
Rend. Lincei Mat. Appl. 29 (2018), 377–386
DOI 10.4171/RLM/811

Mathematical Analysis — Second order di¤erentiation formula on RCDðK ;NÞ
spaces, by Nicola Gigli and Luca Tamanini, communicated on January 12,
2018.1

Abstract. — We prove the second order di¤erentiation formula along geodesics in finite-

dimensional RCDðK ;NÞ spaces. Our approach strongly relies on the approximation of W2-geodesics
by entropic interpolations and, in order to implement this approximation procedure, on the proof

of new (even in the smooth setting) estimates for such interpolations.
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1. Main result and comments

This work is about the development of calculus tools in the setting of RCDðK ;NÞ
spaces ðX; d;mÞ with K a R and N a ½1;lÞ (see [2] for the original definition
with N ¼ l and [9] for the case N < l). The proofs of the announced results
are contained in [12] and, up to technical di‰culties, they rely on [11], where the
same results are obtained for compact RCDðK ;NÞ spaces.

Recall that an optimal geodesic test plan p on X is a probability measure
on Cð½0; 1�;XÞ such that ðetÞ�paCm for every t a ½0; 1� and some C > 0 and
satisfying

ZZ 1

0

j _ggtj
2 dt dpðgÞ ¼ W 2

2 ððe0Þ�p; ðe1Þ�pÞ:

Here et : Cð½0; 1�;XÞ ! X is the evaluation map sending g to gt. Any such p
is concentrated on constant speed geodesics and for any couple of measures
m0; m1 a PðXÞ with bounded densities and supports, there is a unique optimal
geodesic test plan such that ðe0Þ�p ¼ m0, ðe1Þ�p ¼ m1.

From the point of view of calculus on metric measure spaces as developed
in [1], the relation between optimal geodesic test plans and standard geodesics is
in some sense the same that there is between Sobolev functions and Lipschitz
ones. An example of this phenomenon is the following result (a minor variant
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of a statement in [7]), which says that we can safely take one derivative of a
W 1;2ðXÞ function along an optimal geodesic test plan:

Theorem 1. Let ðX; d;mÞ be a RCDðK ;lÞ space, p an optimal geodesic test
plan with bounded support (equivalently: such that fgt : t a ½0; 1�; g a suppðpÞg �
X is bounded ) and h a W 1;2ðXÞ.

Then the map ½0; 1� C t 7! h � et a L2ðpÞ is in C1ð½0; 1�;L2ðpÞÞ and we have

d

dt
ðh � etÞ ¼ 3‘h;‘ft4 � et;

for every t a ½0; 1�, where ft is any function such that for some sA t, s a ½0; 1�, the
function �ðs� tÞft is a Kantorovich potential from ðetÞ�p to ðesÞ�p.

Our main result here is the extension of the above to second order derivatives.
Recalling that the second order Sobolev space H 2;2ðXÞ and the corresponding
Hessian are defined in [8], we have:

Theorem 2. Let ðX; d;mÞ be a RCDðK ;NÞ space, N < l, p an optimal geodesic
test plan with bounded support and h a H 2;2ðXÞ.

Then the map ½0; 1� C t 7! h � et a L2ðpÞ is in C2ð½0; 1�;L2ðpÞÞ and we have

d2

dt2
ðh � etÞ ¼ HessðhÞð‘ft;‘ftÞ � et;ð1Þ

for every t a ½0; 1�, where ft is as in Theorem 1.

Notice that by Theorem 1 we have that such result is really a statement about
the C1 regularity of t 7! 3‘h;‘ft4 � et.

Let us collect a couple of equivalent formulations of Theorem 2. For the first
recall that the space of Sobolev vector fields H 1;2

C ðTXÞ as well as the covariant
derivative have been defined in [8]. Then we have:

Theorem 3. Let ðX; d;mÞ be a RCDðK ;NÞ space, N < l, p an optimal geodesic

test plan with bounded support and X a H
1;2
C ðXÞ.

