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ABSTRACT. — We consider existence and uniqueness of solutions to elliptic problems set in open
subsets of RN, bounded and unbounded. These problems are characterised by the presence of a lin-
ear higher order term and a nonlinear lower order term which may blow up where the solution is
zero and which involves a distribution.
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1. INTRODUCTION
The aim of this paper is to find u solution to

ue W (Q),

(1.1) /A(x)Vu-Vvdx=<,u,H(u)U> YweV,
Q

where V' is a space of functions containing the Schwartz-space Z(Q) of C*-
functions with compact support in Q (see [2], [7], [11] for the references on the
spaces used here). The open set Q can be bounded or unbounded in RY, s is a
suitable distribution defined on Q, 4(x) is a bounded and elliptic matrix, namely
such that there exist two positive constants A and A such that

(1.2) ANEP <A)E-¢ AX)E] < AJE|

for all £ € RN and for almost every x € Q. Finally, H is a continuous func-
tion outside the origin that may blow up at zero. Note that the symbol <, >
stands for the duality product between an element of some Sobolev space and
an element of its dual, a dot denotes the scalar product in R, | | the Euclidean
norm.

Regarding y, we will always assume that € W~"2(Q), the dual of W,*(Q),
or that u € W, "*(Q). At some point we will suppose in addition that y is a non-
negative measure. Recall that, if u € W~12(Q), by the Lax—Milgram Theorem

there exists one and only one element /i € Wol’z(Q) such that
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(1.3) <,u,v>—/QA(x)V,12-Vvdx Vv e WOI’Z(Q) and

. 1
||/‘”W(3=2(Q) = ;||H||w—1=2(g)

and, since

(v < (/Q |A(x)Vﬁ|2dx)%(/Q |Vv|2dx>%,

we have also

[l 1200y < A||,LAL||W01‘2<Q).

Here the symbol || ||, denotes the norm in a Banach space X.

Regarding the function H, we will consider the case where H is continuous
and bounded on the whole R and the case where H admits a singularity at the
origin. In the first case, we will require that H is Lipschitz continuous on R and
such that

(1.4) (sH(s)) € L*(R).

In the case where lim,_.o+ H(s) = 400, we will instead require that H is a positive
function defined on R™ (one can imagine that H is defined also on R~ and that it
is identically zero on this set), nonincreasing, Lipschitz continuous on (&, +00) for
all ¢ > 0 and such that

(1.5) 3x:RT" —=R" st H<x and st (s#4(s) e WH*(R").

Hence in this case the problem (1.1) may be singular since, by assumptions, the
right hand side may blow up at zero.

In literature we can find many papers dealing with possibly singular elliptic
problems on bounded domains Q, (the subscript » is used to underline the
boundedness of the domain) whose model is

—div(e/(x,Vu)) = H(u)u in Qp,
(1.6) u>0 in Qp,
u=>0 on 0Qy,

where lim,_o H(s) < or = +00, o7 : RY x RY — R" satisfies Leray—Lions con-
ditions of p-Laplace type with 1 < p < N and u is a suitable nonnegative datum.

In the singular case with regular positive data u, at least Holder continuous,
and with a linear and uniformly elliptic higher order term, we recall the pioneer-
ing papers [5, 12], where the existence and uniqueness of a classical solution to
(1.6) is proven under suitable assumptions on the singularity H.

In the singular case with data u less regular, namely under the assumption that
u is a nonnegative bounded Radon measure or a nonnegative L'(€,) function,
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the main references are [1, 8, 10, 14, 15]. In this more general setting the strategy
to solve this kind of problems is to approximate them with nonsingular ones,
“truncating” in some sense the singular right hand side, and to prove a priori
estimates and compactness results on the sequence of approximate solutions in
order to give at least a distributional formulation to the singular problem, that
appears as the limit of the approximations.

Finally recall [13] for the nonsingular case with quadratic coerciveness of the
higher order term and [9] for the (possibly) singular case with generic coercive-
ness p € (1, N) of the higher order term. In both papers the data are nonnegative
Radon measures on Q.

The main idea underling this note is to solve the (possibly singular) problem
(1.1) using the representation (1.3) given by the Lax—Milgram Theorem and the
properties (1.4) and (1.5) to deal with the possibly singular right hand side.

We would like to point out here that we deal also with the case of Q un-
bounded. We also notice that, to deal with (1.1), we avoid to use the notion of
renormalized solution introduced in [6] as done, for example, in [10, 9, 13].

The plan of the paper is as follows. In Section 2 we will solve problem (1.1)
in the case in which Q is a bounded subset of R" and H is a continuous and
bounded function on the whole R. In this section we will solve (1.1) with test
functions in Wol’2 (Q) N L7 (Q). Section 3 is devoted to find a solution to (1.1) in
the case in which Q is bounded and H blows up at the origin. In Sections 4 and 5
we will analyze problem (1.1) in the case of an unbounded domain Q and of a
nonlinearity H that can be both bounded on the whole R and singular at the
origin. In Section 5 we relax our requests on g assuming u € W/;cl’z(Q) at the
expense of considering cylindrical unbounded open subsets Q.

