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ABSTRACT. — We are concerned with the stability property for parabolic quasi minimizers in
metric measure spaces. More precisely we consider a doubling metric measure space 2 which sup-
ports a weak Poincaré inequality and a parabolic domain Q7 = Q x (0, T) on the product space
2 x R, where Q C % is a domain whose boundary 0Q is regular in the sense that its complement
satisfies a uniform capacity density condition. We then show that a parabolic 2 quasi minimizer of
the p energy, p > 2, with fixed initial boundary data on the parabolic boundary of Q7 is stable with
respect to the variation of 2 and p. The manuscript at hand is an extension of the result [7] to the
setting of metric measure spaces.
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1. INTRODUCTION

Let (Z,d,u) be a metric measure space with a doubling measure g and
which supports a weak (1, p)-Poincaré inequality. For a parabolic domain
Qr :=Qx (0,T), with T >0 and Q C Z being an open bounded set, we con-
sider parabolic 2-quasiminimizers of the Dirichlet p-energy. For the special case
Z =R" n>2and u being the Lebesgue measure, parabolic 2-quasiminimizers
of the Dirichlet p-energy are functions u € L?(0, T; W'?(Q)) which satisfy the
inequality

1 2
—/ u@td)dz—k/ |Du|? dz < / |Du — D®|” dz,
Qr P spt ® P spt ®

for all test functions ® € C°(Q7), where 2 > 1 and p > 1 are fixed. In the case
2 =1, parabolic 1-minimizers for p > n% are weak solutions of the parabolic
p-Laplace equation

O — div(|Du|”*Du) =0 on Q7.

Parabolic quasiminimizers have first been introduced in the Euclidean setting in
[34] and then been defined in more general metric measure spaces in [18]. In the
past five years the investigation of parabolic quasiminimizers in metric measure
spaces has gained increasing interest, see for example [18, 19, 29, 30, 28, 31, 9].
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In the case of a general metric measure space (2,d,u) we are considering
here, there is no sense in speaking of a parabolic equation and the notion of par-
abolic 2-quasiminimizers involves so called p-weak upper gradients instead of
weak derivatives, see Definition 2.1 for the exact notion. In this general setting,
quasiminimizers have been introduced in the time-independent (elliptic) case in
[21] and then been studied by many authors, for example in [2, 27, 32, 26].

We are interested in stability issues for parabolic quasiminimizers. More pre-
cisely, we investigate the stability of global 2-quasiminimizers of the p-energy
with fixed initial-boundary-data # : 0, Q7 — R, under a variation of the param-
eters 2 and p. Problems of this type have been studied first in the elliptic case
for systems of partial differential equations on R” in [24, 23] and for parabolic
systems in [20]. In the case of parabolic quasiminimizers the discussion of stability
questions is more involved since one cannot use the structure of an underlying
PDE. For time independent problems, results have first been proven in [26], where
the authors treated the Euclidean case and the more general setting of metric
measure spaces as well. Parabolic problems in the Euclidean setting have been re-
cently studied in [7] and [8]. To the best of our knowledge the manuscript at hand
is the first stability result for time dependent problems on metric measure spaces.

A fundamental ingredient for the stability proof with varying exponent p is
a higher integrability property for parabolic quasiminimizers, since it provides
uniform energy bounds for quasiminimizers and then allows to conclude con-
vergence at least for subsequences by compactness properties of the underlying
function spaces. Hence the proof of our main theorem is based on the global
(up to the boundary) higher integrability estimates for quasiminimizers, recently
shown in [6] (see also [10]), which is true only for exponents p which satisfy
p> nz—fz, where n denotes the ‘dimension’ of the metric measure space, related
to the doubling constant. This is the reason, why we do not get stability in the
case that 1 < p < nz—fz with our methods. Higher integrability for quasiminimizers
(but also for solutions of equations) can in general not be achieved for this range
of exponents. Moreover, we have to assume a weak regularity property for the
boundary 0Q of the domain Q under consideration. In fact, counterexamples,
already for elliptic and parabolic systems show (see for example in [24, 20]) that
stability cannot hold in case of an irregular boundary 0Q. The boundary regular-
ity we are assuming, is formulated in terms of a capacity density condition for the
complement 2\ Q — called uniform p thickness — and a deep self improving result
for uniform p thickness, which goes back to [22] and was carried over to the con-
text of metric measure spaces in [4].

Let us make some remarks on the proof and give some technical aspects.
To prove Theorem 2.2 we follow basically the strategy of [7]: We first prove a
Caccioppoli type estimate (Lemma 4.5) for parabolic quasiminimizers and use
then the global higher integrability results of [6] to obtain uniform energy bounds.
Starting then with a sequence {u;} of parabolic 2;-quasiminimizers of the p;-
energy, we get by compactness results for parabolic spaces L?(0, T; A 17(Q)) in
terms of Lemma 3.10 — using the Rellich Kondrachov theorem in metric measure
spaces (Lemma 3.11) and the existence of a weak time derivative d,u; (Lemma
4.2) — the convergence u; — u in L4(Qy) for a ¢ > p of a subsequence and also
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the weak convergence g,, — ¢g in LY(Qr) of the sequence of minimal p-weak
upper gradients to a limit function g. Lemma 4.1 allows to identify the limit ¢
of this sequence as a p-weak upper gradient of the limit function u. Once having
the limit function u at hand, we show, that u satisfies the initial-boundary condi-
tions. This is done by a characterization of Newtonian functions with zero
boundary values with the help of Hardy type estimates (Lemmas 3.8 and 3.9).
In a last step we show that the limit function is indeed a parabolic 2-minimizer
of the p-energy. The proofs in the metric measure space setting is at many stages
technically more involved than the proof in the Euclidean case. A reason for this
1S — in contrast to weak derivatives — the nonlinear behavior of p-weak upper
gradients, which affect the proofs in many ways.

2. STATEMENTS AND THEOREMS

In this manuscript, let (2,u,d) be a locally linearly convex metric measure
space which satisfies the doubling property with doubling constant ¢; > 1 and
which supports a weak (1, p)-Poincaré inequality. We say that (2, u,d) is called
a locally linearly convex metric measure space if there exist positive constants
C >0 and r. > 0 such that, for all balls B,(x) C # with r € (0,r.], every two
points yi, y2 € Ba.(x)\B,(x) can be connected by a curve lying in the annulus
B¢y (x)\Bc-1,(x), where B,(x):={y e Z :d(y,x) <r} denotes the open ball
of radius r and center x with respect to the metric d and B,(x) is the closure of
B,(x) with respect to the metric d. See [4] and [14]. Furthermore, the doubling
property of the measure u means the following: There exists a constant ¢ > 1
such that

(2.1) 0 <u(By(x)) < ¢ u(Br(x)) < +o0,
for all radii » > 0 and all x € Z'. We define the doubling constant
(2.2) cq :=inf{c € (1,00) : (2.1) holds}.

We denote with n :=log, ¢; the dimension from below of the metric measure
space. Following the concept of Cheeger [5], Heinonen and Koskela [14], a
Borel-function g : Z — [0, oo] is called an ‘upper gradient’ for an extended real-
valued function u: % — [—o0,+00], if for all rectifiable curves y:[0,7,] — &
there holds

(2.3) u(3(0)) — u(y(6,))] < / gds,

and g is called a p-weak upper gradient of u if (2.3) holds for p-almost every path,
which means that it fails only for a path family I" on 2 satisfying

Mod,(T) := inf{/ gpd,u:QZO,/gdsz 1 forallyeF}:O.
X 7



346 Y. FUJISHIMA AND J. HABERMANN

We define for 1 < p < oo and for a fixed open subset Q C 2 the vector
space

N1P(Q) == {u e LP(Q) : there exists a p-integrable p-weak upper gradient of u}.
This space can be endowed with a norm

||“||JV"”(Q) = ”uHLP(Q) +i2f||g||Ll7(Q) = HuHLP(Q) + HgMHLII(Q)a

where the infimum is taken over all p-integrable p-weak upper gradients of u, and
g, denotes the minimal p-weak upper gradient of the function u. Introducing the
equivalence relation

(2.4) Uu~?U: <> ||u - UHN]],(Q) - 0,
we define the Newtonian space N'»(Q) as the quotient space
(2.5) NP(Q) = N P(Q) )~

In a standard way one may also define the spaces ./;!(Q) and /Vié’cp (Q) and we
refer the reader to [3] for more details on Newtonian spaces.

Poincaré inequality and Sobolev embedding
We demand that the metric measure space (Z,d,u) supports a weak (1, p)-
Poincaré inequality in the sense that there exist constants ¢p > 0 and I' > 1 such

that for all open balls B,(x,) C Br,(x,) C &, for all p-integrable functions u on
Z and all upper gradients g of u there holds

1

P

(2:6) ][ | —up, x| dp < cpo ][ g”du|
Bg(xu) Bl‘g(xa)

where the symbol

i
g, = 4 wdpi=————— [ ud
: J[<> M a0 Sy

denotes the mean value integral of the function u on the ball B,(x,) with respect
to the measure u. The distance in the space 2 is denoted by d and in the usual
way we define the distance between a point x and a set Y C % as well as between
two sets Y1, Yo C %.

