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Abstract. — We show how methods of algebraic geometry can produce criteria for the iden-

tifiability of specific tensors that reach beyond the range of applicability of the celebrated Kruskal
criterion. More specifically, we deal with the symmetric identifiability of symmetric tensors in

Sym4ðCnþ1Þ, i.e., quartic hypersurfaces in a projective space Pn, that have a decomposition in
2nþ 1 summands of rank 1. This is the first case where the reshaped Kruskal criterion no longer

applies. We present an e¤ective algorithm, based on e‰cient linear algebra computations, that
checks if the given decomposition is minimal and unique. The criterion is based on the application

of advanced geometric tools, like Castelnuovo’s lemma for the existence of rational normal curves
passing through a finite set of points, and the Cayley–Bacharach condition on the postulation of

finite sets. In order to apply these tools to our situation, we prove a reformulation of these results,
hereby extending classical results such as Castelnuovo’s lemma and the analysis of Geramita,

Kreuzer, and Robbiano, Cayley–Bacharach schemes and their canonical modules, Trans. Amer.

Math. Soc. 339:443–452, 1993.
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1. Introduction

The aim of this paper is the continuation of the study, started in [COV17b],
of conditions which imply the identifiability of symmetric tensors, in a numer-
ical range where the celebrated Kruskal criterion does not apply. Recall that a
symmetric tensor T is identifiable if there exists a unique decomposition T ¼
T1 þ � � � þ Tr with a minimal number of symmetric rank-1 terms, up to scaling
and reordering of the summands. This decomposition is called a symmetric tensor
rank decomposition or Waring decomposition.

Beyond its theoretical interest, identifiability plays a central role in many ap-
plications of symmetric tensors. An important class of applications is found in
algebraic statistics and machine learning. Indeed, the parameters of several latent
variable models, including topic models, latent Dirichlet allocation, and hidden
Markov models, can be recovered from the unique Waring decomposition of a
symmetric tensor T that is associated with the model, as shown in [AGHKT14,
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AMR09, SKLV17]. Since one wishes to recover and interpret the parameters of
the model uniquely, it is important to verify that the symmetric decomposition
(computed by some numerical algorithm) is unique. In 1977, Kruskal [K77] de-
termined what is now still the most popular criterion for testing the identifiability
of a specific decomposition of a given, general tensor. Kruskal showed that a
given decomposition is identifiable if its length is smaller than some numerical
condition on the Kruskal ranks associated with the decomposition. Applying
Kruskal’s result to a reshaped tensor is considered to be a state-of-the-art e¤ec-
tive criterion for identifiability by [COV17b].

Despite its popularity, there are three limitations to Kruskal’s test in the sym-
metric setting. First, Kruskal’s criterion verifies whether the tensor has no other
tensor rank decompositions. It is possible, in principle, that a symmetric tensor
has only one symmetric decomposition but several tensor rank decompositions
of the same length. Indeed, Shitov [S17] recently provided a counterexample to
Comon’s conjecture, which entails that this may happen. Second, the length r
of the decompositions of which Kruskal’s criterion can prove identifiability is
much smaller than the range wherein generic symmetric identifiability holds
[COV17a]. Third, Derksen proved in [D13] that the numerical condition on the
Kruskal ranks is sharp in the sense that if s is the largest rank allowed by the nu-
merical condition in Kruskal’s criterion, then there exist unidentifiable tensors of
rank sþ 1 that still satisfy the numerical condition.

Remark 1.1. The construction in [D13] also applies to the symmetric case.
Indeed, taking all Kruskal ranks equal to the maximum value, the example
constructed in [D13] becomes a symmetric tensor decomposition T ¼ T1 þ � � � þ
Tsþ1 that admits another, distinct symmetric tensor decomposition T ¼ T 0

1 þ � � � þ
T 0
sþ1; hence, [D13] also proved that Kruskal’s criterion is sharp in the symmetric

setting.

The foregoing reasons motivated a further study of the specific identifiabil-
ity of symmetric tensors, as in [BC12, COV17b, MMS17]. However, results
beyond the (reshaped) Kruskal criterion are sparse. Moreover, some of these cri-
teria require the use of general computer algebra algorithms which rapidly be-
come ine¤ective for high-dimensional varieties. In Proposition 6.3 of [COV17b],
a criterion for the identifiability of quartics in P3 (symmetric tensors of type
4� 4� 4� 4), having a decomposition with 7 summands was given; this is ex-
actly the first value beyond the range of the reshaped Kruskal’s criterion. The
goal of this paper is to extend the analysis to symmetric tensors in S4Cnþ1, for
any n. For such tensors the reshaped Kruskal criterion can prove the identifiabil-
ity only for decompositions with 2n or less summands. We propose here a test
that verifies the identifiability even for decompositions of length 2nþ 1. More-
over, the test is e¤ective, in the sense of [COV17b]: it will give a positive answer
except on a set of measure 0 in the variety of tensors decomposed with 2nþ 1 or
less summands.

The idea of the test is based on the following observation. If T a S4Cnþ1 has a
decomposition with 2nþ 1 summands it may happen (as predicted in [D13]) that
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the decomposition is not unique, even if its associated Kruskal ranks have the
maximum value nþ 1, which is equivalent to say that the decomposition is in lin-
ear general position, see Definition 2.2. However, in this case, we prove the exis-
tence of a positive-dimensional family of decompositions for T , which includes
the given one. Specifically, we prove that when T has two di¤erent decomposi-
tions of length 2nþ 1, then the pre-images of the two decompositions in the
Veronese map determine a finite subset of points Z in a projective space Pn ¼
PðCnþ1Þ which lies in a rational normal curve. This rational normal curve in Pn

induces the existence of the positive-dimensional family of decompositions for the
tensor T , which can be detected using only linear algebra. These insights yield the
new criterion (see Section 6.1).

We notice that the failure of identifiability for tensors of rank 2nþ 1 in S4Cnþ1

is caused by the existence of a low dimensional variety – the rational normal
curve – that contains the pre-images of the points of the decomposition and
forces the existence of other decompositions of the same tensor. The link between
the failure of identifiability and the existence of subvarieties of positive dimen-
sion containing the decompositions is somehow familiar in the study of tensors.
This phenomenon can occur for generic tensors, where the varieties that force the
existence of many decompositions of T are the contact varieties; see [CC06]. In
the case of symmetric tensors of very low rank, it was shown in [BC13] that
unidentifiable cases occur only if the decompositions are contained in a positive-
dimensional subvariety. In this paper, we prove that the same fact holds for
specific tensors of rank 2nþ 1 in S4Cnþ1, and we expect that a similar character-
ization of unidentifiable specific tensors can be proved in other cases which lie
just beyond Kruskal’s range.