2. Q AND H BOUNDED

We will start by the case in which Q is a bounded subset of RN and H : R — R is
a continuous and bounded function on the whole real line.

2.1. Approximation of u

We have the following results.

LEMMA 2.1. Let pe W=12(Q), A(x) be a matrix such that (1.2) holds and g
be defined by (1.3). Let ¢ > 0 and v, be the unique weak solution to the following
singular perturbation problem

2.1 v, € Wy (Q),
—ediv(A(x)Vv) +v. =4 in Q.

Then, as ¢ — 0, one has

(2.2) v, — @ in Wy Q)
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and if u is a nonnegative measure, it holds
(2.3) —div(4(x)Vv,) >0 and v, < j.

PRrROOF. In order to lighten the notation we will denote with .o7(-) the operator
—div(A4(x)V-). From (2.1) one deduces that

(a—wvs)

oA (v;) = e W, (Q).

Applying .o to the equation of (2.1), by (1.3) one gets.
(2.4) et (A (ve)) + o (v:) = p

This implies

= A (0) 0> = /Q A1) - Vpdx Vg e WEAQ).

Thus it results

(2.5) = ot @)l < ([ GV Ges () a).

If we take e.</(v,) as test function in (2.4), we arrive to

(2.6) /QA(X)V(&%(%)) V(e (v,)) dx + e (0:) | 2(0) = <6/ (0))

and so we deduce

/I/Q V(e (v,))|* dx < el w120 (/Q V(e (v,))|* dx)f.

This_implies that e</(v,) is bounded in W, *(Q) and thus there exists vy €
Wol’z(Q) such that, up to a subsequence

el () — vy in Wy 2(Q), e (v) — vy in L} Q).
So, going back to (2.6), one deduces also that

tim e (0,) 220y < limedas e/ (1) = 0

Then vy = 0 and, by uniqueness of the limit, the convergence above holds true for
the whole sequence. Back to (2.6), it results also that

hm et (v,) || =0.

W12
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Hence, by (2.5), we derive that
oA (v) — p in WH(Q)
and, by (2.1), we derive that
v — @ in Wy (Q),

namely (2.2).
Now we assume that x is nonnegative. Then, taking (<7 (v,))” € W01’2(Q) as
test function in (2.4), we deduce

/ cA(X)V (A (0,)) - V(A (1)) dx + / (o () (A (1) dx =0
Q Q

and thus we obtain

/ eA()| V(2 (2,)) " dx + / (1)) )2 dx < 0,
Q

Q

which implies that .o/ (v,) > 0 almost everywhere in Q. This completes the proof
of (2.3), taking into account the equation solved by v,. O

LEMMA 2.2. Let u € W=12(Q) be nonnegative, A(x) be a matrix such that (1.2)
holds and ji be defined by (1.3). If % 0, for every domain @ CC Q there exists a
positive constant c,, such that

aA>c, onw.
ProOOF. By Lemma 2.1 one has
i=v
and v; satisfies

—div(4(x)Vu)) =—v; inQ
{vl,—diV(A(x)Vvl) e Wy 2(Q), —div(4(x)Voy) = 0.

Since i — v # 0 on Q (otherwise u = 0), by the strong maximum principle, one
deduces that

Yoo CCQ exists ¢, >0 s.t. v >c,.
This completes the proof of the Lemma. O
We denote by /i, the solution to (2.1) for ¢ =1, namely 4, = vi. Recall that

—div(A(x)Va,) € Wy 2(Q), i, — A in Wy(Q),
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In what follows we will consider £, as an approximation of 4 and we will pass
to the limit in # € N to solve (1.1) in a suitable weak sense, assuming that Q is a

bounded subset of RN and that H : R — R is a continuous and bounded function
on the whole real line.

2.2. Passage to the limit
LeMMA 2.3. Let H:R — R be bounded and Lipschitz continuous on R, u €

W=12(Q), A(x) be a matrix such that (1.2) holds, i be defined by (1.3) and f,
the solution to (2.1) for ¢ = 1. Then there exists a solution u, to the problem

u, € W) (Q),

27 / A(X)Vi, - Vodx = / A(X)Vi, - V(H(uw)o)dx Yo e WIQ),
Q Q

PRrOOF. The equation in (2.7) can be written as follows
(2.8) /QA(x)Vun -Vodx = /Q—diV(A(x)V/ln)H(u,,)vdx Yo e WOI’Z(Q).

