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ABSTRACT. — The present paper deals with the analysis of combined effects of an absorption term
and a small perturbation of the reaction term in a p(x)-biharmonic Kirchhoff problem with Navier
boundary condition. The main result in this work establishes the existence of a continuous spectrum
consisting in an interval. The proofs combine variational methods with energy estimates.
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1. INTRODUCTION

The qualitative analysis of nonlinear problems with one or several variable expo-
nents started with the pioneering papers of Halsey [19] and Zhikov [38], in strong
relationship with the behavior of strongly anisotropic materials. Their work is an
important contribution to the refined mathematical analysis of nonlinear prob-
lems with one or more variable exponents, mainly because it allows the under-
standing of some classes of nonlinear problems with possible lack of uniform
convexity. Nonlinear problems with this structure are motivated by numerous
models in the applied sciences that are driven by partial differential equations
with one or more variable exponents. In some circumstances, the standard anal-
ysis based on the theory of usual Lebesgue and Sobolev function spaces, L?
and W7, is not appropriate in the framework of material that involve non-
homogeneities. For instance, both electro-rheological “smart” fluids and phe-
nomena arising in image processing are described in a correct way by nonlinear
models in which the exponent p is not necessarily constant. The variable expo-
nent describe the geometry of a material which is allowed to change its hardening
exponent according to the point. This leads to the analysis of variable exponents
Lebesgue and Sobolev function spaces (denoted by L7 and W17(), where p is
a real-valued (non-constant) function. This is a common abstract framework
in homogenization and nonlinear elasticity. We refer here to the monograph by
Réadulescu and Repovs [36], which includes a thorough variational and topologi-
cal analysis of several classes of problems with variable exponent (see also the
survey paper Radulescu [35] and the important contributions by Pucci et al.
[8, 32, 34]).
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In this paper, we first discuss the existence of a continuous spectrum consist-
ing in an interval for the following nonlocal biharmonic problem with variable
exponent:

(1) { M)A+ @@l u) = VA ()|l ", in @
u=A~Au= O on 0Q,
where A (U (|Au|p 72Au) is the p(x)-biharmonic operator and Q is a

smooth bounded domain in RY. We assume that M(7) is a continuous function
and

1
ti= | ——(|Au"™ dx + a(x)|ul"™) dx,
[ 1w (")

J. is a positive parameter, p, ¢ are continuous functions on Q and a € L*(Q)

such that essinfcq a(x) > 0. We assume that V' is a weight function in a gener-

alized Lebesgue space such that 7; > 0 in an open set Qy CC Q, where |Q| > 0.
Next, we focus on the following perturbed problem

M) (A u + a(x)|u”2u)
) = (V1)) 7 20— V() |u) "™ Pu) in Q
u=A~Au= 07 on 697

where « is a continuous function on Q and V> is a nonnegative one in a gener-
alized Lebesgue spaces.

Problems (1) and (2) are nonlocal problems because of the presence of the term
M, which implies that the equations in (1) and (2) are no longer pointwise. This
provokes some mathematical difficulties which make the study of such a problem
particulary interesting.

In 1883, Kirchhoft [24] introduced a model given by the equation

u o Ll ou|? o*u
G) Vo (/ﬁz/ e ="

which extends the classical d’Alembert’s wave equation by considering the effects
of the changes in the length of the strings during the vibrations. The parameters
in the above equation have the following meanings: L is the length of the string,
h is the area of the cross-section, E is the young modulus of the material, p is
the mass density and p, is the initial tension. A feature of problem (3) is that the
equatlon contalns a nonlocal coefficient £ + £ fo o , which depends on the
average 5y fo ‘”’|2 dx. Nonlocal effects also find various apphcatlons in biological
systems.

After the work of Lions [25], various equations of Kirchhoff type have
been investigated, see [2, 12]. Moreover, Kirchhoff-type equations involving
p-Laplacian and p(x)-Laplacian have been studied in many papers; see, [11, 15,
18, 21, 30]. A parabolic version of problem (3) can be used to describe the growth

ou

ox
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and movement of a particular species. The movement, modeled by the integral
term, is assumed to be dependent on the energy of the entire system with « being
its population density. Alternatively, the movement of particular species may be
subject to the total population density within the domain (for instance, the spread-
ing of bacteria), which gives rise to nonlocal parabolic equations. We refer to [33]
for details.

We also mention that fourth-order elliptic equations arise in many domains
like micro-electro-mechanical systems, surface diffusion on solids, thin film
theory, flow in Hele—Shaw cells and phase field models of multiphasic systems,
see [3, 17, 29]. Recent contributions concerning a fourth order elliptic problems
with p(x) biharmonic operators can be found in [23].