Then the map ½0; 1� C t 7! 3X ;‘ft4 � et a L2ðpÞ is in C1ð½0; 1�;L2ðpÞÞ and
we have

d

dt
ð3X ;‘ft4 � etÞ ¼ ‘X ð‘ft;‘ftÞ � et;ð2Þ

for every t a ½0; 1�, where ft is as in Theorem 1.

From the identity ‘ð‘hÞ ¼ HessðhÞ (assuming to identify tangent and cotan-
gent vector fields) we see that Theorem 3 implies Theorem 2. For the converse
implication notice that Theorem 2 and the Leibniz rule easily provide the correct
formula for the derivative of t 7! 3X ;‘ft4 � et for X ¼

P
i
~hhi‘hi, with ð~hhiÞ �
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LlBW 1;2ðXÞ and ðhiÞ � H 2;2ðXÞ, then conclude by the closure of the covariant
derivative.

Another equivalent formulation of Theorem 2, which is the one we shall actu-
ally prove, is:

Theorem 4. Let ðX; d;mÞ be a RCDðK;NÞ space, N < l, m0; m1 a P2ðXÞ be
such that m0; m1 aCm for some C > 0, with compact supports and let ðmtÞ be the

unique W2-geodesic connecting m0 to m1. Also, let h a H 2;2ðXÞ.
Then the map

½0; 1� C t 7!
Z

h dmt a R

belongs to C2ð½0; 1�Þ and it holds

d2

dt2

Z
h dmt ¼

Z
HessðhÞð‘ft;‘ftÞ dmt;ð3Þ

for every t a ½0; 1�, where ft is any function such that for some sA t, s a ½0; 1�, the
function �ðs� tÞft is a Kantorovich potential from mt to ms.

Since for any W2-geodesic as in the statement there is a (unique) optimal geo-
desic test plan p such that mt ¼ ðetÞ�p for any t, we see that Theorem 4 fol-
lows from Theorem 2 by integration w.r.t. p. For the converse implication one
notices that for any optimal geodesic test plan p with bounded support and G �
Cð½0; 1�;XÞ Borel with pðGÞ > 0, the curve t 7! pðGÞ�1ðetÞ�ðpjGÞ fulfils the as-

sumptions of Theorem 4 with the same ft’s as in Theorem 2. The conclusion then
follows by the arbitrariness of G observing that L2ðpÞ-derivatives exist for every
t if and only if the di¤erence quotients converge in the weak L2ðpÞ-topology for
every t.

Let us comment about the assumptions in Theorems 2, 3, 4:

– The first order di¤erentiation formula is valid on general RCDðK ;lÞ spaces,
while for the second order one we need to assume finite dimensionality. This
is due to the strategy of our proof, which among other things uses the Li–
Yau inequality.

– There exist optimal geodesic test plans without bounded support (if K ¼ 0 or
the densities of the initial and final marginals decay su‰ciently fast) but in this
case the functions ft appearing in the statement(s) are not Lipschitz. As such it
seems hard to have HessðhÞð‘ft;‘ftÞ � et a L1ðpÞ and thus we can not really
hope for anything like (1), (2), (3) to hold: this explains the need of the assump-
tion on bounded supports.

Having at disposal the second order di¤erentiation formula is interesting not
only at the theoretical level, but also for applications to the study of the geometry
of RCD spaces. For instance, the proofs of both the splitting theorem [7] and
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of the ‘volume cone implies metric cone’ [5] in this setting can be greatly sim-
plified by using such formula (in this direction, see [14] for comments about the
splitting). Also, one aspect of the theory of RCD spaces which is not yet clear
is whether they have constant dimension: for Ricci-limit spaces this is known
to be true by a result of Colding–Naber [4] which uses second order deriva-
tives along geodesics in a crucial way. Thus our result is necessary to replicate
Colding–Naber argument in the non-smooth setting (but not su‰cient: they also
use a calculus with Jacobi fields which as of today does not have a non-smooth
counterpart).

