�e � uÞqt½ui � u�e dm dt

þ
ZZ

WT

xuqt½ui � u�e dm dt:

The first integral tends to zero as e ! 0, i ! l since jqtxjaL on WT and
½ui � u�e ! 0 in L2ðWTÞ.

In order to estimate the second integral, we argue as follows: We first show

j3qt½u�e; j4ja cðuÞkjkL pð0;T ;N1; pðWÞÞ;

j3qt½ui�e; j4ja cðuiÞkjkL pi ð0;T ;N1; pi ðWÞÞ;
ð4:10Þ

for all j a LipcðWTÞ, where cðuÞ, cðuiÞ > 0 are constants independent of e. We
only show the first inequality. The second inequality can be shown in the same
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manner. Noting that qtu a ½Lpð0;T ;N1;p
o ðWÞÞ��, we have

j3qt½u�e; j4j ¼
ZZ

WT

½u�eqtj dm dt
����

���� ¼
ZZ

WT

uqt½j�e dm dt
����

���� ¼ j3qtu; ½j�e4j

a cðuÞk½j�ekL pð0;T ;N1; pðWÞÞa
3cðuÞ
2

kjkL pð0;T ;N1; pðWÞÞ

for all j a LipcðWTÞ, where cðuÞ > 0 is a constant independent of e. The last esti-
mate can be derived from the argument as in (4.2). This implies the first inequal-
ity of (4.10).

By the density of LipcðWTÞ in Lpð0;T ;N1;pðWÞÞ and Lpið0;T ;N1;piðWÞÞ with
their norms we can apply (4.10) with the choice jC xðu� ½u�eÞ to get for ig 1
and ef 1: ZZ

WT

xð½u�e � uÞqt½ui � u�e dm dt
����

����
a j3qt½u�e; xðu� ½u�eÞ4j þ j3qt½ui�e; xðu� ½u�eÞ4j
a ckgxðu�½u�eÞkL pðWT Þ þ ckgxðu�½u�eÞkL pi ðWT Þ

a cðp;Q; u; uiÞkgxðu�½u�eÞkL pþdðWT Þ:

Here we have used Hölder’s inequality to replace the exponents p and pi by
pþ d. Since by the calculus rules for upper gradients we have

jgxðu�½u�eÞja xgu�½u�e þ ju� ½u�ejgx;

we get ZZ
WT

xð½u�e � uÞqt½ui � u�e dm dt
����

����a cðp;Q; u; ui; xÞku� ½u�ekN1; pþdðWÞ:

Now applying Lemma 3.6 we conclude that the right hand side converges to zero
as e ! 0.

By Lemma 4.4 we can conclude that qtðxuÞ a ½Lpð0;T ;N1;p
o ðWÞÞ�� andZZ

WT

xuqt½ui � u�e dm dt ¼ �3qtðxuÞ; ½ui � u�e4

		!e!0 �3qtðxuÞ; ui � u4 ¼ 3xu; qtðui � uÞ4 		!i!l
0:

The convergence to zero as i ! l is a consequence of Lemma 4.7.
Combining the last estimates we deduce

lim
i!l

lim
e!0

ZZ
WT

½ui�eqtðFi; eÞ dm dt ¼
ZZ

WT

uqtF dm dt:
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Up to now we have therefore shown that

�
ZZ

WT

uqtF dm dtþ 1

p

ZZ
K

g p
u dm dtð4:11Þ

a
Qi

pi
lim
e!0

ZZ
spt½Fi; e�e

g
pi
ui�½Fi; e�e

dm dtþAi;

where limi!lAi ¼ 0. In a next step we will focus on the limit e ! 0 on the right
hand side of the preceding estimate. For this aim we split the domain of integra-
tion according to spt½Fi; e�e TK s ¼ K A ðK snKÞ. On K � K s=2 we have

ui � ½Fi; e�e ¼ u�FþF� ½F�e þ ui � u� ½½ui � u�e�e;

hence we getZZ
K

g
pi
ui�½Fi; e�e

dm dta

ZZ
K

½gu�F þ gF�½F�e þ gu�ui�½½u�ui �e�e �
pi dm dt:

Since F a LipcðWTÞ we have that F� ½F�e ! 0 uniformly on K as e ! 0 and
therefore the second term in the preceding integral tends to zero as e ! 0. More-
over, we have by the higher integrability, Lemma 3.12, that gu�ui a Lpþd for
i a N large enough and therefore we have by Lemma 3.6 that

gui�u�½½ui�u�e�e ! 0 as e ! 0ð4:12Þ

pointwise almost everywhere on K and also in LpþdðKÞ. Using now the elemen-
tary estimate

j jmja � jmjbja 1

g
jmjmaxfa;bgþg þ 1

g

�1
a
þ 1

b

�� �
jb� aj;ð4:13Þ

which holds for all m a Rk, a; b > 0 and d > 0, see [20], and which we apply with
m ¼ gui�u�½½ui�u�e�e , a ¼ pi, b ¼ p and g ¼ d=2, we obtain by dominated conver-
gence that

lim
e!0

ZZ
K

g
pi
ui�½Fi; e�e

dm dta

ZZ
K

g
p
u�F dm dtþ cðd; p; kgukL pþdðWT ÞÞjpi � pj:

Next, we estimate the integral on the set K snK . We first note that ½F�eC 0 on
WTnK s=2 for e > 0 small enough and hence we conclude that

ui � ½Fi; e�e ¼ ui � ½xð½ui�e � ½u�eÞ�e

on K snK 3s=4. Consequently we can writeZZ
K snK

g
pi
ui�½Fi; e�e

dm dta

ZZ
K snK

½gui�½xð½ui�e�½u�eÞ�e þ wK 3s=4g½F�e �
pi dm dt;

366 y. fujishima and j. habermann



where wK 3s=4 denotes the characteristic function of the set K 3s=4. Now, as e ! 0,
we deduce with Lemma 3.6 that

lim
e!0

ZZ
K snK

g
pi
ui�½Fi; e�e

dm dta

ZZ
K snK

g
pi
ui�xðui�uÞ dm dt:

Now we consider the integral

I3 :¼
ZZ

K snK
g
pi
ui�xðui�uÞ dm dt:

To estimate this integral, we first note that, since x is a Lipschitz cut-o¤ function,
we get by basic calculus rules for p weak upper gradients that

guið1�xÞþxu a ð1� xÞgui þ xgu þ jui � ujgx:

Hence we get for the expression I3 the estimate

I3 a c

ZZ
K snK

ðð1� xÞ pig pi
ui
þ g

pi
x jui � uj pi þ x pig pi

u Þ dm dt;ð4:14Þ

and thus the right hand side divides into three integrals. For the second one we
get by Hölder’s inequality, gx aL and by Lemma 4.7:ZZ

K snK
g
pi
x jui � uj pi dm dta ckui � uk

p

pþd

L pþdðWT Þ ! 0;

as i ! l. The third integral is estimated with the help of Hölder’s inequality and
(4.7) as follows:ZZ

K snK
x pig pi

u dm dta

ZZ
K snK

g pþd
u dm dt

" # pi
pþd

ðm�L1ÞðK snKÞ1�
pi
pþd;

and hence we deduce

lim sup
i!l

ZZ
K snK

x pig pi
u dm dta ca

p

pþd:

It remains to estimate the first integralZZ
K snK

ð1� xÞ pig pi
ui
dm dt:ð4:15Þ

To do so, we proceed basically as in [7]. We show that for DTWT being compact
and for almost every r a ð0; roÞ, where ro :¼ dparðK ; ðX� RþÞnWTÞ there exists a
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constant cC cðQ; pÞ such that

lim sup
i!l

ZZ
DðrÞ

g pi
ui
dm dta c

ZZ
DðrÞ

g p
u dm dt;ð4:16Þ

where

DðrÞ :¼ fz a WT : dparðz;DÞ < rg:

For this aim, let 0 < % < r < ro and x a LipcðWTÞ be a cut-o¤ function such that

0a xa 1; xC 1 on Dð%Þ; xC 0 on WTnDðrÞ:

We test the quasi minimality of ui with the test function Fi; e :¼ xð½ui�e � ½u�eÞ,
where e > 0 is su‰ciently small. By (3.1) we get

�
ZZ

WT

½ui�eqtFi; e dm dtþ
1

pi

ZZ
spt½Fi; e�e

g pi
ui
dm dta

Qi

pi

ZZ
spt½Fi; e�e

g
pi
ui�½Fi; e�e

dm dt:

Using the same arguments as after (4.8), we conclude that

lim
i!l

Ii ¼ lim
i!l

lim
e!0

ZZ
WT

½ui�eqtFi; e dm dt ¼ 0;

with the obvious notation for Ii. Letting e ! 0 in the above inequality we arrive
at ZZ

Dð%Þ
g pi
ui
dm dtþ Ii a 2Q

ZZ
DðrÞ

g
pi
ui�xðui�uÞ dm dt:

This we see as follows: The integral on the left hand side comes up by exactly the
same argument as in (4.9). For the integral on the right hand side we use that
spt½Fi; e�e � DðrÞ for e > 0 su‰ciently small and then an argument similar to
(4.12). Using now once again the calculus rules for upper gradients we get

gui�xðui�uÞ ¼ gð1�xÞuiþxu a ð1� xÞgui þ xgu þ jui � ujgx:

Plugging this into the right hand side of the preceding inequality and using that
1� xC 0 on Dð%Þ we arrive atZZ

Dð%Þ
g pi
ui
dm dtþ Ii a c

ZZ
DðrÞnDð%Þ

g pi
ui
dm dt

þ c

ZZ
DðrÞ

ðg pi
x jui � uj pi þ x pig pi

u Þ dm dt:

Now we define for r a ð0; roÞ the quantity

CðrÞ :¼ lim sup
i!l

ZZ
DðrÞ

g pi
ui
dm dt:
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Since DðrÞ � Dð~rrÞ for r < ~rr, the function r 7! CðrÞ is nondecreasing and by the
higher integrability of gui it is also finite. Hence, the set of points of discontinuity
of C is at most countable. Now we add on both sides of the above inequality the
quantity ZZ

Dð%Þ
g pi
ui
dm dt;

and conclude that for every point of continuity r a ð0; roÞ of C that

ð1þ cÞCð%Þa cCðrÞ þ lim sup
i!l

ZZ
DðrÞ

g
pi
x jui � uj pi dm dtþ c

ZZ
DðrÞ

g p
u dm dt:

Here we have used once again the elementary inequality (4.13) and the arguments
after (4.13) so ‘replace’ in the integral on the right hand side the exponent pi by
the exponent p. By Hölder’s inequality and the strong convergence ui ! u in the
space Lpþd, we see that the second integral on the right hand side is zero and
therefore we get

ð1þ cÞCð%ÞaCðrÞ þ c

ZZ
DðrÞ

g p
u dm dt;

where all constants c are the same constants and the inequality holds for all
% a ð0; rÞ. Now, since C is continuous in r, we get as % % r:

ð1þ cÞCðrÞaCðrÞ þ c

ZZ
DðrÞ

g p
u dm dt;

and therefore finally

CðrÞa c

ZZ
DðrÞ

g p
u dm dt;

which is the desired estimate (4.16).
We use this estimate now as follows to estimate the integral (4.15): Since xC 1

on K s=2 we may achieve thatZZ
K snK

ð1� xÞ pig pi
ui
dm dta

ZZ
D

g pi
ui
dm dt;

where D ¼ K snK s=2 is compact. Now we apply the preceding argument and the
estimate (4.16) with the set D and therefore DðrÞ � K 2snK , if we choose r su‰-
ciently small. Estimate (4.16) provides a constant which does not depend on i
such that

lim sup
i!l

ZZ
DðrÞ

g pi
ui
dm dta c

ZZ
DðrÞ

g p
u dm dt:
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Combining this with (4.7) we therefore get

lim sup
i!l

ZZ
K snK

ð1� xÞ pig pi
ui
dm dta lim sup

i!l

ZZ
DðrÞ

g pi
ui
dm dt

a c

ZZ
DðrÞ

g p
u dm dt

a c
�ZZ

K 2snK
g pþd
u dm dt

� p

pþdðmðWÞTÞ1�
p

pþd

a cðmðWÞTÞ1�
p

pþda
p

pþd:

By (4.14) we finally obtainZZ
K snK

g
pi
ui�xðui�uÞ dm dta ca

p

pþd þ cðmðWÞTÞ1�
p

pþda
p

pþd;

where the constant c is not depending on a. Since a > 0 was arbitrary, combining
this with (4.11) and letting i ! l we end up with the inequality