By Holder’s inequality it directly follows that if a metric space supports a
weak (1, p)-Poincaré inequality, then it supports a weak (1, ¢)-Poincaré inequal-
ity for all ¢ > p. On the other hand it was shown in [16] that if a complete metric
space is endowed with a doubling measure and supports a weak (1, p)-Poincaré
inequality, then it supports also a weak (1, p — ¢)-Poincaré inequality for some
e=¢e(cp, Iy cq,p) >0, and therefore also a weak (1,g)-Poincaré inequality for
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all ¢ € [p — ¢, p]. Moreover, from [12] we know that if we assume a weak (1, p)-
Poincaré inequality, then the Sobolev embedding theorem holds and hence a
weak (g, p)-Poincaré inequality holds for all ¢ < p*, with

pn

(2.7) pri={n—p’
+ 00, p=n.

p<n,

On the other hand it was shown in [21], see also [14, 11, 12], that in this case for
every u € N'7(Bar,(x,)) with Bor,(x,) C Z the following Sobolev-type inequal-
ity holds:

(2.8) [][ =y .
B@("‘o)

The constant ¢, in the above inequality depends only on ¢, and on the constant
cp in the weak (1, p)-Poincaré inequality.

Poincaré and Sobolev inequalities hold also on more general domains. More
precisely, the Poincaré inequality holds on bounded measurable subsets £ of the
metric space Z such that the p-capacity of the complement 2\ E does not vanish.

In detail we have
/Iul”dﬂs CE/g[,’du,
E E

for every function u € N!?(E) and for every bounded measurable set E C 2 with
cap,(Z\E) > 0. See (2.13) for the definition of capacity. The constant Cg de-
pends on ¢p, ¢4, p and E.

1

q »
qd,u] Sc*gl][ ( )gbj’d,u], foralll <¢ < p".
BZFg Xo

Parabolic Newtonian spaces

Since we are dealing with time-dependent problems, we have to introduce the
parabolic Newtonian space L?(0, T; 4"?(Q)) or its local version, respectively.
We consider the product space 2 x R, which we endow with the ‘parabolic
distance’

dpar(z1, 22) == max{d(x1,x2), /|1 — 12},

for points z; = (x;,%;) € Z x R. We will consider functions on a parabolic do-
main Q7 :=Q x (0,7) C 2 x R with an open bounded set Q C 2 (with respect
to the metric d) and 7 > 0. For such a set we denote the parabolic boundary of
QT by

OparQr = (A x {t =0}) U (0Q x (0,T)).
The parabolic Newtonian space

LP(0,T5.4717(Q))
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consists in all functions u:Q x (0,T) — R for which u(-,¢) e /17(Q) for
almost all ¢ € (0, T') and moreover

T
|01 g < o
0

The minimal p-weak upper gradient of a function u € L?(0, T; /17 (Q)) has
to be understood in the sense that

(29) gu(x7 t) = gu(-,t)(x)'
We equip the space L?(0, T; A4"17(Q)) with the norm

H“HLP(O, T, /0 (Q)) = [ul Lo+ 19| LP(Qr)s

where g, denotes the minimal p-weak upper gradient of the function u.
Parabolic quasiminimizers and statement of the main theorems

For the whole manuscript, let (#,d,x«) be a metric measure space with all
the properties mentioned above. We first introduce the concept of parabolic
2-quasiminimizers:

DEFINITION 2.1 (Global parabolic 2-minimizer). Let 2>1, p>1land QC Z
be a bounded open set and T > 0. We say that u € L?(0, T; /' 17(Q)) is a
global parabolic 2-minimizer of the p-energy with initial-boundary data # €
LP(0, T; /1P(Q)) if

(2.10) // ud,®dudt + — // gl dudr < // gl o dudt,
Qr spt @ spt®

for all test functions @ € Lipc(QT) and moreover

1) e A1P(Q)  for almost every ¢ € (0, T),
(2.11) i dud
i, / / b= =

Before stating our main theorems, we define the wuniform p-thickness of a
domain. The uniform p-thickness of the complement 2\ Q is a major assumption
in our theorem. It means that there exist positive constants u and r, such that

(2.12) cap, ((2\Q) N B,(x), Bx(x)) = ucap,(B,(x), Bx(x)),

for all x e 2\Q and r € (0,7,). Here cap, denotes the variational p-capacity,
which is defined for an open set (¢ C 2 and a subset £ C ( as follows:

(2.13) cap,(E,0) := inf /L g7 du,

f=lonE
fet (o)
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where gy denotes the minimal p-weak upper gradient of /. We refer the reader to
[3] for more details on the capacity in metric spaces. The uniform p-thickness is
a weak regularity property: Domains satisfying (2.12), do not have thin external
cusps. A deep self-improving property of the uniform p-thickness has been proved
in [22, 4] and says that for every set £ C 2 which is uniformly p-thick there exists
¢ < p such that FE is also uniformly ¢-thick. This property plays an essential role
in stability estimates since we only assume for the domain Q that Z\Q is uni-
formly p-thick, there p is the limit exponent of the sequence {p;}. However note
that for Lipschitz domains this property is always satisfied.
Our main theorem reads as follows:

THEOREM 2.2. Let T >0, p > nz—fz, where n = log, ¢g. Let Q C X be such that
Z\Q is uniformly p-thick. Moreover, let {p;};.n and {2;},. be two sequences

with p; > nz_fz and 2; > 1 such that

pPi—Pp .
{Q'HQ as 1 — 00.
1

Let u; € LP(0, T; /" VP(Q)) be a parabolic 2;-minimizer of the p;-energy in the
sense that

1 2; ),
— // u;0,D d,udt—i——// ghrdudt < —// gl o dudt,
Qr DiJJspto ' Di spt @ '

for all test functions ® e Lip.(Qr), with initial-boundary data n € Lip(Qr) in the
sense of (2.11). Suppose that there exists a strongly measurable function u such
that

lim u;(x,t) = u(x,t) for almost every (x,t) € Qr.
1— 00

Then u € L?(0, T; /'1P(Q)) and moreover it is a global parabolic 2-minimizer of
the p-energy with initial boundary data n in the sense of Definition 2.1.

REMARK 2.3. The proof of Theorem 2.2 shows that for the sequence {u;}; of 2;
quasiminimizers holds that

u; — u strongly in L?(Qr), and ¢, — g weaklyin L”(Qr),

as i — oo, where g denotes a p-weak upper gradient of u, not necessarily the min-
imal one.

In the case that 2 =1, the limit function in the above Theorem 2.2 is a
parabolic minimizer of the p energy. For this case we get the following stronger
result:
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THEOREM 2.4. Under the assumptions of Theorem 2.2 we get: If 2 =1, then
additionally to the assertions of Theorem 2.2 there holds

Gu — Gu  Strongly in L (Qr)
as i — oo, where g, is the minimal p-weak upper gradient of the function u.

REMARK 2.5. The strong L? convergence in Theorem 2.4 means that

// |gui_gu|pdll’ld[_)o
Qr

as i — oo. In particular, we do not get the strong convergenge g,_, — 0 in
L?(Q7) and hence we cannot conclude that u; — u in L?(0, T; 417 (Q)).

3. PRELIMINARIES

We start with a number of properties of parabolic Newtonian spaces, which are
essential for the stability proofs.

DEerINITION 3.1 (Parabolic Newtonian space). We denote by L7(0,T;
A1P(Q)) the space of all functions u:Q x (0,7) — R such that (0,7)3>
t—u(-,t) e /VP(Q) is strongly measurable and the functions (0,7) 57—
[|u(-, )|| () are contained in L7(0, T).

REMARK 3.2. Strongly measurable means that there exists a sequence of simple
functions uy, : (0, T) — A"17(Q) such that

Ju(-, 1) —we(-, )| 1) — 0, ask — oo.

DEFINITION 3.3 (Dual space). The dual space [LP(0, T; 4;17(Q))]" of the par-
abolic Newtonian space L”(0, T; 4,"7(Q)) is defined as the space of continuous
linear functionals on L”(0,T; ./, 17 (Q))

REMARK 3.4. We do not have characterizations of dual spaces in terms of inte-
gration by parts formulas, so we cannot obtain an identification like

L1,

W@ = W), =

)

as we have it for Sobolev spaces, however since the space .47 (Q) is reflexive for
any p > 1, there holds

LPO. T3 (@) = L0 T5A@) ), S+ =1
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where the dual pairing between L7(0, T; [/, (Q)]*) and L?(0, T; A;"7(Q)) is

T
(v = /0 Cul,1), (-, 1)), dt.

