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Abstract. — We prove that the results regarding the Isoperimetric inequality and Cheeger con-

stant formulated in terms of the Minkowski content, obtained by the authors in previous papers
[15, 16] in the framework of essentially non-branching metric measure spaces verifying the local cur-

vature dimension condition, also hold in the stronger formulation in terms of the perimeter.
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1. Introduction

In the recent paper [15] the authors proved the following sharp isoperimetric
inequality:

mþðEÞbIK ;N;DðmðEÞÞ;ð1:1Þ

where E � X is any Borel set, ðX ; d;mÞ is a metric measure space of diameter less
than D verifying the local curvature dimension condition with parameters K and
N, it is moreover essentially non-branching and finally m is a probability mea-
sure. On the right-hand side of (1.1) there is IK ;N;D, the sharp model isoperi-
metric profile function associated to K , N, D, see Section 2.2 for details. On the
left hand side, mþðEÞ denotes the outer Minkowski content of E:

mþðEÞ :¼ lim inf
e#0

mðE eÞ �mðEÞ
e

;ð1:2Þ

where E e :¼ fx a X : dðE; xÞa eg. Outer Minkowski content gives a measure-
ment of the size of qE. It is anyway a less accurate measurement than the one
given by the perimeter.

In the Euclidean space, sets of finite perimeter are those subsets whose char-
acteristic functions have finite total variation, in the BV -sense. If this is the case,
the total variation of the distributional derivative of the characteristic function is
a positive finite measure called perimeter measure; the perimeter of the set is the
total mass of the perimeter measure. Sets of finite perimeter can also be defined



via relaxation in the following equivalent form: given a Borel subset E � Rn and
A open, the perimeter of E in A, PðE;AÞ, is defined as follows

PðE;AÞ :¼ inf lim inf
n!l

Z
A

j‘unj dx : un a LipðAÞ; un ! wE in L1
locðAÞ

� �
;ð1:3Þ

where wE is the characteristic function of E; accordingly E � Rn has finite perim-
eter in Rn if and only if PðE;RnÞ < l. Here LipðAÞ denotes the space of real
valued Lipschitz functions defined over A.

Looking at (1.3), one finds out that all the objects used to define PðE;AÞ have
a clear generalization when we substitute the Euclidian space with any metric
space and the Lebesgue measure with any Borel measure. The theory of sets
with finite perimeter in metric spaces has been developed in great generality in
[1, 2], to which we refer for a deeper insight.

The perimeter function PðE; �Þ, both in the Euclidean and in the metric frame-
work, enjoys many nice properties: it is the restriction to open sets of a Borel
measure having support in the essential boundary of E, q�E; it is absolutely con-
tinuous with respect to the Hausdor¤ measure of codimension 1 restricted on q�E
with density bounded from below and from above; it is used in the coarea for-
mula, etc.. It is therefore more natural to look for inequalities involving PðEÞ
rather than mþðEÞ. Moreover already from their definition one observes that
PðEÞamþðEÞ: indeed in the definition of mþ only the uniform approximation
of E is considered while in PðEÞ any Lipschitz approximation is allowed.

It appears then as a natural question whether or not (1.1) holds true replacing
mþðEÞ with PðEÞ. The scope of this note is to answer a‰rmatively to this ques-
tion: we generalise the results proved in [15] to the perimeter case.

Theorem 1.1. Let ðX ; d;mÞ be a metric measure space with mðX Þ ¼ 1, verify-
ing the essentially non-branching property and CDlocðK ;NÞ for some K a R,
N a ½1;lÞ. Let D be the diameter of X, possibly assuming the value l.

Then for every Borel subset E � X, calling mðEÞ ¼ v a ½0; 1�, it holds

PðEÞbIK ;N;DðvÞ:

The proof of Theorem 1.1 follows the same scheme of the proof of (1.1) con-
tained in [15]. There, the analysis on the one dimensional version of (1.1) per-
mitted to obtain the general (1.1) via a one-dimensional localization argument
based on an L1-Optimal Transportation problem (see also [26]). Here again we
first prove Theorem 1.1 in the easier one-dimensional framework and then we ob-
tain the general case via localization. The one dimensional analysis is contained
in Section 3 while Section 4 contains the proofs of Theorem 1.1, of the Cheeger
isoperimetric inequality (Theorem 4.1) and of the corresponding almost rigidity
result (Corollary 4.2).

We also include below the statements of rigidity, the almost maximal diameter
and the almost rigidity results one can obtain by replacing the outer Minkowski
content with the perimeter.
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Repeating verbatim the proof of [15, Theorem 1.4] we obtain the rigidity for
the perimeter. We set

IðX ;d;mÞðvÞ :¼ inffPðEÞ : E � X ;mðEÞ ¼ vg:

Theorem 1.2. Let ðX ; d;mÞ be an RCD�ðN � 1;NÞ space for some N a ½2;lÞ,
with mðX Þ ¼ 1. Assume that there exists v a ð0; 1Þ such that IðX ;d;mÞðvÞ ¼
IN�1;N;lðvÞ.

