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ABSTRACT. — In this paper the essential spectrum of the linear problem of water-waves on a
3d-channel with gently periodic bottom will be studied. We show that under a certain geometric con-
dition on the bottom profile the essential spectrum has spectral gaps. In classical analysis of wave-
guides it is known that the Bragg resonances at the edges of the Brillouin zones create band gaps in
the spectrum. Here we demonstrate that the band gaps can be opened also in the frequency range far
from the Bragg resonances. The position and the length of the gaps are found out by applying an
asymptotic analysis to the model problem in the periodicity cell.
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1. INTRODUCTION

During the last decades the propagation of waves through periodic structures has
attracted considerable attention. This is partly due to the invention of photonic
crystals, which exhibit extraordinary properties that are supposed to bring about
a new technological revolution in optics, information transmission, and other
areas. The main tasks have been in controlling the wave propagation either by
guiding the wave in some preferred direction, or to prevent its propagation at cer-
tain frequencies.

From a historical point of view the first object in the study of wave propaga-
tion was the water waves. As can be seen, for example, from Euler’s seminal work
[7] or Lord Rayleigh’s investigations [18]. Especially, the propagation of waves
through periodic media has been in the focus of the research. This is also the in-
tent of our paper. We study the surface waves on the channel over an undulating
bottom.

The analysis of wave interaction with periodic structures has been an impor-
tant and active field in hydrodynamics. The focus has been mainly on the scatter-
ing by the bottom topography or the propagation of trapping modes along the
periodic topography [17, 2, 13, 14, 28, 15, 19, 21, 29, 20, 30, 8]. Even though
the Bragg scattering/resonance is closely related to the question of band gaps in
the spectrum of a periodic waveguide, there are very few papers which directly
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address this issue in hydrodynamics. We mention here only the articles by Chou
[6] and Linton [16] where the band gap structure is explicitly mentioned and in-
vestigated. In our previous paper [5], we considered a two-dimensional problem
and, using the asymptotic analysis, showed that periodic bottom always creates
a big family of spectral gaps in the spectrum. There we have demonstrated that
the Bragg resonances occur at the edges of the Brillouin zones resulting to the gap
opening. However, other experimental works (see, e.g., [32]) hint the existence of
non-Bragg resonances, which appear in the frequency range far from the edges of
the Brillouin zone.

In this paper, we study the surface water waves in a three-dimensional rectan-
gular duct with a corrugated bottom. Analogously to our previous work [5] (see
also [23]) the opening of the Bragg and non-Bragg gaps may occur at the inter-
sections of the folded dispersion curves of the unperturbed case, but unlike the
Bragg gaps, the non-Bragg gaps arise away from the edges of the Brillouin zone.
Moreover, we will present sufficient conditions for the width and height of the
channel as well as the profile of the bottom undulation which lead to the band
gaps in the frequency spectrum. In this way our results will provide new insight
in the creation and control of band gaps in periodic waveguides.

From early on, it has been clear that the theoretical study of wave propaga-
tion is related to the spectral properties of self-adjoint elliptic operators in un-
bounded media. In other words, the spectral theory of elliptic operators became
the focus of studies. Naturally, the spectral theory has a bottomless source of
problems in the gargantuous jungle of phenomena related to the wave propaga-
tion. From a mathematical point of view the central question is the structure of
the spectrum. Is it continuous? Does it contain gaps, i.e., intervals of frequencies
on which the waves do not propagate through the media?

From the study of the spectral properties of the Neumann-Laplacian [23, 25,
1], or Dirichlet-Laplacian [4, 26, 25], it is known that the periodic perturbation
of the cylindrical waveguide creates gaps in the spectrum of these operators.
From these sources the questions of the present paper have emerged. The differ-
ence with previously mentioned articles is that the spectral parameter appears
now in the boundary condition, making the analysis quite different.

The main tool of our study is the asymptotic analysis which entitles us to de-
tect a gap in the spectrum when the periodic perturbation of the channel bottom
is small enough. To fill in the theoretical analysis, we also present some numerical
results in order to establish to which extent our asymptotic analysis is valid.

2. FORMULATION OF THE PROBLEM
2.1. The corrugated channel

We consider a three-dimensional channel

(2.1) Q, = {(x,y,z) x| < é, yeR, ze (—d—i—sh(x,y),O)}
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where d,/ > 0 are fixed numbers, ¢ > 0 is a small parameter and / is a smooth
function, 1-periodic with respect to y € R. Without loss of generality, we will
assume that /2 has zero mean value. With this in mind d is the average depth of
the duct and / is the width. The boundary 0Q, splits into the liquid surface Z, at
level z = 0, the corrugated bottom X, . at level z = —d + ¢h(x, y), and the lateral
boundary %,.