2. Strategy of the proof

2.1. The need of an approximation procedure

Let us recall that a second order di¤erentiation formula, valid for su‰ciently reg-
ular curves, has been proved in [8]:

Theorem 5. Let ðmtÞ be a W2-absolutely continuous curve solving the continuity
equation

d

dt
mt þ divðXtmtÞ ¼ 0;ð4Þ

for some vector fields ðXtÞ � L2ðTXÞ in the following sense: for every f a W 1;2ðXÞ
the map t 7!

R
f dmt is absolutely continuous and it holds

d

dt

Z
f dmt ¼

Z
3‘f ;Xt4 dmt:

Assume that

(i) t 7! Xt a L2ðTXÞ is absolutely continuous,
(ii) suptfkXtkL2 þ kXtkLl þ k‘XtkL2g < þl.

Then for f a H 2;2ðXÞ the map t 7!
R
f dmt is C

1;1 and the formula

d2

dt2

Z
f dmt ¼

Z
Hessð f ÞðXt;XtÞ þ ‘f ;

d

dt
Xt þ ‘Xt

Xt

� �
dmtð5Þ

holds for a.e. t a ½0; 1�.

If the vector fields Xt are of gradient type, so that Xt ¼ ‘ft for every t and the
‘acceleration’ at is defined as

d

dt
ft þ

j‘ftj
2

2
¼: at
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then (5) reads as

d2

dt2

Z
f dmt ¼

Z
Hessð f Þð‘ft;‘ftÞ dmt þ

Z
3‘f ;‘at4 dmt:ð6Þ

In the case of geodesics it is well-known that (4) holds exactly with Xt ¼ �‘jt for
appropriate choices of Kantorovich potentials jt (see also [10] in this direction)
and moreover the functions jt solve (in a sense which we will not make precise
here) the Hamilton–Jacobi equation

d

dt
jt ¼

j‘jtj
2

2
;ð7Þ

thus in this case the acceleration at is identically 0. Hence if the vector fields
ð�‘jtÞ satisfied the regularity requirements (i), (ii) in the last theorem, we
would easily be able to establish Theorem 2. However in general this is not
the case; informally speaking this has to do with the fact that for solutions of
the Hamilton–Jacobi equations we do not have su‰ciently strong second order
estimates.

In order to establish Theorem 2 it is therefore natural to look for suitable
‘smooth’ approximations of geodesics for which we can apply Theorem 5 above
and then pass to the limit in formula (5). Given that the source of non-
smoothness is in the Hamilton–Jacobi equation it is natural to think at viscous
approximation as smoothing procedure: all in all viscous limit is ‘the’ way of
approximating the ‘correct’ solution of Hamilton–Jacobi and the Laplacian is
well behaved under lower Ricci curvature bounds. However, this does not really
work: shortly said, the problem is that not every solution of Hamilton–Jacobi is
linked to W2-geodesics, but only those for which shocks do not occur in the time
interval ½0; 1�. Since the conclusion of Theorem 2 can only hold along geodesics,
we see that we cannot simply use viscous approximation and PDE estimates to
conclude (one should incorporate in the estimates the fact that the starting func-
tion is c-concave, but this seems hard to do).

We shall instead use entropic interpolation, which we now introduce.

2.2. Entropic interpolation: definition

Fix two probability measures m0 ¼ r0m, m1 ¼ r1m on X. The Schrödinger func-
tional equations are

r0 ¼ f h1g r1 ¼ gh1 f ;ð8Þ

the unknown being the Borel functions f ; g : X ! ½0;lÞ, where ht f is the heat
flow starting at f evaluated at time t. It turns out that in great generality these
equations admit a solution which is unique up to the trivial transformation
ð f ; gÞ 7! ðcf ; g=cÞ for some constant c > 0. Such solution can be found in the
following way: let R be the measure on X2 whose density w.r.t. mnm is given
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by the heat kernel rtðx; yÞ at time t ¼ 1 and minimize the Boltzmann–Shannon
entropy Hðg jRÞ among all transport plans g from m0 to m1. The Euler equation
for the minimizer forces it to be of the form f n gR for some Borel functions
f ; g : X ! ½0;lÞ, where f n gðx; yÞ :¼ f ðxÞgðyÞ. Then the fact that f n gR is
a transport plan from m0 to m1 is equivalent to ð f ; gÞ solving (8).