The basic tool in our analysis is provided by the study of the geometry of
finite sets Z in the projective space Pn. We will perform the analysis by means
of classical methods in algebraic geometry, essentially related to the Hilbert func-
tion of Z. However, we cannot plainly use the large body of classical and modern
results on finite sets in projective spaces. The reason is that when we have a
decomposition of T , and we want to exclude the existence of a second decom-
position, then we argue on the pre-images of the two decompositions, which de-
termine two sets A;B � Pn. In order to achieve our result, i.e., that when A is in
linear general position then Z ¼ AAB lies in a rational normal curve, we can
control only the geometry of A, as we know nothing about the hypothetical set
B; in particular, we cannot place assumptions on the geometry of B. For this
reason, we need to produce refinements of well-known geometric results, such as
Castelnuovo’s Lemma (see Lemma 5.3), in which we sharpen the hypothesis
on the generality of the position of the points in Z in Lemma 5.4. Similarly, we
introduce a relative version of the Cayley–Bacharach condition (see Definition
4.1), and extend a result of Geramita, Kreuzer and Robbiano (see Theorem 4.9
below).

We hope that our analysis can be of independent interest in the theory of finite
sets in projective spaces. We also believe that it can support the idea that geomet-
ric results on the geometry of sets of points can produce interesting consequences
for the theory of symmetric tensors. We also strongly believe that further analyses
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of the same type can provide new applications of algebraic geometry methods in
the study of tensors, as well as stimulate the research on the Hilbert functions of
finite sets, by indicating which refinements of known results could produce non-
trivial applications to tensor analysis.

The rest of this article is structured as follows. In the next section some ele-
mentary results about the Hilbert function of finite sets are recalled. Kruskal’s
identifiability criterion of tensors is recalled in Section 3. We then investigate,
in Section 4, the Hilbert function of sets with the Cayley–Bacharach property.
In Section 5, the assumptions in the classic Castelnuovo Lemma are relaxed.
Finally, we apply the results from aforementioned sections to the identifiability
of fourth-order symmetric tensors whose rank is one higher than the range in
which the (reshaped) Kruskal criterion applies.

2. Preliminaries

2.1. Notation

Let T be a homogeneous polynomial in nþ 1 variables of degree d over C, i.e.,
T a SdCnþ1. T is associated to an element of PðSdCnþ1Þ, which by abuse of
notation we denote by T .

For any m a N, let Pm ¼ Pm
C be the m-dimensional complex projective space

and let nd : Pn ! PN be the Veronese embedding of Pn of degree d, where N ¼
nþd
d

� �
� 1. Let A � Pn be a finite set. We denote by lðAÞ the cardinality of A and

we define

ndðAÞ ¼ fndðP1Þ; . . . ; ndðPlðAÞÞg � PN ;

where Pi a A.
With the above notations we give the following definitions.

Definition 2.1. Let A � Pn be a finite set. A computes T if T a 3ndðAÞ4, the
linear space spanned by the points of ndðAÞ.

Recall that the Kruskal rank of a finite set A � Pn is defined as the maximum
value k such that all subsets of k points from A are linearly independent. By def-
inition, the maximum value for the Kruskal rank of A is thus minflðAÞ; nþ 1g,
which is also the generic value.

Definition 2.2. A finite set A � Pn is in linear general position (LGP) if the
Kruskal rank of A is maximal, i.e., equal to minflðAÞ; nþ 1g. This implies that
any subset of A of cardinality at most nþ 1 is linearly independent.

Definition 2.3. Let A � Pn be a finite set which computes T . A is minimal if
we cannot find a proper subset A 0 of A such that T a 3ndðA 0Þ4.

468 e. angelini, l. chiantini and n. vannieuwenhoven



Remark 2.4. If A � Pn is a finite set that computes T and satisfies the minimal-
ity property, then the points of ndðAÞ are linearly independent, i.e.,

dimð3ndðAÞ4Þ ¼ lðAÞ � 1:

Recall that a rational normal curve is a curve G � Pn corresponding to the
Veronese embedding of P1 of degree n. Rational normal curves are the only irre-
ducible curves of degree n in Pn.

Remark 2.5. If Z is a finite subset of a rational normal curve G � Pn, then Z is
always in LGP; see [H92] at the bottom of page 10.

Remark 2.6. It is classically known that curves are never defective, i.e.,
their secant varieties always have the expected dimension. Thus, if G � Pn is
a rational normal curve, then the dimension of the k-secant variety skðGÞ is the
expected

minfn; 2k � 1g:

2.2. The Hilbert function of finite sets and its di¤erence

We collect in this section a series of definitions and propositions which are
well known to people working in algebraic geometry, but maybe not so familiar
to other people working in tensor analysis. The main definition is the Hilbert
function of a finite set in a projective space, which is a basic tool for our results
on the identifiability of symmetric tensors. Readers can find detailed studies on
the Hilbert functions, and their relations with tensor analysis, in the book of
A. Iarrobino and V. Kanev [IK99].

Definition 2.7. Let Y � Cnþ1 be a finite, reduced set of cardinality l and let
j a N.

The evaluation map of degree j on Y is the linear map

evY ð jÞ : S jCnþ1 ! Cl

which sends F a S jCnþ1 to the evaluation of F at the points of Y .

We will use the evaluation map to define the Hilbert function of a finite set
Z � Pn.

Remark 2.8. Let Z � Pn be a finite set. Choose a set of homogeneous coordi-
nates for the points of Z. We get a set of vectors Y � Cnþ1, for which the evalu-
ation map evY ð jÞ is defined for every j. If we change the choice of the homoge-
neous coordinates for the points of the fixed set Z, we get another set Y 0 � Cnþ1

and the evaluation map evY 0 ð jÞ di¤ers from evY ð jÞ for the multiplication by a
nonsingular diagonal matrix. Thus the rank of evY ð jÞ and evY 0 ð jÞ are the same
for all j.
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Thanks to the previous remark, we can give the following definition of the
Hilbert function of a finite set of points.

Definition 2.9. Let Z � Pn be a finite set. Choose any set of homogeneous
coordinates Y for the points of Z. Define the Hilbert function of Z as the map

hZ : Z ! N

such that hZð jÞ ¼ 0 for j < 0 and hZð jÞ ¼ rankðevY ð jÞÞ for jb 0.

Remark 2.10. For any jb 0, the value hZð jÞ provides the number of condi-

tions that Z imposes to the elements of S jCnþ1, i.e., hZð jÞ ¼ dimð3njðZÞ4Þ þ 1.
In particular, if hZð jÞ ¼ lðZÞ, then we say that Z imposes independent conditions
to forms of degree j.

