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Abstract. — We consider existence and uniqueness of solutions to elliptic problems set in open

subsets of RN, bounded and unbounded. These problems are characterised by the presence of a lin-
ear higher order term and a nonlinear lower order term which may blow up where the solution is

zero and which involves a distribution.
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1. Introduction

The aim of this paper is to find u solution to

u a W
1;2
0 ðWÞ;Z

W

AðxÞ‘u � ‘v dx ¼ 3m;HðuÞv4 Ev a V ;

8><
>:ð1:1Þ

where V is a space of functions containing the Schwartz-space DðWÞ of Cl-
functions with compact support in W (see [2], [7], [11] for the references on the
spaces used here). The open set W can be bounded or unbounded in RN, m is a
suitable distribution defined on W, AðxÞ is a bounded and elliptic matrix, namely
such that there exist two positive constants l and L such that

ljxj2 aAðxÞx � x; jAðxÞxjaLjxjð1:2Þ

for all x a RN and for almost every x a W. Finally, H is a continuous func-
tion outside the origin that may blow up at zero. Note that the symbol 3� ; �4
stands for the duality product between an element of some Sobolev space and
an element of its dual, a dot denotes the scalar product in RN , j j the Euclidean
norm.

Regarding m, we will always assume that m a W�1;2ðWÞ, the dual of W 1;2
0 ðWÞ,

or that m a W
�1;2
loc ðWÞ. At some point we will suppose in addition that m is a non-

negative measure. Recall that, if m a W�1;2ðWÞ, by the Lax–Milgram Theorem

there exists one and only one element m̂m a W
1;2
0 ðWÞ such that



3m; v4 ¼
Z
W

AðxÞ‘m̂m � ‘v dx Ev a W 1;2
0 ðWÞ andð1:3Þ

km̂mk
W

1; 2
0

ðWÞ a
1

l
kmkW �1; 2ðWÞ

and, since

3m; v4a
�Z

W

jAðxÞ‘m̂mj2 dx
�1

2
�Z

W

j‘vj2 dx
�1

2

;

we have also

kmkW �1; 2ðWÞ aLkm̂mk
W

1; 2
0

ðWÞ:

Here the symbol k kX denotes the norm in a Banach space X .
Regarding the function H, we will consider the case where H is continuous

and bounded on the whole R and the case where H admits a singularity at the
origin. In the first case, we will require that H is Lipschitz continuous on R and
such that

ðsHðsÞÞ0 a LlðRÞ:ð1:4Þ

In the case where lims!0þ HðsÞ ¼ þl, we will instead require that H is a positive
function defined on Rþ (one can imagine that H is defined also on R� and that it
is identically zero on this set), nonincreasing, Lipschitz continuous on ðe;þlÞ for
all e > 0 and such that

bK : Rþ ! Rþ s:t: HaK and s:t: ðsKðsÞÞ a W 1;lðRþÞ:ð1:5Þ

Hence in this case the problem (1.1) may be singular since, by assumptions, the
right hand side may blow up at zero.

In literature we can find many papers dealing with possibly singular elliptic
problems on bounded domains Wb (the subscript b is used to underline the
boundedness of the domain) whose model is

�divðAðx;‘uÞÞ ¼ HðuÞm in Wb;

u > 0 in Wb;

u ¼ 0 on qWb;

8<
:ð1:6Þ

where lims!0 HðsÞ < or ¼ þl, A : RN � RN ! RN satisfies Leray–Lions con-
ditions of p-Laplace type with 1 < p < N and m is a suitable nonnegative datum.

In the singular case with regular positive data m, at least Hölder continuous,
and with a linear and uniformly elliptic higher order term, we recall the pioneer-
ing papers [5, 12], where the existence and uniqueness of a classical solution to
(1.6) is proven under suitable assumptions on the singularity H.

In the singular case with data m less regular, namely under the assumption that
m is a nonnegative bounded Radon measure or a nonnegative L1ðWbÞ function,
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the main references are [1, 8, 10, 14, 15]. In this more general setting the strategy
to solve this kind of problems is to approximate them with nonsingular ones,
‘‘truncating’’ in some sense the singular right hand side, and to prove a priori
estimates and compactness results on the sequence of approximate solutions in
order to give at least a distributional formulation to the singular problem, that
appears as the limit of the approximations.

Finally recall [13] for the nonsingular case with quadratic coerciveness of the
higher order term and [9] for the (possibly) singular case with generic coercive-
ness p a ð1;NÞ of the higher order term. In both papers the data are nonnegative
Radon measures on Wb.

The main idea underling this note is to solve the (possibly singular) problem
(1.1) using the representation (1.3) given by the Lax–Milgram Theorem and the
properties (1.4) and (1.5) to deal with the possibly singular right hand side.

We would like to point out here that we deal also with the case of W un-
bounded. We also notice that, to deal with (1.1), we avoid to use the notion of
renormalized solution introduced in [6] as done, for example, in [10, 9, 13].

The plan of the paper is as follows. In Section 2 we will solve problem (1.1)
in the case in which W is a bounded subset of RN and H is a continuous and
bounded function on the whole R. In this section we will solve (1.1) with test
functions in W 1;2

0 ðWÞBLlðWÞ. Section 3 is devoted to find a solution to (1.1) in
the case in which W is bounded and H blows up at the origin. In Sections 4 and 5
we will analyze problem (1.1) in the case of an unbounded domain W and of a
nonlinearity H that can be both bounded on the whole R and singular at the
origin. In Section 5 we relax our requests on m assuming m a W�1;2

loc ðWÞ at the
expense of considering cylindrical unbounded open subsets W.

2. W and H bounded

We will start by the case in which W is a bounded subset of RN and H : R ! R is
a continuous and bounded function on the whole real line.

2.1. Approximation of m

We have the following results.

