
Rend. Lincei Mat. Appl. 29 (2018), 431–437
DOI 10.4171/RLM/815

Calculus of Variations — BMO-type norms and anisotropic surface measures, by
Giovanni E. Comi, communicated on February 9, 2018.1

Abstract. — The purpose of this note is to present an anisotropic variant of the BMO-type norm

introduced in [4] and to show its relation with a surface measure, which is indeed a multiple of the
perimeter in the isotropic case. This is done in the spirit of the new characterization of the perimeter

of a measurable set in Rn recently studied by Ambrosio, Bourgain, Brezis and Figalli in [2].
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1. Introduction

Ambrosio, Bourgain, Brezis and Figalli recently studied in [1] and [2] a new char-
acterization of the perimeter of a set in Rn by considering the following func-
tionals originating from a BMO-type seminorm (defined at first in [4]):

Ieð f Þ ¼ en�1 sup
G e

X
Q 0 AG e

Z
Q 0

f ðxÞ �
Z
Q 0

f

����
����dx;ð1:1Þ

where G e is any disjoint collection of e-cubes Q 0 with arbitrary orientation and
cardinality not exceeding e1�n.

In particular, they focused on the case f ¼ 1A; that is, the characteristic func-
tion of a measurable set A, and proved that

lim
e!0

Ieð1AÞ ¼
1

2
minf1;PðAÞg:ð1:2Þ

Moreover, if we remove the cardinality bound on G e from the definition of Ie, by
scaling we obtain

lim
e!0

Ieð1AÞ ¼
1

2
PðAÞ:ð1:3Þ

1This paper is related to a talk given at ‘‘XXVII Convegno Nazionale di Calcolo delle
Variazioni’’ – Levico Terme (Trento) 6–10 February, 2017.



This theme has been further investigated in [6], where the authors considered the
general case of a BV function f , with a particular attention to the SBV space.
We also refer to [7] for a variant of this construction that led to Sobolev and frac-
tional Sobolev norms and spaces.

In [3], Ambrosio and the author consider the more general case of anisotropic
coverings formed by copies of the e-dilation of a bounded open set with Lipschitz
boundary C; that is, not allowing for arbitrary orientations. In doing so, we also
remove the upper bound on cardinality that seems to be very specific of the case
of cubes. Thus, we define

HC
e ðAÞ :¼ en�1 sup
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C 0
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����
����dx;ð1:4Þ

whereHe is any disjoint family of translations C 0 of the set eC with no bounds on
cardinality.

2. The main results

The main result of [3] is the following:

Theorem 2.1. There exists jC : Sn�1 ! ð0;þlÞ, bounded and lower semicon-
tinuous, such that, for any set of finite perimeter A, one has

lim
e!0

HC
e ðAÞ ¼

Z
FA

jCðnAðxÞÞ dHn�1ðxÞ;ð2:1Þ

where FA and nA are respectively the reduced boundary of A and the approximate
unit normal to FA. Moreover, if A is measurable and PðAÞ ¼ l, one has

lim
e!0

HC
e ðAÞ ¼ þl:ð2:2Þ

We give here just a short sketch of the proof, with a highlight on the key steps.
At first, we define suitable localized versions HeðA;WÞ of the functionals, by

taking a covering inside W; and we set HeðA;WÞ to be the lim sup and the
lim inf as e ! 0. We notice that we have the scaling property H lC

e ðA;WÞ ¼
l1�nHC

el ðA;WÞ and H lC
e ðA;WÞ ¼ l1�nHC

e ðA;WÞ, for any l > 0.
A simple comparison argument based on the results of [2] leads to the proof

of (2.2). Indeed, one can show that, if D � C, there exists a constant yðC;DÞ > 0
such that

HD
e ðA;WÞa jCj2

jDj2
yHC

e ðA;WÞ:ð2:3Þ

We notice now that, without loss of generality, we can assume Bð0; rÞ � C for
some r > 0, and that we can pack a cube of side length 2=

ffiffiffi
n

p
in a unit ball.
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Hence, it is enough to compare the functional HB
e , defined using covering with

e-balls, and the functional Ie without the cardinality bound on the covering fami-
lies, thus obtaining

lim inf
e!0

HC
e ðAÞb cn; r lim inf

e!0
HB

e ðAÞb ~ccn; r lim inf
e!0

I 2ffiffi
n

p eð1AÞ ¼ þl;

for any measurable set A of infinite perimeter, by (1.3).
As for the rectifiable case, we fix C, dropping the superscript, and we assume

that diamðCÞ ¼ 1, without loss of generality by the scaling property. Then, we
observe that, for any set E of finite perimeter, HeðE; �Þ and HeðE; �Þ are increas-
ing set functionals defined on the family of open sets, which are traslation in-
variant and ðn� 1Þ-homogeneous; that is, for any x a Rn,

