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Number Theory — An application of the value distribution theory for semi-abelian
varieties to problems of Ax–Lindemann and Manin–Mumford types, by Junjiro
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Abstract. — The aim of this paper is to prove a theorem of Ax–Lindemann type for complex

semi-abelian varieties as an application of a big Picard theorem proved by the author in 1981, and
then apply it to prove a theorem of classical Manin–Mumford Conjecture for semi-abelian varieties,

which was proved by M. Raynaud 1983, M. Hindry 1988, . . . , and Pila–Zannier 2008 by a di¤erent
method from others, which is most relevant to ours. The present result might be a first instance of

a direct connection at the proof level between the value distribution theory of holomorphic maps and
the arithmetic (Diophantine) theory over algebraic number fields, while there have been many anal-

ogies between them.
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1. Introduction and main results

The purpose of this paper is to prove a theorem of Ax–Lindemann type for com-
plex semi-abelian varieties as an application of a big Picard theorem obtained in
[6] for those varieties. We then apply it to prove a theorem of Manin–Mumford
type for the distribution of torsion points on a subvariety of a semi-abelian vari-
ety defined over a number field, combined with extending a part of the argu-
ments in Pila–Zannier [11] for abelian varieties (cf. §3). The statement for abelian
varieties had been called the Manin–Mumford Conjecture and proved by M.
Raynaud [12], M. Hindry [3] in the generalized form for abelian algebraic
groups, . . . , and Pila–Zannier [11]; cf. [11], Introduction, S. Lang [4], Chap. I
§6, and e.g., P. Tzermias [13] for surveys of the Manin–Mumford Conjecture.

In the course of the proof the Kawamata structure theorem for semi-abelian
varieties by [6], Lemma (4.1) works quite e¤ectively (see §3 (b)).

Theorem 1.1 (Ax–Lindemann type). Let exp : Cn ! A be an exponential map
of a complex semi-abelian variety A. Let V � Cn be a complex irreducible a‰ne
algebraic subvariety with the restricted map expjV : V ! A. Then the Zariski clo-
sure XðexpjV Þ of the image of expjV in A is a translate of a complex semi-abelian
subvariety of A.
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Theorem 1.2 (Manin–Mumford type). Let X � A be a proper algebraic re-
duced subvariety of a semi-abelian variety A defined over an algebraic number field.
Then, the Zariski closure X Zar

tor of the set Xtor of all torsion points on X is a finite
union of translates of semi-abelian subvarieties by torsion points on X.

In view of the above two theorems, we are naturally led to study a denseness
property of the value-distribution of expjV in Theorem 1.1. In fact, for an alge-
braic divisor D on A such that its closure in a projective compactification of A is
ample, we will prove that DB expðVÞ is Zariski dense in DBX ðexpjV Þ (cf. The-
orem 4.2 in §4).

In §2 we will introduce a new notion of ‘‘strictly transcendental’’ holomorphic
maps into semi-abelian varieties (see Definition 2.4). By making use of a Big
Picard Theorem due to [6] we prove the image structure stated in Theorem 1.1
for strictly transcendental holomorphic maps into semi-abelian varieties (see The-
orem 2.5). We then prove that the map expjV in Theorem 1.1 is strictly transcen-
dental (Proposition 2.6).

In §3 we will prove Theorem 1.2 by induction on dimX , in which we will use
[6], Lemma (4.1). The proof of Theorem 1.2 roughly consists of two parts: The
first is a decomposition of the torsion points on X to an algebraic part and its
complement, done by the arguments due to Pila–Zannier [11], Theorem 2.1,
Step 1, being extended to the semi-abelian case. The second part is the applica-
tion of Theorem 1.1 to the algebraic part of torsion points, and for its comple-
ment we use the lower and upper estimates due to Masser and Pila–Wilkie
(cf. [11], §3) to deduce the statement of Theorem 1.2.

In the last §5 we give some example of a transcendental but not strictly tran-
scendental map into an abelian variety, and study its image structure.