Note that, thanks to our assumptions on H, H(u)v € L*(Q) for all u,v € L*(Q).
For w € L*(Q) we define the following map

Sy L2(Q) — L*(Q), Su(w) =w,
where w, is the unique solution to the problem

Wy € WOI’Z(Q),

(2.9) /A(x)an-VvdXZ/ —div(A(x)Va,) H(w)vdx Yov e W0172<Q).
o Q

To show that (2.8) has a solution, it is enough to prove that S, has a fixed point.
Taking w, as test function in (2.9), one finds

A /Q V| dx < /Q —div(A(x) Vi, ) H () dx
< [[div(4(x) V)| 20 [Wall 20 1 H | L= (@) -
Using the Poincaré inequality we deduce
Awallza@) < ACIVWall 220y < CoIIdIV(A () Vi) 20 [ H |y 19l 20

where C, is the Poincar¢ constant. Thus
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C2
(2.10) ||WnHL2(Q) = —p ||d1V(A(x)Vﬂn)||L2(Q)||H||Lx(R)

IVWallp20) < 7”||dw< (Vi) |20 1 H | Lo )

If we introduce the convex set K,

CZ
K, = {v € LX(Q) s.t. [[v]l 20 < —- div(A(x )V:un)”LZ(Q)HH”L‘C(R)}?

it is clear that S,, maps the convex set K, into itself. Moreover S, is continuous
and S,(K,) is relatively compact in K, as it results from (2.10). Hence, by the
Schauder fixed point Theorem, it follows that S, admits at least a fixed point.
This fixed point solves (2.8). O

THEOREM 2.1. Let H : R — R be bounded, Lipschitz continuous and such that
(sH(s)) € L™ (R).

If e W=12(Q), A(x) is a matrix such that (1.2) holds and ji is defined by (1.3),
then there exists u solution to

ue W, (Q),
(2.11) /QA(x)Vu-Vvdx—/QA(x)Vﬂ-V(H(u)v) dx
= (u, H(u)oy Yo e W (Q) A L™ (Q).

ExaMPLE 2.1. One can easily verify that, for instance, the function H : R — R
given by

Invs? + 1

Hi(s) .=
( ) N
satisfies the assumptions above.

PROOF. Let /i, be the solution to (2.1) for ¢ = 1 and consider u, solution to (2.7).
Taking v = u, as a test function in (2.7) we get

A / Vi, | dx < / AV, - V(H (un)uy) dx < Ac,, / Vi, | [Vias| dx,
Q Q Q

where ¢, is the L* norm of the function (H(s)s)'. Using Cauchy—Schwarz in-
equality and recalling that the W ?(Q)-norm of /i, is bounded since z, converges

to 4 in W 2(Q), we ﬁnd that the W1 2(Q)-norm of u, is bounded and so that
there ex1sts some u € W 2(Q) such that up to a subsequence

Uy —u in Wy 2(Q), u, —u in L}(Q).
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Then, if v € W, *(Q) N L*(Q), one has
H(u)v — H(uo in Wy 3(Q), H(u,)vo — H(u)v in L*(Q)
and passing to the limit in (2.7) one gets (2.11). O
2.3. The case of a nonnegative measure u

Let us first prove the following.

THEOREM 2.2. Suppose that u e W=12(Q) is nonnegative. Then, under the as-
sumptions of Theorem 2.1 and if

(2.12) H(s) >0 Vs<0,
the solution to (2.11) satisfies
u>0 ae. inQ.

Proor. We fix kK > 0 and we take Ty (u~) as test function in (2.11), where the
truncation function 7} : R — R is defined as follows

(2.13) Ty (s) := max(—k, min(s, k)),

(note that if s € R™, Ty (s) = min(s, k)). We get

/ A(x)Vu - VTi(u™)dx = / Ax)Va-V(Hu) T (u™))dx = {u, H(u) T (u™) ).
Q Q
Since by (2.12)

Hu)Tiy(u")=H(—u )Tr(u") =20 ae. inQ,

we derive that
/ VT (7 )?<0 = u =0 aeinQ,
o)

as desired. O
One has also the following comparison result.

THEOREM 2.3. Suppose that u e W="2(Q) is nonnegative and that Hy and H,
are two functions which satisfy the assumptions of Theorem 2.1 and such that

H, > H,, H, is nonincreasing.



NEW TECHNIQUES FOR SOLVING SOME CLASS OF SINGULAR ELLIPTIC EQUATIONS 495
Then, if u; is a solution to (2.11) corresponding to H;, i = 1,2, one has
Uy = up.

ProOOF. Ifve Wol‘z(Q) N L*(Q), by subtraction of the equations satisfied by u;
and u, one has

/A(X)V(ul ) - Vodx = / AV - V((Hy (1) — Ho(ua))o) dx,
Q Q

so that, if v = Ty ((u; — up) ™) for k > 0,

/QA(x)V(ul —uy) - VT ((uy —up) ™) dx

—/QA(X)V[!‘V((Hl(ul)—Hz(uz))Tk((ul — ) ))dx.