Lemma 2.1. Let m a W�1;2ðWÞ, AðxÞ be a matrix such that (1.2) holds and m̂m
be defined by (1.3). Let e > 0 and ve be the unique weak solution to the following
singular perturbation problem

ve a W
1;2
0 ðWÞ;

�e divðAðxÞ‘veÞ þ ve ¼ m̂m in W:

(
ð2:1Þ

Then, as e ! 0, one has

ve ! m̂m in W
1;2
0 ðWÞð2:2Þ
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and if m is a nonnegative measure, it holds

�divðAðxÞ‘veÞb 0 and ve a m̂m:ð2:3Þ

Proof. In order to lighten the notation we will denote with Að�Þ the operator
�divðAðxÞ‘�Þ. From (2.1) one deduces that

AðveÞ ¼
ðm̂m� veÞ

e
a W 1;2

0 ðWÞ:

Applying A to the equation of (2.1), by (1.3) one gets.

eAðAðveÞÞ þAðveÞ ¼ mð2:4Þ

This implies

3m�AðveÞ; j4 ¼ e

Z
W

AðxÞ‘ðAðveÞÞ � ‘j dx Ej a W
1;2
0 ðWÞ:

Thus it results

km�AðveÞkW �1; 2ðWÞ a
�Z

W

jAðxÞ‘ðeAðveÞÞj2 dx
�1

2

:ð2:5Þ

If we take eAðveÞ as test function in (2.4), we arrive toZ
W

AðxÞ‘ðeAðveÞÞ � ‘ðeAðveÞÞ dxþ ekAðveÞk2L2ðWÞ ¼ 3m; eAðveÞ4ð2:6Þ

and so we deduce

l

Z
W

j‘ðeAðveÞÞj2 dxa kmkW �1; 2ðWÞ

�Z
W

j‘ðeAðveÞÞj2 dx
�1

2

:

This implies that eAðveÞ is bounded in W
1;2
0 ðWÞ and thus there exists v0 a

W
1;2
0 ðWÞ such that, up to a subsequence

eAðveÞ * v0 in W
1;2
0 ðWÞ; eAðveÞ ! v0 in L2ðWÞ:

So, going back to (2.6), one deduces also that

lim
e!0

keAðveÞk2L2ðWÞ a lim
e!0

e3m; eAðveÞ4 ¼ 0

Then v0 ¼ 0 and, by uniqueness of the limit, the convergence above holds true for
the whole sequence. Back to (2.6), it results also that

lim
e!0

keAðveÞk2W 1; 2
0

ðWÞ ¼ 0:
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Hence, by (2.5), we derive that

AðveÞ ! m in W�1;2ðWÞ

and, by (2.1), we derive that

ve ! m̂m in W
1;2
0 ðWÞ;

namely (2.2).
Now we assume that m is nonnegative. Then, taking ðAðveÞÞ� a W

1;2
0 ðWÞ as

test function in (2.4), we deduceZ
W

eAðxÞ‘ðAðveÞÞ � ‘ðAðveÞÞ� dxþ
Z
W

ðAðveÞÞðAðveÞÞ� dxb 0

and thus we obtainZ
W

eAðxÞj‘ðAðveÞÞ�j2 dxþ
Z
W

ððAðveÞÞ�Þ2 dxa 0;

which implies that AðveÞb 0 almost everywhere in W. This completes the proof
of (2.3), taking into account the equation solved by ve. r

Lemma 2.2. Let m a W�1;2ðWÞ be nonnegative, AðxÞ be a matrix such that (1.2)
holds and m̂m be defined by (1.3). If m2 0, for every domain o �� W there exists a
positive constant co such that

m̂mb co on o:

Proof. By Lemma 2.1 one has

m̂mb v1

and v1 satisfies

�divðAðxÞ‘v1Þ ¼ m̂m� v1 in W

v1;�divðAðxÞ‘v1Þ a W
1;2
0 ðWÞ; �divðAðxÞ‘v1Þb 0:

�

Since m̂m� v1 2 0 on W (otherwise mC0), by the strong maximum principle, one
deduces that

Eo �� W exists co > 0 s:t: v1 b co:

This completes the proof of the Lemma. r

We denote by m̂mn the solution to (2.1) for e ¼ 1
n
, namely m̂mn ¼ v1

n
. Recall that

�divðAðxÞ‘m̂mnÞ a W
1;2
0 ðWÞ; m̂mn ! m̂m in W

1;2
0 ðWÞ:
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In what follows we will consider m̂mn as an approximation of m̂m and we will pass
to the limit in n a N to solve (1.1) in a suitable weak sense, assuming that W is a
bounded subset of RN and that H : R ! R is a continuous and bounded function
on the whole real line.

2.2. Passage to the limit

Lemma 2.3. Let H : R ! R be bounded and Lipschitz continuous on R, m a
W�1;2ðWÞ, AðxÞ be a matrix such that (1.2) holds, m̂m be defined by (1.3) and m̂mn
the solution to (2.1) for e ¼ 1

n
. Then there exists a solution un to the problem

un a W
1;2
0 ðWÞ;Z

W

AðxÞ‘un � ‘v dx ¼
Z
W

AðxÞ‘m̂mn � ‘ðHðunÞvÞ dx Ev a W 1;2
0 ðWÞ:

8><
>:ð2:7Þ

Proof. The equation in (2.7) can be written as follows

Z
W

AðxÞ‘un � ‘v dx ¼
Z
W

�divðAðxÞ‘m̂mnÞHðunÞv dx Ev a W
1;2
0 ðWÞ:ð2:8Þ

Note that, thanks to our assumptions on H, HðuÞv a L2ðWÞ for all u; v a L2ðWÞ.
For w a L2ðWÞ we define the following map

Sn : L
2ðWÞ ! L2ðWÞ; SnðwÞ ¼ wn

where wn is the unique solution to the problem

wn a W
1;2
0 ðWÞ;Z

W

AðxÞ‘wn � ‘v dx ¼
Z
W

�divðAðxÞ‘m̂mnÞHðwÞv dx Ev a W 1;2
0 ðWÞ:

8><
>:ð2:9Þ

To show that (2.8) has a solution, it is enough to prove that Sn has a fixed point.
Taking wn as test function in (2.9), one finds

l

Z
W

j‘wnj2 dxa
Z
W

�divðAðxÞ‘m̂mnÞHðwÞwn dx

a kdivðAðxÞ‘m̂mnÞkL2ðWÞkwnkL2ðWÞkHkLlðRÞ:

Using the Poincaré inequality we deduce

lkwnk2L2ðWÞ a lC2
pk‘wnk2L2ðWÞ aC2

pkdivðAðxÞ‘m̂mnÞkL2ðWÞkHkLlðRÞkwnkL2ðWÞ

where Cp is the Poincaré constant. Thus
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kwnkL2ðWÞ a
C2

p

l
kdivðAðxÞ‘m̂mnÞkL2ðWÞkHkLlðRÞ;ð2:10Þ

k‘wnkL2ðWÞ a
Cp

l
kdivðAðxÞ‘m̂mnÞkL2ðWÞkHkLlðRÞ:

If we introduce the convex set Kn

Kn ¼ v a L2ðWÞ s:t: kvkL2ðWÞ a
C2

p

l
kdivðAðxÞ‘m̂mnÞkL2ðWÞkHkLlðRÞ

( )
;

it is clear that Sn maps the convex set Kn into itself. Moreover Sn is continuous
and SnðKnÞ is relatively compact in Kn, as it results from (2.10). Hence, by the
Schauder fixed point Theorem, it follows that Sn admits at least a fixed point.
This fixed point solves (2.8). r

Theorem 2.1. Let H : R ! R be bounded, Lipschitz continuous and such that

ðsHðsÞÞ0 a LlðRÞ:

If m a W�1;2ðWÞ, AðxÞ is a matrix such that (1.2) holds and m̂m is defined by (1.3),
then there exists u solution to

u a W
1;2
0 ðWÞ;Z

W

AðxÞ‘u � ‘v dx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞvÞ dx

¼ 3m;HðuÞv4 Ev a W 1;2
0 ðWÞBLlðWÞ:

8>>><
>>>:

ð2:11Þ

Example 2.1. One can easily verify that, for instance, the function H : R ! R
given by

HðsÞ :¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p

s

satisfies the assumptions above.

Proof. Let m̂mn be the solution to (2.1) for e ¼ 1
n
and consider un solution to (2.7).

Taking v ¼ un as a test function in (2.7) we get

l

Z
W

j‘unj2 dxa
Z
W

AðxÞ‘m̂mn � ‘ðHðunÞunÞ dxaLcl

Z
W

j‘m̂mnj j‘unj dx;

where cl is the Ll norm of the function ðHðsÞsÞ0. Using Cauchy–Schwarz in-
equality and recalling that the W 1;2

0 ðWÞ-norm of m̂mn is bounded since m̂mn converges

to m̂m in W
1;2
0 ðWÞ, we find that the W

1;2
0 ðWÞ-norm of un is bounded and so that

there exists some u a W 1;2
0 ðWÞ such that, up to a subsequence

un * u in W
1;2
0 ðWÞ; un ! u in L2ðWÞ:
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Then, if v a W
1;2
0 ðWÞBLlðWÞ, one has

HðunÞv * HðuÞv in W
1;2
0 ðWÞ; HðunÞv ! HðuÞv in L2ðWÞ

and passing to the limit in (2.7) one gets (2.11). r

2.3. The case of a nonnegative measure m

Let us first prove the following.

Theorem 2.2. Suppose that m a W�1;2ðWÞ is nonnegative. Then, under the as-
sumptions of Theorem 2.1 and if

HðsÞb 0 Esa 0;ð2:12Þ

the solution to (2.11) satisfies

ub 0 a:e: in W:

Proof. We fix k > 0 and we take Tkðu�Þ as test function in (2.11), where the
truncation function Tk : R ! R is defined as follows

TkðsÞ :¼ maxð�k;minðs; kÞÞ;ð2:13Þ

(note that if s a Rþ, TkðsÞ ¼ minðs; kÞ). We get

Z
W

AðxÞ‘u � ‘Tkðu�Þ dx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞTkðu�ÞÞ dx ¼ 3m;HðuÞTkðu�Þ4:

Since by (2.12)

HðuÞTkðu�Þ ¼ Hð�u�ÞTkðu�Þb 0 a:e: in W;

we derive that Z
W

j‘Tkðu�Þj2 a 0 ) u� ¼ 0 a:e: in W;

as desired. r

One has also the following comparison result.

Theorem 2.3. Suppose that m a W �1;2ðWÞ is nonnegative and that H1 and H2

are two functions which satisfy the assumptions of Theorem 2.1 and such that

H1 bH2; H2 is nonincreasing:
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Then, if ui is a solution to (2.11) corresponding to Hi, i ¼ 1; 2, one has

u1 b u2:

Proof. If v a W
1;2
0 ðWÞBLlðWÞ, by subtraction of the equations satisfied by u1

and u2 one hasZ
W

AðxÞ‘ðu1 � u2Þ � ‘v dx ¼
Z
W

AðxÞ‘m̂m � ‘ððH1ðu1Þ �H2ðu2ÞÞvÞ dx;

so that, if v ¼ Tkððu1 � u2Þ�Þ for k > 0,Z
W

AðxÞ‘ðu1 � u2Þ � ‘Tkððu1 � u2Þ�Þ dx

¼
Z
W

AðxÞ‘m̂m � ‘ððH1ðu1Þ �H2ðu2ÞÞTkððu1 � u2Þ�ÞÞ dx:

Since

H1ðu1Þ �H2ðu2Þ ¼ H1ðu1Þ �H2ðu1Þ þH2ðu1Þ �H2ðu2Þb 0

where u1 a u2, from above one obtainsZ
W

j‘Tkððu1 � u2Þ�Þj2 dxa 0

and the result follows. r

Remark 2.1. The same result holds true if instead of assuming H2 nonincreas-
ing one assumes H1 nonincreasing. Indeed it is su‰cient to write

H1ðu1Þ �H2ðu2Þ ¼ H1ðu1Þ �H1ðu2Þ þH1ðu2Þ �H2ðu2Þ

and to use the same argument.

As an obvious Corollary we have the following.