Definition 2.11. The first di¤erence of the Hilbert function DhZ of Z is given
by

DhZð jÞ ¼ hZð jÞ � hZð j � 1Þ;

where j a Z. The set of non-zero values of DhZ is called the h-vector of Z.

We recall some elementary and well-known properties of hZ and DhZ that will
be useful throughout the paper.

Lemma 2.12. We have

(i) DhZð jÞ ¼ 0 for j < 0;
(ii) hZð0Þ ¼ DhZð0Þ ¼ 1;
(iii) DhZð jÞb 0 for all j;
(iv) hZð jÞ ¼ lðZÞ for all jg 0;
(v) DhZð jÞ ¼ 0 for jg 0 and

P
j DhZð jÞ ¼ lðZÞ;

(vi) hZðiÞ ¼
P

0ajai DhZð jÞ;
(vii) if hZð jÞ ¼ lðZÞ, then DhZð j þ 1Þ ¼ 0;
(viii) if Z 0 � Z, then, for every j a Z, we have hZ 0 ð jÞa hZð jÞ and DhZ 0 ð jÞa

DhZð jÞ:

The next property is a consequence of the Macaulay maximal growth prin-
ciple; see, e.g., Section 3 of [BGM94] for a proof.

Proposition 2.13. If for some j > 0, DhZð jÞa j, then

DhZð jÞbDhZð j þ 1Þ:

In particular, if for some j > 0, DhZð jÞ ¼ 0, then DhZðiÞ ¼ 0 for all ib j.

Remark 2.14. Notice that if for some j we have DhZð jÞ ¼ 0, then hZð j � 1Þ ¼
hZð jÞ. By Proposition 2.13, for any ib j also DhZðiÞ ¼ 0, i.e., hZð j � 1Þ ¼ hZðiÞ
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for any ib j. Therefore, by parts (v) and (vi) of Lemma 2.12,

lðZÞ ¼
X
k

DhZðkÞ ¼
Xi

k¼0

DhZðkÞ ¼ hZðiÞ:

Thus, hZð j � 1Þ is equal to the cardinality of Z, i.e., the evaluation map in degree
j � 1 surjects. In this case, for every P a Z we can find a form of degree i that
vanishes at ZnfPg and does not vanish at P. Therefore, when hZðiÞ ¼ lðZÞ, we
will also say that hypersurfaces of degree i separate the points of Z.

Remark 2.15. Assume hZðiÞ ¼ lðZÞ � 1. Then hZði þ 1Þ > hZðiÞ, for other-
wise, by Proposition 2.13, DhZð jÞ ¼ 0 for all j > i, thus hZð jÞ ¼ hZðiÞ for all
j > i, contradicting property (iv) of Lemma 2.12. Thus, if hZðiÞ ¼ lðZÞ � 1 then
necessarily hZði þ 1Þ ¼ lðZÞ.

Remark 2.16. There is an alternative way to look at the Hilbert function of
a finite set Z � Pn. Indeed, let JZ be the ideal sheaf of Z and let j a N. Then,
we have the short exact sequence

0 ! JZð jÞ ! OPnð jÞ ! OZð jÞ ! 0:ð1Þ

Passing to cohomology, (1) provides the exact sequence

0 ���! H 0ðJZð jÞÞ ���! H 0ðOPnð jÞÞ ���!evY ð jÞ
H 0ðOZð jÞÞ ���! H 1ðJZð jÞÞ ���! 0;

regardless of the choice of Y with ½Y � ¼ Z. Therefore,

hZð jÞ ¼
j þ n

j

� �
� dimðH 0ðJZð jÞÞÞ;ð2Þ

and, by Lemma 2.12 (v) and (vi),

dimðH 1ðJZð jÞÞÞ ¼ lðZÞ � hZð jÞ ¼
X
i> j

DhZðiÞ:ð3Þ

3. Kruskal’s criterion for symmetric tensors

In this section, we recall the specialization of the celebrated Kruskal criterion for
the identifiability of a decomposition to symmetric tensors. In fact, in the context
of this paper, we are interested only in the generic case where the Kruskal ranks
are maximal. In this case, the highest rank r of which Kruskal’s criterion can
prove identifiability is maximal. The particular version of Kruskal’s Lemma that
is of relevance is recalled as the following corollary of the results in [K77].

Corollary 3.1 (Kruskal [K77]). Let T be an n1 � n2 � n3 tensor over C with
n1 b n2 b n3 b 2. Assume that T ¼ T1 þ � � � þ Tr, where the Ti’s are tensors of
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rank 1. Write Ti ¼ v1i n v2i n v3i. If the sets Aj ¼ fvj1; . . . ; vjrg are in LGP and

ra
1

2
ðminðn1; rÞ þminðn2; rÞ þminðn3; rÞÞ � 1

then T has complex rank r and it is identifiable, in the sense that the set fT1; . . . ;
Trg is unique, including multiplicities.

A value of r not satisfying the above inequality is said to be beyond Kruskal’s
range of identifiability.

According to Corollary 20 of [COV17b], Kruskal’s criterion can be specialized
to the case of symmetric tensors, as follows. As before, we only present the fol-
lowing corollary in the generic case where the Kruskal ranks are maximal.

Corollary 3.2 (Reshaped Kruskal’s criterion for symmetric tensors
[COV17b]). Let T a SdCnþ1 with db 3 and nb 1. Let A � Pn be a finite set
of cardinality r ¼ lðAÞ computing T, and let d1 þ d2 þ d3 ¼ d be a partition of d
such that d1 b d2 b d3. If ndiðAÞ is in LGP for i ¼ 1; 2; 3 and

ra
1

2
min d1þn

d1

� �
; r

n o
þmin d2þn

d2

� �
; r

n o
þmin d3þn

d3

� �
; r

n o� �
� 1;

then T has complex rank r and it is identifiable.

Remark 3.3. Direct computations show that for the case d ¼ 4, which is the
core of this paper, the maximum range of applicability is attained for d1 ¼ 2
and d2 ¼ d3 ¼ 1, so that lðAÞa 2n. Values of r ¼ lðAÞ > 2n are beyond the
reshaped Kruskal’s range.

4. Identifiability and the Cayley–Bacharach property

For a finite set, we define the Cayley–Bacharach property CBðiÞ as follows.

Definition 4.1. A finite set Z � Pn satisfies the Cayley–Bacharach property in
degree i, abbreviated as CBðiÞ, if for all P a Z, it holds that every form of degree i
vanishing at ZnfPg also vanishes at P.