Since
Hy(u) — Hy(uz) = Hy(uy) — Hy(uy) + Ha(uy) — Hao(up) >0

where 1, < u,, from above one obtains

/Q IVTi((u1 — up)7)|*dx <0

and the result follows. O

REMARK 2.1. The same result holds true if instead of assuming H, nonincreas-
ing one assumes /| nonincreasing. Indeed it is sufficient to write

Hi (1) — Hy(u2) = Hi (1) — Hi(u2) + Hyi(u2) — Ha(u2)
and to use the same argument.
As an obvious Corollary we have the following.

COROLLARY 2.1. Let ue W='2(Q) be a nonnegative measure. If, besides the
assumptions of Theorem 2.1, H is also nonincreasing, then the solution to (2.11) is
unique.

3. QQ BOUNDED AND H SINGULAR AT THE ORIGIN

Now we would like to allow H to have a singularity at zero.

THEOREM 3.1. Let u e W=12(Q) be a nonnegative bounded measure, A(x) be a
matrix such that (1.2) holds, fi be defined by (1.3) and let H : R* — R* be a non-
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negative, nonincreasing function such that

(3 1) limg_o+ H(S) = +0,
' Ve > 0 H is Lipschitz continuous on (g, +0),
3A RY - R st H< A and st (sH(s) e Wh*(RT).

Then there exists u solution to
1,2
ue Wy (Q), u=0,

(32) /A(X)Vu_vvdx:/A<X)Vﬂ.V(H(u)v)dx Yo e CHQ).
Q Q

PrOOF. There exists a first value np € N\{0} such that H(ny) < ny. In what fol-
lows we will always assume n > ng. Let us consider the following approximation
H,of H

n if s <0,
T.(H if 0 <s<

(33) H”(S) — n( (S)) 1 =s=n,
min{H(n)(n+1—1s), T,(H(s)} fn<s<n+1,
0 ifs>n+1,

where 7, is the truncation function at level n € N (see (2.13)). Then it is easy to
verify that H,(s) < H(s) for s > 0 and that the sequence H, is nondecreasing in
n € N. Moreover, thanks to (3.1), H, satisfies the assumptions of Theorem 2.1
and of Theorem 2.2 and

lim H,(s) = H(s) if s> 0.

n— oo
Thus, for each n € N, n > ng fixed, there exists u, solution to

U, € Wy (Q), u, >0 inQ,

(3.4) /QA(x)Vu,, -Vodx

_ /QA(x)Vﬂ~V(Hn(un)v) dx Woe WIHQ)AL?(Q).
If k£ > 0 is fixed, we can take T} (u,) as test function in (3.4), obtaining
/QA(x)Vun -V(Ty(uy)) dx
— [ GV V() Telw))

= /QA(X)Vﬂ - V{H,(un) = Hy(Ti(un)) + Hy(Tic(tn)) } Tie (1) dx
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=, {H(tn) — Hy(Ti(un)) + Hyp (T () } T (t4n) )
< <ﬂa (Tk(“n))Tk(un)>>

where, since H,(u,) Ty (u,) € Wol’z(Q), we have been allowed to use formula (1.3)
and hence the following inequality

H,(u,) — H, (T () Tie (1) <0 on Q.

Now, since one has

(s#°(5) = f(s) e L°(R*) & sA(s) = /Osf(t) dt + ¢y,
we have
Ti(u) A (Ti(un)) — o € Wy 2(Q),
where ¢ i1s a constant depending on .#". From the computations above and since
H,<H<UX,
it follows that

/Q (X)Vuy, - VT (uy) dx < gy Hy (T () Tre (un) >

<, Tie(u) A (Ti(uy)) — cor + Cory
=, Tic(un) A (Tic(un)) — o) + |ea|u(€2)

- /QA(X)Vﬂ VAT () A (T (un)) — €} dx + [ [1(€Q)

SA||f||L’~([R+)/Q|Vﬂ| VT ()] dx + e |1(€2).
Hence

”f”L

/1/ VT () dx < /|v Pdxt /|VTk (1) dx + |y [u(Q)
Q

so that

NI By [, 2
[ 9T ax < SS9 e (@)
Q A Q 2

Letting k — oo we get

2||f||m -
/|v 2 dx /|v e+ ex (@)
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and so we deduce that the sequence u, is bounded in Wol’2 (Q). In particular there
exists a function u € Wol’z(Q) such that

Uy —u in Wy A(Q), wu, —u inL*(Q)

up to a subsequence. Since one has H,,| > H,, it follows from Theorem 2.3
that

(3.5) Upp1 = Uy = Uy, on Q forall n > ng,
so that for n > ny
u>u, onQ.

Now, since H,, (u,,)v € WOI’Z(Q) for all v e C!(Q), applying (1.3) we deduce that
Uy, € Wol’z(Q) is such that

—div(A(x)Vuy,,) = Hp,(un,)1e > 0 in the distributional sense in Q.