Corollary 2.1. Let m a W�1;2ðWÞ be a nonnegative measure. If, besides the
assumptions of Theorem 2.1, H is also nonincreasing, then the solution to (2.11) is
unique.

3. W bounded and H singular at the origin

Now we would like to allow H to have a singularity at zero.

Theorem 3.1. Let m a W�1;2ðWÞ be a nonnegative bounded measure, AðxÞ be a
matrix such that (1.2) holds, m̂m be defined by (1.3) and let H : Rþ ! Rþ be a non-
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negative, nonincreasing function such that

lims!0þ HðsÞ ¼ þl;

Ee > 0 H is Lipschitz continuous on ðe;þlÞ;

�
ð3:1Þ

bK : Rþ ! Rþ s:t: HaK and s:t: ðsKðsÞÞ a W 1;lðRþÞ:

Then there exists u solution to

u a W
1;2
0 ðWÞ; ub 0;Z

W

AðxÞ‘u � ‘v dx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞvÞ dx Ev a C1
c ðWÞ:

8><
>:ð3:2Þ

Proof. There exists a first value n0 a Nnf0g such that Hðn0Þa n0. In what fol-
lows we will always assume nb n0. Let us consider the following approximation
Hn of H

HnðsÞ ¼

n if s < 0;

TnðHðsÞÞ if 0a sa n;

minfHðnÞðnþ 1� sÞ;TnðHðsÞÞg if na sa nþ 1;

0 if sb nþ 1;

8>><
>>:ð3:3Þ

where Tn is the truncation function at level n a N (see (2.13)). Then it is easy to
verify that HnðsÞaHðsÞ for sb 0 and that the sequence Hn is nondecreasing in
n a N. Moreover, thanks to (3.1), Hn satisfies the assumptions of Theorem 2.1
and of Theorem 2.2 and

lim
n!l

HnðsÞ ¼ HðsÞ if s > 0:

Thus, for each n a N, nb n0 fixed, there exists un solution to

un a W
1;2
0 ðWÞ; un b 0 in W;Z

W

AðxÞ‘un � ‘v dx

¼
Z
W

AðxÞ‘m̂m � ‘ðHnðunÞvÞ dx Ev a W 1;2
0 ðWÞBLlðWÞ:

8>>>>><
>>>>>:

ð3:4Þ

If k > 0 is fixed, we can take TkðunÞ as test function in (3.4), obtainingZ
W

AðxÞ‘un � ‘ðTkðunÞÞ dx

¼
Z
W

AðxÞ‘m̂m � ‘ðHnðunÞTkðunÞÞ dx

¼
Z
W

AðxÞ‘m̂m � ‘fHnðunÞ �HnðTkðunÞÞ þHnðTkðunÞÞgTkðunÞ dx
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¼ 3m; fHnðunÞ �HnðTkðunÞÞ þHnðTkðunÞÞgTkðunÞ4
a 3m;HnðTkðunÞÞTkðunÞ4;

where, since HnðunÞTkðunÞ a W 1;2
0 ðWÞ, we have been allowed to use formula (1.3)

and hence the following inequality

HnðunÞ �HnðTkðunÞÞTkðunÞa 0 on W:

Now, since one has

ðsKðsÞÞ0 ¼ f ðsÞ a LlðRþÞ , sKðsÞ ¼
Z s

0

f ðtÞ dtþ cK;

we have

TkðunÞKðTkðunÞÞ � cK a W
1;2
0 ðWÞ;

where cK is a constant depending on K. From the computations above and since

Hn aHaK;

it follows thatZ
W

AðxÞ‘un �‘TkðunÞ dxa 3m;HnðTkðunÞÞTkðunÞ4

a 3m;TkðunÞKðTkðunÞÞ � cK þ cK4

¼ 3m;TkðunÞKðTkðunÞÞ � cK4þ jcKjmðWÞ

¼
Z
W

AðxÞ‘m̂m � ‘fTkðunÞKðTkðunÞÞ � cKg dxþ jcKjmðWÞ

aLk f kLlðRþÞ

Z
W

j‘m̂mj j‘TkðunÞj dxþ jcKjmðWÞ:

Hence

l

Z
W

j‘TkðunÞj2 dxa
L2k f k2LlðRþÞ

2l

Z
W

j‘m̂mj2 dxþ l

2

Z
W

j‘TkðunÞj2 dxþ jcKjmðWÞ

so that Z
W

j‘TkðunÞj2 dxa
L2k f k2LlðRþÞ

l2

Z
W

j‘m̂mj2 dxþ 2

l
jcKjmðWÞ:

Letting k ! l we getZ
W

j‘unj2 dxa
L2k f k2LlðRþÞ

l2

Z
W

j‘m̂mj2 dxþ 2

l
jcKjmðWÞ;
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and so we deduce that the sequence un is bounded in W
1;2
0 ðWÞ. In particular there

exists a function u a W
1;2
0 ðWÞ such that

un * u in W
1;2
0 ðWÞ; un ! u in L2ðWÞ

up to a subsequence. Since one has Hnþ1 bHn, it follows from Theorem 2.3
that

unþ1 b un b un0 on W for all nb n0;ð3:5Þ

so that for nb n0

ub un0 on W:

Now, since Hn0ðun0Þv a W
1;2
0 ðWÞ for all v a C1

c ðWÞ, applying (1.3) we deduce that
un0 a W

1;2
0 ðWÞ is such that

�divðAðxÞ‘un0Þ ¼ Hn0ðun0Þmb 0 in the distributional sense in W:

Then, applying Lemma 2.2 with m ¼ �divðAðxÞun0Þ and using (3.5), we deduce
that

Eo �� Wbco > 0 s:t: ub un b un0 b co on o for all nb n0:

Let now v a C1
c ðWÞ be such that suppðvÞ � o �� W. On suppðvÞ one has

j‘ðHnðunÞvÞj ¼ jH 0
nðunÞv‘un þHnðunÞ‘vj

a jH 0
nðunÞv‘unj þ kHkLlð½co;þlÞÞj‘vja c1j‘unj þ c2:

The latter formula holds true since jH 0
nðunÞvj is uniformly bounded with respect to

n a N if n is large enough and v a C1
c ðWÞ. Indeed we have that

jH 0
nðunÞvja kH 0

nkLlð½co;þlÞÞkvkLlðWÞ

and, if nbmaxfn0; co;HðcoÞg, we have

H 0
nðsÞðsÞ ¼

H 0ðsÞ if co a sa n;

H 0ðsÞ or �HðnÞ if na sa nþ 1;

0 if sb nþ 1:

8<
:

Since j�HðnÞj ¼ HðnÞaHðcoÞ, H being nonincreasing and nb co, and since
jH 0ðsÞj is bounded in ½co;þlÞ, H being Lipschitz continuous on ½co;þlÞ,
we have that jH 0

nðunÞvj is uniformly bounded with respect to n a N if nb
maxfn0; co;HðcoÞg and v a C1

c ðWÞ.
Thus HnðunÞv is bounded in W

1;2
0 ðWÞ with respect to n a N and, since un

converges almost everywhere to u, up to a subsequence one gets

HnðunÞv * HðuÞv in W
1;2
0 ðWÞ; HnðunÞv ! HðuÞv in L2ðWÞ Ev a C1

c ðWÞ:
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Then, passing to the limit in (3.4), leads to (3.2) and this completes the proof of
the theorem. r

4. W unbounded

In this section we would like to extend the existence and uniqueness results of
Theorem 2.1, Theorem 2.2, Corollary 2.1, Theorem 3.1 to the case when W is
unbounded. Our first result is the following.

Theorem 4.1. Let W � RN be an unbounded open set, m a W �1;2ðWÞ be a non-
negative measure, AðxÞ be a matrix such that (1.2) holds and H : R ! R be such
that

H is nonincreasing; bounded and Lipschitz continuous on R

ðsHðsÞÞ0 a LlðRÞ;
HðsÞb 0 Esa 0:

8><
>:

Then there exists a unique u such that

u a W 1;2
0 ðWÞ; ub 0 a:e: in W;Z

W

AðxÞ‘u � ‘v dx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞvÞ dx Ev a W
1;2
0 ðWÞBLlðWÞ:

8><
>:

Proof. For l > 0 set Wl ¼ BlBW, where Bl denotes the open ball of radius l
centered at 0, and Vl ¼ W 1;2

0 ðWlÞ. Assuming that the functions of W 1;2
0 ðWlÞ are

extended by 0 outside Wl, it is clear that W
1;2
0 ðWlÞ � W

1;2
0 ðWÞ thus m a V 0

l , the
dual of Vl, for all l > 0 and from Theorem 2.1, Theorem 2.2, Corollary 2.1 there
exists a unique ul solution to

ul a Vl; ul b 0 a:e: in W;Z
Wl

AðxÞ‘ul � ‘v dx ¼ 3m;HðulÞv4 Ev a W
1;2
0 ðWlÞBLlðWlÞ:

8<
:ð4:1Þ

Taking v ¼ TkðulÞ, k > 0, one derives easily

l

Z
Wl

j‘TkðulÞj2 dxa
Z
Wl

AðxÞ‘ul � ‘TkðulÞ dx ¼ 3m;HðulÞTkðulÞ4

¼ 3m; fHðulÞ �HðTkðulÞÞ þHðTkðulÞÞgTkðulÞ4
a 3m;HðTkðulÞÞTkðulÞ4

a clkmkW �1; 2ðWÞ

�Z
Wl

j‘TkðulÞj2 dx
�1

2
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where cl is the Ll-bound of ðsHðsÞÞ0. It follows, letting k ! l, that

�Z
W

j‘ulj2 dx
�1

2

a
kmkW �1; 2ðWÞcl

l
:

Thus, up to a subsequence, one has for some u a W
1;2
0 ðWÞ when l ! l

ul * u in W 1;2
0 ðWÞ; ul ! u in L2

locðWÞ:

Let v a W
1;2
0 ðWl� ÞBLlðWl�Þ, where 0 < l� < l, be extended by zero outside

Wl� . Since H, H 0 are uniformly bounded one hasZ
W

j‘ðHðulÞvÞj2 dxa 2

Z
W

jH 0ðulÞv‘ulj2 þ jHðulÞ‘vj2 dxa c

where c is independent of l. Thus, up to a subsequence

‘ðHðulÞvÞ * G in L2ðWÞ and D 0ðWÞ:

Since H is Lipschitz continuous one has clearly

HðulÞv ! HðuÞv in L2
locðWÞ:

Thus by the uniqueness of the limit in D 0ðWÞ one has

G ¼ ‘ðHðuÞvÞ:

Passing to the limit in (4.1) written asZ
Wl�

AðxÞ‘ul � ‘v dx ¼
Z
Wl�

AðxÞ‘m̂m � ‘ðHðulÞvÞ dx

one gets for every l� > 0Z
W

AðxÞ‘u � ‘wdx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞwÞ dxð4:2Þ

Ew a W 1;2
0 ðWl� ÞBLlðWl� Þ:

Let now v a W
1;2
0 ðWÞBLlðWÞ and yl� : RN ! R be the function defined as

yl�ðxÞ ¼ minð1; distðx;RNnBl� ÞÞ:

Clearly, when l� ! l

yl�v ! v; yl�HðuÞv ! HðuÞv in W
1;2
0 ðWÞ:

Using w ¼ yl�v in (4.2) and passing to the limit in l� the existence of u follows.
The nonnegativity of u follows from the one of ul and the uniqueness can be
proven as in Corollary 2.1. This completes the proof of the theorem. r
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We consider now the case where H is singular at the origin.

Theorem 4.2. Let W � RN be an unbounded open set and H and AðxÞ, m satisfy-
ing the assumptions of Theorem 3.1. Then there exists u solution to the following
singular problem

u a W
1;2
loc ðWÞ; u > 0 in W; u ¼ 0 on qW;

�divðAðxÞ‘uÞ ¼ HðuÞm in W;

(
ð4:3Þ

the last equation of (4.3) being understood asZ
W

AðxÞ‘u � ‘v dx ¼
Z
W

AðxÞ‘m̂m � ‘ðHðuÞvÞ dxð4:4Þ

¼ 3m;HðuÞv4 Ev a C1
c ðWÞ;

and W 1;2
loc ðWÞ ¼ fv a W 1;2ðKÞ EK � W; K boundedg.