Here ¢-,->, denotes the dual pairing between [, (Q)]* and 4,17 (Q).
DEerFINITION 3.5 (Weak time derivative). We call a function v e [L?(0, T;

A2LP(Q))]* weak time derivative of u € L?(0, T; 4"17(Q)) — and write v = d,u
in the weak sense — if

wo=-, /Q u(2p) dudr,
Sfor all p € Lip.(Qr).

3.1. Smoothing in time
We consider regularizations of parabolic quasi minimizers in the time variable.
For & >0 we denote by o,(s) := e 'a(s/e) with a standard smoothing kernel

g e C¥ with spta C (—1,1). For ®:Q x (0,7) — R we denote the smoothed
function

(D], (x,1) :—/Rd)(x,t—s)ag(s) ds.

Note that if ® e L?(0,T; /"7(Q)), we have that [®] (x,-) e C*(0,T) for
almost all x € Q and

[D(x, ) — [@,(x,-)]

o,y — 0 ase—0, ae onQ.

Testing (2.10) with [®], instead of ® and using an integration by parts in the time
variable, we obtain

(3.1) / at[u]eq)dﬂdt+l// g7 dudt < %// 07 1o dudr,
Qr P JJspt[o), P JJsptj@], ¢

for all ® € Lip.(Qr) and ¢ > 0 small enough. Here [u], denotes the smoothing
of u with respect to the time variable. On the other hand, from [29, Lemma 2,
Corollary 1] we know that for any function ¥ e L?(0, T; 4;"(Q)) and every
& > 0 there exists a function ¢ € Lip.(Qr) such that

Iy — ¢||LP(O7T;¢1”"‘”(Q)) <e |y - ¢||L2(QT) <e [spt\spty| <e.

Using this we can easily conclude that (3.1) holds also for all test functions
®e L0, T; 4,7 (Q)).
The following approximation Lemma is proved in [31]:
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LEMMA 3.6 (Smoothing). Let u e L (0, T; 4;17(Q)) and [u], be the mollifica-

loc loc
tion with respect to the time variable. Then g, ) — 0 in Ll (Qr) and pointwise

(u x LY)-almost everywhere on Q.
3.2. Netwonian spaces with zero boundary values

In order to prove that the limit function attains the boundary values 7, we use the
following characterization of Newtonian spaces with zero boundary values, which
has been shown for Sobolev spaces in [13] and for Newtonian spaces in [26].

LemMa 3.7. Let (¥, u,d) be a doubling metric measure space which supports a
weak (1, q)-Poincaré inequality for some 1 < q < oo0. Let p > q and let Q C X be
an open bounded set such that X\ is uniformly p-thick. Then

Q) = (@) A () Q).

s<p

An important characterization of Newtonian spaces with zero boundary
values uses a Hardy type inequality. It has been proved for 2 = R" in [1, 22]
and on metric measure spaces in [4, 17].

LEMMA 3.8. Let Q C Z be a bounded open set and assume that 2\ is uniformly
p-thick for some p > 1. Then there exists a constant ¢ = ¢(Q, p) > 0 such that

u(x)|  \» »
/Q(dist(x, F[\Q)) du < clfull 41 g

for all u e /"P(Q).

LEMMA 3.9. Let Q C 2 be an open set. If u € N"1"P(Q) satisfies

u()|  \?
— ) d
/Q(dlst(x, %’\Q)) H< 0
then u e N7 (Q).
3.3. Compactness properties

We have to apply Simon’s compactness result on parabolic spaces to our setting
of Newtonian spaces. Therefore let us make some remarks. The statement of
Simon, [33, Corollary 8] goes as follows:

Lemma 3.10. Let X, B, Y be Banach spaces with X C B C Y, the embedding
X — B being compact, the embedding B — Y being continuous and there exist
constants 6 € (0, 1) and C such that

(3:2) o5 < Cllollx "Ielly,  forallve X.
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Moreover, let 1 < p, < 00, 1 <r < oo and let {u;}; be a bounded sequence in
LP(0,T;X) such that {ﬁtul} is bounded in L"(0,T;Y), and 0(1 —1/r) <
(1-0) /p(,. Then the sequence {u;}; is relatively compact in the space L?(0,T; B)
Sor all p < p., where 1/p, = (1 —0)/p, —0(1 — 1/r).

To apply the above Lemma in the parabolic setting, we also have to use the
following compactness result of Rellich—Kondrachov type in the metric space set-
ting, which has ben shown in [12]:

LemMA 3.11. Let (Z,d,u) be a metric measure space with a doubling measure
u and n = log, ¢q, which supports a weak (1, p)-Poincaré inequality with dilation
constant T > 1. Then the following holds true: Let B be a fixed ball and {u;,g;}
be a sequence of functions u; with p-weak upper gradients g; such that |lu:| ;1 g +
9ill o (sr5) is uniformly bounded. Then there exists a subsequence of {u;} that con-
verges strongly in L1(B) for each 1 < g <np/(n— p) when p <n and for each
q =1 when p >n.

3.4. Higher integrability up to the boundary

To establish uniform global energy bounds for the sequence of parabolic quasi
minimizers, a fundamental ingredient is the following global higher integrability
result, which was proved in [6].

LEMMA 3.12. Let Q C 2 be a bounded open set such that Z\Q is uniformly
p-thick. For fixed 2 >1, p > 2 5 and given initial-boundary-data n € Lip(Qr) let
ue LP(0,T; /P (Q)) be a parabolic 2-minimizer of the p-energy, satisfying the
conditions (2 11). Then there exists a constant 6 = dé(n, p, 2,Q) > 0 such that

ue LPH(0, T; /1P (Q))

// g/ dude < C,
Qr

Jor a constant C which depends only on n, p, 2, Q, d,n and ||gul|;»q,)

and furthermore

REMARK 3.13. The constant in the above Lemma depends also on 2. However,
a close look at the proof of the statement in [6] shows that it is stable with re-
spect to the variation of 2 in a compact interval [1, 2,] and therefore can be also
replaced by a constant which depends only on 2,. Since we are interested in sta-
bility estimates for 2 varying in such a compact interval (in particular we do not
consider the case 2 — o0), the dependence upon 2 is not crucial for our purpose.

4. PROOF OF THE STABILITY THEOREM

We start our proof with a convergence result for p-weak upper gradients, which is
well known in the elliptic setting (see for example [15, Lemma 3.1]). However, we



354 Y. FUJISHIMA AND J. HABERMANN

could not find this result for the parabolic case and this is why we state this result
as a first step.

LeMMA 4.1. Let {u;};_n be a sequence of functions on the parabolic domain Qr
with u; € L?(Qr) for all i € N. Let {g,,},.n be a sequence such that g,, € L?(Qr)
is a p-weak upper gradient of u; for every i € N. Moreover let

w—u and g, — g bothweaklyin L¥(Qr).
Then g € L?(Qr) is a p-weak upper gradient of u.

PrOOF. We use (twice) Mazur’s Lemma (see for example [3, Lemma 6.2]) on the
Banach space L?(Q7) as follows: There exist convex combinations

N; N;
gj ‘= Zaj,iguia aj = Zaj-iuh
i=j i=j
with N; € N for every j, a;; > 0 and lev:,] a; ; = 1 such that
uj —u, ¢g;— g bothstronglyin L”(Qr), as j — oo,

and moreover by the basic calculus rules for p-weak upper gradients we have that
g; is a p-weak upper gradient of ; for every j. Passing to a subsequence we there-
fore get that

(-, 1) = u(-,1), gj(-,t) = g(-,1), stronglyin L”(Q),

for almost all ¢ € (0, 7). We apply now [3, Proposition 2.3] to conclude that
g(-,t) is a p-weak upper gradient of u(-, ) for almost all z € (0, 7) and this im-
plies (by definition of parabolic p-weak upper gradients) that g is a p-weak upper
gradient of the function u. O

We next show that parabolic quasi-minimizers possess a time derivative in a
weak sense.

LEMMA 4.2. Let Q C X be bounded and open, p > 1, T >0 and 2 > 1. Let
ue LP(0, T; /P (Q)) be a parabolic 2-minimizer in the sense of (2.10). Then

Gt & [LP(0, T: 4,7 ()]
and

p—1

279
|<5r“a¢’>| = 7”“' L/;(O’T;U,y"l-,p(g))”g(PHLP(QT)’

forall p € LP(0, T; A;1P(Q)).
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PRrOOF. We define v = d,u as the continuous linear functional on Lip,.(Q7) such

that
vlgp] := {v,0) = — //Q ud,p dudr.