�
ZZ

WT

uqtF dm dtþ 1

p

ZZ
K

g p
u dm dta

Q

p

ZZ
K

g
p
u�F dm dt;

which holds for all test functions F a LipcðWTÞ with K ¼ sptF. This is the quasi-
minimality of the limit function u and the proof of Theorem 2.2 is complete. r

Proof (of Theorem 2.4). Let ui be a parabolic Qi-minimizer of the pi-energy.
By Theorem 2.2 we know that u is the parabolic 1-minimizer of the p-energy and
ui ! u strongly in LpðWÞ, gu * g weakly in LpðWÞ and g is a p-weak upper
gradient of u. Note that at this point we do not know if g is in fact the minimal
p-weak upper gradient of u. To prove the assertion of Theorem 2.4, we first show
that

lim
i!l

kguikL pðWT Þ ¼ kgkL pðWÞ;ð4:17Þ

because since the space LpðWÞ with the product measure m�L1 is a uniformly
convex space and hence the weak convergence gui * g in LpðWTÞ together with
the norm convergence (4.17) provides the strong convergence gui ! g in LpðWTÞ.
By lower semicontinuity of the Lp-norm we immediately get

kgkL pðWT Þ a lim inf
i!l

kguikL pðWT Þð4:18Þ

and therefore it remains to show that

lim sup
i!l

kguikL pðWT Þ a kgkL pðWT Þ:ð4:19Þ
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In a first step we prove that

lim sup
i!l

ZZ
WT

g pi
ui
dm dta

ZZ
WT

g p
u dm dt:

For this aim, we test the quasi-minimality (3.1) of ui with the test function

Fh
e ðx; tÞ :¼ wh;h

T�h½ui � u�e;

where wh;h
T�hðtÞ a Lipcð0;TÞ is the a‰ne function defined in (4.4), which is C 1

on the interval ð2h;T � 2hÞ andC 0 on the intervals ð0; hÞ and ðT � h;TÞ. This
gives

�
ZZ

WT

½ui�eqtFh
e dm dtþ

1

pi

ZZ
spt½Fh

e �e
g pi
ui
dm dta

Qi

pi

ZZ
spt½Fh

e �e
g
pi

ui�½Fh
e �e

dm dt:

To estimate the first term we first writeZZ
WT

½ui�eqtFh
e dm dt ¼

ZZ
WT

½ui � u�eqtFh
e dm dtþ

ZZ
WT

½u�eqtFh
e dm dt ¼: I1 þ I2:

By the definition of Fh
e and an integration by parts we get for the integral I1:

I1 ¼
1

2

ZZ
WT

j½ui � u�ej
2qtw

h;h
T�h dm dt:

Now using (2.11) for both ui and u and qtw
h;h
T�h ¼e1=h on ðh; 2hÞ and ðT � 2h;

T � hÞ respectively we obtain by the strong convergence ½ui � u�e ! ui � u in
L2ðWTÞ that

lim
h!0

lim
e!0

I1 ¼ �
Z
W

juið�;TÞ � uð�;TÞj2 dma 0:

For the second integral we get by integration by parts

I2 ¼ �3qt½u�e; w
h;h
T�h½ui � u�e4

¼ �3qtð½u�e � uÞ; wh;h
T�h½ui � u�e4� 3qtu; w

h;h
T�hð½ui � u�e � ðui � uÞÞ4

� 3qtu; w
h;h
T�hðui � uÞ4 ¼ I21 þ I22 þ I23:

For the first term, we perform again an integration by parts and obtain

I21 ¼ 3qtðwh;h
T�h½ui � u�eÞ; ½u�e � u4

¼ 3qtw
h;h
T�h½ui � u�e; ½u�e � u4þ 3wh;h

T�hqt½ui � u�e; ½u�e � u4:

Since both ui and u are parabolic quasiminimizers, the second term can be esti-
mated with the help of Remark 4.3 (and jwh;h