Then, applying Lemma 2.2 with ¢ = —div(A4(x)u,,) and using (3.5), we deduce
that

Yo CC Q3c, >0 st u>u, >uy, >c, onoforalln>np.

Let now v € C!(Q) be such that supp(v) C @ CC Q. On supp(v) one has

\V(Hy (un)v)| = \H,:(un)vVun + Hy(un) V|

< |H, (un)oVn]| + [ H| Lo (e, 400y VO < €1 Vitn] + 2.

[cwyto0

The latter formula holds true since | H, (u,)v| is uniformly bounded with respect to
n e N if n is large enough and v € C!(Q). Indeed we have that

|Hy(un)v] < HHr/lHL‘f([c(,,,Jroo))HUHL”L(Q)

and, if n > max{ny, ¢, H(c,,)}, we have

H/(S> if Cop <SS <A,
H,(s)(s) =< H'(s)or —H(n) ifn<s<n+l,
0 ifs>n+1.

Since |—H(n)| = H(n) < H(c,), H being nonincreasing and n > ¢, and since
|H'(s)| is bounded in [c,,+o0), H being Lipschitz continuous on ¢, +00),
we have that |H)(u,)v| is uniformly bounded with respect to ne N if n >
max{ny, ¢y, H(c,)} and v e CH(Q).

Thus H,(u,)v is bounded in WOI"2 (Q) with respect to n € N and, since u,
converges almost everywhere to u, up to a subsequence one gets

H,(u)o — Hwo in W) *(Q), H,(u,)v — H(u)v in L2(Q) Yve CHQ).
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Then, passing to the limit in (3.4), leads to (3.2) and this completes the proof of
the theorem. O

4. QQ UNBOUNDED

In this section we would like to extend the existence and uniqueness results of
Theorem 2.1, Theorem 2.2, Corollary 2.1, Theorem 3.1 to the case when Q is
unbounded. Our first result is the following.

THEOREM 4.1. Let Q C RN be an unbounded open set, u € W="2(Q) be a non-
negative measure, A(x) be a matrix such that (1.2) holds and H : R — R be such
that

H is nonincreasing, bounded and Lipschitz continuous on R
(sH(s)) € L*(R),
H(s) >0 Vs<O.

Then there exists a unique u such that

uce WOI’Z(Q)7 u=>0 ae. inQ,

/ A(Xx)Vu - Vvdx = / A(x)Va-V(H(u)v)dx Yve WOI’Z(Q) N L7 (Q).
Q Q

Proor. For /> 0 set Q, = B, nQ, where B, denotes the open ball of radius /
centered at 0, and V, = Wol’z(Q/). Assuming that the functions of Wol’z(Q/) are
extended by 0 outside €, it is clear that WOI"z(Q/) C Wol’z(Q) thus u € V/, the
dual of V,, for all #/ > 0 and from Theorem 2.1, Theorem 2.2, Corollary 2.1 there
exists a unique u, solution to

u, € Vy, u, >0 a.e. inQ,

(4.1) / A(x)Vu, - Vodx = {u, H(uy)vy Yo e WOI’Z(Q/) N L*(Qy).
Q,

Taking v = Ty (uy), k > 0, one derives easily

},/ VT (u,)|* dx < / A(x)Vuy - VT (uy) dx = py H(uy) Ty (ur)
Q Q,

=, {H (ur) — H(Tic(ur)) + H(Tie(ur)) } Tic(ur)
< S, H(Ty(ur)) T (ur) >

1
s (| T )

<co,
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where ¢, is the L*-bound of (sH(s)). It follows, letting k — o, that

L e
d
([ vl ar) < S

Thus, up to a subsequence, one has for some u € WI’Z(Q) when / — o0

Uy —u in WOI"z(Q)7 u, —u in L7,

(Q).

Let v e Wol’z(Q/*) N L7 (Q,+), where 0 < /* </, be extended by zero outside
Q,+. Since H, H' are uniformly bounded one has

/ \V(H (uy))|* dx < 2 / \H' (u,)yoVu,|* + |H(u,)Vo|* dx < ¢
Q Q

where c¢ is independent of /. Thus, up to a subsequence
V(H(us)v) — G in L*(Q) and 2'(Q).
Since H is Lipschitz continuous one has clearly
H(us)o — H(u)v in L} (Q).
Thus by the uniqueness of the limit in 2'(Q) one has
= V(H (u)v).

Passing to the limit in (4.1) written as

/ A(x)Vu/'Vvdx:/ A(x)Va - V(H (us)v) dx
Q-

Q.

one gets for every /* > 0

(42) /Q A(X)Vut - Vv dx = / A(X)Vii - V(H (u)w) dx

Q
Yw e Wy (Q) n L7 (Qs).
Let now v € Wol‘z(Q) N L*(Q) and 0, : RN — R be the function defined as
0;+(x) = min(1, dist(x, R¥\ B,-)).
Clearly, when /* — oo
00— v, 0pHuyv— H(uo in W, Q).