In order to extend this functional on the whole space L?(0, T; A"7(Q)) we first
prove that

(4.1) u@,q)d,udt < c|ul|?;

LPOT NEP(Q

for all ¢ € Lip.(Q7). We may assume that [[ul|,, 7, ,1r(q) # 0 because other-
wise there is nothing to prove. Let ¢ € Lip,(Q7) be a test function satisfying
Dol rq,) =1 and set @ := [ul[,,( 7. 41r(q))9- By the quasi minimizing prop-
erty (2.10) of u we get

T
||u|Lp(o,T;,v1’ﬂ<Q>)/ /u@,(pd,udt
0o Jo
T
. / / w6, ® dy dt
o Jo
2
] it
P spt o

20719
> - // (97 + 9g) dudt
P spto

2019 )
= =22 T 00+ 1l 1y D017
spto

Y

279
= —7 ||“||Ln(o, T 7P (Q))

Here we have used that g% < |lu||? g2, moreover g, = |Dg| since

Lr(0,T;417(Q))
¢ € Lip(Q7) and in the very last step that 1 Doll»(q,) = 1. Hence we obtain

/ /uﬁtgod,udt>——|| |\

On the other hand, replacing ® by —® in the above argument, we also get

/l/wwwm<——meT“p

LI’OT AP (Q
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and therefore we finally conclude (4.1) with a constant ¢ = 2. Since Lip,(Qr)
is dense in the space L?(0,T; /'7(Q)) (see Thm. 5.45 in [3]), we can now
extend the functional by (4.1) to a continuous linear functional on the space
LP(0,T; 4;(Q)) and therefore we get that v = d,u € [L?(0, T; 4;1(Q))]" to-
gether with the desired estimate. O

REMARK 4.3. We may repeat the argument above with the mollified func-
tion [u], for & > 0 to conclude the following: Being u € L?(0, T; 4"17(Q)) the
parabolic 2-minimizer of Lemma 4.2, there exists ¢ = ¢(p, ||u|| Lo(0,T; 47 7(Q))
such that

379
<Ol 031 = =W . 90 iy

for all p € L7(0, T; /"7(Q)). To see this we argue as follows: We may again
assume that [lul|,, o 7. y1.r(q) > 0, because otherwise by definition of the mollifi-
cation there would be again nothing to prove. Since u is a parabolic 2-minimizer,
the mollified function [u], fulfills the inequality (3.1). Using this instead of
(2.10) and testlng with @ := [[ul|; ¢ 7. 1r(q)®> Where ¢ € Lip (Qr) such that
Dol 0 q,) =1, we get with a s1mllar argument

T
Vel ro e otcn) / /Q 0,0 dpudi

plQ

(”uHL; OT ;llf ))+||[ ] ||Lp0T s Q)))

Repeating the same argument with —¢ instead of ¢ we therefore obtain

712

1,12 7. oy

[u],0ipdpdt] <

[Jull 7,
( Lo 0 TN @) lull Lo, 7 410

By the definition of the L” — 4#"'P-norm we have

|||u\|u<o. T; 7 (Q)) — H[u]gHLP(O, T;W""’(Q))'

< lu =[Nl rep) + 19u-1, o0y

Choosing now ¢ > 0 small enough, by Lemma 3.6 we may achieve that

lu = [l or) + 19u—t, | Lo@r) < 5 el oo, 7471002

and therefore

1 3
(4.2) §||“||Lp(o, i) < Nl Lo, 7000 @) < §||“||Lp<o, T (Q))"
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Hence & = &(p, [[ull 11, 7,117 (q)))- Plugging this into the previous expression on
the right hand side we then obtain the desired estimate.

LEMMA 4.4. Let & € Lip,(0, T; L*(Q)). Assume that u € L?(0, T; A" (Q)) and

O € [LP(0, T; A1 (Q))]* with p > 205 Then 0,(¢u) € [L?(0, T} NP Q)] and

there exists a constant ¢ > 0 such that

(43) 1<), o] < 1€l om0l oo iy 100 oo 1y
+ C||5tf||pc(gr> ||u||Lp<o, T;. 4717 (Q)) ||¢||Lp(o, T, /17 (Q))
for every function ¢ € LP(0, T; N;7(Q)).

Proor. Since Q7 C 2 x R is bounded we have that ¢& € Lip.(Qr) for every
¢ € Lip.(Qr). Then we have

@meoy=- || e (Ep) dude = - Il (gt &+ Cutg) .

Since the Sobolev embedding theorem and p > n2_+n2 shows that L?(0, T; 417 (Q))
C L?*(Qr) is continuous, by the Holder inequality we see that

‘// upd, £ dude

where ¢ > 0 is a constant independent of # and ¢. On the other hand, we have

< N0l e oy 1ull 2@y 191l 2200

< C||atf||L<f-(QT)||u||Ln(o,T;mLﬁ(Q))||(P||Lp(o, T; 472 (Q))

|<at“a é(/)>| < ||é||Lw(QT) ||8t”|| [L2(0, T;A; 7 (Q))]" H§”||LP(O, T; /1P (Q))

therefore we obtain

’/Q fu@,(pdudt' < ||f||L°C(QT)||atuH[Lp(07T;Q/q;]-ﬁ(g))]*||(P||Lp(0,T:.,/V"-r”(Q))
T

+ C”aerLw(QT) ||“||Lp(o, T; /1P (Q)) HC”HLP(O, T; /1P (Q))

for all ¢ € Lip,(Qr). This implies that (4.3) holds for all ¢ € Lip,(Q7). Then
we approximate ¢ € L?(0, T; /"1?(Q)) by a sequence of {¢,} C Lip.(Qr) and
obtain (4.3) actually holds for all ¢ € L?(0, T;.#"7(Q)). This completes the
proof of Lemma 4.4. O

In the next step we prove a global Caccioppoli type inequality for quasi
minimizers.

LEMMA 4.5. For any 6 > 0 there exists a constant ¢ = c(0) such that for all i € N
there holds
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sup [ ) =0 dut [ gl dua
te(0,7) Qr
SC// Iazﬂlpf[‘dudl-F@// g,f"dudt—ké_// lu; — n|”" dudt.
Qr Qr Qr

Here 2 denotes the upper bound of {2;}.

PRrROOF. The proof is similar to the one in the Euclidean case, see [6, Lemma 4.1].
Therefore we are focussing only on the differences to the Euclidean case. We test
the quasi minimality with the function

O (x,1) := 1" (1) (], — [n],) € Lipc(0, T5 4,17(Q)),

for 0 < s < T fixed and / « 1, where we denote for this proof and and also for
later proofs the piecewise affine function in time

0 0<r<h,
b h<it<2h,

(44) 20K () = 2h<t<s—k,
os—k<t<s,
0 s<t<T.

(3.1) then gives

// u;] (3,(13 d,udt—i—— glidudt < — / o] d,udt
spt[@/], “ spt[®/"], u, ;]

The first term on the left hand side is estimated exactly as in the Euclidean case
and we obtain for every ¢ > 0

lim // [u;],0,®" dudt > /\ui(-,s)—n(-,s)fd,u
&,h—0 Qr : O
P')_i‘d,udt.

—5// Iu,-—nl”"dﬂdt—C/ |0 ;
Qr Q

To estimate the term on the right hand side we have to use properties of upper
gradients to get in a first step

G0}, = Gu=llul), F Il ], o)),

The first term on the right hand side goes to zero as ¢ — 0, since g,, [, — 0
in L”. To treat the second term we note that [[u],], — [®"], = [[#],], on [2h + ¢,
s — 2h — ¢] and therefore we get



STABILITY FOR PARABOLIC QUASI MINIMIZERS IN METRIC MEASURE SPACES 359

Di i
/‘/Svpt[(bf/x]r [[Vi]u]c_[q)z{h Spt[q’f]ﬂﬂ[Zh—&-s,s—Zh—g] H’?],],

+ / / gl @ dudz
UM, A ([i—e, 2-+e] Ufs—2h—z, 5—hpe])  Lilele[Pele

The second term on the right hand side converges to 0 as ¢ — 0 and & — 0 (by
dominated convergence), whereas for the first term holds

lim // gl d,udlS// gy dudt,
&h=0 J Jspt[®!], ~[2h+e,5—2h—e] (e spt(ui—1) !

and hence we get

li P < P dpd.
o / /Spt[q)mg Do, dudt < / /Q ) gy dudt

Now combining these estimates, the proof follows exactly as in the Euclidean
case. O

Direct consequences of the Caccioppoli type estimate and the higher integra-
bility properties of Lemma 3.12 are:

COROLLARY 4.6. For the sequence of Theorem 2.2 there holds
sup| sup |-, 1)1 720y + luill P iyy + 190l Py | < 05
ieN [re(0,T)

and

P‘I

ng,l Lr~ t/(QT - [Hul”LquT + ||6;7]| Lrilpi— QT + ||;7||L[f, 0,T;.4 Lp (Q))]

for every q € (0,p — 1) and with a constant ¢ = c¢(n,sup; p;, Qr), and moreover,
there exists a constant 6 > 0 such that

p+o p+o

(45) M = sup(”ul| Ll’+" (Qr) + ||guz||Lp+r> (Qr) ) < 0.