Under the assumptions of incompressible, inviscid and irrotational fluid
motion, linear water waves in the waveguide can be described by a velocity po-
tential ®*(x, y,z,¢) [12]. For a harmonic mode with an angular frequency 6, the
velocity potential may be sought in the form

®°(x, y,z,1) = u’(x, y,z)e.

Assuming the linearized kinematic boundary condition at the free surface and the
no-flow condition at the bottom and vertical walls, we obtain the Steklov spectral
problem

(2.2) —Au®* =0 1in Q,,
O.u® = 2°u® onX,
(24) 6nu8 =0 on 21 U Zdjg.

where 0, denotes the exterior normal derivative and A° = 6%/g the spectral
parameter, where ¢ is the acceleration due to gravity.

The main question, we investigate in this paper, is to understand which values
of 2 € C belong to the spectrum of the above problem (2.2)—(2.4).

2.2. The problem in the periodicity cell

The analysis of the wave propagation in an infinite periodic structure can be
reduced to the analysis of the wave propagation in the bounded periodicity cell
with e > 0

w, ={(x,y,2) : |x| <1/2, |y| < 1/2, z € (—d + ¢h(x, y),0)}.

This will be done using the Floquet—Bloch theory based on the Gelfand trans-
form [9]

U(x, y,2z:m) = (Gu)(x, y,zm) = (2m) 2 " e ™u(x, y + p, ).
pe’l

Applying the Gelfand transform to our spectral problem (2.2)—(2.4), we
obtain for each # € [0,27) a spectral problem in a periodicity cell
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(2.5) —AU*=0 inw,,
(2.6) 0:U*=A°(n)U* on gy,
(2.7) 0,U =0 on{z=—-d+eh(x,y)}u{x==l/2},

(2.8) U‘?(x,—%,z;n)zef"”Ug<X,%,Z;77>,

(2.9) @U”‘(x,—%,z;n) Zefi”a}zUF‘(Xé,Z;’?)a

where we have denoted the free water surface by
oo = {(X,y,Z) : |X| < 1/27 ‘y| < 1/27 z= 0}

By the spectral theory of elliptic partial differential operators, for each fixed
n € [0,2x), this problem has a monotone unbounded sequence of real non-negative
eigenvalues

0<Af(n) <AS(n) <+ — +©

From the literature (see, e.g., [9, 22, 11, 27, 31]), we know that 1° belongs to
the spectrum of our original problem in the unbounded channel Q, if and only if
2% equals Aj(r7) for some j € N\{0} and 7 € [0, 27). The functions 1 — Aj(n) are
continuous and 2z-periodic, hence the spectrum is a union of the closed segments
Y7, j € N\{0}, where

Yi={leR:i=Aln), nel0,2m)}

We obtain a spectral gap in the spectrum if there exist an open non-empty inter-
val in the positive real semi-axis which does not intersect any of the closed seg-
ments above. However, when the segments overlap each other, no spectral gap
opens. One aim is to show the existence of some gaps in the spectrum under
appropriate sufficient conditions.

2.3. The problem in the straight channel: ¢ =0

The same problem with ¢ = 0 in the channel Qy with a flat bottom can be solved
by separation of variables. Then for every j € Z the pair (A,K , qu ) defined by

(2.10) A} = Ktanh(d - K) =: D(K), |K|> |k,
uf(x, ,z) = cos (k,- (x + %))eiiy VE K (K | p=(420)K)

is a solution of the spectral problem. Here and in the sequel we denote by k; = ’7”
The dispersion relation (2.10) is a functional relationship between the temporal
frequency @ and the wave number |K|. The longitudinal and transverse compo-

nents of the wave vector are |/K? — k7 and k;, respectively.
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As in [24], interpreting the straight channel to consist also of periodicity cells
of unit length with flat bottom, we may write the problem, using the Gelfand
transform, in the bounded periodicity cell with e =0

wo={(x,y,2): |x| <1/2, |y| < 1/2,z€ (—d,0)}

as a family of spectral problems. Namely, for each 5 € [0,27) we obtain a spec-
tral problem

(2.11) ~AU" =0 in oy,

(2.12) 0.U° = A’(n)U°  on ay,
(2.13) ,U"=0 forx:ié,
(2.14) 0.U"=0 forz=—d,
(2.15) Uo(x,—%,z;n) = e*i”U()(x,%,z;n),
(2.16) ayUO(x,—%,z;n) = e*i”ﬁyU()(x,%,z;n),