Proof. Set as in the previous proof Wl ¼ BlBW, Vl ¼ W
1;2
0 ðWlÞ. Since m a

W�1;2ðWÞ, we have that m a V 0
l for all l a Rþ. We consider the approximation

(3.3) of the singular function H and the following problems, of the kind (3.4), as
approximations of (4.3)

un;l a Vl; un;l b 0 a:e: in Wl;Z
Wl

AðxÞ‘un;l � ‘v ¼
Z
Wl

AðxÞ‘m̂m � ‘ðHnðun;lÞvÞ dx Ev a VlBLlðWlÞ:

8<
:ð4:5Þ

We proceed then as in the proof of Theorem 3.1 to arrive to

Z
Wl

j‘un;lj2 dxa
L2k f k2LlðRþÞ

l2

Z
Wl

j‘m̂mj2 dxþ 2

l
jcKjmðWlÞ

a
L2k f k2LlðRþÞ

l2

Z
W

j‘m̂mj2 dxþ 2

l
jcKjmðWÞ

namely to

kun;lkVl
a c;ð4:6Þ

where c is a positive constant independent of n and l.
If l�

a l we have that Vl ,! W 1;2ðWl� Þ and so, from (4.6), we deduce
that kun;lkW 1; 2ðWl� Þ a c. In particular there exists a weak limit in W 1;2ðWl� Þ of
un;l with respect to l, that we will denote with un;l. Since un;l a Vl � fv a
W 1;2ðWl�Þ : v ¼ 0 on qWl� B qWg, space which is weakly closed, we conclude
easily that

un;l a W
1;2
loc ðWÞ with un;l ¼ 0 on qW:
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From (4.6), by the weak lower semicontinuity of the norm, we deduce that

kun;lkVl�
a c:ð4:7Þ

We consider then v a Vl� BLlðWl�Þ, lb l�, and we extend v by zero in WlnWl� .
Hence v a VlBLlðWlÞ and we can take it as test function in (4.5), findingZ

Wl�
AðxÞ‘un;l � ‘v dx ¼

Z
Wl �

AðxÞ‘m̂m � ‘ðHnðun;lÞvÞ dx

Ev a Vl� BLlðWl�Þ; Elb l�:

Using the boundedness of un;l in W 1;2ðWl� Þ, we can pass to the limit in l ob-
taining Z

Wl�
AðxÞ‘un;l � ‘v dx ¼

Z
Wl �

AðxÞ‘m̂m � ‘ðHnðun;lÞvÞ dxð4:8Þ

Ev a Vl� BLlðWl�Þ; El� a Rþ:

Taking into account (4.7) and proceeding like before for un;l (recall (4.6)), we
deduce that there exists a weak limit in W 1;2ðWl�Þ of un;l with respect to n, for
all l� a Rþ. We denote this weak limit with u and we have that

u a W 1;2
loc ðWÞ with u ¼ 0 on qW:

Now we can conclude, as at the end of the proof of Theorem 3.1, that u is
bounded from below by a positive constant on each o �� W and that Hnðun;lÞv
is bounded in Vl� for all l� a Rþ and for all v a C1

c ðWÞ. So, using the weak con-
vergence in Vl� of this sequence to its almost everywhere limit HðuÞv, we can pass
to the limit in n in (4.8) with test functions v a C1

c ðWÞ, obtaining (4.4). r

5. m a W
�1;2
loc ðWÞ, W cylindrical

When W is unbounded the condition m a W�1;2ðWÞ is somehow restrictive since
some very simple distributions – like for instance a constant function in an infi-
nite strip – do not enjoy this property (see [4]). The goal of this section is to relax
this constraint in the case of unbounded open set of cylindrical type. Let us pre-
cise our notation.

Suppose that W is an unbounded open set such that

W � Rq � oN�q

where 1a q < N and oN�q is a bounded open set in RN�q.
We will split a point x a RN in two components X1, X2, where

X1 :¼ x1; . . . ; xq a Rq; X2 :¼ xqþ1; . . . ; xN a RN�q:
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Analogously, the gradient of a function u defined on RN will be split in two com-
ponents as follows

‘u ¼ ð‘X1
u;‘X2

uÞ where
‘X1

:¼ ðqx1 ; . . . ; qxqÞ;
‘X2

:¼ ðqxqþ1
; . . . ; qxN

Þ:

�

Moreover, for l a Rþ fixed, we will consider the following bounded subset of
RN

Wl :¼ WB ðloq � oN�qÞð5:1Þ

where oq is an open, bounded and convex subset of Rq containing the origin. We
will set

Vl :¼ W
1;2
0 ðWlÞ; V 0

l :¼ ðW 1;2
0 ðWlÞÞ0;ð5:2Þ

where Vl is equipped with the gradient norm in L2ðWlÞ.
Let us assume that m a ð

T
l ARþ V 0

l ÞnW�1;2ðWÞ and that its norm in V 0
l blows

up as a positive power of l when l ! l. Then, inspired by Theorem 4:1 of [3]
(see also Theorem 2:1 of [4]), we are able to prove the following convergence
result.