ProoF. The estimates are direct consequences of the Caccioppoli type inequal-
ity in Lemma 4.5, higher integrability in terms of Lemma 3.12 and Holder’s
inequality. O

We will now conclude suitable convergence properties of the sequence {u;},.

LeMMA 4.7. For the sequence {u;}; of Theorem 2.2 there exists a subsequence,
which we denote again by {u;}; and a weak upper gradient g of u such that

w; — uin LP2(Qr) 0 L*(Qr), g, — g weakly in L?*°(Qr),
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as i — 0. Moreover we have that du € [LP*°(0, T; /. MP10(Q))]" and
Ot — du  in the weak-x topology on [LP*°(0, T; N1 0H0(Q))]*.

REMARK 4.8. By lower semi continuity we then directly obtain for the minimal
weak upper gradient of u:

||gu||Lq(QT) = ligi{t}lf 19 |Lq(QT)>

forall g < p+9.

PRrOOF. First we note that by Lemma 4.2 and the uniform bound (4.5) we obtain
that

(4.6) ls;lrg ||61ul~||[LW((LT;%.l.pﬂs(g))r < 0.

Next we will apply Lemma 3.10 for the both cases p > 2 and nz—fz <p<2as
follows: In the case p > 2 we choose

X = JVl’p+5(Q), Y = [J‘/Dlﬁ,p—&-&(g)]*’ B = LIH—‘S(Q),

The inclusion .4"17*9(Q) c LP*9(Q) is compact by the Rellich-Kondrachov
theorem in the metric version in terms of Lemma 3.11. The second inclusion
LPH(Q) C [A;1PT(Q)]* is continuous, as one can see by Holder’s inequality
(note that p +6 > 2). By [25, Theorem 4.1] and [25, Corollary 3.1] (3.2) holds
for this choice of spaces. In the case nz—fz < p <2 we apply Lemma 3.10 with the
spaces

X =7Q), Y=[4"Q)), B=L}Q).
The inclusion 417 (Q) ¢ L*(Qr) is compact again by the Rellich—-Kondrachov

theorem in terms of Lemma 3.11. The second inclusion L*(Qr) C [A;17(Q)]" is
continuous with the following argument: Setting

ulp] == /Qu-(pdu,

and using Holder’s inequality and the Sobolev embedding we identify every
u € L*(Q) as an element of [/ (Q)]*: For every ¢ € 4,"7(Q) we have

|ulp]| < ||“||L2(Q)||€0||L2(Q) = CH“HLZ(Q) ’ ||(P||,m1=p(9)~

Now we use once again [25, Theorem 4.1] together with [25, Corollary 3.1] to
conclude that (3.2) holds also for this choice of spaces.
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All together we conclude that in any case p > nz_fz for a subsequence there
holds

u —u in Lp+(5(QT) M LZ(QT),
gy, — g weakly in LP*(Qr).

By Lemma 4.1 g is a p-weak upper gradient of u. In order to obtain the weak-x
convergence of the time derivatives, we first see that by (4.6), we have for a sub-
sequence that

d;u; — v in the weak-+ topology on [LP*0(0, T; 4. 1+0(Q))]*,

for a function v € [L?°(0, T;.4,1**°(Q))]" and it remains to show that v = d,u:
By the strong convergence u; — u in L?(Q7) we see that for every function
¢ € Lip.(Qr) there holds

(Ot = — // uidpduds — — // ud dudr,
QT QT

and on the other hand by the weak-* convergence d,u; — v we get

<atui7 ¢> - <Uy ¢>

Hence we deduce

<U7 ¢> = <alu7 ¢>7

and moreover by the Poincaré inequality

[<Ou, $>| < ||U||[Lp+(>'(07T;(,/gl‘l’*"(g))]* ¢HL[7+5(0, T; 4 PH0(Qr))
= HUH[LMJ(Q T;U%l«ﬁé(Q))]*(||¢||LP+("(QT) + ”gtlﬁ”LPﬂ’(Qr))

< |l 9l

Lrto(0, T A, 700 (Q))]* Lr+o(Qg)

This shows that d,u e [LP°(0, T; 4;177°(Q))]" and v = 6,u. 0

PrOOF (OF THEOREM 2.2). We prove the theorem in two steps: First we prove
that the limit function u satisfies the initial-boundary conditions (2.11), and there-
after we show that u is in fact a 2 minimizer of the p energy. To prove that
u(- ) —n(-, 1) € N;1P(Q) for almost every e (0,T) we first show that there
exists ¢, > 0 such that

u(-, 1) = (-, 1) € HPHQ),

for almost all ¢t € (0, 7') and for every ¢ € (0,¢,). To this aim, we use the Hardy
type characterization of Newtonian functions with zero boundary values in terms
of Lemmas 3.8 and 3.9 as follows: For a given ¢ > 0 small enough, which will be
fixed later, there exists 7 = I(¢) € N such that p —e < p; < p+eforall i > I(¢).
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In particular there holds u;(-, 1) — 5(-,¢) € A;'*7%(Q) for almost all # € (0, T') and
all i > I(e). We therefore get by the pointwise almost everywhere convergence
u;(x,t) — u(x,t), Fatou’s Lemma, Lemma 3.8, Corollary 4.6 and Holder’s
inequality

\u X, t) —n(x, t)[\r—¢
//QT dlsthf\Q) ) dudi

.. |ul x, 1) —n(x, 1)|\r—¢
<1 f
< imin //QT dist(x, 2\Q) ) dudt

sl
< ¢ supllul 5 ) + 19w 17y * 101257 0 7 L<Q>>]

ieN

< ¢ sup(l + [luil|

P—
Sub erF QT +||’7||LP+rOT 11[)+s +||at’7” pr—l( ]

T

By the uniform energy bound (4.5) the right hand side of the preceding estimate is
bounded independently of the index i. This estimate implies that

u(x, 1) — n(x, ) [\r=*
/Q( dist(x, 7\Q) ) du < o0,
for almost every 7 € (0, 7). Hence, by Lemma 3.9 we conclude that u(-, ) —#(-, )
e A;1P7#(Q) for almost every ¢ Moreover the above argument holds uni-
formly for every ¢ € (0,¢,) so that we have u(-,?) — 5(-,?) € A;"P7(Q) for every
e € (0,¢,). By Lemma 3.7 we finally conclude that u(-,7) — (-, ) € 4,"7(Q) for
almost every ¢ € (0, T'), which is the statement (2.11),.

To prove (2.11),, we test (3 1) with the test function ® := y"*([u;], — [1,),
where % denotes the piecewise affine function in the tlme variable, which we
have defined in (4.4). An argument similar to the one in the proof of Lemma 4.5
together with the strong convergence u; — u in L?*°(Qr) and in L?(Qr) directly
gives us, letting first # — 0 and using that u; attains the initial data 7, and letting
then i — oo:

1 [° t v i )
—/ /Iu—r7| dudt < c sup/ /(g{,’ﬂ"+ |ty — n|" + |0m|7 T + g}") dudt.
k —k JQ ieN Q

Since the term on the left-hand side of the preceding inequality tends to

/ u(x, ) — n(x, D)2 du,

as k — 0, we conclude the assertion (2.11), by the global higher integrability
(4.5), since it implies that the right-hand side of the preceding inequality tends
to zero as T — 0.
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Next, we show that the limit function u is a parabolic quasi minimizer of the p
energy, which means that it satisfies (2.10). For this aim, let ® € Lip,(Qr) be an
arbitrary Lipschitz function and set K := spt®. Since K € Q7 = Q x (0,7) we
have that 0 := dp.r(K,d,Q7) > 0. We consider for s < 0 the open sets

K’ :={z€Qr :dpa(z,K) < s} C Qr.

For fixed o > 0 we can now find s = s(«) > 0 so small that

(4.7) // gl dudt < a,
K2\K

where J > 0 denotes the higher integrability exponent from Lemma 3.12. More-
over we can assume that s < d/4 to get that

KEK'EK* EQy.

Now let ¢ € Lip,.(Qr) be a Lipschitz cutoff function on Q7 with the property that
0<é<1,&=1o0nK"2 &=0o0nQr\K¥* with Lipschitz constant L = L(s) <
00. Then the function 7 — &(x, 7) is differentiable for almost every 7 € (0, 7') and
every fixed x € Q and [9,£| < L. Moreover there holds g: < L. We define the
function

(Di,z: =0+ é([ui}c - [u]a)7

and choose the constant ¢ >0 small enough to have ®,, e Lip (Qr) with
spt®; , € K>/* and spt[®; ], € K*. Then ®;, is an admissible function for the
formulation (3.1) which glves

1
(48) — // [ui]s(?t(d)i’g) dudr + —// glf," dude
QT pl Spt[q)i,l,]c ,
// g d,u dz.
spt[®; ], !