Remark 4.2. If Z satisfies CBðiÞ, then it satisfies CBði � 1Þ too. Otherwise, one
could find P a Z and a hypersurface F � Pn of degree ði � 1Þ such that ZnfPg �
F and P B F . Therefore, if HP � Pn is a hyperplane not containing P, then
F AHP a H 0ðJZnfPgðiÞÞnH 0ðJZðiÞÞ, which contradicts the hypothesis.

Remark 4.3. If Z satisfies CBðiÞ, then for any P a Z, we have

H 0ðJZnfPgðiÞÞ ¼ H 0ðJZðiÞÞ:
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It follows from equation (2) and Remark 4.2 that

hZð jÞ ¼ hZnfPgð jÞ and DhZð jÞ ¼ DhZnfPgð jÞ Eja i:ð4Þ

The Cayley–Bacharach property could thus be interpreted as the converse of
the separation property introduced in Remark 2.14.

Remark 4.4. From Remark 2.14 it is clear that if Z satisfies CBðiÞ, then hyper-
surfaces of degree i cannot separate the points of Z. We must namely have:

hZðiÞ < lðZÞ or; equivalently DhZði þ 1Þ > 0:ð5Þ

Indeed, if hZðiÞ ¼ lðZÞ, then from (4) and the exact sequence

0 ! H 0ðJZnfPgðiÞÞ ! H 0ðOPnðiÞÞ ! H 0ðOZnfPgðiÞÞ ! H 1ðJZnfPgðiÞÞ ! 0;

it follows that

h1ðJZnfPgðiÞÞ ¼ lðZnfPgÞ � hZnfPgðiÞ ¼ lðZÞ � 1� hZðiÞ ¼ �1;

which is not possible.
We notice that the converse statement is false. For instance, the set Z consist-

ing of four points in P2, three of them aligned, does not satisfy CBð1Þ, while
hZð1Þ < 4.

For brevity, we define the following value.

Definition 4.5. The socle degree iZ of Z is the maximum i such that (5)
holds.

Note that iZ is the maximum i such that DhZði þ 1Þ > 0, i.e., the last element
of the h-vector of Z. Additionally, if Z does not satisfy CBðiÞ, then it does not
satisfy CBð jÞ for all jb i either, by the contrapositive of Remark 4.2. Therefore,
if Z satisfies CBðiÞ, then ia iZ.

Example 4.6. Some examples of the Cayley–Bacharach property are shown
below.

(i) Let Z be a set of 6 general points in P2. Then DhZ ¼ ð1; 2; 3Þ, iZ ¼ 1 and Z
satisfies CBð1Þ.

(ii) Let Z be a set of 6 general points lying on an irreducible conic of P2. Then
DhZ ¼ ð1; 2; 2; 1Þ, iZ ¼ 2 and Z satisfies CBð2Þ, and, hence, CBð1Þ.

(iii) Let Z be a set of 6 general points in P2, with 5 of them on a line plus one
point o¤ the line. Then DhZ ¼ ð1; 2; 1; 1; 1Þ, iZ ¼ 3 and Z does not satisfy
CBð1Þ.

The following holds.
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Lemma 4.7. Let Z ¼ fP1; . . . ;Prg � Pn be a finite set satisfying CBðiÞ. If, for
any j a f1; . . . ; rg, the set Zj ¼ ZnfPjg does not satisfy CBðiÞ, then

hZði þ 1Þ ¼ lðZÞ ¼ r; and so DhZði þ 2Þ ¼ 0:ð6Þ

Proof. By hypothesis, for every j a f1; . . . ; rg there exists a point Qj a Zj and
a form Fj a H 0ðOPnðiÞÞ which vanishes at ZnfPj;Qjg but not at Qj . Notice that
FjðPjÞ cannot be 0, since Z satisfies CBðiÞ. Let Hj a H 0ðOPnð1ÞÞ be a linear form
vanishing at Qj but not at Pj and consider Gj ¼ Fj �Hj. For any j a f1; . . . ; rg,
it holds that Gj a H 0ðJZj

ði þ 1ÞÞnH 0ðJZði þ 1ÞÞ, which implies that Z does not
satisfy CBði þ 1Þ. Moreover, for all j, GjðPjÞA 0 and GjðPkÞ ¼ 0 for any kA j.
Therefore, in the exact sequence

0 ����! H 0ðJZði þ 1ÞÞ ����! H 0ðOPnði þ 1ÞÞ ����!evZðiþ1Þ
H 0ðOZði þ 1ÞÞ

we have that imðevZði þ 1ÞÞ ¼ H 0ðOZði þ 1ÞÞ, i.e., evZði þ 1Þ is a surjective map,
which implies (6). r

The following result, due to Geramita, Kreuzer, and Robbiano, gives a strong
bound on the Hilbert function of sets with a Cayley–Bacharach property.

Theorem 4.8 (Geramita, Kreuzer, and Robbiano [GKR93]). If a finite set
Z � Pn satisfies CBðiZÞ, then we have

(i) DhZð0Þ þDhZð1Þ þ � � � þDhZð jÞaDhZðiZ þ 1� jÞ þ � � � þDhZðiZ þ 1Þ, for
any j with 0a ja iZ þ 1;

(ii) DhZð0Þ þDhZð1Þ þ � � � þDhZð jÞaDhZðk � jÞ þ � � � þDhZðkÞ, for any j, k
with 0a ja ka iZ þ 1.

Proof. See Corollary 3.7 part (b) and (c) of [GKR93]. r

In order to create a link between Cayley–Bacharach properties and identifi-
ability of symmetric tensors, we need to extend Theorem 4.8 by replacing iZ
with any integer i such that Z satisfies CBðiÞ.