Using w = 6,-v in (4.2) and passing to the limit in /* the existence of u follows.
The nonnegativity of u follows from the one of u, and the uniqueness can be
proven as in Corollary 2.1. This completes the proof of the theorem. O
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We consider now the case where H is singular at the origin.

THEOREM 4.2. Let Q C RN be an unbounded open set and H and A(x), u satisfy-
ing the assumptions of Theorem 3.1. Then there exists u solution to the following
singular problem

4.3)

ue WhiQ), u>0 inQ, u=0 ondQ,
—div(4(x)Vu) = H(u)u in Q,

the last equation of (4.3) being understood as

(4.4) /QA(x)Vu~Vvdx: / A(x)Vi - V(H (u)v) dx

o
= {u, Hu)vy Yoe CHQ),
and W22(Q) = {v e W'2(K) YK C Q, K bounded}.

toc

PROOF. Set as in the previous proof Q, = B, N Q, V, = Wol’z(Q/). Since u €
W-12(Q), we have that p e V/ for all / € R*. We consider the approximation
(3.3) of the singular function H and the following problems, of the kind (3.4), as
approximations of (4.3)

unr € Vs, up, >0 ae. inQy,

(4.5) /QA(x)Vu,M.Vu:/Q A(X)Vit - V(Hy(un, Jv) dx Vv € V0 L*(Q).

We proceed then as in the proof of Theorem 3.1 to arrive to

A1 2
Vi o = == Wil v S e ()
/

Q,

I
< S [ Wil v S elu(@

namely to
(46) ||“n,/||[/, < c,

where ¢ is a positive constant independent of # and /.

If /* </ we have that V, — W'2(Q,) and so, from (4.6), we deduce
that [[uy,/[[j12(q,.) < ¢. In particular there exists a weak limit in Wwh2(Qy-) of
u, , with respect to 7, that we will denote with u, ... Since u,, € V, C {ve
W2(Q,) : v =0 on dQ, N dQ}, space which is weakly closed, we conclude
easily that

Up, o € wh(Q)  with u, .. =0 on dQ.

loc
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From (4.6), by the weak lower semicontinuity of the norm, we deduce that
(4.7) [tn, o0 Iy, < c.

We consider then v € V- n L™ (Q,+), £ = /*, and we extend v by zero in Q,\Q,-.
Hence v € V, n L*(Q,) and we can take it as test function in (4.5), finding

/ A(Xx)Vuy, s - Vodx = / A(X)Vi - V(H,(un,s)v) dx
Q- Q-

Yoe Vy-nL*(Qu), ¥ =7

Using the boundedness of u, , in W12(Q,-), we can pass to the limit in / ob-
taining

(4.8) /Q A(x)Vuy, o - Vodx = /Q A(X)Vii- V(H, (ty, o )v) dx

Yoe Ve L7 (Qu), V" e RT.

Taking into account (4.7) and proceeding like before for u, , (recall (4.6)), we
deduce that there exists a weak limit in W!2(Q,+) of u, ,, with respect to n, for
all /* € R*. We denote this weak limit with u and we have that

ue WhAHQ) withu=0on Q.
Now we can conclude, as at the end of the proof of Theorem 3.1, that u is
bounded from below by a positive constant on each & CC Q and that H,(u,, o, )v
is bounded in V- for all /* € R" and for all v € C!(Q). So, using the weak con-
vergence in V-« of this sequence to its almost everywhere limit H (u)v, we can pass
to the limit in 7 in (4.8) with test functions v e C!(Q), obtaining (4.4). O

5. we W, *(Q), Q CYLINDRICAL

When Q is unbounded the condition # € W~"2(Q) is somehow restrictive since
some very simple distributions — like for instance a constant function in an infi-
nite strip — do not enjoy this property (see [4]). The goal of this section is to relax
this constraint in the case of unbounded open set of cylindrical type. Let us pre-
cise our notation.

Suppose that Q is an unbounded open set such that

QCRYx N

where 1 < ¢ < N and @M~ is a bounded open set in RN7Y.
We will split a point x € RN in two components X, X», where

— - N-
Xi=x1,...,x,eRY, Xy :=x441,..., xn e R
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Analogously, the gradient of a function « defined on RN will be split in two com-
ponents as follows

VXI = (a)q? R} 6«‘4)7
Vu = (Vx,u,Vy,u) where { Vy, = (axﬁl sy Oxy)-

Moreover, for / € R™ fixed, we will consider the following bounded subset of
RN

(5.1) Q= Qn (lw! x o™N79)

where w? is an open, bounded and convex subset of R? containing the origin. We
will set

(5.2) V= Wk (Q), V= (W ()

where 1, is equipped with the gradient norm in L?(Q,).