Then ðX ; d;mÞ is a spherical suspension: there exists an RCD�ðN � 2;N � 1Þ
space ðY ; dY ;mY Þ with mY ðY Þ ¼ 1 such that X is isomorphic as metric measure

space to ½0; p� �N�1
sin Y.

Moreover, in this case, the following hold:

i) For every v a ½0; 1� it holds IðX ;d;mÞðvÞ ¼ IN�1;N;lðvÞ.
ii) For every v a ½0; 1� there exists a Borel subset A � X with mðAÞ ¼ v such

that

PðAÞ ¼ IðX ;d;mÞðvÞ ¼ IN�1;N;lðvÞ:

iii) If mðAÞ a ð0; 1Þ then PðAÞ ¼ IðX ;d;mÞðvÞ ¼ IN�1;N;lðvÞ if and only if

minðmðAnfðt; yÞ a ½0; p� �N�1
sin Y : t a ½0; rv�gÞ;

mðAnfðt; yÞ a ½0; p� �N�1
sin Y : t a ½p� rv; p�gÞÞ ¼ 0;

where rv a ð0; pÞ is chosen so that
R
½0; rv� cNðsinðtÞÞ

N�1
dt ¼ v, cN being given

by c�1
N :¼

R
½0;p�ðsinðtÞÞ

N�1
dt.

Repeating verbatim the proof of [15, Theorem 1.5] we get

Theorem 1.3 (Almost equality in Lévy–Gromov implies almost maximal diam-
eter). For every N > 1, v a ð0; 1Þ, e > 0 there exists d ¼ dðN; v; eÞ > 0 such that
the following holds. For every d a ½0; d�, if ðX ; d;mÞ is an RCD�ðN � 1� d;N þ dÞ
space satisfying

IðX ;d;mÞðvÞaIN�1;N;lðvÞ þ d;

Then diamððX ; dÞÞb p� e.

The following corollary is a consequence of the Maximal Diameter Theorem
[25], and of the compactness/stability of the class of RCD�ðK ;NÞ spaces, for some
fixed K > 0 and N > 1, with respect to the measured Gromov–Hausdor¤ conver-
gence (for more details see [15, Section 6.4]). We denote by dmGH the measured-
Gromov Hausdor¤ distance between compact probability metric measure spaces.

Corollary 1.4 (Almost equality in Lévy–Gromov implies mGH-closeness to
a spherical suspension). For every N a ½2;lÞ, v a ð0; 1Þ, e > 0 there exists d ¼
dðN; v; eÞ > 0 such that the following hold. For every d a ½0; d�, if ðX ; d;mÞ is an
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RCD�ðN � 1� d;N þ dÞ space satisfying

IðX ;d;mÞðvÞaIN�1;N;lðvÞ þ d;

then there exists an RCD�ðN � 2;N � 1Þ space ðY ; dY ;mY Þ with mY ðY Þ ¼ 1 such
that

dmGHðX ; ½0; p� �N�1
sin YÞa e:

Let us finally mention the closely related independent preprint of Ambrosio,
Gigli and Di Marino [5], where it is proved that on general metric measure spaces
the perimeter is equal to the relaxation of the Minkowski content w.r.t. conver-
gence in measure.

2. Preliminaries

The space of all Borel probability measures over X will be denoted by PðXÞ.
A metric space is a geodesic space if and only if for each x; y a X there exists
g a GeoðX Þ so that g0 ¼ x, g1 ¼ y, with

GeoðXÞ :¼ fg a Cð½0; 1�;X Þ : dðgs; gtÞ ¼ js� tjdðg0; g1Þ; for every s; t a ½0; 1�g:

Recall that for complete geodesic spaces local compactness is equivalent to prop-
erness (a metric space is proper if every closed ball is compact). The most general
case of spaces we will consider are essentially non-branching metric measure
spaces ðX ; d;mÞ verifying CDlocðK ;NÞ; it is therefore not restrictive to assume
that suppðmÞ ¼ X and ðX ; dÞ to be proper and geodesic. Hence we will assume
that the ambient metric space ðX ; dÞ is geodesic, complete, separable and proper
and mðXÞ ¼ 1. We denote by LipðXÞ the space of real-valued Lipschitz functions
over X . Given u a LipðXÞ its slope j‘ujðxÞ at x a X is defined by

j‘ujðxÞ :¼ lim sup
y!x

juðxÞ � uðyÞj
dðx; yÞ :ð2:1Þ

Following [1, 2, 30] and the more recent [3], given a Borel subset E � X and A
open, the perimeter PðE;AÞ is defined as follows

PðE;AÞ :¼ inf lim inf
n!l

Z
A

j‘unjm : un a LipðAÞ; un ! wE in L1ðA;mÞ
� �

:ð2:2Þ

We say that E � X has finite perimeter in X if PðE;X Þ < l. We recall also few
properties of the perimeter functions:

(a) (locality) PðE;AÞ ¼ PðF ;AÞ, whenever mðEDF BAÞ ¼ 0;
(b) (l.s.c.) the map E 7! PðE;AÞ is lower-semicontinuous with respect to the

L1
locðAÞ convergence;

(c) (complementation) PðE;AÞ ¼ PðEc;AÞ.
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Most importantly, if E is a set of finite perimeter, then the set function A !
PðE;AÞ is the restriction to open sets of a finite Borel measure PðE; �Þ in X (see
Lemma 5.2 of [3]), defined by

PðE;BÞ :¼ inffPðE;AÞ : A � B; A openg:

Sometimes, for ease of notation, we will write PðEÞ instead of PðE;X Þ. The outer
Minkowski content mþðEÞ of E are defined respectively by

mþðEÞ :¼ lim inf
e#0

mðE eÞ �mðEÞ
e

;ð2:3Þ

where wE is the characteristic function of E, and E e :¼ fx a X : dðE; xÞa eg.
With a slight abuse of notation we denoted dðE; xÞ :¼ infy AE dðy; xÞ.