T�hja 1) as follows:
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j3wh;h
T�hqt½ui � u�e; ½u�e � u4ja j3qt½ui�e; ½u�e � u4j þ j3qt½u�e; ½u�e � u4j

a
3 pQ p

p
kuk p�1

L pð0;T ;N1; pðWÞÞkg½u�e�ukL pðWT Þ

þ 3 piQ
pi
i

pi
kuik pi�1

L pi ð0;T ;N1; pi ðWÞÞkg½u�e�ukL pi ðWT Þ

a cðp;Q;MÞkg½u�e�ukL pþdðWT Þ 		!e!0
0:

In the last step we have once again used the argument of Remark 4.3, Hölder’s
inequality and the uniform energy bound (4.5) to replace the Lp �N1;p-norms
by a constant cC cðQ; p;MÞ. For the first term we obtain moreover

j3qtwh;h
T�h½ui � u�e; ½u�e � u4ja jqtwh;h

T�hj3½ui � u�e; ½u�e � u4j 		!e!0
0;

and hence we conclude that

lim
h!0

lim
e!0

jI21j ¼ 0:

Using once again the fact that u is a parabolic minimizer, we obtain by Lemma
4.2 that

jI22ja cðp;QÞkuk p�1

L pð0;T ;N1; pðWÞÞkg½ui�u�e�ðui�uÞkL pðWT Þ 		!e!0
0:

Combining the estimates for I21 and I22 we obtain

lim
e!0

I2 ¼ �3qtu; w
h;h
T�hðui � uÞ4 ¼ �3qtu; ui � u4þ 3qtu; ð1� wh;h

T�hÞðui � uÞ4:

For the second term on the right hand side we get, using Lebsgue’s convergence
theorem and once again Lemma 4.2:

j3qtu; ð1� wh;h
T�hÞðui � uÞ4j

a cðp;QÞkuk p�1

L pð0;T ;N1; pðWÞÞkgð1�w
h; h
T�h

Þðui�uÞkL pðWT Þ

a cðp;QÞkuk p�1

L pð0;T ;N1; pðWÞÞkð1� wh;h
T�hÞgui�ukL pðWT Þ 		!h!0

0;

since wh;h
T�hðtÞ ! 1 as h ! 0. Therefore we conclude that

lim
h!0

lim
e!0

I2 ¼ �3qtu; ui � u4:

In a next step we want to see that the integral on the right hand side tends to zero
as i ! l. For this aim we use again a time-mollification ½u�e for e > 0 small
enough of the minimizer u, writing

3qtu; ui � u4 ¼ 3qt½u�e; ui � u4þ 3qtðu� ½u�eÞ; ui � u4:

372 y. fujishima and j. habermann



Since qt½u�e a L2ðWTÞ we can estimate the fist term by Hölder’s inequality to
get

j3qt½u�e; ui � u4ja kqt½u�ekL2ðWÞkui � ukL2ðWÞ 		!i!l
0;

by the strong convergence ui ! u in LpðWTÞ. For the second term we use perform
first an integration by parts to move the time derivative to the right hand side and
then use once again Lemma 4.2 to obtain

j3qtðu� ½u�eÞ; ui � u4j ¼ j3qtðui � uÞ; u� ½u�e4ja cðp;Q;MÞkg½u�e�ukL pðWT Þ;

where the constant does not depend on i. Hence we have that for every e > 0
small enough that

lim sup
i!l

j3qtu; ui � u4ja cðp;Q;MÞkg½u�e�ukL pðWT Þ:

Since e > 0 was arbitrary we conclude

lim
i!l

j3qtu; ui � u4j ¼ 0:

Combining now all the estimates from before we arrive at

lim sup
i!l

ZZ
WT

g pi
ui
dm dta lim sup

i!l
lim
e;h!0

Qi

ZZ
spt½Fh

e �e
g
pi

ui�½Fh
e �e

dm dt:

For the right hand side of this inequality we proceed exactly as in the proof of
Lemma 4.5. Note here that the test function in the proof of Lemma 4.5 di¤ers
from the one here just by the fact that u is replaced by h there. However, arguing
exactly in the same way leads us to

lim
h!0

lim
e!0

ZZ
spt½Fh

e �e
g
pi

ui�½Fh
e �e

dm dta

ZZ
WT

g pi
u dm dt;

and applying once again the elementary inequality (4.13) to replace the exponent
pi in the above integral by the exponent p, we obtain

lim sup
i!l

ZZ
WT

g pi
ui
dm dta lim sup

i!l
Qi

ZZ
WT

g pi
u dm dt ¼

ZZ
WT

g p
u dm dt:ð4:20Þ

Here we also used that Qi ! 1 as i ! l. In order to conclude the convergence
(4.19) we have to replace the exponent pi on the left hand side of the above
estimate by the exponent p. This can be done by higher integrability in terms
of the energy bound (4.5) as follows: We proceed analogous to the argument in
[7, Proof of Theorem 2.2]: We fix g > 0 and let i a N be large enough to have
jpi � pj < g. By Hölder’s inequality we get
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ZZ
WT

g p
ui
dm dt ¼

ZZ
WT

g p�g
ui

gg
ui
dm dtð4:21Þ

a

ZZ
WT

g pi
ui
dm dt

� �p�g

pi
ZZ

WT

g
gpi

pi�pþg

ui dm dt

� �pi�pþg

pi

:

Being d > 0 the higher integrability exponent of Lemma 3.12, we choose qi :¼
ðpþ dÞ pi�pþg

gpi
to achieve that

gpi
pi�pþg

qi ¼ pþ d. Note that qi > 1 if i a N is large

enough. Then by Hölder’s inequality and (4.5) we get

ZZ
WT

g
gpi

pi�pþg

ui dm dt

� �pi�pþg

pi

a

ZZ
WT

g pþd
ui

dm dt

� � g
pþd

ðmðWÞTÞ
pi�pþg

pi
� g

pþd

a cðMÞgðmðWÞTÞ
pi�pþg

pi
� g

pþd:

Combining this with (4.20) and (4.21) we get

lim sup
i!l

ZZ
WT

g p
ui
dm dta cðMÞg

ZZ
WT

g p
u dm dt

� �p�g

p

ðmðWÞTÞgð1=p�1=ðpþdÞÞ;

and since g > 0 was arbitrary, we finally conclude that

lim sup
i!l

ZZ
WT

g p
ui
dm dta

ZZ
WT

g p
u dm dt:

Note here that on the right hand side integral appears the minimal p-weak upper
gradient gu of u. By its minimality the inequality obviously holds also for the
p-weak upper gradient g and therefore (4.19) is shown. Moreover we see, com-
bining the last estimate with (4.18) we get that

kgkL pðWT Þ a lim inf
i!l

kguikL pðWT Þ a lim sup
i!l

kguikL pðWT Þ

a kgukL pðWT Þ a kgkL pðWT Þ;

where the last inequality holds since gu is minimal. Hence, we have equality in the
above estimate and therefore g is in fact the minimal p-weak upper gradient. This
finishes the proof of Theorem 2.4. r
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[17] T. Kilpeläinen - J. Kinnunen - O. Martio, Sobolev spaces with zero boundary

values on metric spaces, Potential Anal., 12, 3 (2000), 233–247.

[18] J. Kinnunen - N. Marola - M. J. Miranda - F. Paronetto, Harnack’s inequality

for parabolic De Giorgi classes in metric spaces, Adv. Di¤erential Equations, 17, 9–10
(2012), 801–832.

[19] J. Kinnunen - M. Masson, Parabolic comparison principle and quasiminimizers in

metric measure spaces, Proc. Amer. Math. Soc., 143, 2 (2015), 621–632.

[20] J. Kinnunen - M. Parviainen, Stability for degenerate parabolic equations, Adv.
Calc. Var., 3, 1 (2010), 29–48.

[21] J. Kinnunen - N. Shanmugalingam, Regularity of quasi-minimizers on metric

spaces, Manuscripta Math., 105, 3 (2001), 401–423.

[22] J. L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc., 308, 1 (1988), 177–196.

[23] G. Li - O. Martio, Stability and higher integrability of derivatives of solutions in

double obstacle problems, J. Math. Anal. Appl., 272, 1 (2002), 19–29.

[24] P. Lindqvist, Stability for the solutions of divðj‘ujp�2‘uÞ ¼ f with varying p, J. Math.
Anal. Appl., 127, 1 (1987), 93–102.

375stability for parabolic quasi minimizers in metric measure spaces

http://dx.doi.org/10.1002/mana.201700018


[25] J.-L. Lions - J. Peetre, Sur une classe d’espaces d’interpolation, Institut des Hautes
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