The parameter K is represented in the form K = +, 1E% + k/-z, where { can be
decomposed uniquely as { = 2nq +  with ¢ € Z and 75 € [0,27). Hence we may
rewrite the above solution pair as

(2.17) Ag.j(ﬂ) :D( (27“]"‘77)2 _i_ka)’
/ 4
(218) U(ﬁj(x, Y, Z; 77) = COS (k] <X + 5))e+1y(27zq+}7)gq’j(z; }7)7
Gg j (1) = (e V CRE™HE o~ (E420)\/Caatn) gy

The range of the dispersion curves 7 — AS. ;(n) gives us the closed segments
Y (1) which then will constitute the spectrum in the unperturbed case, which is
known to be the closed positive real axis R,. This can be seen from the graphs
of the dispersion curves, which form the truss-structure as in Fig. 1.

Figure 1. The dispersion curves for the straight channel: a) Channel width / = 0.4, b)
Channel width / = ?, ¢) Channel width / = v2
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We note here that our reduced representation of the dispersion relation
differs from the conventional one, where the first Brillouin zone is the interval
[-7, 7). But for our purposes it is more convenient to choose as the first
Brillouin zone the interval [0, 27], so that the Bragg point is in the middle of the
interval.

2.4. Statement of the main results

In this section we formulate the sufficient conditions which ensure the existence of
the band gaps. For that we introduce the points 7., = 7= + jj;, which are inter-
section points of the dispersion curves: A’ ((_,) = Ag‘l(iy,l) and A (1) =
A", (). The Fourier-coefficients of the profile function / are 7

HY(]) :/ e h(x, y) dx dy

o
HY(]) = / h(x, y) cos G <x +§))ei2"y dxdy,
H¥ (1) = / ) o (27” (v + é) )dvdy.

THEOREM 2.1. 1. Let 0 <1< % and assume that H”(I) # 0. Then there exists
o> 0 and &y > 0 such that for all ¢ < &
(a) max,eo,20) A(n) < miny c(o,20) A5 ().
(b) For all /° € |D(n) —&*, D(n) + &% the problem (2.2)—(2.4) has only the

trivial solution u® = 0.

2. Let § <1< 1 and assume that H”(I) # 0, H(I) # 0. Then there exists o. > 0
and &y > 0 such that for all ¢ < &
(c) the following inequalities

max Af(y) < min Aj(ry)

nel0,2n) ! nel0,2n)
and
AS < in Af
,max. 5(n) i 3(n)
hold.

(d) For every
25 €]D(ny) — &%, D(my) +&*[V]D(n) — &%, D(n) + &%
the problem (2.2)—(2.4) has only the trivial solution.

3. Let I = 1. Assume that H”(I) # 0, HY(l) # 0 and H*(I) > 0. Then the state-
ments (c)—(d) occur.
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3. SPLITTING OF DISPERSION CURVES

3.1. Asymptotic analysis of eigenvalues

In the following sections we will describe the splitting phenomenon of dispersion
curves for small ¢ > 0 leading to the band gap structure in the dispersion rela-
tions. The main tool is an asymptotic analysis of the eigenvalues A?z, ;(17) under
perturbations of the bottom. Especially, we are interested in the eigenvalues
Ag‘ ;(n) which have algebraic multiplicity higher than one. Those eigenvalues are
the intersection points of two or more dispersion curves. We will show that, when
the bottom of the channel is perturbed, exactly at those points the dispersion
curves differ from each other and a small gap opens between them, which in
some cases gives raise to a spectral gap for our spectral problem.

As in our previous paper [5], we follow the approach adopted by Nazarov
[24]. In order to see whether a gap is opened near the intersection point 7,
we introduce the deviation parameter o, replacing # by 7, + &d. The devia-
tion parameter will be used to describe the behaviour of eigenvalues A (#) in
a small neighbourhood of the intersection point: a suitable choice of d = d(¢)
will be done in the proof of Theorem 2.1 (see (4.56)). Outside this small neigh-
bourhood, where the eigenvalues Ag(iy) are simple, the classical perturbation
theory is then used to show that the perturbed eigenvalues Aj(#) satisfy the
condition

AL (7) = AR(n)] < ce

for some constant ¢ > 0 independent on .
For the eigenvalues and functions Ay (1, + ¢d) and U*(-;#), we use the asymp-
totic expansion around an intersection point 7, € [0,27) as follows:

(3.19) A (g + d) = AL (mg) + e, (0) + Ag

(3.20) Ui = U +eU, ,+ Uy,

where A} (17,) = A2, ;(ny) is the double eigenvalue of the problem (2.11)-(2.16)

and it is given by (2.17) for suitable choices of ¢ and j. The function
U =a,U%+a_-U°

belongs to the two-dimensional eigenspace spanned by the corresponding eigen-
functions U?. We choose them to be as in (2.18). For UE the integers ¢ and j
differ from those of U°, obviously. In order to simplify the notation we fix ¢, j
and omit them in the rest of the present section. The coefficients a4 are to be
determined alongside the first order correction terms A’(5) and U’.