It is an immediate consequence of the definition that for open sets PðEÞa
mþðEÞ; let give a short proof for the reader’s convenience. For the result in the
smooth framework of Riemannian manifolds, see for instance [12].

Proposition 2.1 (PðEÞamþðEÞ). Let ðX ; d;mÞ be a m.m.s. as above and
E � X be an open set. Then PðEÞamþðEÞ.

Proof. Let en # 0 be such that

mþðEÞ ¼ lim
en#0

mðE enÞ �mðEÞ
en

;ð2:4Þ

and define unðxÞ :¼ maxf0; 1� e�1
n dðx;EÞg. Notice that if x a E, since E is open

then unC 1 on a small ball around x and therefore j‘unjC 0 on E. Moreover
unC 0 on XnE en so, since XnE en is open, we get j‘unjC0 on XnE en . Finally it
is clear from the definition that j‘unja e�1

n on E ennE. Combining these informa-
tions we obtain Z

X

j‘unjma
mðE ennEÞ

en
:

Now we can pass to the limit as n ! l and use (2.4) to obtain the thesis. r

2.1. Geometry of metric measure spaces

Here we briefly recall the synthetic notions of lower Ricci curvature bounds, for
more detail we refer to [10, 27, 36, 37, 38].

In order to formulate curvature properties for ðX ; d;mÞ we introduce the fol-
lowing distortion coe‰cients: given two numbers K ;N a R with Nb 0, we set
for ðt; yÞ a ½0; 1� � Rþ,
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s
ðtÞ
K;NðyÞ :¼

l; if Ky2 bNp2;

sinðty
ffiffiffiffiffiffiffiffiffiffiffi
K=N

p
Þ

sinðy
ffiffiffiffiffiffiffiffiffiffiffi
K=N

p
Þ

if 0 < Ky2 < Np2;

t if Ky2 < 0 and N ¼ 0; or if Ky2 ¼ 0;

sinhðty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K=N

p
Þ

sinhðy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K=N

p
Þ

if Ky2 a 0 and N > 0:

8>>>>>>>><
>>>>>>>>:

ð2:5Þ

We also set, for Nb 1, K a R and ðt; yÞ a ½0; 1� � Rþ

t
ðtÞ
K ;NðyÞ :¼ t1=Ns

ðtÞ
K;N�1ðyÞ

ðN�1Þ=N :ð2:6Þ

As we will consider only the case of essentially non-branching spaces, we
recall the following definition.

Definition 2.2. A metric measure space ðX ; d;mÞ is essentially non-branching
if and only if for any m0; m1 a P2ðX Þ, with m0, m1 absolutely continuous with
respect to m, any element of OptGeoðm0; m1Þ is concentrated on a set of non-
branching geodesics.

A set F � GeoðXÞ is a set of non-branching geodesics if and only if for any
g1; g2 a F , it holds:

bt a ð0; 1Þ such that Et a ½0; t� g1t ¼ g2t ) g1s ¼ g2s ; Es a ½0; 1�:

The classic definition of CDðK ;NÞ given in [27, 36, 37] can be rewritten as follows
(see [17]).

Definition 2.3 (CD condition). An essentially non-branching m.m.s. ðX ; d;mÞ
verifies CDðK ;NÞ if and only if for each pair m0; m1 a P2ðX ; d;mÞ there exists
n a OptGeoðm0; m1Þ such that for all t a ½0; 1�,

%
�1=N
t ðgtÞb t

ð1�tÞ
K;N ðdðg0; g1ÞÞ%

�1=N
0 ðg0Þ þ t

ðtÞ
K ;Nðdðg0; g1ÞÞ%

�1=N
1 ðg1Þ;ð2:7Þ

for n-a.e. g a GeoðX Þ, where ðetÞ]n ¼ %tm.

It is worth recalling that if ðM; gÞ is a Riemannian manifold of dimension n
and h a C2ðMÞ with h > 0, then the m.m.s. ðM; g; h volÞ verifies CDðK;NÞ with
Nb n if and only if (see Theorem 1.7 of [37])

Ricg;h;N bKg; Ricg;h;N :¼ Ricg � ðN � nÞ
‘2
gh

1
N�n

h
1

N�n

:

In particular, if I � R is any interval, h a C2ðIÞ and L1 is the one-dimensional
Lebesgue measure, the m.m.s. ðI ; j � j; hL1Þ verifies CDðK ;NÞ if and only if

ðh 1
N�1Þ00 þ K

N � 1
h

1
N�1 a 0:ð2:8Þ
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We also mention the more recent Riemannian curvature dimension condition
RCD�. This consists in an enforcement of the so called reduced curvature dimen-
sion condition, denoted by CD�ðK ;NÞ and introduced in [10]: the additional con-
dition is that the Sobolev space W 1;2ðX ;mÞ is an Hilbert space, see [7, 8, 6].
Remarkable features of the RCD�ðK ;NÞ condition are their rectifiability and the
equivalence with the dimensional Bochner inequality [19, 9].