For fixed f > 0 we find i, € N such that p — f < p; for all i > i, and hence by
Holder’s inequality and the monotonicity of the product measure u x %' on
2 x R there holds

d
J[Lortauai< | [[ ot auar] " x 2@

Now, by the lower semicontinuity, Remark 4.8 and since f > 0 is arbitrary, we
obtain, using also that K C spt[®; ], for every i € N, that

(4.9) // 7 dudr < liminf // gy dudt.
= S spi@ ),
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Now we have a look at the first integral on the left hand side of (4.8). We write in
a first step

//Q T[ui}ga,@,,g) dudt = //Q T[ui}ga,(%—q» dudt + //Q T[u,-]gétd)dydz

=5+ D,

with the obvious labeling of /; and I,. By the strong convergenve [u;], — u; in
L*(Q7) as ¢ — 0 and u; — u in L*(Q7) as i — oo and since @ € Lip,(Qr), w

immediately deduce
L — // u0,®dudt
Qr

as ¢ — 0, i — oo. For the integral I} we write

I = // 8, —u])d,udt—i—// 8, [ —u])dudt—111+112
QT QT

For the integral /;; we get by integration by parts that

I = //Q 6,f|[u,-—u}£|2d,udt+//gri[u,~ — u),0,u; — u), duds
// 0,€|[u; — u),)* duedt,

and the last integral converges to 0 as ¢ — 0, i — oo by the strong convergence
[w; — u], — u; — u, u; — u in L?(Qr) and the fact that [0,¢| < L on Qr. For the
integral I}, we write

5y = / 0iClul fu; — ul, dpdr + /Q <([u], — w)oi[u; — u], dudr

Q
// Eud,Ju; — u, dudt.
Qr

The first integral tends to zero as ¢ — 0, i — oo since |0,£| < L on Qr and
[I/li — HL‘. — 01in LZ(QT)
In order to estimate the second integral, we argue as follows: We first show

[<0[ul,, o] < cWlloll Lo, 74710 (02))

(4.10)
[<0fuil, 3| < (i) loll oo, ;017002

for all ¢ € Lip.(Qr), where c¢(u), c¢(u;) > 0 are constants independent of ¢. We
only show the first inequality. The second inequality can be shown in the same
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manner. Noting that 6,u € [L?(0, T; /"7 (Q))]", we have

Kol 9] = \ Il 2 dud| = ‘ A ol duds

3c(u)

Sc(“)”W]gHLI’(O.T;,A/'l"’(Q))S B H¢”Ll’(0,T;W'l"’(Q))

= [<0u, [g],)]

for all ¢ € Lip,.(Q7), where ¢(u) > 0 is a constant independent of ¢. The last esti-
mate can be derived from the argument as in (4.2). This implies the first inequal-
ity of (4.10).

By the density of Lip,(Q7) in L?(0, T; A""*(Q)) and L?(0, T; /171 (Q)) with
their norms we can apply (4.10) with the choice ¢ = &(u — [u],) to get for i > 1
and ¢ « 1:

\ J[ et~ o~ duar
< |<at[u}£, = [ )3 + [<6ufuil £ — )]

< C”gf - HLI’ (Qr) CHgf(ll—[M]x)”LPi(QT)
< C(PaQ u, ) | 9e(u—,)|

L[H»t) (QT)

Here we have used Hoélder’s inequality to replace the exponents p and p; by
p + 6. Since by the calculus rules for upper gradients we have

|9¢e(u—1u),) g, |u = [ul,lge,

we get

'/Q S([ul, = w)0[u; — u], dpdt) < e(p, 2, u, w3, ) |u = [ul, || 10000

Now applying Lemma 3.6 we conclude that the right hand side converges to zero
ase — 0.
By Lemma 4.4 we can conclude that d,(¢u) € [L?(0, T; .4,"7(Q))]" and

//Q Eudfu; — ul, dpedt = —C0,(Eu), [ — ],
0 o), u — uy = (Eu, 0,(w — u)> =50,

The convergence to zero as i — oo is a consequence of Lemma 4.7.
Combining the last estimates we deduce

_limlim// u;],0,(®; ;) dudt = // ud,® dudt.
i—oo g—0 Qr Qr
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Up to now we have therefore shown that

@.11) —// uatd)d,udt—l—l// g7 dud
Qr P JJk

I%elvli%//spt @, ] Jur- [‘D d,udt+42/,,

where lim;_ , .Z; = 0. In a next step we will focus on the limit ¢ — 0 on the right
hand side of the precedmg estimate. For this aim we split the domain of integra-
tion according to spt[®; .|, € K* = K U (K*\K). On K C K*/*> we have

Ui — [(I)i-,g]f, =u—P+d— [(I)]F tup—u— [[ul - u]s]f,’

hence we get

//Kgu, w,,), dudr < // Ju-o + Jo—@], + Gu—r,—[u—v;],]” duedr.

Since ® € Lip,(Q7) we have that ® — [®], — 0 uniformly on K as ¢ — 0 and
therefore the second term in the preceding integral tends to zero as ¢ — 0. More-
over, we have by the higher integrability, Lemma 3.12, that g, € L?*° for
i € N large enough and therefore we have by Lemma 3.6 that

(4.12) Yui—u—{[ui—ul,], = 0 ase—0

pointwise almost everywhere on K and also in L?*(K). Using now the elemen-
tary estimate

a b 1 max{a,b}+y 1 /1 1
. _ < |= byt (1 -
(4.13) e = ") < [y il +y<a+b) |0 —al,

which holds for all z € R¥, a,b > 0 and § > 0, see [20], and which we apply with
K= Gu—u—u—ul),, = Ppi» b=p and y = 0/2, we obtain by dominated conver-
gence that

iy ([ a0y i [[ ol dudi 6. p oo~ ol

e—0

Next, we estimate the integral on the set K*\K. We first note that [®], =0 on
Q7\K*/? for & > 0 small enough and hence we conclude that

up — (D], = wy — [E([uil, — [ul,)],

on K*\K3/* Consequently we can write

// G- (w, , duedr < // (9 (e, 1w, ), + Xxso G0, )™ dped,
K\K K\K
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where yy: denotes the characteristic function of the set K3/4. Now, as ¢ — 0,
we deduce with Lemma 3.6 that

liné// u, [CD,L dudr < // Dot ) d,udz.
E— KY\K K\\K

Now we consider the integral

L= // g () G141
KN\K

To estimate this integral, we first note that, since & is a Lipschitz cut-off function,
we get by basic calculus rules for p weak upper gradients that

Gu(1-&)+eu = (1 - é)guf + &g, + |ui —ulge

Hence we get for the expression /3 the estimate

414) I < c// (1= &) + glus — ul” + EPgP) dud,
K\K

and thus the right hand side divides into three integrals. For the second one we
get by Holder’s inequality, g < L and by Lemma 4.7:

I ot dudt < el = g, — 0
K\K

as i — oo. The third integral is estimated with the help of Hoélder’s inequality and
(4.7) as follows:

i épfgifdﬂdlsv/ g;ﬁddﬂdz} (1 x LV)(K\K) 75,
KK KAN\K

and hence we deduce

lim sup // Elighidudr < car,
imo JJK\K

It remains to estimate the first integral

(4.15) / /K (9

To do so, we proceed basically as in [7]. We show that for D € Q7 being compact
and for almost every r € (0,r,), where r, := dpar (K, (2 x R )\Qr) there exists a
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constant ¢ = ¢(2, p) such that

(4.16) lim sup // grdudr < c// gl dudt,
i— o0 D(r) D(r)

where
D(r) :=={z € Qr : dpar(z, D) < r}.
For this aim, let 0 < p < r < r, and & € Lip,(Q7) be a cut-off function such that
0<é<l, =1 onD(p), ¢=0 onQr\D(r).

We test the quasi minimality of u; with the test function ®; , := &([u;], — [u],),
where ¢ > 0 is sufficiently small. By (3.1) we get

1
—// [u,-]ﬁ,(l),;gd,udt—}——// gblrdudr < —// g [CD d,udt
QT ' pi Spt[q),;é ' Spt[(l), & ' b

Using the same arguments as after (4.8), we conclude that

11mI—11m11m// u;],0,®; ,dudt =0,
Qr

1— 0 i—o0 e—0

with the obvious notation for /;. Letting ¢ — 0 in the above inequality we arrive

at
D(o) by

This we see as follows: The integral on the left hand side comes up by exactly the
same argument as in (4.9). For the integral on the right hand side we use that
spt[®; .|, € D(r) for ¢ > 0 sufficiently small and then an argument similar to
(4.12). Using now once again the calculus rules for upper gradients we get

Jui—Eui—u) = J(1-Eurt-éu = (1 = &)gu, + Egu + [u; — ulge.