Theorem 5.1. Let W be as above, AðxÞ and H : R ! R satisfy the assumptions
of Theorem 4.1 and let m be such that

m a V 0
l ;

mb 0 and m2 0 on Wl;

kmkV 0
l
¼ OðlgÞ for some g > 0;

8><
>: El a Rþ;

where Wl and V 0
l are defined in (5.1), (5.2). Then, if l a Rþ is arbitrarily fixed and

m̂ml is the unique element in Vl such that

3m; v4 ¼
Z
Wl

AðxÞ‘m̂ml � ‘v dx Ev a Vl; km̂mlkVl
a

1

l
kmkV 0

l
a

L

l
km̂mlkVl

;ð5:3Þ

there exists a unique ul such that

ul a Vl; ul b 0 a:e: in Wl;Z
Wl

AðxÞ‘ul � ‘v dx ¼
Z
Wl

AðxÞ‘m̂ml � ‘ðHðulÞvÞ dx Ev a VlBLlðWlÞ:

8<
:ð5:4Þ

Moreover there exist two positive constants c, C such that

k‘ðul � ulÞkL2ðWl
2
Þ ¼ ce�Cl El a Rþ;ð5:5Þ
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where ul is the unique solution to the following problem

ul a W
1;2
loc ðWÞ; ul ¼ 0 on qW;

�divðAðxÞ‘ulÞ ¼ HðulÞm in W;

k‘ulkL2ðWlÞ ¼ OðlgÞ;

8><
>:ð5:6Þ

the second equation of (5.6) being understood as

Z
Wl �

AðxÞ‘ul � ‘v dx ¼
Z
Wl �

AðxÞ‘m̂ml� � ‘ðHðulÞvÞ dx ¼ 3m;HðulÞv4ð5:7Þ

Ev a Vl� BLlðWl�Þ; El� a Rþ:

Remark 5.1. In the following proof, if no otherwise specified, we will denote
by ci ði a NÞ several positive constants which value may change from line to line
and, sometimes, on the same line. These values will only depend on the data (for
instance ci may depend on W and N) but they will never depend on the indexes of
the sequences we will introduce.

Proof. If l a Rþ is arbitrarily fixed, the existence of a unique ul such that (5.4)
holds follows from Theorem 2.1, Theorem 2.2 and Corollary 2.1. In what follows
we prove the existence of ul satisfying (5.5) and solving (5.6) in the sense of (5.1).
First of all, if l1 a l� 1, we denote with rl1 a function such that

rl1ðxÞ ¼ rl1ðX1Þ; 0a rl1 a 1; rl1 ¼
1 on l1o

q

0 outside ðl1 þ 1Þoq

�
; j‘X1

rl1 ja c1;

where c1 is a positive constant independent of l1.

1) Estimate for ul � ulþr if 0a ra 1.
Since the function Tkððul � ulþrÞþÞrl1 belongs to VlBVlþrBLlðWlþrÞ, we can
choose it as test function in the equations satisfied by ul and ulþr (see (5.4)). Sub-
tracting them we get

Z
Wl1þ1

AðxÞ‘ðul � ulþrÞ � ‘½Tkððul � ulþrÞþÞrl1 � dx

¼ 3m; ðHðulÞ �HðulþrÞÞTkððul � ulþrÞþÞrl14

and, since H is non-increasing, we obtain

Z
Wl1þ1

AðxÞ‘ðul � ulþrÞ � ‘½Tkððul � ulþrÞþÞrl1 � dxa 0:

This implies easily (see the properties of A)
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Z
Wl1þ1

j‘Tkððul � ulþrÞþÞj2rl1 dx

a
L

l

Z
Dl1

j‘X1
rl1 jTkððul � ulþrÞþÞj‘ðul � ulþrÞþj dx

a c1

�Z
Dl1

j‘ðul � ulþrÞþj2 dx
�1

2
�Z

Dl1

ðTkððul � ulþrÞþÞ dxÞ2
�1

2

;

where Dl1 :¼ Wl1þ1nWl1 . Using the Poncaré inequality on the section one getsZ
Wl1

j‘Tkððul � ulþrÞþÞj2 dx

a c1c2

�Z
Dl1

j‘ðul � ulþrÞþj2 dx
�1

2
�Z

Dl1

j‘X2
Tkððul � ulþrÞþÞj2 dx

�1
2

;

where c2 is a positive constant that depends only on oN�q. Letting k ! l we
deduce Z

Wl1

j‘ðul � ulþrÞþj2 dxa c3

Z
Dl1

j‘ðul � ulþrÞþj2 dx:

Hence, recalling that Dl1 :¼ Wl1þ1nWl1 , we arrive toZ
Wl1

j‘ðul � ulþrÞþj2 dxa
c3

c3 þ 1

Z
Wl1þ1

j‘ðul � ulþrÞþj2 dx:

Starting from l1 ¼
l

2
, we iterate the last inequality

l

2

� �
times and, recalling that

l

2
� 1a

l

2

� �
a

l

2
, we arrive easily to

Z
Wl

2

j‘ðul � ulþrÞþj2 dxa c
l
2�1

4

Z
Wl

j‘ðul � ulþrÞþj2 dxð5:8Þ

where c4 ¼
c3

c3 þ 1
< 1.

Analogously, if we choose

Tkððul � ulþrÞ�Þrl1 a VlBVlþrBLlðWlþrÞ

as test function in the problems solved by ul and ulþr, we findZ
Wl

2

j‘ðul � ulþrÞ�j2 dxa c
l
2�1

4

Z
Wl

j‘ðul � ulþrÞ�j2 dx:ð5:9Þ
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Summing up (5.8) and (5.9), we arrive toZ
Wl

2

ðj‘ðul � ulþrÞþj2 þ j‘ðul � ulþrÞ�j2Þ dx

a c
l
2�1

4

Z
Wl

ðj‘ðul � ulþrÞþj2 þ j‘ðul � ulþrÞ�j2Þ dx

and since

j‘ðul � ulþrÞj2 ¼ j‘ðul � ulþrÞþj2 þ j‘ðul � ulþrÞ�j2

we conclude thatZ
Wl

2

j‘ðul � ulþrÞj2 dxa c
l
2�1

4

Z
Wl

j‘ðul � ulþrÞj2 dx:ð5:10Þ

2) Estimate for ul.
Taking TkðulÞ as test function in (5.4) we find

l

Z
Wl

j‘TkðulÞj2 dx

a

Z
Wl

AðxÞ‘m̂ml � ‘f½HðulÞ �HðTkðulÞÞ þHðTkðulÞ�TkðulÞg dx

¼ 3m; fHðulÞ �HðTkðulÞÞ þHðTkðulÞÞgTkðulÞ4a 3m;HðTkðulÞÞTkðulÞ4

a

Z
Wl

AðxÞ‘m̂ml � ‘½HðTkðulÞÞTkðulÞ� dx

where we have used formula (5.3) (note that HðulÞTkðulÞ;HðTkðulÞÞTkðulÞ a Vl)
and that, by the monotonicity of H, it results fHðulÞ �HðTkðulÞÞgTkðulÞa 0 on
Wl. Then we obtain