The reduced CD�ðK ;NÞ condition asks for the same inequality (2.7) of
CDðK ;NÞ but the coe‰cients t

ðtÞ
K;Nðdðg0; g1ÞÞ and t

ð1�tÞ
K;N ðdðg0; g1ÞÞ are replaced by

s
ðtÞ
K;Nðdðg0; g1ÞÞ and s

ð1�tÞ
K;N ðdðg0; g1ÞÞ, respectively. For both definitions there is a

local version; here we only state the one for CDðK ;NÞ, being clear what would
be the one for CD�ðK ;NÞ.

Definition 2.4 (CDloc condition). An essentially non-branching m.m.s.
ðX ; d;mÞ satisfies CDlocðK ;NÞ if for any point x a X there exists a neighbourhood
XðxÞ of x such that for each pair m0; m1 a P2ðX ; d;mÞ supported in X ðxÞ there
exists n a OptGeoðm0; m1Þ such that (2.7) holds true for all t a ½0; 1�. The support
of ðetÞ]n is not necessarily contained in the neighbourhood X ðxÞ.

2.2. The model Isoperimetric profile function IK;N;D

If K > 0 and N a N, by the Levy–Gromov isoperimetric inequality we know
that, for N-dimensional smooth manifolds having RiccibK , the isoperimetric
profile function is bounded below by the one of the N-dimensional round sphere
of the suitable radius. In other words the model isoperimetric profile function is
the one of SN . For Nb 1, K a R arbitrary real numbers the situation is more
complicated, and just recently E. Milman [29] discovered what is the model iso-
perimetric profile. In this short section we recall its definition.

Given d > 0, set

sdðtÞ :¼
sinð

ffiffiffi
d

p
tÞ=

ffiffiffi
d

p
d > 0

t d ¼ 0

sinhð
ffiffiffiffiffiffi
�d

p
tÞ=

ffiffiffiffiffiffi
�d

p
d < 0

8><
>: ; cdðtÞ :¼

cosð
ffiffiffi
d

p
tÞ d > 0

1 d ¼ 0

coshð
ffiffiffiffiffiffi
�d

p
tÞ d < 0

8><
>: :

Given a continuous function f : R ! R with f ð0Þb 0, we denote by fþ : R !
Rþ the function coinciding with f between its first non-positive and first positive
roots, and vanishing everywhere else, i.e. fþ :¼ f w½x�;xþ� with x� ¼ supfxa 0;
f ðxÞ ¼ 0g and xþ ¼ inffx > 0; f ðxÞ ¼ 0g.

Given H;K a R and N a ½1;lÞ, set d :¼ K=ðN � 1Þ and define the following
(Jacobian) function of t a R:

JH;K ;NðtÞ :¼
wft¼0g N ¼ 1; K > 0

wfHtb0g N ¼ 1; K a 0�
cdðtÞ þ H

N�1 sdðtÞ
�N�1

þ N a ð1;lÞ

8><
>: :ð2:9Þ

As last piece of notation, given a non-negative integrable function f on a closed
interval L � R, we denote with mf ;L the probability measure supported in L with
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density (with respect to the Lebesgue measure) proportional to f there. In order
to simplify a bit the notation we will write IðL; f Þ in place of IðL; j�j;mf ;LÞ. The model
isoperimetric profile for spaces having RiccibK , for some K a R, dimension
bounded above by Nb 1 and diameter at most D a ð0;l� is then defined by

IK ;N;DðvÞ :¼ inf
H AR;a A ½0;D�

Ið½�a;D�a�;JH;K ;N ÞðvÞ; Ev a ½0; 1�:ð2:10Þ

The formula above has the advantage of considering all the possible cases in
just one equation, for the explicit discussion of the di¤erent cases we refer to
[29, Section 4]. Here let us just note that when N is an integer,

Ið½0;
ffiffiffiffiffiffi
N�1
K

p
p�; sinð

ffiffiffiffiffiffi
K

N�1

p
tÞN�1Þ ¼ IðSN ;gK

can;m
K
canÞ

by the isoperimetric inequality on the sphere, so the case K > 0 with N integer
corresponds to Lévy–Gromov isoperimetric inequality.

2.3. 1-D localization

Before stating the next result let us recall that CD�ðK ;NÞ and CDlocðK;NÞ are
equivalent if 1 < N < l or N ¼ 1 and K b 0, but for N ¼ 1 and K < 0 the
CDlocðK ;NÞ condition is strictly stronger than CD�ðK ;NÞ.