Theorem 4.9. If a finite set Z � Pn satisfies CBðiÞ, then for any j such that
0a ja i þ 1 we have

DhZð0Þ þDhZð1Þ þ � � � þDhZð jÞaDhZði þ 1� jÞ þ � � � þDhZði þ 1Þ:

Proof. We proceed by induction on the residual part h1ZðiÞ, which is defined as:

h1ZðiÞ ¼ lðZÞ � hZðiÞ ¼ lðZÞ �
Xi

j¼0

DhZð jÞ ¼
XiZþ1

j¼iþ1

DhZð jÞ:

If h1ZðiÞ ¼ 1, then lðZÞ ¼ hZðiÞ þ 1. Thus, by Remark 2.15 we must have
lðZÞ ¼ hZði þ 1Þ, i.e., i ¼ iZ and we conclude by Theorem 4.8 part (i).
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Next, we assume that the theorem is true for all 1a h1ZðiÞa e, and prove it
for eþ 1. If Z satisfies CBðiZÞ, then we can conclude by Theorem 4.8 part (ii).
So assume that Z does not satisfy CBðiZÞ. In this case notice that there exists
P a Z such that ZP ¼ ZnfPg satisfies CBðiÞ. Indeed, if for any P a Z the set ZP

does not satisfy CBðiÞ, then by Lemma 4.7 we have that h1Zði þ 1Þ ¼ 0, that is
i ¼ iZ, which is a contradiction. Fix then a point P a Z such that ZP satisfies
CBðiÞ. Since Z satisfies CBðiÞ, by (4) we have that

hZP
ð jÞ ¼ hZð jÞ and DhZP

ð jÞ ¼ DhZð jÞ

for ja i. Therefore,

h1ZP
ðiÞ ¼ lðZPÞ �

Xi

j¼0

DhZP
ð jÞ ¼ lðZÞ � 1�

Xi

j¼0

DhZð jÞ ¼ h1ZðiÞ � 1;

so that by applying the induction hypothesis to ZP, we get

DhZP
ð0Þ þDhZP

ð1Þ þ � � � þDhZP
ð jÞaDhZP

ði þ 1� jÞ þ � � � þDhZP
ði þ 1Þ

for every j such that 0a ja i þ 1. From (4) and DhZP
ði þ 1ÞaDhZði þ 1Þ, by

Lemma 2.12 (viii), we get the conclusion. r

5. Castelnuovo’s Lemma revisited

In order to apply the Cayley–Bacharach property to the identifiability of sym-
metric tensors, we need an ad hoc extension of the classical Castelnuovo Lemma
for finite sets in Pn.

Lemma 5.1 (Castelnuovo, [GH78] page 531). Let Z � Pn be a finite set such
that:

(i) lðZÞb 2nþ 3;
(ii) Z is in LGP;
(iii) Z imposes 2nþ 1 conditions to quadrics, i.e., hZð2Þ ¼ 2nþ 1.

Then, the quadrics containing Z intersect in a rational normal curve, which thus
contains Z.

In particular, we need to weaken the hypothesis, by assuming only that some
subset of Z is in LGP. We do that in several steps.

Proposition 5.2. Let Z � Pn be a finite set with a subset A � Z of cardinality
2nþ 1 in LGP. Then hZð2Þb 2nþ 1.

Proof. Since A is in LGP, then A imposes independent conditions to quadrics.
Therefore hAð2Þ ¼ 2nþ 1. As A � Z, Lemma 2.12 (viii) concludes the proof. r
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By means of Proposition 5.2, Castelnuovo’s Lemma can be rephrased as
follows:

Lemma 5.3. Let Z � Pn be a finite set such that:

(i) lðZÞb 2nþ 3;
(ii) Z is in LGP;
(iii) Z imposes at most 2nþ 1 conditions to quadrics, i.e., hZð2Þa 2nþ 1.

Then, hZð2Þ ¼ 2nþ 1 and the quadrics containing Z intersect in a rational normal
curve, which thus contains Z.

Based on Lemma 5.3, we can prove the following extension:

Lemma 5.4. Let Z � Pn be a finite set such that:

(i) lðZÞb 2nþ 3;
(ii) hZð2Þa 2nþ 1;
(iii) there exists A � Z such that lðAÞ ¼ 2nþ 1 and A is in LGP.

Then, Z is in LGP and it is contained in a rational normal curve.

Proof. First, let us assume that lðZÞ ¼ 2nþ 3 and let us set Z ¼ AA fP;Qg.
We claim that W ¼ AA fPg is in LGP. Indeed, if this is not the case, there are
subsets of W , of cardinality at most nþ 1, which are not linearly independent.
This implies that one can find V � W and a hyperplane H such that lðVÞ ¼
nþ 1 and V � H. Since A is in LGP, then, necessarily, V contains P and n points
of A. Thus we can renumber the points of A ¼ fP1; . . . ;P2nþ1g so that Pi a H if
and only if ia n. For any j a fnþ 1; . . . ; 2ng, we can find a hyperplane Hj � Pn

such that fPnþ1; . . . ;Pjg � Hj and fPjþ1; . . . ;P2nþ1g 6� Hj, because A is in LGP.
It follows that the quadric Qj ¼ HAHj contains fP;P1; . . . ;Pjg and misses
fPjþ1; . . . ;P2nþ1g. In particular, if we set Vj ¼ fP;P1; . . . ;Pjg, then h0ðJVj

ð2ÞÞ >
h0ðJVjþ1

ð2ÞÞ, which implies:

hVj
ð2Þ < hVjþ1

ð2Þ:ð7Þ

We notice that hVj
ð1Þ ¼ nþ 1, for Vj contains at least nþ 1 points of A, which is

in LGP. Therefore DhVj
ð1Þ ¼ n. Moreover, since lðVnþ1Þ ¼ nþ 2 ¼ hVnþ1

ð1Þ þ 1,
by Remark 2.15 we get that hVnþ1

ð2Þ ¼ lðVnþ1Þ. Thus, the h-vector of Vnþ1 is
ð1; n; 1Þ. By induction on j, we show that

hVj
ð2Þ ¼ j þ 1; Ejb nþ 1:ð8Þ

Indeed, the claim holds for j ¼ nþ 1. If (8) holds for jb nþ 1, then by (7) we
have that hVjþ1

ð2Þ > j þ 1. Since, by definition, hVjþ1
ð2Þa lðVjþ1Þ ¼ j þ 2, neces-

sarily it has to be the case that hVjþ1
ð2Þ ¼ j þ 2, as desired. By applying (8) to

j ¼ 2nþ 1, we get that

hW ð2Þ ¼ hV2nþ1
ð2Þ ¼ 2nþ 2;
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which contradicts assumption (ii) via Lemma 2.12 (viii), as W � Z. So, W is in
LGP.

Now assume that Z is not in LGP. Then, as above, there exists V � Z and a
hyperplane H � Pn such that lðVÞ ¼ nþ 1 and Q a V � H. Then there exists
U � Z such that lðUÞ ¼ 2nþ 2 and U is not in LGP. Since hUð2Þa 2nþ 1 ¼
hZð2Þ, and U contains 2nþ 1 points of W which is in LGP, then we get a contra-
diction by arguing as above.