Plugging this into the right hand side of the preceding inequality and using that
1 — ¢ =0o0n D(p) we arrive at

// grdudt +1; <c// gy dudt
(M\D(e)
+ c// (92 — ul” + EPgP) dpud.
o)

Now we define for r € (0,r,) the quantity

= lim sup // grdudu.
i—0o0 D(r)
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Since D(r) C D(7) for r < 7, the function r — W(r) is nondecreasing and by the
higher integrability of g,, it is also finite. Hence, the set of points of discontinuity
of W is at most countable. Now we add on both sides of the above inequality the

quantity
I araua
D(o)

and conclude that for every point of continuity r € (0,r,) of ¥ that
(1+c)¥(0) < c¥(r +11msup// gt i — ul” dudl+c// g? dudt.
i—o0 D(r)

Here we have used once again the elementary inequality (4.13) and the arguments
after (4.13) so ‘replace’ in the integral on the right hand side the exponent p; by
the exponent p. By Holder’s inequality and the strong convergence u; — u in the
space L7, we see that the second integral on the right hand side is zero and
therefore we get

(14+c)¥(o) <¥(r)+ c//Dm gl dudt,

where all constants ¢ are the same constants and the inequality holds for all
€ (0,r). Now, since ¥ is continuous in r, we get as o /" r-

(I+c)¥(r) < ¥(r) +c//D(>glfdudt,

Y(r) Sc// gl dudt,
D(r)

which is the desired estimate (4.16).
We use this estimate now as follows to estimate the integral (4.15): Since & = 1
on K*/? we may achieve that

// (1-¢&"gldudt < // glidudt,
KA\K ‘ D

where D = K*\K*? is compact. Now we apply the preceding argument and the
estimate (4.16) with the set D and therefore D(r) C K*\K, if we choose r suffi-
ciently small. Estimate (4.16) provides a constant which does not depend on i

such that
lim sup // grdudt < c// gl dudt.
i—o0 D(r) D(r)

and therefore finally
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Combining this with (4.7) we therefore get
limsup// (1-¢&)"glidudt < limsup// g? dudt
i— 00 K\K ' i—o0 D(r)

<c // gl dudt
D(r)
< / :

L
¢ / gé’*‘sdﬂdt)w(ﬂ(ﬂ)T)lfm
KZS\K
c(u(Q)T)!

<c(u

P P

)T) ' 7075,
By (4.14) we finally obtain

i 4

i L L P
[ o dude < a4 @) o
K\K

where the constant ¢ is not depending on «. Since o > 0 was arbitrary, combining
this with (4.11) and letting i — o0 we end up with the inequality

—// u@,(I)d,udt—i-l// gl dudr < %// 9! odpdt,
Qr PJJk PJJk

which holds for all test functions ® € Lip,(Q7) with K = spt ®. This is the quasi-
minimality of the limit function u and the proof of Theorem 2.2 is complete. O

PRrOOF (OF THEOREM 2.4). Let u; be a parabolic 2;-minimizer of the p;-energy.
By Theorem 2.2 we know that u is the parabolic 1-minimizer of the p-energy and
u; — u strongly in L?(Q), g, — g weakly in L?(Q) and ¢ is a p-weak upper
gradient of u. Note that at this point we do not know if ¢ is in fact the minimal
p-weak upper gradient of u. To prove the assertion of Theorem 2.4, we first show
that

(4.17) lim [lg [l = 1900

because since the space L”(Q) with the product measure x x %! is a uniformly
convex space and hence the weak convergence ¢g,, — g in L?(Qr) together with
the norm convergence (4.17) provides the strong convergence g,, — g in L?(Qr).
By lower semicontinuity of the L”-norm we immediately get

(4.18) 1911 20(0y) < Timinf [lgu | oq,

and therefore it remains to show that

(4.19) limsup ||, |

11— 0

Lo < 9llLr -
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In a first step we prove that

limsup// gL{’I_"d,udIS// gl dudt.
i— o0 QT QT

For this aim, we test the quasi-minimality (3.1) of u; with the test function

h,h
(I)f(x, 1) = 7l lui — ul,,

where X’}’fh(t) € Lip.(0, T") is the affine function defined in (4.4), which is =1
on the interval (24, T — 2h) and = 0 on the intervals (0,4) and (7 — h, T). This
gives

1
—// [u,-]cé,(bfd,udt—i——// glirdudr < —// o, dudr.
Qr ) PiJJsptjol, a spt[®/], u, [

To estimate the first term we first write

// u],0,®" dudt = // 6(I)hd,udl‘+// 1,0@" dudt =: I) + .
QT QT QT

By the definition of CDf and an integration by parts we get for the integral /;:

// tXT hd,udt
Qr

Now using (2.11) for both »; and u and 6,}(}’_,1 = +1/h on (h,2h) and (T — 2h,
T — h) respectively we obtain by the strong convergence [u; — u|, — u; — u in
L?*(Qr) that

11m11m11 / |ui (- T)|*du <0.

h—0 &—0
For the second integral we get by integration by parts
b = =<l 7"y s — ),

= —C0u([u, = w), 27yl = u],> = O 1y (s =, — (i = w))>
- <5tu,)(l;’fh(ui —u)y = by + Iy + hs.

For the first term, we perform again an integration by parts and obtain
Dy = <0Gyt s — ), [, — w0
= Oty "yl — ], — w> + p0lus =, ], — u).

Since both u; and u are parabolic qua51m1n1mlzers the second term can be esti-
mated with the help of Remark 4.3 (and [y Ve | < 1) as follows:
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|l — [, = ] < (<] (o], — ] + [<ifu] [, — )|
< 22l 1oyl
31”,@1)’
Sal P TN W

—0
(p,Q M ng] —u”Lﬁ*‘) (Qr) - — 0.

In the last step we have once again used the argument of Remark 4.3, Holder’s
inequality and the uniform energy bound (4.5) to replace the L?” — .#""?-norms
by a constant ¢ = ¢(2, p, M). For the first term we obtain moreover

e—0

O i — il [u), — wd| < |0, | [ws — ul,, [u], — ud] == 0,
and hence we conclude that

lim hm || = 0.
h—0 e—

Using once again the fact that u is a parabolic minimizer, we obtain by Lemma
4.2 that

e—0

|122| < C(p, )Hu”Lp 0,T;./ lp ))Hg[ui*u]g*(uifu)HLI’(QT) — 0.

Combining the estimates for /5, and I, we obtain

lim £y = —C0, 77" (s — )y = =<0,y — )+ CDuu, (1= 77 (s = ).

For the second term on the right hand side we get, using Lebsgue’s convergence
theorem and once again Lemma 4.2:

<0, (1 = 1) (s — u)|

< e(p Dl 7. i 190 a0

H(l _ hh h—0

< c(p, X7 /)gu, u”Lﬂ(QT) —0,

)Hu”Lp 0 T N l17
since X’}f 4(1) — 1 as h — 0. Therefore we conclude that

Iimlim L, = —<{0u,u; — u).

—0 &—

In a next step we want to see that the integral on the right hand side tends to zero
as i — oo. For this aim we use again a time-mollification [u], for ¢ > 0 small
enough of the minimizer u, writing

(O, uj — uy = <5,[u]6, uj — uy + {0,(u — [“L)a Uy —uy.
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Since 0,[u], € L*(Qr) we can estimate the fist term by Hélder’s inequality to
get
I— 0

<0 [u],;, ui —ud| < ||5t[”]g||L2(Q>||”i - “||L2(Q) —0,

by the strong convergence u; — u in L?(Q7). For the second term we use perform
first an integration by parts to move the time derivative to the right hand side and
then use once again Lemma 4.2 to obtain

|<at(u - [u]£)7ui - u>| |<a ( ) u— [u]F>| < C(p7Q7M)||g[u]ﬂ—u”LI’(QT)7

where the constant does not depend on i. Hence we have that for every ¢ > 0
small enough that

lim sup [(Ont, u; — up| < ¢(p, 2, Mg, ~ull Lrr)

i— o0
Since ¢ > 0 was arbitrary we conclude

lim |[<0u,u; — u)| = 0.
[— 00

Combining now all the estimates from before we arrive at

limsup// grdudr < limsup 11m 2; // o] dudz.
I— 00 Qr oo &h—0 spt[® /1 ll: D',

For the right hand side of this inequality we proceed exactly as in the proof of
Lemma 4.5. Note here that the test function in the proof of Lemma 4.5 differs
from the one here just by the fact that u is replaced by # there. However, arguing
exactly in the same way leads us to

lim li pi dpdr < o dpdt
hli%gé//sm[mghgu,-—[cb:h rer= //grg“ e

and applying once again the elementary inequality (4.13) to replace the exponent
pi in the above integral by the exponent p, we obtain