Theorem 2.5 ([15, Theorem 5.1]). Let ðX ; d;mÞ be an essentially non-branching
metric measure space verifying the CDlocðK;NÞ condition for some K a R and
N a ½1;lÞ. Let f : X ! R be m-integrable such that

R
X
fm ¼ 0 and assume the

existence of x0 a X such that
R
X
j f ðxÞjdðx; x0ÞmðdxÞ < l.

Then the space X can be written as the disjoint union of two sets Z and T with
T admitting a partition fXqgq AQ and a corresponding disintegration of m

OT,
fmqgq AQ such that:

• For any m-measurable set B � T it holds

mðBÞ ¼
Z
Q

mqðBÞqðdqÞ;

where q is a probability measure over Q defined on the quotient s-algebra Q.

• For q-almost every q a Q, the set Xq is a geodesic and mq is supported on it.
Moreover q 7! mq is a CDðK ;NÞ disintegration, i.e. for q-a.e. q a Q the follow-
ing curvature inequality holds:

hqðð1� sÞt0 þ st1Þ1=ðN�1Þ
b s

ð1�sÞ
K;N�1ðt1 � t0Þhqðt0Þ1=ðN�1Þð2:11Þ

þ s
ðsÞ
K ;N�1ðt1 � t0Þhqðt1Þ1=ðN�1Þ;

for all s a ½0; 1� and for all t0; t1 a Domðgðq; �ÞÞ with t0 < t1. If N ¼ 1, for q-a.e.
q a Q the density hq is constant.

• For q-almost every q a Q, it holds
R
Xq

fmq ¼ 0 and f ¼ 0 m-a.e. in Z.
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Let us also mention that we can define a Borel ray map g : DomðgÞ � Q� R
! X such that for every q a Q, the map R � Domðgðq; �ÞÞ C t 7! gðq; tÞ is an arc-
length parametrisation of the geodesic Xq, i.e.

Xq ¼ gðq; �ÞðDomðgðq; �ÞÞÞ and dðgðq; sÞ; gðq; tÞÞ ¼ jt� sj;
Eq a Q; Es; t a Domðgðq; �ÞÞ:

For more details see [11, Section 4], [15, Section 3] and references therein.

3. Isoperimetric inequalities in terms of the perimeter

3.1. The one dimensional case

Given K a R, N a ½1;þlÞ and D a ð0;þl�, consider the following family of
probability measures

Fs
K;N;D :¼ fm a PðRÞ : suppðmÞ � ½0;D�; m ¼ hmL

1; hm verifies ð2:11Þð3:1Þ
and is continuous if N a ð1;lÞ; hmC const if N ¼ 1g:

In what follows we will assume hm to be defined on the whole R, vanishing outside
of suppðmÞ.

Denote with Is
K;N;D the corresponding comparison synthetic isoperimetric

profile

Is
K;N;DðvÞ :¼ inffmþðAÞ : A � R; mðAÞ ¼ v; m a Fs

K;N;Dg;

where mþðAÞ denotes the Minkowski content. The term synthetic refers to
m a Fs

K ;N;D meaning that the Ricci curvature bound is satisfied in its synthetic
formulation: if m ¼ h �L1, then h verifies (2.11). It was proved in [15, Theorem
6.3] that for every v a ½0; 1� it holds Is

K;N;DðvÞ ¼ IK;N;DðvÞ.
It is worth also specifying the formula (2.2) to the one dimensional case. So if

ðsuppðmÞ; j � j; mÞ a Fs
K ;N;D and B is a Borel set:

PðsuppðmÞ; j�j;mÞðBÞ ¼ inf

(
lim inf
n!l

Z
suppðmÞ

ju 0
njhmL1 :ð3:2Þ

un a LipðsuppðmÞÞ; un ! wB in L1
locðmÞ

)
:

Since m a Fs
K;N;D, it follows that suppðmÞ is an interval that, up to a translation, is

a subset of ½0;D�. Note that from the locality of the perimeter, if E � suppðmÞ is a
Borel set, then

PðsuppðmÞ; j�j;mÞðEÞ ¼ Pð½0;D�; j�j;mÞðEÞ:
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In the next lemma we show that, in the one dimensional case, the perimeter has a
precise representation.

Proposition 3.1. Let m ¼ hmL
1 a Fs

K ;N;D and let E � suppðmÞ be a Borel sub-
set with Pð½0;D�; j�j;mÞðEÞ < l. Then there exist countably many disjoint closed inter-
vals f½ai; bi�gi AN such that mðEh

S
i AN½ai; bi�Þ ¼ 0, and

Pð½0;D�; j�j;mÞðEÞ ¼
X
i AN

ðhmðaiÞ þ hmðbiÞÞ:

Note that the disjoint closed intervals given by Proposition 3.1 are not neces-
sarily subsets of suppðmÞ. In particular it may happen that hmðaiÞ ¼ 0 or
hmðbjÞ ¼ 0 for some i; j a N. Note moreover that from the disjointness of the
family of closed intervals verifying mðEh

S
i AN½ai; bi�Þ ¼ 0 it follows also their

uniqueness inside suppðmÞ.

Proof.