The present result might be a first instance of a direct connection at the proof
level between the value distribution theory of holomorphic maps and the arithme-
tic (Diophantine) theory over algebraic number fields, although there have been
many analogies between them. It is a point of interest of this paper to observe
that the direct connection is provided by the theory of o-minimal structures in
model theory (Pila–Wilkie [9]; this approach evolved from Bombieri–Pila [1] (cf.
Zannier [14]). This aspect should be of some interest for both sides of the theories.

2. Big Picard and Ax–Lindemann

(i) Big Picard. Let Dm be the unit polydisk of Cm with center at 0 and let E � Dm

be a complex analytic proper subset. Let Y be a complex quasi-projective alge-
braic variety with reduced structure, and let Y denote a projective compactifica-
tion of Y . In this paper we always assume that ‘‘varieties’’ are irreducible with
reduced structure.

Let f : DmnE ! Y be a holomorphic map. If there is a meromorphic map
f : Dm ! Y with the restriction to DmnE, f jðDmnEÞ ¼ f , we say that E is remov-

able for f or f is (meromorphically) extendable over E: Otherwise, f is said to be
transcendental.
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We denote by Zð f Þð� Y Þ the Zariski closure of the image f ðDmnEÞ in Y and
set

Xð f Þ ¼ Zð f ÞBY :ð2:1Þ

In case Y ¼ Y , X ð f Þ ¼ Zð f Þ. Note that X ð f Þ is irreducible.

Remark 2.2. (i) Just for the definition of the transcendence of f : DmnE ! Y ,
the assumption of Y or Y being algebraic is not necessary, but we prefer to
assume it for simplicity.

(ii) (Hartogs extension theorem) Let Y be as above. If codimEb 2, E is always
removable for any holomorphic map f : DmnE ! Y . Therefore, as the re-
movability is concerned with quasi-projective Y , it su‰ces to deal with
smooth E of codimension 1.

Let A be a complex semi-abelian variety with a smooth projective compactifi-
cation A, and let X � A be a non-empty complex algebraic subset. We denote by
St0ðX Þ the connected component of 0 of the subgroup fa a A : aþ X ¼ Xg, and
simply call it the stabilizer of X . Then, the stabilizer St0ðX Þ is an algebraic sub-
group of A and a semi-abelian subvariety by itself. Note that X is of general type
if and only if St0ðX Þ ¼ f0g.

We recall:

Theorem 2.3 ([6], Corollary (4.7)). Let f : DmnE ! A be a holomorphic map
with X ð f Þ defined by (2.1). If St0ðX ð f ÞÞ ¼ f0g, then f is extendable over E; in
the other words, if f is transcendental, then dimSt0ðX ð f ÞÞ > 0.

Definition 2.4 (strictly transcendental). A transcendental holomorphic map
f : DmnE ! A is said to be strictly transcendental if for every semi-abelian sub-
variety B � A the composite qB � f : DmnE ! A=B with the quotient map
qB : A ! A=B is either constant or transcendental.

Theorem 2.5. Let f : DmnE ! A be a strictly transcendental holomorphic map.
Then, Xð f Þ ¼ f ðcÞ þ St0ðX ð f ÞÞ with c a DmnE; i.e., Xð f Þ is a translate of a
semi-abelian subvariety of A.

Proof. Set B ¼ St0ðXð f ÞÞ and g ¼ qB � f : DmnE ! A=B. It su‰ces to show
that g is constant. Otherwise, g would be transcendental by the assumption for
f . Since St0ðXðgÞÞ ¼ f0g, it follows from Theorem 2.3 that g is extendable over
E; this is a contradiction. r

(ii) Ax–Lindemann. We keep the notation used above. Let

exp : Cn ! A

be an exponential map. A map from a complex algebraic variety into another
complex algebraic variety is called a transcendental map if it is not a rational
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map. We then define a strictly transcendental map from a complex algebraic vari-
ety into A as in Definition 2.4.

Proposition 2.6. Let V � Cn be a positive dimensional irreducible complex
algebraic subvariety of Cn. Then, the restricted map expjV : V ! A of exp to V is
strictly transcendental.