In order to find the correct problem for U’ we insert the right-hand side of
(3.19) and (3.20) into (2.5), (2.6) and, setting the terms corresponding to identical
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powers of ¢ equal, we obtain
AU =0 in wy,
.U =AU +A'U°, ona

In order to deal with the boundary condition (2.7), we have to expand d, U, at
dw,\ay. Since the bottom is represented by the equation —d + ¢h(x, y) —z =0,
then, for any smooth function F(x, y,z) the normal derivative at the bottom has
the following expansion

OuF = (14 &2|Vh|*) "' (e0,hd. F + e0,ho,F — 0-F) __y, v
= —0:F +&(Vayh - Vi F — 02F - h(x)).__ + O(&%).

Using the above formula for F = U° +¢U’ 4 U in equation (2.7), equating,
again, the terms corresponding to identical powers of ¢, and using (2.11), we get
the boundary condition

0.U' =Vyh- Vo U+ (A, U, if z = —d.

At the lateral walls of the periodicity cell the normal derivative J,, = +d, and thus
we obtain a boundary condition

/ 1
ﬁxU/<i§,y,Z) =0, |y <§, —d <z<0.

Finally, since e/"n*%) = ¢~ (1 — jgé + O(¢?)), inserting (3.20) into (2.8),
(2.9), we get

(3.21) U’(x,—%,z;;yo) e (— 15U0+U)( ;,2;170),

(3.22) @U'(x,—%,z;no) e M (—i60,U°" 4 0, U)( ;,2;770),

Thus, finally, the problem for the first correction term U’ can be written as a
mixed boundary value problem

(3.23) AU' =0 in wy,
(3.24) .U =AU +ANU" ona
(3.25) 0.U' =Vyh-Vy U + (A, UL, z=—d,
(3.26) 0 U =0, x= J_ré
1 , 1
/ I — ,ing(_; 0 / -
(3.27) U (x, 2,Z,no) e "M (—ioU +U)(x,2,z,no),

(3.28) 8yU/(x,—%,z;;70) e~ (—i0d,U° + 0, U)( ;,2;770).
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Note that the third equation above can be equivalently written as
(3.29) 0.U" = divy,(hV,, U°), if z=—d.

Since A’ is a double eigenvalue of problem (2.11)—(2.16), according to the
Fredholm alternative, the formally self-adjoint elliptic boundary value problem
(3.23)—(3.28) has a solution U’ if and only if two compatibility conditions are
satisfied. To derive these conditions, one may directly insert the eigenfunctions
U? and the solution U’ into the Green formula on wy, to obtain

(3.30) 0,0%U" — / 2,U'0% = 0.
dwyg dwy

In the following we split the boundary of the periodicity cell w, into the top
surface gy, the bottom a,, and the lateral surfaces a3, o7.

Choosing U? to be any of the functions in (2.18) (with + related to the sign
of propagation of the wave e™?(?71*1) and using equations (2.11)—(2.16) for U?
and (3.23)—(3.26) for U’, we get the following integrals on each face of the peri-
odicity cell wy.

/(anUgU’—anU’Ug):/(@ZUgU’—aZU’Ug)

(0] a0
= —A’/ u'uy.
a
/(anU_ﬁU/—é,,U’Uﬂ)r) :_/ (0.U2U' - 2.U'UY)
agq gd

- / div, (hV,, U%) U2
a4

— [ U v, )

ad

where the boundary terms along the boundary of g, are zero under the assump-
tion that /(x, y) has compact support, i.e.,

(3.31) supph CC (=1/2,1/2) x (—=1/2,1/2).

This is a technical rectriction that simplifies the calculations. Moreover, we have

/ (2,00 - 9,U'UY) =0

X
L

[ @ -ov s [ @it -0, T

- [ @) - ()eTa0)
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where we have used the shorthand notation U(}) = U(x,},z). Summing up all
terms we get the following system of equations (+)

(3.32) —A’ / U'ul — / (hV, U -V, U?)

- [ (@R () - (o) =0

In the following we will replace
U'=a, U +a U’

for suitable choices of the pair UY.

Estimates of the remainder terms A, ;, Uq jin (3 19), (3.20), as &, 0 are small
enough, may be proved in the similar manner as in [5]. The proof will be pre-
sented in Section 4.