Step 1. E is countable union of intervals.
If D ¼ 0 everything trivializes so we can assume D > 0. Possibly choosing

a smaller Db 0 and operating a shift of the interval, we can also assume that
0 ¼ infft a ½0;D� : hmðtÞ > 0Þg and D ¼ supft a ½0;D� : hmðtÞ > 0Þg.

Since 1 ¼ mð½0;D�Þ ¼
R
½0;D� hmðtÞL

1ðdtÞ, there exists t0 a ½0;D� such that
hmðt0Þb 1=D. From the concavity condition (2.11) it is not di‰cult to check
that hmðtÞ > 0 for all t a ð0;DÞ and for every e > 0 and any t a ½e;D� e� it holds
hmðtÞbCðeÞ > 0. Then from (3.2):

Pð½0;D�; j�j;mÞðEÞbPð½e;D�e�; j�j;mÞðEÞbCðeÞ � Pð½e;D�e�; j�j;L1ÞðEÞ:

It follows from standard results on one-dimensional sets of finite perimeter w.r.t.
the Lebesgue measure (see for instance [4]) that, up to an L1-negligible subset,
EB ½e;D� e� is the finite union of disjoint closed intervals contained in ½e;D� e�,
where E denotes the closure of E, and E

�

B ½e;D� e� is the finite union of the
interior of the intervals contained in ½e;D� e� considered before, where E

�

denotes
the interior of E. Repeating the same argument with a sequence of en ! 0, it fol-
lows that E, up to a set of m-measure zero, is the countable union of disjoint
closed intervals, say f½ai; bi�gi AN.

Step 2. Representation formula: we now prove the identity of the claim assum-
ing

S
i AN½ai; bi� � ð0;DÞ, with ai; bi ! 0 as i ! l, as the general case follows

similarly.
Let us first prove the inequality

Pð½0;D�; j�j;mÞðEÞb
X
i AN

hmðaiÞ þ hmðbiÞ:ð3:3Þ
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First of all, since the perimeter is additive over sets at strictly positive distance, we
observe that Pð½e;D�e�; j�j;mÞðEÞ ¼ Pð½e;D�e�; j�j;mÞð

S
i A Ie

½ai; bi�Þ, for every finite subset
e > 0. It follows that

Pð½0;D�; j�j;mÞðEÞb
X
i AN

Pð½0;D�; j�j;mÞð½ai; bi�Þ:ð3:4Þ

Now we show that when ½ai; bi� � ð0;DÞ (the general case follows similarly):

Pð½0;D�; j�j;mÞð½ai; bi�Þ ¼ hmðaiÞ þ hmðbiÞ:ð3:5Þ

First notice that by taking un constantly equal to 1 on ½ai; bi�, equal to 0 on
½0; ai � 1=n� and ½bi þ 1=n;D�, and a‰ne elsewhere, we get

Z
suppðmÞ

junðxÞ0jhmðxÞ dx ¼ 1

n

�Z
½ai�1=n;ai�

hmðxÞ dxþ
Z
½bi;biþ1=n�

hmðxÞ dx
�
;

yielding, by the continuity of hm, Pð½0;D�; j�j;mÞð½ai; bi�Þa hmðaiÞ þ hmðbiÞ.
Consider now any sequence of Lipschitz functions un converging to w½ai ;bi� in

L1ðmÞ and observe that without loss of generality we can assume that 0a un a
1 (otherwise we can truncate the function finding a sequence with lower energy).
For the same reason, possibly taking a subsequence un ! w½ai ;bi � pointwise a.e., we
can assume that

u�1
n ðð0; 1=nÞÞ ¼ ½0; x�

n ÞA ðxþ
n ;D�

and

u�1
n ðð1� 1=n; 1�Þ ¼ ðy�n ; yþn Þ;

for some xen , yen with x�
n < y�n < yþn < xþ

n , and x�
n ; y

�
n ! ai and xþ

n ; y
þ
n ! bi.

Finally we may also assume ju 0
nj ¼ u 0

n in ðx�
n ; y

�
n Þ and ju 0

nj ¼ �u 0
n in ðxþ

n ; y
þ
n Þ.

Now definining

ûunðxÞ :¼
1=n; ½0; x�

n ÞA ðxþ
n ;D�;

1� 1=n; ðy�n ; yþn Þ;
un; elsewhere;

8<
:

we obtain an approximating function with jûu 0
nja ju 0

nj, L1-a.e. over ½0;D�. Inte-
grating by parts, it follows straightforwardly that

lim
n!l

Z
suppðmÞ

jûu 0
nðxÞjhðxÞ dx ¼ hmðaiÞ þ hmðbiÞ:

Therefore (3.5) is proved and it follows that Pð½0;D�; j�j;mÞðEÞb
P

i AN hmðaiÞ þ
hmðbiÞ.
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To show the converse inequality, consider un to be the a‰ne approximations
of

P
ian w½ai;bi �, constructed as follows: assume that ai > biþ1 > aiþ1 and ai; bi ! 0

as i ! l; then for each n consider mðnÞ a N such that

ai � biþ1 >
2

mðnÞ ; for each ia n:

and such that

lim
n!l

nLn

mðnÞ ¼ 0;ð3:6Þ

where Ln is the Lipschitz constant of hm restricted on ½bnþ1; b1 þ ðD� b1Þ=2�.
Then define un to be equal 1 on