Finally, assume that lðZÞ > 2nþ 3. Notice that we have just proved the
existence of Z0 � Z such that lðZ0Þ ¼ 2nþ 3 and Z0 is in LGP. In particular,
hZ0

ð2Þa 2nþ 1. By Lemma 5.3, hZ0
ð2Þ ¼ 2nþ 1 and Z0 lies in a rational normal

curve G, which is the intersection of all quadrics containing Z0. Since hZð2Þa
2nþ 1, then equality holds and H 0ðJZ0

ð2ÞÞ ¼ H 0ðJZð2ÞÞ. Thus Z itself is con-
tained in G, which, by Remark 2.5, implies that Z is in LGP. r

Example 5.5. The previous formulation of Castelnuovo’s Lemma is sharp, in
the sense that the existence of a subset of cardinality 2n in LGP is not enough to
guarantee that a set Z of 2nþ 3 points in Pn, with hZð2Þ ¼ 2nþ 1, is contained in
a rational normal curve.

Namely, take n ¼ 3 and take a smooth quadric Q � P3, a set of 4 general
points Q1; . . . ;Q4 on Q, a general line L � Q of type ð0; 1Þ and a set of 5 general
points P1; . . . ;P5 on L. The set Z ¼ fQ1; . . . ;Q4;P1; . . . ;P5g has cardinality 9 ¼
2nþ 3 and contains the subset A ¼ fQ1; . . . ;Q4;P1;P2g of cardinality 6 ¼ 2n
which is in LGP, due to the generality in the choice of the points. Since 4 gen-
eral points of Q lie in two linearly independent divisors of type ð2; 1Þ, then there
are 3 independent quadrics of P3 containing Z, i.e., hZð2Þ ¼ 7 ¼ 2nþ 1. The set
Z, however, cannot lie in a rational normal curve, for it contains 5 points on a
line.

6. Application to the identifiability of quartics

In this section, we apply the previous results on the geometry of finite sets to
decompositions of quartic polynomials with the purpose of reaching beyond the
range of Kruskal’s criterion of identifiability.

Throughout this section, we consider d ¼ 4 and let T a S4Cnþ1 be a homoge-
neous polynomial. Let A � Pn be a finite set that computes T , such that:

(i) lðAÞ ¼ 2nþ 1, i.e., A has one point more than Theorem 3.2 allows; see
Remark 3.3;

(ii) A is in LGP;
(iii) A satisfies the minimality property.

Let B � Pn be another finite set that computes T with lðBÞa 2nþ 1. Without
loss of generality we can also assume that B satisfies the minimality property. In
particular, T a 3n4ðAÞ4B3n4ðBÞ4. Our target is to find criteria that exclude the
existence of B, so that T has rank 2nþ 1 and is identifiable.
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In the following, we analyze the geometry of the union

Z ¼ AAB:

Clearly, lðZÞa lðAÞ þ lðBÞ, with equality if ABB is empty.
It is a straightforward fact that

3n4ðZÞ4 ¼ 3n4ðAÞ4þ 3n4ðBÞ4:

so that by using Grassmann’s formula, we have that

dimð3n4ðZÞ4Þ ¼ dimð3n4ðAÞ4Þ þ dimð3n4ðBÞ4Þ � dimð3n4ðAÞ4B3n4ðBÞ4Þ:ð9Þ

From Remark 2.4, we then find that

dimð3n4ðZÞ4Þ ¼ lðAÞ þ lðBÞ � 2� dimð3n4ðAÞ4B3n4ðBÞ4Þ:ð10Þ

Since ABB is a proper subset of A, then, by the minimality assumption on A,
we get that T B 3n4ðABBÞ4. Thus,

dimð3n4ðAÞ4B3n4ðBÞ4Þ > dimð3n4ðABBÞ4Þ:ð11Þ

From (10), (11) and since dimð3n4ðABBÞ4Þ ¼ lðABBÞ � 1, it follows that

dimð3n4ðZÞ4Þ < lðAÞ þ lðBÞ � 2� dimð3n4ðABBÞ4Þð12Þ
¼ lðAÞ þ lðBÞ � lðABBÞ � 1 ¼ lðZÞ � 1:

We notice that

hZð4Þa lðZÞ � 1:

Indeed by the inequality (12), the dimension of 3n4ðZÞ4, which is, by Remark
2.10, hZð4Þ � 1, cannot be lðZÞ � 1. Thus, by Proposition 2.13 and Lemma 2.12
(v):

DhZð5Þ > 0:ð13Þ

We set now, as usual,

h1Zð4Þ ¼ lðZÞ � hZð4Þ ¼
Xl
j¼5

DhZð4Þ:

By means of (3) and part (iv) of Lemma 2.12, we have that

dimð3n4ðZÞ4Þ ¼ hZð4Þ � 1 ¼ lðZÞ � 1� h1Zð4Þð14Þ
¼ lðAÞ þ lðBÞ � lðABBÞ � 1� h1Zð4Þ:
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Since lðAÞ ¼ dimð3n4ðAÞ4Þ þ 1 and lðBÞ ¼ dimð3n4ðBÞ4Þ þ 1, then, comparing
(14) and (9) we get that

dimð3n4ðAÞ4B3n4ðBÞ4Þ ¼ lðABBÞ � 1þ h1Zð4Þ:ð15Þ

Proposition 6.1. We cannot have that lðZÞa lðAÞ þ 1 ¼ 2nþ 2.

Proof. From Proposition 5.2 and our assumptions, we know that lðAÞ ¼ hAð2Þ,
i.e., quadrics separate the points of A. Thus hZð2Þb hAð2Þ ¼ 2nþ 1. It follows
that if lðZÞa 2nþ 2, then hZð2Þb lðZÞ � 1, which implies, by Remark 2.15,
that hZð3Þ ¼ lðZÞ; thus, DhZð4Þ ¼ 0. This fact contradicts Proposition 2.13, since
(13) holds. r

We use the previous arguments and Lemma 5.4 to prove the next crucial
result.

Theorem 6.2. Let T a S4Cnþ1 be a homogeneous polynomial. Let A � Pn be
a finite set that computes T, such that lðAÞ ¼ 2nþ 1, A is in LGP, and A satisfies
the minimality property. If there exists another subset B � Pn computing T with
lðBÞa 2nþ 1, then the set Z ¼ AAB is contained in a rational normal curve
of Pn.

Proof. First, note that Z satisfies Lemma 5.4 (iii) and, because of Proposition
6.1 it also satisfies Lemma 5.4 (i). Assume that Z has the Cayley–Bacharach
property CBð4Þ. By applying Theorem 4.9 with i ¼ 4 and j ¼ 2 we get

DhZð0Þ þDhZð1Þ þDhZð2ÞaDhZð3Þ þDhZð4Þ þDhZð5Þ:ð16Þ

Since Z contains nþ 1 points of A in LGP, then 3Z4 ¼ Pn, so that DhZð1Þ ¼ n.
We claim that also (ii) of Lemma 5.4 holds. Indeed, if this is not the case, then
DhZð2Þ > n and thus, by (16) and Lemma 2.12 part (v),

lðZÞ ¼
X
j

DhZð jÞb
X5

j¼0

DhZð jÞ > 4nþ 2:

On the other hand, lðZÞa lðAÞ þ lðBÞa 2lðAÞ ¼ 4nþ 2, which leads to a con-
tradiction. Therefore, all the assumptions of Lemma 5.4 hold, concluding the
proof for this case.