3.2. A case of Bragg resonance

To start our analysis by the simplest case, we focus on the lowest dispersion
curves Ag o) = ( ) and /\0_1 o(n) = D(n — 2m), when the width of the channel
[ satisfies 0 </ < 1 (see Fig. 1(a)), ie., A(iO(O) < A871(O). The above curves
intersect only at 5, = x, e.g, at the Bragg point.

Now by choosing

UR = U(?,Ov vl = Ugl,o
and inserting them and U° =a,U? 4+ a_U" into (3.32), we get the eigenvalue
problem
M(a) =N ()a, a=(a,,a)’,
for the matrix
B [ Ao BH” (l)]

BH»(l) —A4o
where
0
/ (Uoﬁ U - u%,UY) /dg&o(z;n)dz
A= =2n= ;
/ ‘UO 93,0(0377)
(3.33) / h(x, )V, U2 - VU 4n2 2
B="lu —

// e™h(x, y) dx dy
1)
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and goo is as in (2.18). In the computations of the matrix elements, we have
explicitly used the fact that the mean value of the profile function is zero. In other
words, the first correction term A’(d) in the neighbourhood of 7, = 7 is the eigen-
value of the above eigenvalue problem.

In this case, the asymptotic expansion (3.19) has the correction terms

(3.34) N, = +\/ B () + 4252,

which are non-zero provided

(3.35) // e?h(x, y)dxdy # 0.
1)1

Under the above condition, we can prove the existence of a gap in the spectrum
of our original problem (2.2)—(2.4), namely

(3.36) max Af (7) < min A3 ()

for small enough e.

The lowest perturbed dispersion curve Aj(#) takes the shape as in Fig. 2 (a).
In particular, we note that, if we take A(x, y) is independent of x, then the prob-
lem reduces to two-dimensional surface wave propagation, and we recover the
results obtained in [5].

3.3. Band gaps at non-Bragg points

In this section, we consider cases where the dispersion curves intersect each other
also at the non-Bragg points (1 # n), i.e., far away from the edges of the first
Brillouin zone. In particular, we focus on the following dispersion curves (see
Fig. 1(b) and (c))

Ago(n) = D(n)

0 o) = Dy - 2n)
Agl(n)=D(\/77 + m2l-2)

A" n) = D (n - 2m) + 72172),

Here we assume that 1 < / < 1. Then,
Ag o(m) < AO 1(0) < A(ll 0(0),

and the curves AJ 0.1 and A 1,0 Intersect at the pointn_; =7 — 53 Ay 0.0 and A° 1
intersect at 7, = 7 + 53 Ag oand A’ . intersect at ny = 7 (see Fig. l(b))

We expand Af(y_; + 35) and U¢ as in (3.19), (3.20) with # = #_,. The eigen-
functions

(3.37) U =07, and U°=0",,
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correspond to the eigenvalues A0 () = 1 o(n_1), where U * are given by

(2.18). Inserting UY 9 and U’ =a. Ul O +a_ U % into the eompatlblhty condition
3.32) we obtain an eigenvalue roblem for the correction term A’:
g p

C+Ds B o amda a,
(3.38) { B Aé}{ } A2le™" cosh(n,d) it

Introducing the shorthand notations
/ .
HY(]) = / h(x, ) cos(7 ( X+ 2))6’2”y dxdy,

/h X, p) cos ( é))dxdy,

HQO IHL —d,0)>

the elements of the matrices in (3.38) are
A=2n_, —2n)IG, B=4(n_, —2n)y_e " H (1),
2
4 — X
C= 2(1—2 - 1712>e mdgx(l), D=y IG.

Since the matrix on the left in (3.38) is Hermitian symmetric, the eigenvalues
pty = 2le=21? cosh? (,d) A, are real, where

(3.39) 1o = C+ (A+ D)o +1/(C+ (4 + Do)+ 4|B).

For sufficiently small o, the eigenvalue problem (3.38) has two non-zero eigen-
values x, > 0 and u_ < 0, provided the condition

(3.40) HY(I) #0

is satisfied. In this case, the perturbation splits the intersection of the graphs of
Ag , and A° "1, @t 7_; into two non- intersecting curves. This gives the possibility
for a spectral gap. Same conditions arise at the point 7, = 7 4+ %, due to symme-
try of the dispersion curves with respect to # = =.

At the point # = 7, corresponding to the intersection AO o(m) = AL, o(n), the
expansion of Aj(n + 85) performed in Section 3.2 remains valid also here when
1/2<1<1.In partlcular the correction terms A, are given by (3.34), and they
are non-zero, with opposite signs, under the condition (3.35).