Let us assume that u € (N, cp+ V/)\W~1%(Q) and that its norm in ¥/ blows
up as a positive power of / when / — oo. Then, inspired by Theorem 4.1 of [3]
(see also Theorem 2.1 of [4]), we are able to prove the following convergence
result.

THEOREM 5.1. Let Q be as above, A(x) and H : R — R satisfy the assumptions
of Theorem 4.1 and let i be such that

ne vy,
u=>0and u#0 onQy, v/ e R,
||,u||V/, =0(/7)  for some y > 0,

where Q; and V) are defined in (5.1), (5.2). Then, if ¢ € R* is arbitrarily fixed and

[, is the unique element in Vy such that

. ) 1 A
(53) uvy= A ACVay, - Vodx Yoe Ve illy, < S ludly, < =iy,
/

there exists a unique u; such that

u eVy, u >0 ae. inQy,
(5:4) / A(xX)Vu, - Vodx :/ A(X)Va, - V(H(u)v)dx Yoe V,a L*(Q)).
Q/ Q/

Moreover there exist two positive constants ¢, C such that

(5.5) V(s = ue )l 120, = ce™ V/eRY,

/)
2
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where u., is the unique solution to the following problem

Uy € WEAQ), uy, =0 ondQ,

(5.6) —div(A(x)Vuy,) = H(up)u  in Q,
||V”w||L2(Q,) =0(/7),

the second equation of (5.6) being understood as

(5.7) /Q A(x)Vuy, - Vodx = / A(x)Vi, - V(H (ux )v) dx = {u, H(uo )v)

Q-

Yo e V- 0 L7 (Q+), V¢* e RT.

REMARK 5.1. In the following proof, if no otherwise specified, we will denote
by ¢; (i € N) several positive constants which value may change from line to line
and, sometimes, on the same line. These values will only depend on the data (for
instance ¢; may depend on Q and N) but they will never depend on the indexes of
the sequences we will introduce.

PrOOF. If/ € R is arbitrarily fixed, the existence of a unique u, such that (5.4)
holds follows from Theorem 2.1, Theorem 2.2 and Corollary 2.1. In what follows
we prove the existence of u,, satisfying (5.5) and solving (5.6) in the sense of (5.1).
First of all, if /1 </ — 1, we denote with p, a function such that

1 on /11

| <
0 outside (4 + 1)w?’ IVxip,l < e,

pa(x) =pu(X1), 0<p, <1, p/lz{

where ¢; is a positive constant independent of /;.

1) Estimate for uy — u,, if 0 <r < 1.

Since the function T ((u, — upr,)Jr)p/1 belongs to V; N Vi 0 L¥(Qyy,), We can
choose it as test function in the equations satisfied by u, and u,, (see (5.4)). Sub-
tracting them we get

/Q AV — ) - VITe((utr — wrsn) oy ] d

=, (H (up) — H(upir)) Ti((ur — trsr) o>

and, since H is non-increasing, we obtain

| AN =) VT = ) o) <0,

This implies easily (see the properties of A4)
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/ VT ((ur — upsr) D) py, dx
Q441
A
= 7/ Va0 | Tie((tr = trr) D)V (1 — 1) " dx
D/l

1 1
<o [ W —ue) Pax) ([ (T = e do?).
D, D,
where D/, := Q/1\Q,. Using the Poncaré inequality on the section one gets

/ VTt — r00) ) dx
Q/]

1 1
< cres / Vi — ) P ) / VTl — i) ) )

where ¢, is a positive constant that depends only on wN"9. Letting k — oo we
deduce

/ V(s = up )P dx < 63/ IV — s ) | dx.
Q/]

Dy
Hence, recalling that D, := Q,,,1\Q,, we arrive to

3
3+ 1

/ \V(uy —uppr) )P dx < / \V(uy — upr) | dx.
Q4 Qf 11

. / . . A .
Starting from ¢/ = 5> we iterate the last inequality [5} times and, recalling that

{— 1 < { < —, we arrive easily to
R ] Y
(5.8) V(s —ur) Pdx < e [ IV — up) P dx
Q, Q,
2
where ¢4 :(:34—1 < 1.

Analogously, if we choose
Tk((ul’ - u/-&-r)i)p/l eVinViyn L~* (Q/’+r)

as test function in the problems solved by u, and u,,, we find

(5.9) / Vi, — ) Pdx < / V(s — uer) |2 dx.
QL2 Q,
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Summing up (5.8) and (5.9), we arrive to

/ (IV(ur = trr) 1P + V(s — ui)™|?) dx
Q/

(-1 -
<ch /Q (VG = rer) 2+ IVt — ) |?)
!/

and since
\V(uy —up )| = [V(uy = upi ) P+ [V(r —upyy) |

we conclude that

£_
(5.10) / IV — ) < ¢! / V(s — ) .
Qi Q/
2

2) Estimate for u,.
Taking Ty (u,) as test function in (5.4) we find

/1/ VT () dx
Q,

< /Q Ax)Va, - V{[H (us) — H(Ti(ur)) + H(Ti ()| Ti(ur) } dx
= S, {H (us) — H(Ti(ur)) + H(Tic(ur)) } Ti(ur) > < < H(Ti(ur)) Tie(ur ) )
< / A(x)Va, - VIH(Ty(us)) Ty (uy)] dx