Proof. Let B � A be a complex semi-abelian subvariety. Suppose that

qB � expjV : V ! A1 ¼ A=B

is a non-constant rational map. We shall deduce a contradiction.
There is an algebraic curve C � V (irreducible and dimC ¼ 1) such that the

restriction

f :¼ qB � expjC : C ! A1

is non-constant rational.
(a) Case of B ¼ f0g: There is an exact sequence

0 ! ðC�Þ t ! A ! A0 ! 0;ð2:7Þ

where A0 is an abelian variety. Set L ¼ exp�1ðC�Þ t. Then L is a t-dimensional
vector subspace of Cn. Let p0 : C

n ! Cn=LGCm ðm ¼ n� tÞ and q0 : A ! A0

be the quotient maps. Then exp naturally induces an exponential map

exp0 : C
m ! A0:

We are going to infer

Claim 2.8. q0 � expðCÞ is a point.

Suppose that it is not the case. Then, the Zariski closure C0 of the image
p0ðCÞ in Cm is an algebraic curve in Cm. Let o0 be a flat Kähler metric on
A0 such that exp�

0 o0 ¼ a, where a ¼
Pm

j¼1
i
2p dzjbdzj with the natural coordi-

nate system ðz1; . . . ; zmÞ of Cm. Since expjC is rational, exp0jC0
is non-constant

rational. Then, the Zariski closure W :¼ exp0ðC0ÞZar in A0 is an algebraic curve
in A0 with

Z
exp0ðC0Þ

o0 ¼
Z
W

o0 ¼ M < l:ð2:9Þ

If k denotes the degree of the rational map exp0jC0
: C0 ! W , we have

Z
C0

a ¼ kM:ð2:10Þ
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Let BðrÞ � Cm be an open ball of radius rð> 0Þ with center at a point a a C0 and
set C0ðrÞ ¼ C0BBðrÞ. Wirtinger’s inequality implies

Z
C0ðrÞ

ab nða;C0Þr2;

where nða;C0Þðb 1Þ denotes the order of C0 at a. Letting r ! l, we have a con-
tradiction to (2.10). Therefore, Claim 2.8 follows.

Thus, we have a non-constant rational map after a translation:

expjC : Cð� LGC tÞ ! ðC�Þ t;

which is a restriction of exponential map

ðz1; . . . ; ztÞ a C t ! ðez1 ; . . . ; eztÞ a ðC�Þ t:

Let C be the closure of C in ðP1ðCÞÞ t � ðC�Þ t. Here we write P1ðCÞ ¼ CA flg.
Then there is a point b ¼ ðb1; . . . ; btÞ a CnC with some bj ¼ l. Since ezj has an
isolated essential singularity at zj ¼ l, expjC cannot be rational.

(b) Case of general B: Set

F ¼ exp�1B;

p 0 : Cn ! Cn=F GCn 0
;

q 0 : A ! A=B ¼ A 0:

Let exp 0 : Cn 0 ! A 0 be the naturally induced exponential from exp : Cn ! A.
Let C 0 be the Zariski closure of p 0ðCÞ in Cn 0

. Then, it follows from the assump-
tion that p 0jC 0 : C 0 ! A 0 would be a non-constant rational map: This contradicts
what was proved in (a) above. r

Proof of Theorem 1.1. This is now immediate by Proposition 2.6 and Theo-
rem 2.5. r

Example 2.11. Here we give a simple example of a strictly transcendental map.
Set

exp : ðz;wÞ a C2 ! ðez; ewÞ a ðC�Þ2 ¼ A;

V ¼ fðz;wÞ a C2 : zw ¼ 1g ¼ fðz; 1=zÞ : z a C�gGC�:

Then V is a‰ne algebraic,

expV : ðz; 1=zÞ a V ! ðez; e1=zÞ a A

is strictly transcendental, and XðexpjV Þ ¼ A.
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3. Proof of Theorem 1.2

Let K be a number field over which A is defined. Let

exp : Cn ! A

be an exponential map. The reduction of exp�1 Xtor to the algebraic part is done
in parallel to the proof of Pila–Zannier [11] §3, relying on the o-minimal structure
theory, and then we apply Theorem 1.1 to conclude the proof.