As a conclusion, if both conditions (3.35) and (3.40) take place, then the
lowest dispersion curves of the problem (2.2)—(2.4) separate as follows

ars

(3.41) Ai(n) < A5(n) forally € [0,2x],
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Figure 2. The perturbed dispersion curves: a) / = ‘/TE, b) /= @, )l=V2

and a gap occurs at the higher level, namely

(3.42) max Ni(n) < mﬂin Ai(n).

The lowest perturbed dispersion curves Af(n), A5(n) and Aj(y) are shown
in Fig. 2(b). Rigorous proofs of the above inequalities (3.41), (3.42), can be ob-
tained, following the approach presented in [5] and [4]. Our analysis shows for the
first time, by choosing the periodic bottom profile appropriately, that in addition
to the band gap created by the Bragg resonances at the ends of the first Brillouin
zone also non-Bragg gaps appear far away from the edges of the Brillouin zones.
Previously this phenomenon has been detected experimentally for surface gravity
waves in a channel by periodic walls [32].

3.4. The combined case

Let us assume for the moment that / = 1 and investigate the perturbation of the
lowest dispersion curves M,(n), p =0, 1,2, which are defined as follows

A8,0(’7)7 0< n<m,
A‘il’o(n), n<n<2r,

My(n) :{

M\(2n —n), ©m<n<2n,

Agl,O(n)a 0<n<n_y,
M) =9 AV (), na<n<m,
M>(2n —n), n<n<2n
(see also Fig. 3, for the corresponding perturbed curves). In this case we have
Ag,l(O) = Agvo(n). As it was shown in Section 3.3, at the points 7y, = 7, 1, the
graphs of the dispersion curves split into two parts, under the conditions (3.35)

and (3.40), forming two non-intersecting dispersion curves Aj(#) and A%(y) such
that

Al(n) < A5(m) Ve 0,2n).
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The spectral gap appears, if the following stronger inequality takes place:
(3.43) Aj(n) = max Aj(n) < min A5(y) = A5(0).

nel0,2m) nel0,2m)
Since, in this case, Ag 1(0) = AJ ((r), in order to understand the situation, we

have to take into account also the perturbation of the snnple eigenvalue AJ 1(0).
This is performed as in (3.19) for the double eigenvalues, i.e., by setting

(3.44) A5(0+20) = A 1 (0) + eAf 1 (0) + Ao,1(e0).

The formula for the correction term is now

Ay @) = — 1012 / BV, U2,
a4

Inserting U 0 — U(?l in this equation we get

Ay, =7 /01 cos(2n<x+%))h(x, y) dxdy.

a

Assuming that the Fourier coefficient

(3.45) HY(1) —/ cos(2n<x+%))h(x, y)dxdy >0,

the correction term Ag(d) is non-negative. If we take Aj ((d) = A’ given in
(3.34) and insert into the expansion

(3.46) A (m+ ed) = A () + €Ay (0) + Aoyo(m + &)

and assume that also condition (3.35) is satisfied, we can prove that (3.43) takes
place. In other words, the spectral gap opens between the dispersion curves Aj(#)
and A5 (). The two lowest dispersion curves are shown in Fig. 3(b).

For example assuming that the profile function is odd in x-variable for every
y € (—3,3) the condition (3.45) is valid with H* = 0.

However, even if the condition (3.45) is violated, then the spectral gap may
still appear as in Fig. 3. In that example H~ < 0.

Note that, increasing the width / of the channel, the first eigenvalue of the
problem (2.5)—(2.9) with # = 0 (or # = 2x) decreases faster than the first eigen-
value for the same problem with # = z. Then the second dispersion curve could
shadow the lowest dispersion curve and there would not be a band gap as in Fig.
3. However, as in this example, the band gap still exists between the second and
third dispersion curve.

3.5. Example

Here we present a simple example in the case when the channel width / =1,
depth d = 0.5 and a periodic arrangement of boxes is mounted at the bottom of
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the straight channel The height of the box is ¢ = 0.2 and the bottom is a square
S = {( o)yl < x| < } Hence the bottom of the periodicity cell is given

by
z=—d+¢ers(x, y),

where y is the characteristic function of S:

Lo <g Ivl<i
3.47 L y) =1 4 4
( ) 75(%, ) { 0, otherwise

In this case, the Fourier coefficients of the profile function are

HY(I) = Sinn(g) - % >0,
H*(]) = Sl_n cos(% #0,
HY(] :—cos<n>sm( ) # 0.