Heðxþ E; xþWÞ ¼ HeðE;WÞ and Heðxþ E; xþWÞ;

and, for any t > 0,

HteðtE; tWÞ ¼ tn�1HeðE;WÞ and HeðtE; tWÞ ¼ tn�1HeðE;WÞ:

In addition, H�ðE; �Þ is superadditive and HþðE; �Þ is almost subadditive, in
the sense that

HþðE;W1 AW2ÞaHþðE;W1Þ þHþðE;W2Þ;

for any open sets Wi � fx a Rn : distðx;WiÞ < dg, i ¼ 1; 2, for some d > 0. More-
over, by the relative isoperimetric inequality which holds in the open bounded set
C with Lipschitz boundary, we obtain an upper bound for Hþ:

HþðE;WÞa 2gPðE;WÞ;ð2:4Þ

where g is the relative isoperimetric constant of C.
We then define the upper and lower density of He by setting

jeðnÞ :¼ HeðSn;QnÞ;

where n a Sn�1, Sn :¼ fx a Rn : x � nb 0g and Qn is a unit cube centered in the
origin having one face orthogonal to n and bisected by the hyperplane qSn. It is
possible to show that j is bounded from above and from below, by (2.4) and by
a comparison argument employing (2.3) and (1.3), respectively. In addition, the
superadditivity, homogeneity and translation invariance of H�ðSn; �Þ imply that

j�ðnÞb sup
t>0

HtðSn;QnÞ;

which then shows that j� is lower semicontinuous and j� ¼ jþ.
Therefore, we can define the density

jðnÞ :¼ lim
e!0

HeðSn;QnÞ;
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and it is clear that, if x a qSn and Qnðx; rÞ is a cube of side length r centered in x
and with one face orthogonal to n, by translation invariance and homogeneity we
have

lim
r!0

HeðSn;Qnðx; rÞÞ
rn�1

¼ HeðSn;Qnðx; 1ÞÞ ¼ jðnÞ:

By an argument employing a modulus of continuity of the map E ! HeðE;WÞ
and the fine properties of the sets of finite perimeter, we can prove a result on the
lower and upper density of HeðE; �Þ with respect to the measure PðE; �Þ.

Theorem 2.2. Let E be a set of finite perimeter and nE be its measure theoretic
interior normal. Then, for Hn�1-a.e. x a FE, we have

D�
P H�ðxÞ :¼ lim inf

r!0

H�ðE;QnEðxÞðx; rÞÞ
PðE;QnEðxÞðx; rÞÞ

b jðnEðxÞÞ;ð2:5Þ

Dþ
P HþðxÞ :¼ lim sup

r!0

HþðE;QnEðxÞðx; rÞÞ
PðE;QnEðxÞðx; rÞÞ

a jðnEðxÞÞ:ð2:6Þ

In particular, it follows that

D�
P H�ðxÞ ¼ Dþ

P HþðxÞ ¼ jðnEðxÞÞ for Hn�1-a:e: x a FE:

To proceed, we apply to the nondecreasing set functions HeðE; �Þ an argument
similar to the classical density theorems for measures, for which we need the
Vitali covering theorem for cubes and properties which replace the additivity.
Indeed, H� is superadditive, and this is su‰cient to achieve a lower bound; how-
ever, HþðE; �Þ is not a subadditive set function on the family of open sets, hence
we consider its inner regular envelope

H �
þðE;WÞ :¼ supfHþðE;W 0Þ : W 0

TWg;

which is actually s-subadditive.

Theorem 2.3. For any Borel set B � FE and t > 0, we have that

lim inf
r!0

H�ðE;QnEðxÞðx; rÞÞ
PðE;QnEðxÞðx; rÞÞ

b tð2:7Þ

for all x a B implies H�ðE;UÞb tHn�1ðBÞ for any open set U � B. On the other
hand, we have that

lim sup
r!0

HþðE;QnEðxÞðx; rÞÞ
PðE;QnEðxÞðx; rÞÞ

a tð2:8Þ
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for all x a B implies H �
þðE;UÞa tPðE;UÞ þ 2gPðE;UnBÞ for any open set

U � B.