Once we have found the solution of (8) we can use it in conjunction with the
heat flow to interpolate from r0 to r1 by defining

rt :¼ ht f h1�tg:

This is called entropic interpolation. Now we slow down the heat flow: fix e > 0
and by mimicking the above find f e, ge such that

r0 ¼ f ehe=2g
e r1 ¼ gehe=2 f

e;ð9Þ

(the factor 1=2 plays no special role, but is convenient in computations). Then
define

re
t :¼ hte=2 f

ehð1�tÞe=2g
e:

The remarkable and non-trivial fact here is that as e # 0 the curves of mea-
sures ðre

tmÞ converge to the W2-geodesic from m0 to m1. In order to state our
results, it is convenient to introduce the (interpolated) Schrödinger potentials je

t ,
ce
t as

je
t :¼ e log hte=2 f

e ce
t :¼ e log hð1�tÞe=2g

e:

In the limit e # 0 these will converge to forward and backward Kantorovich
potentials along the limit geodesic ðmtÞ (see below). In this direction, it is worth
to notice that while for e > 0 there is a tight link between potentials and densities,
as we trivially have

je
t þ ce

t ¼ e log re
t ;

in the limit this becomes the well known (weaker) relation that is in place between
forward/backward Kantorovich potentials and measures ðmtÞ:

jt þ ct ¼ 0 on suppðmtÞ;
jt þ ct a 0 on X;

see e.g. Remark 7.37 in [15] (paying attention to the di¤erent sign convention).
By direct computation one can verify that ðje

t Þ, ðce
t Þ solve the Hamilton–Jacobi–

Bellman equations

d

dt
je
t ¼

1

2
j‘je

t j
2 þ e

2
Dje

t � d

dt
ce
t ¼

1

2
j‘ce

t j
2 þ e

2
Dce

t ;ð10Þ
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thus introducing the functions

Qe
t :¼

ce
t � je

t

2

it is not hard to check that it holds

d

dt
re
t þ divð‘Qe

t r
e
t Þ ¼ 0ð11Þ

and

d

dt
Qe
t þ

j‘Qe
t j
2

2
¼ ae

t ; where ae
t :¼ � e2

8
ð2D log re

t þ j‘ log re
t j
2Þ:

2.3. Entropic interpolations: uniform control and convergence

With this said, our main results about entropic interpolations can be summarized
as follows. Under the assumptions that the metric measure space ðX; d;mÞ is
RCDðK ;NÞ, N < l, and that r0, r1 belong to LlðXÞ with bounded supports it
holds:

– Zeroth order
– bound For some C > 0 we have re

t aC for every e a ð0; 1Þ and t a ½0; 1�.
– convergence The curves ðre

tmÞ W2-uniformly converge to the unique W2-
geodesic ðmtÞ from m0 to m1 and setting rt :¼

dmt
dm it holds re

t *
�
rt in LlðXÞ

for all t a ½0; 1�.
– First order

– bound For any t a ð0; 1� the functions fje
t ge A ð0;1Þ are locally equi-Lipschitz.