The proof is done by induction on n ¼ dimX b 0. If n ¼ 0, it is trivial. Sup-
pose that the case of dimX a n� 1 ðnb 1Þ holds. Let dimX ¼ n.

We consider the stabilizer St0ðXÞ.
(a) The case of dim St0ðX Þ > 0. We set the quotient map q : A ! A1 ¼

A=St0ðX Þ and X1 ¼ qðXÞ ¼ X=St0ðX Þ. Since dimX1 < n, the induction hypothe-
sis implies that there are at most finitely many semi-abelian subvarieties Bj � A1,
1a ja l, and torsion points bj a X1 tor such that

X1 tor ¼
[l
j¼1

ðbj þ Bj torÞ:

Taking any elements aj a q�1bj BXtor, 1a ja l, we have

Xtor �
[l
j¼1

ðaj þ ðq�1BjÞtorÞ:

Since X � aj þ q�1Bj, the opposite inclusion above also holds; thus,

X Zar
tor ¼

[l
j¼1

ðaj þ q�1BjÞ:

(b) The case of St0ðX Þ ¼ f0g. Note that X is of (log) general type. We put
L ¼ exp�1f0g ð� CnÞ and Z ¼ exp�1 X which is a L-periodic analytic subset of
Cn. We consider a basis of L as Z-module, which is also a basis of the real vector
space RL of dimension d ¼ 2n� t. Thus we have identifications

Zd GZL � RLGRd :

The torsion points on X lift to points on QLGQd � Rd . We consider the set
�ZZ ¼ ZBQd of the preimage of all torsion points on X and its restriction �ZZ1 :¼
�ZZB ½0; 1�d of �ZZ to the closed fundamental domain ½0; 1�d .

For a subset W � Qd and a real number T b 1, we denote by NW ðTÞ the
number of rational points in W whose denominators are at most T .
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By Pila–Wilkie [9] there is a so-called algebraic part �ZZalg
1 of �ZZ1, satisfying the

following properties:

(i) We have

�ZZalg
1 ¼

[
V�Z

ðV B ft ¼ ðtjÞ a ½0; 1�d : tj a QgÞ;ð3:1Þ

where V runs over all positive dimensional a‰ne algebraic subsets of Cn,
contained in Z (cf. [11], Proposition 2.1; here, it is noted that the periodicity
condition of Proposition 2.1 is not used in the proof, so that it can be applied
to our Z.).

(ii) For every e > 0 there is a positive constant c1ð¼ c1ð �ZZ1; eÞ, depending on �ZZ1

and e) such that

N �ZZ 0
1
ðTÞa c1T

e; T b 1;ð3:2Þ

where �ZZ 0
1 :¼ �ZZ1n �ZZalg

1 , called the transcendental part of �ZZ1 ([9]).

We first analyze the algebraic part �ZZalg
1 , assuming �ZZ alg

1 A j. Let V be as in
(3.1). It follows from Theorem 1.1 that XðexpjV Þ ð� XÞ is a translate of a posi-
tive dimensional semi-abelian subvariety of A. Let Y denote the union of all trans-
lates aþ B 0 ða a XÞ of positive dimensional semi-abelian subvarieties B 0 � A
such that aþ B 0 � X . It follows from [6], Lemma (4.1) (cf. also [7], §5.6.4, and
[11], p. 160) that Y ð� XÞ is an algebraic subset of dimension < n and for every
irreducible component Y 0 of Y , dimSt0ðY 0Þ > 0. We may assume that Y and Y 0

are defined over K . Applying the induction hypothesis to Y , we have finitely
many positive dimensional semi-abelian subvarieties B 0

j � A, 1a ja l 0, and
Pj a Ytor such that

Ytor ¼
[l 0
j¼1

ðPj þ B 0
j torÞ:

Therefore, we have

expð �ZZalg
1 Þ ¼

[l 0
j¼1

ðPj þ B 0
j torÞ; expð �ZZalg

1 ÞZar ¼
[l 0
j¼1

ðPj þ B 0
j Þ:

We may assume that all Pj and B 0
j are defined over K after a finite extension

of K . Then, we have:

3.3 (Invariance). For a torsion point P a expð �ZZalg
1 Þ (resp. expð �ZZ 0

1Þ), all of its
conjugates over K lie in expð �ZZalg

1 Þ (resp. expð �ZZ 0
1Þ).

To analyze the part �ZZ 0
1 we prepare:

407an application of the value distribution theory for semi-abelian varieties



Lemma 3.4. Let the notation be as above. Let P a A be a torsion point of exact
order N. Then, there is a number r > 0 depending only on dimA such that

½KðPÞ : K �b c2N
r; Nb 1;ð3:5Þ

where c2 ¼ c2ðA;KÞ is a positive constant depending only on A and K.

Proof. For the semi-abelian variety A we have the following exact sequence

0 ! G t
m ! A !p A0 ! 0;

where G t
m is an algebraic torus and A0 is an abelian variety; we may assume

that all of the above morphisms and algebraic groups are defined over K .
Then, P0 :¼ pðPÞ is a torsion point of A0, whose exact order is denoted by
N0. Note that N0P a G t

m and N ¼ N1N0, where N1 is the order of N0P ða G t
mÞ.

Then,

c3jðN1Þa ½KðN0PÞ : K �a ½KðPÞ : K �;

where c3 ¼ c3ðt;KÞ is a positive constant and j is the Euler function. It is known
that

jðN1Þg
N1

log logN1
:

If N1 b
ffiffiffiffiffi
N

p
, the proof is finished. Otherwise, we have N0 b

ffiffiffiffiffi
N

p
. We then apply

Masser’s estimate ([5]) for the following second inequality:

c4N
r 0=2

a c4N
r 0

0 a ½KðP0Þ : K �a ½KðPÞ : K �;

where c4 ¼ c4ðA0;KÞ is a positive constant. Thus, we have the lower estimate
(3.5). r

Finish of the proof of Theorem 1.2. Let now P a expð �ZZ 0
1Þ be a torsion

point of exact order N. It follows from Invariance 3.3 that N �ZZ 0
1
ðNÞb ½KðPÞ : K�.

By Lemma 3.4 we see that

N �ZZ 0
1
ðNÞb c2N

r:ð3:6Þ

On the other hand, we have by (3.2)

N �ZZ 0
1
ðNÞa c1N

e:ð3:7Þ

Taking e ¼ r=2 with r in (3.6), we conclude the boundedness of N by (3.6) and
(3.7). Therefore, �ZZ 0

1 is a finite set. r
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4. Distribution of expðVÞ on divisors

Let A be a semi-abelian variety with exponential map

exp : Cn ! A;

and let V � Cg be an irreducible a‰ne algebraic subvariety. Let A be a projective
compactification of A. Because of the results of the previous sections, it might be
of some interest to look at the actual value-distribution of expjV ðVÞ in its Zariski
closure X ðexpjV Þ.

We first deal with a transcendental holomorphic map f : D� ! A from a
punctured disk D� into A. In [8] we dealt with entire holomorphic maps from
the whole plane C into A. Combining the method of [6] with the result and the
arguments explored in [8] and [7] we see that the results of [8] (and [7], Chap. 6)
hold for transcendental holomorphic maps from D� into A. In particular, we have
(cf., also [2], Theorem 5.2)

Theorem 4.1. Let f : D� ! A be a transcendental holomorphic map with
Xð f Þð� AÞ (cf. (2.1)). Let D be an e¤ective algebraic reduced divisor on A such
that the closure of D in A is ample and D 6� f ðD�Þ (where D stands also for the
support of D). Then f ðD�ÞBD is Zariski dense in Xð f ÞBD.