l

Z
Wl

j‘TkðulÞj2 dxaLcl

�Z
Wl

j‘m̂mlj
2
dx

�1
2
�Z

Wl

j‘TkðulÞj2 dx
�1

2

where cl is the Ll bound of ðsHðsÞÞ0. Thus, recalling that km̂mkVl
a 1

l
kmkV 0

l
a

1
l
kmkW �1; 2ðWÞ, we obtain�Z

Wl

j‘TkðulÞj2 dx
�1

2

a
Lcl

l2
kmkV 0

l
¼ OðlgÞ

so that, letting k ! l, we arrive toZ
Wl

j‘ulj2 a c5l
2g:ð5:11Þ
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3) ul is a Cauchy sequence.
Using (5.10) and (5.11) we findZ

Wl
2

j‘ðul � ulþrÞj2 dxa c6e
�l

2 lnð 1
c4
Þ
�Z

Wl

j‘ulj2 dxþ
Z
Wlþr

j‘ulþrj2 dx
�

a c7e
�l

2 lnð 1
c4
Þðl2g þ ðlþ rÞ2gÞa c28e

�al

where 0 < a < 1
2 ln

�
1
c4

�
. Hence

kul � ulþrkVl
2

a c8e
�a

2l:

If t > 0 is arbitrary, we deduce

kul � ulþtkVl
2

a kul � ulþ1kVl
2

þ kulþ1 � ulþ2kVlþ1
2

ð5:12Þ

þ � � � þ kulþ½t� � ulþtkVlþ½t�
2

a c8e
�a

2l þ c8e
�a

2ðlþ1Þ þ � � � þ c8e
�a

2ðlþ½t�Þ

a c8e
�a

2lð1þ e�
a
2 þ e�2a2 þ � � �Þa c8e

�a
2l

1

1� e�
a
2

independently of t > 0. So, if l�
a

l

2
, from (5.12) we deduce that ul is a Cauchy

sequence in W 1;2ðWl� Þ, and so it has a strong limit in this space, that we will
denote by ul.

4) Limit problem.
Since ul a Vl for all l a Rþ and l�

a
l

2
, we have that ul ¼ 0 on qWl� B qW for

all lb 2l�. Then

ul a ~VVl� :¼ fv a W 1;2ðWl� Þ s:t: v ¼ 0 on qWl� B qWg Elb 2l�:

Since ~VVl� is weakly closed and ul is strongly convergent to ul in W 1;2ðWl� Þ, we
conclude that ul ¼ 0 on qWl� B qW and this for all l� a Rþ. Hence

ul a W
1;2
loc ðWÞ with ul ¼ 0 on qW:

Letting t ! l in (5.12), we obtain also (5.5).
Now, we will prove that ul satisfies (5.1). If v a Vl� BLlðWl�Þ, lb l� and if

we extend v by zero in WlnWl� , then v a VlBLlðWlÞ. In particular we can take v
as test function in the problem solved by ul, namely in (5.4). Hence we haveZ

Wl�
AðxÞ‘ul � ‘v dx ¼

Z
Wl �

AðxÞ‘m̂ml � ‘ðHðulÞvÞ dx

¼
Z
Wl �

AðxÞ‘m̂ml� � ‘ðHðulÞvÞ dx

Ev a Vl� BLlðWl� Þ; Elb l�:
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If we pass to the limit in l, using the regularity of H and the fact that ul ! ul in
W 1;2ðWl� Þ, we obtainZ

Wl�
AðxÞ‘ul � ‘v ¼

Z
Wl�

AðxÞ‘m̂ml� � ‘ðHðulÞvÞ dx

¼ 3m;HðulÞv4 Ev a Vl� BLlðWl�Þ:

Of course this holds for all l� a Rþ and (5.1) is proved.

5) Estimate for k‘ulkL2ðWlÞ.
From (5.12) we deduce

ku2l � u2lþtkVl
a c9e

�al:

Since, in particular, c9 is independent of t, letting t ! l we find

ku2l � ulkVl
a c9e

�al:

Hence, using also (5.11), we deduce

kulkVl
a c9e

�al þ ku2lkVl
a c9e

�al þ ku2lkV2l
a c9e

�al þ Oðð2lÞgÞ ¼ OðlgÞ;

this completes the proof of (5.6).

6) Uniqueness.
Finally we want to prove that ul is unique. Let us assume that ul and u 0

l are
two solutions to (5.6). Then, from (5.1), we deduceZ

Wl �
AðxÞ‘ðul � u 0

lÞ � ‘v dx ¼
Z
Wl �

AðxÞ‘m̂ml� � ‘fðHðulÞ �Hðu 0
lÞvg dxð5:13Þ

Ev a Vl� BLlðWl� Þ; El� a Rþ:

If l� is fixed and l1 a l� � 1, we take vþ;� :¼ Tkððul � u 0
lÞþ;�Þrl1 a Vl� B

LlðWl� Þ as test functions in (5.13) and we argue as in the first step of the proof,
finding Z

Wl�
2

j‘ðul � u 0
lÞj2 dxa c10e

�c11l
�
Z
Wl �

j‘ðul � u 0
lÞj2 dx:

Thus, recalling (5.5), we deduceZ
Wl�

2

j‘ðul � u 0
lÞj2 dx

a c12e
�c11l

�
�Z

Wl�
j‘ðul � u2l�Þj2 dxþ

Z
Wl�

j‘ðu2l� � u 0
lÞj2 dx

�
a c12e

�c11l
�
c2e�2Cl�

:

508 m. chipot and l. m. de cave



Finally, letting l� ! l, we end up with

ul ¼ u 0
l a:e in W;

as desired. r
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Winterthurerstrasse 190
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