Similarly for the c’s.
– convergence For every sequence en # 0 there is a subsequence – not relabeled

– such that for any t a ð0; 1� the functions je
t converge both locally uni-

formly and in W
1;2
loc ðXÞ to a function jt such that �tjt is a Kantorovich

potential from mt to m0. Similarly for the c’s.
– Second order For every d a ð0; 1=2Þ we have

– bound

sup
e A ð0;1Þ

ZZ 1�d

d

ðjHessðQe
t Þj

2
HS þ e2jHessðlog re

t Þj
2
HSÞre

t dt dm < l;

sup
e A ð0;1Þ

ZZ 1�d

d

ðjDQe
t j
2 þ e2jD log re

t j
2Þre

t dt dm < l:

ð12Þ

Notice that since in general the Laplacian is not the trace of the Hessian,
there is no direct link between these two bounds.
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– convergence For every function h a W 1;2ðXÞ with Dh a LlðXÞ it holds

lim
e#0

ZZ 1�d

d

3‘h;‘ae
t4r

e
t dt dm ¼ 0:ð13Þ

With the exception of the convergence re
tm ! mt, all these results are new even

on compact smooth manifolds (in fact, even on Rd ).
The zeroth and first order bounds are obtained via a combination of

Hamilton’s gradient estimate and Li–Yau’s Laplacian estimate. Similar bounds
can also be obtained for the viscous approximation.

The fact that the limit curve ðmtÞ is the W2-geodesic and that the limit po-
tentials are Kantorovich potentials are consequence of the fact that we can
pass to the limit in the continuity equation (11) and that the limit potentials
satisfy the Hamilton–Jacobi equation. Notice that these zeroth and first order
convergences are su‰cient to pass to the limit in the term with the Hessian in
(6).

The crucial advantage of dealing with entropic interpolations (which has no
counterpart in viscous approximation) is in the second order bounds and conver-
gence results. The key ingredient that allows to obtain these is a formula due to
Léonard [13], who realized that there is a connection between entropic interpola-
tion and lower Ricci bounds; our contribution is the rigorous proof in the RCD

framework of his formal computations:

Proposition 6. For any e > 0 the map t 7! Hðme
t jmÞ belongs to Cð½0; 1�ÞB

C2ð0; 1Þ and for every t a ð0; 1Þ it holds

d

dt
Hðme

t jmÞ ¼
Z

3‘re
t ;‘Q

e
t4 dm ¼ 1

2e

Z
ðj‘ce

t j
2 � j‘je

t j
2Þre

t dm;ð14aÞ

d2

dt2
Hðme

t jmÞ ¼
Z

re
t d

�
G2ðQe

t Þ þ
e2

4
G2ðlogðre

t ÞÞ
�

ð14bÞ

¼ 1

2

Z
re
t dðG2ðje

t Þ þ G2ðce
t ÞÞ:

Let us see how to use (14b) in the simplified case K ¼ 0 and mðXÞ ¼ 1 to
obtain (12). Observe that if h : ½0; 1� ! Rþ is a convex function, then � hð0Þ

t
a

h 0ðtÞa hð1Þ
1�t

for any t a ð0; 1Þ and thus

Z 1�d

d

h 00ðtÞ dt ¼ h 0ð1� dÞ � h 0ðdÞa hð1Þ
1� d

þ hð0Þ
d

:ð15Þ

If K ¼ 0 we have G2 b 0, so that (14b) tells in particular that t 7! Hðme
t jmÞ is

convex for any e > 0, and if mðXÞ ¼ 1 such function is non-negative. Therefore
(15) gives that for any d a ð0; 1=2Þ it holds
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sup
e A ð0;1Þ

Z 1�d

d

Z
re
t d

�
G2ðQe

t Þ þ
e2

4
G2ðlogðre

t ÞÞ
�
dtð16Þ

a
Hðm1 jmÞ
1� d

þHðm0 jmÞ
d

< l:

Recalling the Bochner inequalities ([6], [3], [8])

G2ðhÞb jHessðhÞj2HSm; G2ðhÞb
ðDhÞ2

N
m;

we see that (12) follows from (16). Then with some work (see [11] for the details)
starting from (16) we can deduce (13) which in turn ensures that the term with the
acceleration in (6) vanishes in the limit e # 0, thus leading to our main result
Theorem 4.
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