(4.20) hmsup// J'dudt < limsup 2; // gblrdudt = // gl dudt.
i—o0 Qr i—o0 Qr Qr

Here we also used that 2; — 1 as i — oo. In order to conclude the convergence
(4.19) we have to replace the exponent p; on the left hand side of the above
estimate by the exponent p. This can be done by higher integrability in terms
of the energy bound (4.5) as follows: We proceed analogous to the argument in
[7, Proof of Theorem 2.2]: We fix y > 0 and let i € N be large enough to have
|pi — p| < y. By Holder’s inequality we get
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(4.21) // grdpdt = // gr7g) dudt
< [// ng,-i d,udt] " {// ggffp!# dﬂd[] ! .
QT QT

Being 6 > 0 the higher integrability exponent of Lemma 3.12, we choose ¢; :=

(p +5)M;Ti+7 to achieve that ;"".—¢; = p +J. Note that ¢; > 1 if i € N is large

enough. Then by Holder’s inequality and (4.5) we get

N PPy
e b
ol
Qr
<

< ¢(

PPty y

U/QT 94" du df]ﬁ(u(Q)T)p—,- n
M)y

Pi=P¥y v

(WQT) 57,

Combining this with (4.20) and (4.21) we get

lim sup / / g7 dude < c(M)y[ / / g7 d,udt] " (@) )V )
Q]' Q]'

i— o0

and since y > 0 was arbitrary, we finally conclude that

limsup// gy dudr < // gl dudt.
— o0 Qr Qr

Note here that on the right hand side integral appears the minimal p-weak upper
gradient g, of u. By its minimality the inequality obviously holds also for the
p-weak upper gradient g and therefore (4.19) is shown. Moreover we see, com-
bining the last estimate with (4.18) we get that

191l (@) < Himinf {lgy [, < limsup|lgu L ;)
1— 00
< gullLr@ry < N9l Lo
where the last inequality holds since g, is minimal. Hence, we have equality in the

above estimate and therefore g is in fact the minimal p-weak upper gradient. This
finishes the proof of Theorem 2.4. |

ACKNOWLEDGMENTS. This work is partially supported by the Grant-in-Aid for Encouragement of
Young Scientists (B)(No. 15K17573) and the German Research Foundation (DFG) in the course of
the second author’s DFG Sachbeihilfe HA 7610/1-1.

REFERENCES

[1] A. ANCONA, On strong barriers and an inequality of Hardy for domains in R", Journal
of the London Mathematical Society, 34, 2 (1986), 274—290.



STABILITY FOR PARABOLIC QUASI MINIMIZERS IN METRIC MEASURE SPACES 375

[2] A. BIORN - N. MAROLA, Moser iteration for (quasi)minimizers on metric spaces, Man-
uscripta Math., 121 (2006), 339-366.

[3] J. BIORN - A. BIORN, Nonlinear potential theory on metric spaces, EMS (2011).

[4] J. BIORN - P. MACMANUS - N. SHANMUGALINGAM, Fat sets and pointwise boundary
estimates for p-harmonic functions in metric spaces, J. Anal. Math., 85, 1 (2001), 339—
369.

[5] J. CHEEGER, Differentiability of Lipschitz functions on metric measure spaces, Geom.
Funct. Anal., 9, 3 (1999), 428-517.

[6] Y. FuisisHIMA - J. HABERMANN, Global higher integrability for non-quadratic para-
bolic quasi-minimizers on metric measure spaces, Adv. Calc. Var., 10, 3 (2017), 267—
301.

[7] Y. FusisHIMA - J. HABERMANN - J. KINNUNEN - M. MASSON, Stability for parabolic
quasiminimizers, Potential Anal., 41 (2014), 993-1004.

[8] Y. FusisHIMA - J. HABERMANN - M. MASSON, A fairly strong stability result for par-
abolic quasiminimizers, Math. Nach., to appear. DOI: 10.1002/mana.201700018

[9] J. HABERMANN, Vector-valued parabolic w-minimizers, Adv. Differential Equations,
19, 11-12 (2014), 1067-1136.

[10] J. HABERMANN, Higher Integrability for vector valued parabolic quasi-minimizers on
metric measure spaces, Ark. Mat., 54, 1 (2016), 85-123.

[11] P. HAsLASZ - P. KOSKELA, Sobolev meets Poincaré, C.R. Acad. Sci. Paris Ser. I Math,
320, 10 (1995), 1211-1215.

[12] P. HasLasz - P. KOSKELA, Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, 688
(2000), x—101.

[13] L. I. HEDBERG - T. KILPELAINEN, On the stability of Sobolev spaces with zero bound-
ary values, Mathematica Scandinavica, 85, 2 (1999), 245-258.

[14] J. HEINONEN - P. KOSKELA, Quasiconformal maps in metric spaces with controlled
geometry, Acta Math., 181, 1 (1998), 1-61.

[15] S. KALLUNKI - N. SHANMUGALINGAM, Modulus and continuous capacity, Ann. Acad.
Sci. Fenn. Math., 26, 2 (2001), 455-464.

[16] S. KEITH - X. ZHONG, The Poincaré inequality is an open ended condition, Ann. of
Math. (2), 167, 2 (2008), 575-599.

[17] T. KILPELAINEN - J. KINNUNEN - O. MARTIO, Sobolev spaces with zero boundary
values on metric spaces, Potential Anal., 12, 3 (2000), 233-247.

[18] J. KINNUNEN - N. MAROLA - M. J. MIRANDA - F. PARONETTO, Harnack’s inequality
for parabolic De Giorgi classes in metric spaces, Adv. Differential Equations, 17, 9-10
(2012), 801-832.

[19] J. KINNUNEN - M. MASSON, Parabolic comparison principle and quasiminimizers in
metric measure spaces, Proc. Amer. Math. Soc., 143, 2 (2015), 621-632.

[20] J. KINNUNEN - M. PARVIAINEN, Stability for degenerate parabolic equations, Adv.
Calc. Var., 3, 1 (2010), 29-48.

[21] J. KINNUNEN - N. SHANMUGALINGAM, Regularity of quasi-minimizers on metric
spaces, Manuscripta Math., 105, 3 (2001), 401-423.

[22] J. L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc., 308, 1 (1988), 177-196.

[23] G. L1 - O. MARrTIO, Stability and higher integrability of derivatives of solutions in
double obstacle problems, J. Math. Anal. Appl., 272, 1 (2002), 19-29.

[24] P. LINDQVIST, Stability for the solutions of div(|Vu|” >Vu) = f with varying p, J. Math.
Anal. Appl., 127, 1 (1987), 93-102.


http://dx.doi.org/10.1002/mana.201700018

376 Y. FUJISHIMA AND J. HABERMANN

[25] J.-L. LioNs - J. PEETRE, Sur une classe d'espaces d'interpolation, Institut des Hautes
Etudes Scientifiques. Publications Mathématiques, 19 (1964), 5-68.

[26] O. E. MAASALO - A. ZATORSKA-GOLDSTEIN, Stability of quasiminimizers of the
p-Dirichlet integral with varying p on metric spaces, Journal of the London Mathemat-
ical Society, 77, 3 (Mar. 2008), 771-788.

[27] T. MAKALAINEN, Removable sets for Holder continuous p-harmonic functions on metric
measure spaces, Ann. Acad. Sci. Fenn. Math., 33, 2 (2008), 605-624.

[28] N. MAROLA - M. MASSON, On the Harnack inequality for parabolic minimizers in
metric measure spaces, Tohoku Math. J., 65, 2 (2013), 569-589.

[29] M. MassoN - F. PARONETTO - M. PARVIAINEN - M. J. MIRANDA, Local higher
integrability for parabolic quasi minimizers in metric spaces, Ric. Mat., 62, 2 (2013),
279-305.

[30] M. MASSON - M. PARVIAINEN, Global higher integrability of parabolic quasi mini-
mizers in metric spaces, J. Anal. Math., 126 (2015), 307-339.

[31] M. MASSON - J. SILJANDER, Holder regularity for parabolic De Giorgi classes in metric
measure spaces, Manuscripta Mathematica, 142, 1-2 (2013), 187-214.

[32] N. SHANMUGALINGAM, Harmonic functions on metric spaces, llinois J. Math., 45, 3
(2001), 1021-1050.

[33] J. SimoN, Compact sets in the space LP?(0,T;B), Ann. Mat. Pura Appl. (4), 146, 1
(1987), 65-96.

[34] W. WIESER, Parabolic Q-minima and minimal solutions to variational flow, Manuscripta
Math., 59, 1 (1987), 63-107.

Received 18 August 2017,
and in revised form 26 December 2017.

Yohei Fujishima

Department of Mathematical and Systems Engineering
Faculty of Engineering

Shizuoka University

3-5-1 Johoku

Hamamatsu 432-8561, Japan
fujishima@shizuoka.ac.jp

Jens Habermann
Department Mathematik
Universitdt Erlangen
Cauerstr. 11

91058 Erlangen, Germany
habermann@math.fau.de



	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk20
	mk21
	mk22
	mk23
	mk24
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk32
	mk33
	mk34
	mkEnd-page