S
ian½ai; bi�, to be 0 on

½0; an � 1=mðnÞ�
[
i<n

½biþ1 þ 1=mðnÞ; ai � 1=mðnÞ�A ½b1 þ 1=mðnÞ;D�;

and un a‰ne elsewhere, so that un will be Lipschitz. It follows thatZ
suppðmÞ

ju 0
nðxÞjhmðxÞ dx ¼

X
ian

mðnÞ
�Z

½ai�1=mðnÞ;ai �
hmðxÞ dxþ

Z
½bi ;biþ1=mðnÞ�

hmðxÞ dx
�

a
X
ian

hmðaiÞ þ
1

mðnÞLn þ hmðbiÞ

a
nLn

mðnÞ þ
X
i AN

hmðaiÞ þ hmðbiÞ:

It follows from (3.6) that

Pð½0;D�; j�j;mÞðEÞa lim inf
n!l

Z
suppðmÞ

ju 0
nðxÞjhmðxÞ dxa

X
i AN

hmðaiÞ þ hmðbiÞ:

The claim follows. r

We then obtain the following

Corollary 3.2. Let m ¼ hmL
1 a Fs

K;N;D, then for any v a ½0; 1�

inffPð½0;D�; j�j;mÞðEÞ : E � ½0;D�; mðEÞ ¼ vgð3:7Þ
¼ inffmþðEÞ : E � ½0;D�; mðEÞ ¼ vgbIK;N;DðvÞ:

Proof. By Proposition 3.1, for each E � ½0;D� of finite perimeter there exists
F ¼

S
i AN½ai; bi� such that mðEDF Þ ¼ 0 and

Pð½0;D�; j�j;mÞðEÞ ¼ Pð½0;D�; j�j;mÞðFÞ ¼
X
i AN

hmðaiÞ þ hmðbiÞ:
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We consider for each n a N the family En of sets E of finite perimeter admitting a
representative F made of at most n disjoint closed intervals. Since

inffPð½0;D�; j�j;mÞðEÞ : E � ½0;D�; mðEÞ ¼ vgð3:8Þ
¼ inf

n AN
inf
E AEn

fPð½0;D�; j�j;mÞðEÞ : E � ½0;D�; mðEÞ ¼ vg;

and on finite unions of closed intervals the Minkowski content and the perimeter
coincide, it follows that

Pð½0;D�; j�j;mÞðEÞb inffmþðBÞ : B � ½0;D�; mðBÞ ¼ vg:

To obtain the reverse inequality, just observe that for each set E of finite perim-
eter, by removing the boundary points to the intervals ½ai; bi�, we can also take F
open. Then from Proposition 2.1 it follows that

Pð½0;D�; j�j;mÞðEÞ ¼ Pð½0;D�; j�j;mÞðF ÞamþðF ÞamþðEÞ:

Taking the inf, equality in (3.7) follows. To prove the inequality in (3.7), just
recall that it is one of the main results of [29]. r

4. Proof of the main results

Proof of Theorem 1.1. First of all we can assume D < l and therefore
m a P2ðXÞ: indeed from the Bonnet–Myers Theorem if K > 0 then D < l,
and if Ka 0 and D ¼ l then the model isoperimetric profile trivializes, i.e.
IK ;N;lC 0 for K a 0. Also, for v ¼ 0; 1 one has IK;N;Dð0Þ ¼ IK ;N;Dð1Þ ¼ 0, so
again there is nothing to prove. Therefore, without loss of generality we can
assume v ¼ mðEÞ a ð0; 1Þ.

Let fungn AN � LipðX Þ be such that

PðEÞ ¼ lim
n!l

Z
X

j‘unjm; un ! wE in L1ðX ;mÞ:ð4:1Þ

Consider the m-measurable function f ðxÞ :¼ wEðxÞ � v and notice thatR
X
fm ¼ 0. Thus f verifies the hypothesis of Theorem 2.5 and noticing that f is

never null, we can decompose X ¼ Y AT with

mðYÞ ¼ 0; m
OT ¼

Z
Q

mqqðdqÞ;

with mq ¼ gðq; �Þ]ðhq �L1Þ; moreover, for q-a.e. q a Q, the density hq verifies
(2.11) and Z

X

f ðzÞmqðdzÞ ¼
Z
Domðgðq; �ÞÞ

f ðgðq; tÞÞ � hqðtÞL1ðdtÞ ¼ 0:
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Therefore

v ¼ mqðEB fgðq; tÞ : t a RgÞ ¼ ðhqL1Þðgðq; �Þ�1ðEÞÞ; for q-a:e: q a Q:ð4:2Þ

Observing that the map Domðgðq; �Þ C t 7! un � gðq; tÞ a R is Lipschitz and
therefore di¤erentiable L1-a.e., we get that j‘unjðgðq; tÞÞb d

dt
ðun � gðq; tÞÞ

�� �� for
L1-a.e. t a Domðgðq; �ÞÞ. This implies

Z
X

j‘unjðxÞmðdxÞ ¼
Z
T

j‘unjðxÞmðdxÞmðdxÞ

¼
Z
Q

�Z
X

j‘unjðxÞmqðdxÞ
�
qðdqÞ

b

Z
Q

�Z
Domðgðq; �ÞÞ

d

dt
ðun � gðq; tÞÞ

����
����hqðtÞL1ðdtÞ

�
qðdqÞ:

Now we note that for q-a.e. q a Q, it holds un � gðq; �Þ ! w
gðq; �Þ�1ðEÞ in

L1
locðDomðgðq; �ÞÞ; hqL1Þ, therefore passing to the limit as n ! l in the last

inequality, using Fatou’s Lemma and the definition of perimeter we get

PðEÞ ¼ lim
n!l

Z
X

j‘unjðxÞmðdxÞ

b

Z
Q

�Z
Domðgðq; �ÞÞ

lim inf
n!l

d

dt
ðun � gðq; tÞÞ

����
����hqðtÞL1ðdtÞ

�
qðdqÞ

b

Z
Q

�Z
Domðgðq; �ÞÞ

PDomðgðq; �Þ; j�j;hqL1Þðgðq; �Þ
�1ðEÞÞ

�
qðdqÞ:

But by construction ðhqL1Þðgðq; �Þ�1ðEÞÞ ¼ v for q-a.e. q a Q, therefore thanks

to Corollary 3.2 we infer that PDomðgðq; �Þ; j�j;hqL1Þðgðq; �Þ
�1ðEÞÞbIK;N;DðvÞ. We

conclude that

PðEÞb
Z
Q

IK;N;DðvÞqðdqÞ ¼ IK ;N;DðvÞ;

since qðQÞ ¼ 1. r

4.1. The Cheeger constant

Recall that the Cheeger constant hðX ;d;mÞ is defined by

hðX ;d;mÞ :¼ inf
PðEÞ
mðEÞ : E � X is Borel and mðEÞ a ð0; 1=2�

� �
:
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In analogy with the model isoperimetric profile, we can also define a model
Cheeger constant as follows. The model Cheeger constant for spaces having Ricci
curvature bounded below by K a R, dimension bounded above by Nb 1 and
diameter at most D a ð0;l� is defined by

hK ;N;D :¼ inf
H AR;a A ½0;D�

hð½�a;D�a�;JH;K ;N Þ;ð4:3Þ

where JH;K ;N was defined in [29] (see also [15]), see also thereafter for a more
explicit form.

In [16, Section 5], the authors studied the variant of the Cheeger constant
when the perimeter is replaced by the outer Minkowski content and used the
results of [15] to infer sharp comparison and almost rigidity. Since after this short
note we have at disposal the same results expressed in terms of the perimeter
(which we remark are a priori stronger), we can repeat verbatim the proofs of
[16, Theorem 5.3, Corollary 5.3] just replacing the outer Minkowski content by
the perimeter and obtain the following results.

Theorem 4.1. Let ðX ; d;mÞ be an essentially non-branching CDlocðK;NÞ-space
for some K a R, N a ½1;lÞ, with mðX Þ ¼ 1 and having diameter D a ð0;þl�.
Then

hðX ;d;mÞ b hK;N;D:ð4:4Þ

Moreover, for K > 0 the following holds: for every N > 1 and e > 0 there exists
d ¼ dðK;N; eÞ such that, for every d a ½0; d�, if ðX ; d;mÞ is an essentially non-
branching CDlocðK � d;N þ dÞ-space such that

hðX ;d;mÞ a h
K;N;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN�1Þ=K

p þ d ð¼ hðSNð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=KÞ

p
Þ þ d if N a NÞ;ð4:5Þ

then diamðX Þb p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=K

p
� e.

Before stating the last result let us observe that if ðX ; d;mÞ is an RCD�ðK ;NÞ
space for some K > 0 then, called d 0 :¼

ffiffiffiffiffiffiffiffi
K

N�1

q
d, we have that ðX ; d 0;mÞ is

RCD�ðN � 1;NÞ; in other words, if the Ricci lower bound is K > 0 then up to
scaling we can assume it is actually equal to N � 1.

Corollary 4.2. For every N a ½2;lÞ, e > 0 there exists d ¼ dðN; eÞ > 0 such
that the following hold. For every d a ½0; d�, if ðX ; d;mÞ is an RCD�ðN � 1� d;
N þ dÞ-space with mðX Þ ¼ 1, satisfying

hðX ;d;mÞ a hN�1;N;p þ d ð¼ hðSNÞ þ d if N a NÞ;

then there exists an RCD�ðN � 2;N � 1Þ space ðY ; dY ;mY Þ with mY ðY Þ ¼ 1 such
that

dmGHðX ; ½0; p� �N�1
sin YÞa e:
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In particular, if ðX ; d;mÞ is an RCD�ðN � 1;NÞ-space satisfying hðX ;d;mÞ ¼
hN�1;N;pð¼ hðSNÞ if N a NÞ, then it is isomorphic to a spherical suspension; i.e.
there exists an RCD�ðN � 2;N � 1Þ space ðY ; dY ;mY Þ with mY ðYÞ ¼ 1 such that
ðX ; d;mÞ is isomorphic to ½0; p� �N�1

sin Y.
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