It remains to prove that with our assumptions Z necessarily has the property
CBð4Þ. Assume that Z does not satisfy CBð4Þ. Then, there exists P a Z such that
h0ðJZnfPgð4ÞÞ > h0ðJZð4ÞÞ, i.e., hZnfPgð4Þ < hZð4Þ. As lðZnfPgÞ ¼ lðZÞ � 1, by
Lemma 2.12 (v), we have DhZnfPgð jÞ < DhZð jÞ for some j a f1; 2; 3; 4g. Since
DhZnfPgð jÞaDhZð jÞ for all j, it follows that DhZnfPgð jÞ ¼ DhZð jÞ for jb 5,
i.e., by (3), h1Zð4Þ ¼ h1ZnfPgð4Þ.

Assume that ABB ¼ j. If P a A, then, by (15), dimð3n4ðAnfPgÞ4B3n4ðBÞ4Þ
¼ dimð3n4ðAÞ4B3n4ðBÞ4Þ, so 3n4ðAnfPgÞ4B3n4ðBÞ4 ¼ 3n4ðAÞ4B3n4ðBÞ4.
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Thus AnfPg computes T , which contradicts the hypothesis of minimality of A.
Therefore, P a BnA. But now we can repeat the previous argument for A and
BnfPg, and we get that B is not minimal, which is a contradiction.

Hence, we can assume that ABBAj. We claim that

3n4ðAÞ4B3n4ðBnAÞ4A j:ð17Þ

Indeed, let s ¼ lðABBÞ. We can renumber the elements of n4ðAÞ and n4ðBÞ in a
way such that, for both sets, the first s comprise n4ðABBÞ, i.e.,

n4ðABBÞ ¼ fn4ðP1Þ; . . . ; n4ðPsÞg:

Note that 3n4ðABBÞ4 is a proper subset of 3n4ðAÞ4B3n4ðBÞ4, since, for
example, T a ð3n4ðAÞ4B3n4ðBÞ4Þn3n4ðABBÞ4, as A and B are minimal for T .
Therefore,

T ¼ a1n4ðP1Þ þ � � � þ asn4ðPsÞ þ asþ1n4ðPsþ1Þ þ � � � þ alðAÞn4ðPlðAÞÞ
¼ b1n4ðP1Þ þ � � � þ bsn4ðPsÞ þ bsþ1n4ðQsþ1Þ þ � � � þ blðBÞn4ðQlðBÞÞ

with aj; bk a Cnf0g for any j, k and Pj a AnB, Qk a BnA for j a fsþ 1; . . . ;
lðAÞg and k a fsþ 1; . . . ; lðBÞg. It turns out that

Xs

i¼1

ðai � biÞn4ðPiÞ þ
XlðAÞ
i¼sþ1

ain4ðPiÞ �
XlðBÞ
i¼sþ1

bin4ðQiÞ ¼ 0:

Thus, the tensor

T 0 ¼
Xs

i¼1

ðai � biÞn4ðPiÞ þ
XlðAÞ
i¼sþ1

ain4ðPiÞ ¼
XlðBÞ
i¼sþ1

bin4ðQiÞð18Þ

is an element of 3n4ðAÞ4B3n4ðBnAÞ4, which implies (17). Now, if A is minimal
for T 0, then we have two finite sets A 0 ¼ A and B 0 ¼ BnA computing T 0 and such
that A 0BB 0 ¼ j. Thus, by replacing T with T 0 and by arguing as in the case
ABB ¼ j, we get a contradiction because A 0AB 0 ¼ AAB does not satisfy
CBð4Þ. Therefore, we can assume that A is not minimal for T 0, i.e., there exists
a proper subset A 0 of A such that T 0 a 3n4ðA 0Þ4. Then some of the Pi’s with
i a f1; . . . ; sg does not appear in the decomposition of T 0, say P1. So there exists
gi a Cnf0g, such that

T 0 ¼
Xs

i¼1

ðai � biÞn4ðPiÞ þ
XlðAÞ
i¼sþ1

ain4ðPiÞ ¼ g2n4ðP2Þ þ � � � þ glðAÞn4ðPlðAÞÞ:

Since, by Remark 2.4, n4ðP1Þ; . . . ; n4ðPlðAÞÞ are linearly independent, it follows
that a1 ¼ b1, gi ¼ ai � bi for i a f2; . . . ; sg and gi ¼ ai for i a fsþ 1; . . . ; lðAÞg.
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Therefore, by (18),

T 0 ¼
XlðAÞ
i¼2

gin4ðPiÞ ¼
XlðBÞ
i¼sþ1

bin4ðQiÞ;

so that T 0 has two di¤erent decompositions A 0, B 0 with, respectively, lðA 0Þ ¼
lðAÞ � 1 ¼ 2n and lðB 0Þ ¼ lðBÞ � sa 2n summands. As lðA 0Þ; lðB 0Þa 2n, this
contradicts Theorem 3.2. r

As a consequence of Theorem 6.2 we get the following result.

Theorem 6.3. Fix a homogeneous polynomial T a S4Cnþ1 for which there exists
a finite, minimal set A that computes T, such that lðAÞ ¼ 2nþ 1 and A is in LGP.
Then, the existence of a second set B � Pn that computes T and lðBÞa 2nþ 1 im-
plies that lðBÞ ¼ 2nþ 1 and both A, B belong to a rational normal curve of
Pn.

If we want to understand the identifiability of quadrics of rank 2nþ 1, we
should thus study the case where a minimal set that computes T lies in a rational
normal curve.

Proposition 6.4. Fix a homogeneous polynomial T a S4Cnþ1 for which there
exists a finite, minimal set A that computes T, such that lðAÞ ¼ 2nþ 1 and A is
contained in a rational normal curve G � Pn. Then, there exists a positive dimen-
sional family of finite sets At � G such that

(i) lðAtÞ ¼ 2nþ 1;
(ii) A0 ¼ A;
(iii) T a 3n4ðAtÞ4, i.e., each At computes T.