Hence the assumptions of Theorem 2.1 is satisfied and the gaps are opened
both at the Bragg point 77, = = and at the non-Bragg point #_;, = 3 , as seen at
Fig. 3. The estimated width W of the band gap at non-Bragg point 1s glven by the

formula
W =2vC?+4B%>~0.1,

Figure 3. The perturbed dispersion curves
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where C and B are the constants in (3.39). The computed results are in good
agreement with the results of the asymptotic analysis.

The dispersion curves shown in figures 2 and 3 for the perturbed channels are
computed with the open source software Freefem++-.

Note that /4 in (3.47) is not smooth, actually discontinuous. However, profile
functions of this type have the same asymptotic formulae for the existence of gaps
(see [5], Fig. 5(a) and related remarks).

4. PROOF OF THE MAIN THEOREM

To prove the appearance of the band gaps we have to investigate the behaviour
of the perturbed eigenvalues A} (1), 1 € [0,2%n), m =1,2,3, in the periodicity
cell w,. This will be divided in two steps. First, we will show that outside a neigh-
bourhood of the intersection points 7, p= —1,0, 1 the eigenvalues A; () do not
deviate too much from the eigenvalues A (1) of t of the unperturbed problem In the
next step, we estimate the remainder terms A? ](n) in the vicinity of the intersec-
tion points 77,, p = —1,0, 1. Essentially the proof is given already in our previous
paper [5 Section 4], but we provide a condensed presentatlon of it for readers
convenience. Since the case 0 << 1 is the same as in our previous paper [5],
we concentrate on the case 2 <Il<1.

For the proper functional analytic setting we introduce the space H (w?)
which is the closed subspace of the Sobolev space H'(w?) satisfying the qua51—
periodicity conditions (2.8) and (2.9). Furthermore, we define in H,71 (w®) the sca-
lar product

UV, = (VU V), + (U V)

ap’
and the operator T%(y)
(4.48) (T U, Vo, = (US, V), YU,V e Hy(o).

Now the spectral problem (2.5)—(2.9) becomes equivalent with the eigenvalue
problem

Té(U* = *(nU* in H,(w°)
with the spectral parameter
(4.49) () = (1+ A(n)) ™!

Obviously, the operator T“(y) is positive, self-adjoint and compact due to the
compact embedding of L?(g¢) into H!(w?®)" (the dual space of H'!(w?)).

In comparing the eigenvalues outside a neighbourhood of the intersection
point, we rely on the analytic perturbation theory of self-adjoint operators [10,
Ch.VIL.6.2]. Since the perturbation is compact and small, we conclude that the
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eigenvalues of the model problems in w? and w° have the relationship
(4.50) A% () — Ay (n)] < cme Tore e (0, &),

where the positive numbers ¢,, and ¢, depend on the eigenvalue number m but
are independent of ¢ € (0,¢,,) and 5 € [0, 27).

On the other hand, take for a while ¢ =0, j = 0 and 0 < n < 7, the function
n+— D(n) = A (1) is convex and increasing. Then we observe that

D(m) — Ag o() = Co(m — 1)

for some positive constant Cy > 0. Combining this with (4.50), the eigenvalues
AG.0(n) = Al(n) satisfy the estimate

Ai(n) < D(n) — Coet < D(n,), whenny <mn— &

By the same reasoning we then conclude that the elgenvalues A (), m=1,2
fulfil the following inequalities: if [ — 7| > &, |y — m| > &3, then

Ai(n) < D(x) — Coé,
(4.51) D(m) + Coet < A5() < D(ny) — Cog,
A3(n) > D(ny) + Coﬁ%-

To prove that the dispersion curves will split at the points 7, we will need the
following lemma on “almost eigenvalues™ (see, e.g., [3, Ch. 6]).

LEmMMA 4.1. Let u e H,71 (w?) and t* € R, be such that
(4.52) |lu's Hy(@*)| =1 and |[T*()u’ — t'u®; H) ()] '/* = x* € (0,1,

Then there exists an eigenvalue t},(n) of the operator T*(n) subject to the
inequality
T () — 1°] < %

In what follows, we replace the subscript ¢, j with p+ or p—, meaning that
A0 (1), A0 (n 2) are the curves intersecting at 7 (p=-1,0,1), with A2+(;7)' %n—
creasmg and A,,_(n) decreasing. This notation is adopted for all related quantities
in the asymptotlc expansions.