Q,

where we have used formula (5.3) (note that H (u,) Ty (us), H( Ty (us)) T (uy) € V)
and that, by the monotonicity of H, it results { H (u,) — H(Ty(us))} Tk (us) <0 on
Q,. Then we obtain

p |VT,((W)|2dngcm( |Vﬂ/|2dx>§( |VTk(u/)|2dx)§
Q, Q, Q,

where ¢.. is the L™ bound of (sH(s))". Thus, recalling that ||, < %H,uHV/, <
%Hﬂnw—ll(g), we Obtain

1 Ac,
([ IVTen)P dx) < =5l = 0(27)
Q, A ‘
so that, letting k — oo, we arrive to
(5.11) \Vu,|* < est™.

Q,
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3) u, is a Cauchy sequence.
Using (5.10) and (5.11) we find

{41

/ |V<u/—u/+,>|2dxScée‘%m@( Vuy | dx + / |Vu/+,|2dx)
QL Q/
2

where 0 < o < 1 In (é) Hence

llur = wrirlly, < cse™.
2

If ¢ > 0 is arbitrary, we deduce
(512) e —updlly, < llue —upsilly, + lluesr — ursally,
2 2 2

4+t ||W+[l] - u/+t||V/+[,]
=

Z

< cge ¥ 4 ege ) ol g e 3D

o2 ox o o2 1
<ce ¥ (l4+ei4+e24..)<ce ™ ;

— ef%
. : / .
independently of # > 0. So, if /* < 3 from (5.12) we deduce that u, is a Cauchy

sequence in W12(Q,-), and so it has a strong limit in this space, that we will
denote by u,.

4) Limit problem. /
Since u; € V, forall / e R and /* < 7> we have that u, = 0 on 0Q,+ N 0Q for
all # > 2/*. Then

ure Vo i={ve WH3(Qu ) st.v=00n dQ, noQ} Y/ >2/*.

Since V- is weakly closed and u, is strongly convergent to u,, in W2(Q,), we
conclude that u,, = 0 on 0Q,+ N dQ and this for all /* € R*. Hence

Uy € W/})"cz(ﬁ) with u,, = 0 on 0Q.

Letting  — oo in (5.12), we obtain also (5.5).

Now, we will prove that u., satisfies (5.1). If v € V» n L*(Qy+), / > ¢* and if
we extend v by zero in Q,\Q,+, then v € ¥V, n L*(€,). In particular we can take v
as test function in the problem solved by u,, namely in (5.4). Hence we have

/ A(x)Vu/~Vvdx—/ A(x)Va, - V(H (us)v) dx
Q- Q-

:AAmwwwmwwm

Yoe VynL*(Qp), ¥ = 7.
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If we pass to the limit in /, using the regularity of H and the fact that u, — u,, in
W12(Q,+), we obtain

/ A(x)Vuo, - Vo = / A(x)Vi, - V(H(uy)v) dx
Q= Q,+

= {u, H(uyw)vy Yve VynL™(Q).
Of course this holds for all /* € R* and (5.1) is proved.

5) Estimate for [|Vis, [|12(q,)-
From (5.12) we deduce

[tz — s illy, < coe™ .

Since, in particular, ¢9 is independent of ¢, letting ¢t — oo we find

lur — s ||y, < coe ™

Hence, using also (5.11), we deduce
leolly, < coe™ + llully, < coe™ + [lurlys, < coe™ + O((20)7) = O(¢7),
this completes the proof of (5.6).

6) Uniqueness.
Finally we want to prove that u,, is unique. Let us assume that u,, and u/ are
two solutions to (5.6). Then, from (5.1), we deduce

(5.13) AX)V(usp, —ul)) - Vodx = / A(X)Vi,- - V{(H (us) — H(ul, )v} dx

Q,. Q,.
Yoe Vy nL7(Qy+), V/* e RT.

If /* is fixed and 4 < /" — 1, we take v" ™ = Ti((ue —ul) " 7 )p, € Vi 0

L*(Q,+) as test functions in (5.13) and we argue as in the first step of the proof,
finding

/ V(o — ut)|? dx < croe™ " / V(1o — 1) dx.
Q. Q.
Thus, recalling (5.5), we deduce
|19 =P
')
2
< cpe (/ V(o — Mz/*>|2dX+/ V(- — ugc)|2dx)
Q-

Q-

£C12€76“/ 628726‘/ .
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Finally, letting /* — oo, we end up with

uy =ul, aeinQ,

as desired. O
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