Proof. Notice that, by Remark 2.5, A is in LGP. The curve G is the image of a
Veronese map G ¼ nnðP1Þ, thus G 0 ¼ n4ðGÞ ¼ n4nðP1Þ is a rational normal curve
in P4n. Therefore, T belongs to the secant variety s2nþ1ðG 0Þ. By Remark 2.6,
s2nþ1ðG 0Þ covers P4n. If S2nþ1ðG 0Þ denotes the abstract ð2nþ 1Þ-secant variety of
G 0, then the fibre of the ð2nþ 1Þ-secant map

p2nþ1 : S2nþ1ðG 0Þ ! P4n

at T has dimension dimðS2nþ1ðG 0ÞÞ � 4n ¼ 2ð2nþ 1Þ � 1� 4n ¼ 1. r

Remark 6.5. With the above notation, the tangent lines to G 0 at the points of
n4ðAÞ span a space of dimension at most 4n. Therefore, the tangent spaces to
n4ðPnÞ at the same points span a space of dimension at most ð2nþ 1Þðnþ 1Þ � 2.

Summarizing, for quartics T in Pn which are computed by a set A � Pn in
LGP and cardinality at most 2nþ 1, we have that either:
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(i) T has rank lðAÞ and is identifiable; or
(ii) T has rank 2nþ 1 and is computed by a 1-dimensional family of sets of car-

dinality 2nþ 1 that includes A.

One can use Terracini’s test, introduced in [COV17b, Lemma 6.5], to decide
which of these two cases occurs.

Remark 6.6. The case n ¼ 2, i.e., ternary quartics, is quite peculiar. Theorem
6.2 and Proposition 6.4 also apply in this case. However, note that any set A of
cardinality 5 in P2 is contained in a rational normal curve, i.e., in a conic (the
conic is irreducible when A is in LGP). Consequently, by our result, a general ter-
nary quartic of rank 5 ¼ 2nþ 1 has infinitely many decompositions.

This is, in fact, a classic result [P03, C91], see also [IK99]; indeed, the 5-secant
variety of the 4-Veronese embedding of P2 is defective: its dimension is smaller
than the expected value. This forces general quartics of rank 5 to have infinitely
many decompositions.

6.1. The algorithm

In an abuse of notation, let n4 : C
nþ1 ! C

nþ4
4ð Þ be the 4-fold symmetric tensor

product. Then, ½n4ðmÞ� ¼ n4ð½m�Þ. Given a length-r symmetric tensor rank decom-
position of a quartic

T ¼
Xr

i¼1

n4ðPiÞ

in the form of the collection of points A ¼ fPi ¼ ½mi�gr
i¼1 � Pn, we can apply the

following algorithm for verifying that the given decomposition of T is identifi-
able:

S1. If r > 2nþ 1, the criterion cannot be applied.
S2. If r < 2nþ 1, use the reshaped Kruskal criterion from [COV17a, Section

6.2].
S3. If r ¼ 2nþ 1, perform the next tests:

1) minimality test: check that dim3n4ðm1Þ; . . . ; n4ðmrÞ4 ¼ r;
2) Kruskal’s test: check that A is in LGP;
3) Terracini’s test: check that dim3Tm1

n4ðCnþ1Þ; . . . ;Tmr
n4ðCnþ1Þ4 ¼ 2n2 þ

3nþ 1.
If all these tests are successful, then T is of rank r and is r-identifiable.

An implementation of this algorithm is included in the ancillary Macaulay2
file identifiabilityS4Cn.m2 to arXiv:1712.04211.

We note that the new criterion for r ¼ 2nþ 1 is e¤ective in the sense of
[COV17b]. Indeed, quartics with r ¼ 2nþ 1 are always generically r-identifiable
[B05], and it is easy to verify that the conditions in tests 1, 2, and 3 are not sat-
isfied precisely on a Zariski-closed strict subvariety of the r-secant variety of
n4ðPnÞ.
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6.2. Examples

We present some examples of identifiable and unidentifiable Waring decomposi-
tions in the original case r ¼ 2nþ 1.

An identifiable example. Consider n ¼ 4 and r ¼ 2nþ 1 ¼ 9. We generated a
random collection of 9 points A ¼ fPi ¼ ½mi�g9i¼1 in Macaulay2, where the vec-
tors mi a N5 had the following values in our experiment

M ¼ ½mi�9i¼1 ¼

0 1 1 �3 �5 2 �1 2 �1

�2 �1 2 0 1 2 �4 3 1

2 0 5 1 4 �5 �1 �3 4

1 �5 �1 3 �2 3 5 2 �3

1 �3 �2 �5 �4 3 �2 1 4

2
666664

3
777775:

The minimality test shows that dim3n4ðAÞ4 ¼ rankð½mi nmi nmi nmi�9i¼1Þ ¼ 9,
which is as required. We then compute the rank of all 126 subsets of 5 columns of
M. They are all of rank 5, so that the Kruskal rank is 5 and A is in LGP. Finally,
we compute a basis Bi of the a‰ne cone over the tangent space of the Veronese
variety n4ðPnÞ at one of the points in the cone over n4ðPiÞ, and then compute
dim3B1; . . . ;B94. The computation reveals that it equals 45 ¼ 2 � 42 þ 3 � 4þ 1,
so that Terracini’s test is also successful. We can conclude that T ¼

P9
i¼1 n4ðmiÞ

is (complex) identifiable.

A variation of Derksen’s example. Consider the Vandermonde matrix

M ¼ ½mi�ri¼1 ¼

1 1 � � � 1

l1 l2 � � � lr

l21 l22 � � � l2r

..

. ..
. ..

.

ln
1 ln

2 � � � ln
r

2
66666664

3
77777775
:

Let A ¼ fPi ¼ ½mi�ig be the corresponding collection of points in Pn. By con-
struction, each of the points is in the image of nnðP1Þ, i.e., they lie on a rational
normal curve in Pn. Hence, if l1; . . . ; lr a C are pairwise distinct then A is in
LGP. Taking r ¼ 2nþ 1, then T ¼

Pr
i¼1 n4ðmiÞ is not symmetric identifiable by

Proposition 6.4, even though A is LGP.
We applied the criterion to the case n ¼ 4, r ¼ 9, and li ¼ i � 1 for i ¼ 1; . . . ;

9. Running the algorithm, we find that both the minimality test and the Kruskal
test are successful, consistent with the theory in [D13]. Our theory predicts that
Terracini’s test must fail, because T can now only be unidentifiable if there is
a rational normal curve passing through the points A. Performing the computa-
tion, we find that the tangent spaces only span a space of dimension 44, one less
than expected. Hence, Terracini’s test fails, and we cannot conclude that T is
identifiable.
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