To apply the above Lemma 4.1 we choose the approximating eigenpair (z°, u*)
as follows:

(453) l;+ ( + A0+(77p) + 6/\;1((5))71, u;i = <%; U +>;1 14{55 ’/pg-k—a

where

(454) Q/;+(y7 ) vaL(va ’7p)+80)/ (X Yy 25 5)+82%;+(x Y,z )
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n (4.54) the function #° '+ 1s the linear combination of the eigenfunctions
Ug:
Uy (x,y,2) = aZO)UL(x, y,z3m,) + aZ(0) UL (x, y, z:1,),

where the vector a*(d) = (af(5),a*(5)) is the normalized eigenvector of the

problem (3.38), i.e., [[a*(0)|| = 1. The second term %, (x,y,z;0) in (4.54) is
the smooth extension of the solution of the problem (3.23)—(3.28) satisfying the
estimate

1y H ()| < ¢p(1 +19]).

The last term %° + In (4.54) we fix to compensate the discrepancies of the sum
7{0 + U .+ n the quasi-periodicity conditions (2.8) and (2.9) for n =7, + &d. As
in [5 Sect 4(c)], we can find a function %° € H 3(w?) which compensates the dis-
crepancies and satisfies the estimate

1.3 HP (%) || < (1 +0).

Furthermore, since %, is the solution of (3.23)-(3.28), in the Steklov boundary
condition (2.6) we have

g5(x, y) = 05, (x, y,0) — (A (n,) + &N, (6)) U} (x, y,0)
= &30}, (x, y,0) — (A (n,) + &N, (6))) ) (x »,0)
= 82A1,Ji(5)%1;i(x’ ,0;6)

and in the Neumann condition (2.7) at the bottom

gaq(x, y) = 0uUy, (X, p, —d + eh(x, y))
= << + 22 Vayh(x, ) )7 = D05 (x, 7, ~d + eh(x, )
& (=0 (x, y,—d + eh())
+ &V h(x,p) - Vy, yJZZIer(x v, —d +¢eh(x,y)))
— (0, (x, p,—d + eh(y);m,) — 04y, (x, y, —d;1,)
+eh(x, 1)U, (x, v, ~d:7)
+ &V yh(x, y) - (Vy, J%p+(x y,—d +eh(y);n,) — Vs, ywp+( ,—d;n,))
—&(0: Uy, (x,y,—d + eh(x, y);0) — 0. U, (X, y, —d;0))

+ &V h(x, ) - Vi, (X, p,—d + eh(x, y);0)
These formulae imply the estimate

g6 L2l + llgis LGN < ¢pe” (1 +0%)(1 + eld]).
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We ﬁnally mention that 02/ satisfies the equation (2. 5) in w* but 02/1; ; does it only
in w°. Therefore, recalhng the smooth extension of %, , we obtain

el| A%y L2 (0)|| = el| A%y 45 L (0™\0”)|
< &’y HP (00°)|

< ¢, 2(1+9)).

Here we have taken into account that w?\" is a thin set of width O(e).
For the computation of k* =« in (4.52) we use the definitions of 7, and u;,
in (4.53) to obtain

1/2 ¢
(4.55) K, =L, " +>n+L/o lpt sup|(1 + A2+( >+8A/+(5>( /pss V"),
= (VU V%) e = (U, 0%) 5|
= <%;+7 +>Tl<‘1£§ p+ Sup‘( A%;+7 ) + (987 Ug)a'o + (gcal’ Ug)a'(’,‘,|'

Here the supremum is calculated over all functions v € H)  ;(w®) such that
V%, 0% 405 = 1. Clearly,

10%; L2 ()| + [[0%; L2 (00) || + |05 L2 (07) || < c.
In the sequel, we assume that
(4.56) 0] < c,e*.
We then observe that
|r;i| < ¢,(1+4d)) < G,
U U3y 2 (1 — o1+ 10) —20(1+)) = 3¢, > 0.

where ¢,, C, stand for different positive constants which may depend on p but are
independent of ¢ € (0,¢,). Collecting the above estimates we convert the relation
(4.55) into

it < (214 10]) +&2(1+62) (1 + &) < cpe™*.

Hence by Lemma 4.1 there exist eigenvalues 7, +(17, +&0) of the operator
T*(n, + &) such that

78, (n, +20) — (1+ AV, (n,) + &M, (0) | < ¢pe”/*,
or, in view of (4.49),

(4.57) (NG (1, +80) = Ay (n,) — ey (0)] < e,
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Due to the formula (3.39) and the assumption (3.40) the eigenvalues
A, (1, +e0) and A} (17, +&d) are different from each other. Moreover they
stay in a ce-neighbourhood of the point A’? +(77,) which, according to (4.50), con-
tains only the eigenvalues A5(7, +&d) and A5(y, +&d) if p = +1, Af(n, + &)
and A5(n, + 0) if p = 0. Thus, these eigenvalues are distinct and satisfy the rela-
tion (4.57). In view of (2.17), (3.39) and (3.40) this observation together with
inequalities (4.51) proves Theorem 2.1.
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