We now use the previous results to adapt the classical proofs of the di¤erenti-
ation theorem for Radon measures to HeðE; �Þ.

The key idea is to partition FE in the family of sets fx a FE : jðnEðxÞÞ a
ðtk; tkþ1�g for some t > 1 fixed and k a Z, and then use the density theorems.
Letting t # 1, we obtain

Z
FE

jðnEÞ dHn�1
aH�ðE;RnÞaH �

þðE;RnÞa
Z
FE

jðnEÞ dHn�1:

Indeed, the superadditivity of H�ðE; �Þ ensures the lower estimate and the
s-subadditivity of H �

þðE; �Þ, together with (2.4), provides the upper estimate.
Then, it is easy to show that H �

þðE;RnÞ ¼ HþðE;RnÞ, and so we get (2.1).
In addition, it is possible to achieve a localized version of the main results for

HC
e ðE;AÞ on a rich family of open sets A.
We notice that the right hand side of (2.1) can be seen as an anisotropic ver-

sion of the perimeter, PjðAÞ. However, the anisotropic perimeter is lower semi-
continuous w.r.t. the convergence in measure if and only if the density j is the
restriction to the unit sphere of a positively 1-homogeneous and convex function.
Hence, even though the particular geometry of the covering sets is not essential to
prove the existence of the limit, one might ask if there are conditions under which
j has indeed that property. The problem is nontrivial since we can show that, if C
is the unit square ð0; 1Þ2 in R2, then the positively 1-homogeneous extension of
jC is not convex. In particular, the convexity of C is not a su‰cient condition,
and actually no su‰cient condition is presently known.

It is however not di‰cult to see that j is a constant if we allow for arbitrary
rotations of the covering sets, or if we choose as C a set invariant under rotations.
In particular, if C is the unit open cube in this isotropic setting, we recover
jC 1=2, as in [2].

2.1. Covering with balls

If B ¼ Bð0; 1Þ is the unit ball, for any set E of finite perimeter one has

lim
e!0

HB
e ðEÞ ¼ xPðEÞ;

for some dimensional constant x ¼ xðnÞ. It would be of interest to estimate the
value of such constant, which can be also seen as xn ¼ HB

eðSn;QnÞ, for any
n a Sn�1.

By a result due to Cianchi ([5]), we know that the sharp isoperimetric constant
in the unit ball is 1=ð4on�1Þ, where on is the volume of the unit ball in Rn. This
helps us finding an upper bound for xn, by (2.4).

On the other hand, the derivation of a lower bound is related to the well-
known Kepler’s problem (see for instance [8], [10]). This problem, also called
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‘‘packing problem’’, consists in looking for the best way to place finite unions of
disjoint open balls with the same (small) radius inside a unit cube in Rn in order
to cover as much volume as possible. As the radius tends to 0, it is possible to
show that the ratio of volume covered converges to the best volume fraction
rn a ð0; 1�. Kepler’s problem is highly non trivial, and the value of the constant
rn is presently known only in dimensions 2 and 3 ([11], [9]).

Since we can choose a covering family of e-balls which are inside Qn and are
bisected by qSn, our aim is to give a lower estimate of the cardinality of such
covering. In this way, it is clear that we are looking for the optimal fraction of
the volume of the ðn� 1Þ unit cube QnB qSn which can be covered by a finite
union of disjoint e-balls as e ! 0. Then, the number Ne of ðn� 1Þ-dimensional
e-balls of such an optimal covering will satisfy

Neon�1e
n�1 P rn�1:

These ðn� 1Þ-dimensional e-balls can be seen as the sections qSnBB 0 for some
disjoint n-dimensional e-balls B 0 which are bisected by the hyperplane qSn and
lie inside the cube Qn. Therefore, we get

xn b lim
e!0

en�1 1

2
Ne ¼

rn�1

2on�1
:

Using these observations, we can find the following lower and upper bounds
for the constants xn:

rn�1

2on�1
a xn a

1

2on�1
:

Detailed proofs and other examples can be found in [3].
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