By making use of this we prove:

Theorem 4.2 Let V � Cn be an irreducible complex a‰ne algebraic subvariety,
and let D be as in Theorem 4.1. Then, the intersection DB expðVÞ is Zariski dense
in DBX ðexpjV Þ.

Proof. Let z0 a V be fixed. We consider a pencil of a‰ne algebraic curves
Cg � V , g a G, passing through z0, such that

S
g Cg contains a non-empty open

subset of V in the sense of di¤erential topology. By Theorem 1.1 XðexpjVÞ and
XðexpjCg

Þ are all translates of semi-abelian subvarieties of A passing through
expðz0Þ. Since there are at most countably many such semi-abelian subvarieties,
one finds a curve C0 ¼ Cg such that X ðexpjC0

Þ ¼ X ðexpjV Þ. Then it su‰ces to
show the theorem for C0. Let C1 ! C0 be the normalization and let C1 be its
smooth compactification. Then there is an analytic neighborhood U ð� C1Þ of
a point Q of C1nC1 such that UnfQg is biholomorphic to a punctured disk D�.
Then our assertion is immediate by Theorem 4.1. r

5. An example of a transcendental but not strictly

transcendental map

Let C be a smooth complex projective algebraic curve of genus gb 1 and let
q : C ! JðCÞ be the Jacobian embedding; here, when g ¼ 1, we simply take
q : C ! Cð¼ JðCÞÞ as the identity map. We set A1 ¼ JðCÞ, which is an abelian
variety of dimension g. Let Q a C be a point and set C ¼ CnfQg. Then C is
a‰ne algebraic and there is a finite map p : C ! C.
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Let exp : Cg ! A1 be an exponential map. We take a linear embedding
l : C ! Cg that is in su‰ciently generic direction with respect to the period lat-
tice of exp : Cg ! A1. Then, X ðexp � lÞ ¼ A1. We put

f : x a C ! ðqðxÞ; exp � l � pðxÞÞ a A1 � A1 ¼: A:ð5:1Þ

Proposition 5.2. Let f : C ! A be as above.

(i) The holomorphic map f is transcendental but not strictly transcendental.
(ii) If gb 2, the Zariski closure X ð f Þ of the image f ðCÞ is not a translate of an

abelian subvariety of A.
(iii) If g ¼ 1, X ð f Þ ¼ A.

Proof. (i) The first half is clear. For the latter, note that X ð f Þ � C � A1. With
a subgroup f0g � A1 � A1 � A1 ¼ A we consider the quotient map m : A !
A=f0g � A1 GA1. Then, m � f ¼ qjC : C ! A1 is rational. Therefore, f is not
strictly transcendental.

(ii) Since mðX ð f ÞÞ ¼ qðCÞ, Xð f Þ is not a translate of an abelian subvariety.
(iii) Since dimX ð f Þ ¼ 1, or 2, it su‰ces to deduce a contradiction with assum-

ing dimX ð f Þ ¼ 1. If so, Xð f Þ is a translate of an abelian subvariety of A. We
consider an e¤ective divisor D ¼ C � fwg with w a C. We infer from the defini-
tion of f that X ð f ÞBD is infinite. Therefore, X ð f Þ ¼ D; this is a contradiction.

r

Remark 5.3. Păun–Sibony [10] deals with a similar application of the Bloch–
Ochiai Theorem to the abelian Ax–Lindemann statement ([10], Theorem 5.2).
But with regard to Proposition 5.2 above, in Theorems 5.2 of [10] one might be
able to have only the non-triviality of the stabilizer of the Zariski closure of the
image as in Theorem 2.3, obtained in [6] (Corollary (4.7)).
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[10] M. Păun - N. Sibony, Value distribution theory for parabolic Riemann surfaces, pre-
print v4, arXiv, 8 April 2017.

[11] J. Pila - U. Zannier, Rational points in periodic analytic sets and the Manin-Mumford

conjecture, Rend. Lincei Math. Appl. 19 (2008), 149–162.
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