In the present paper, we study problem (1) under the following assumptions:

(Hy) M : R — [mg,+0o0) is a continuous function, with ny > 0;
(H;) there exists 0 < 0 < 1 such that

t
M(1)>(1—0)M(t)t forallt>0, where M(r)= / M (s) ds;
0
(H>) 1 <q(x) < p(x) <¥ <si(x), forall xe Q, V€ LYY(Q) and V; >0 in
Qy CcC Q, with |Qo| > 0.
We point out that Kefi [22] was the first to introduce assumption like (H>) to
study problems involving Lebesgue and Sobolev spaces with variable exponents.
2. TERMINOLOGY AND ABSTRACT SETTING

To study p(x)-biharmonic problems, we need some results on the spaces
LPO(Q), WP (Q) and WhPN(Q); see [20, 35, 36] for details, complements
and proofs.

Let

C,(Q):={h:heCQ),h(x)>1,forall x e Q}.

For any p € C,(Q), we denote 1 < p~ := min p(x) < p™ = max p(x) < o and
xeQ xeQ

LPY(Q) = {u : Q — R measurable and / lu(x) "™ dx < oo}.
Q

The spaces L”™¥)(Q) have been introduced by Orlicz [31].
The space L”¥)(Q) is endowed with the Luxemburg norm, which is defined

by
P(x)
|ul () = inf u>0:/ dx <15;.
Q

@
u
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Clearly, when p(x) = p, the space L”<X> (Q) reduces to the classical Lebesgue
space LP(Q) and the norm [u|,,, reduces to the standard norm [[ul,, =
(fy ul” die)? in L7(2).

For any positive integer k, let

Whkre(Q) = {ue L*™(Q) : D*u e LPY(Q), o] < k},

My
OOy
Then W P()(Q) is a separable and reflexive Banach space equipped with the
norm

where o = (a1, 0,...,0y) is a multi-index, o] =Y, o and D*u =

[ullic py = Z |D%ul -

o] <k

The space Wol"’p(x)(Q) is the closure of C(Q) in W P (Q).
Let L”'™¥(Q) be the conjugate space of L?™(Q) with %4—# = 1. Then the
following Hoélder-type inequality

/ uv dx
Q

holds. Moreover, if /;, hy and hy : Q — (1, 00) are Lipschitz continuous func-
tions such that 1/h;(x) + 1/hy(x) + 1/h3(x) = 1, then for any u e L"™(Q), v e
L"M(Q) and w e L") (Q) the following inequality holds (see [16, Proposition

2.5)):
/ uowdx| <
Q

Inequality (4) and its generalized version (5) are due to Orlicz [31].
The modular on the space L?™¥(Q) is the map Ppix) LPY(Q) — R defined

by
:/ |u|p(x) dx
Q

PRrROPOSITION 1 (See [28]). For all u,v € L?Y)(Q), we have

4)

1 1 ,
S p(x) p'(x)
S(p*—i_(p) >|u| 0]y, forallue LPY(Q), v e LP(Q)

(5)

1 1 1
< (= + 22+ 7)o oo o

Lol <1 (resp =1,>1) & p,nu) <1 (resp;: 1,>1).
2. min([ufl, [1?) < oy () < max(ull . Jul?).
3. P (u—v)—>0<:)|u—v|p(x)—>0

ProrosiTION 2 (See [13]). Let p and q be measurable functions such that
peL*(Q),and 1 < p(x)q(x) < oo, for a.e. x € Q. Letu € L1Y(Q), u # 0. Thens

min 200 11 g0) < 1107 gy < max((ull 0 120 0)-
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DErINITION 1. Assume that spaces E, F are Banach spaces, we define the norm
on the space X := EnF as ||ul|y = ||ullz + |lull ¢

In order to discuss problems (1) and (2), we need some properties of the space
X = W™ (Q) A W2rX)(Q). From Definition 1, we know that for any u € X
we have [ = [l + il ) thus [l = e + Ve + 5Dl
In Zang and Fu [37], the equivalence of the norms was proved and it was even
proved that the norm |Au|, ., is equivalent to the norm |[u|| (see [37, Theorem
4.4]). Note that (X, ||.||) is a separable and reflexive Banach space.

Let
Ay|P®) p(x)
u “ dx <1 forue X.

lull, ::inf{,u>0:/g<—  a)

u

Since a € L*(Q) and essinfycqa > 0, we deduce that ||u||, is equivalent to the
norms [|u| and |Aul,, in X. In our paper, we will use the norm ||u||, and the
modular is defined as pp( )+ X — R by

_ / A" 4 a(x)|u?™ dx
Q

which satisfies the same properties as Proposition 2. Accordingly, we have the
following property.

PROPOSITION 3. For all u € L?™(Q), we have

Lo lull, <1 (resp. = 1,> 1) & p,y(u) <1 (resp. =1,> 1).
2 min([ull} . Jull}” )<Pp<,)( u) < max(ul]? ],
3. |unll, — O (respectlvely, —00) & Py (Un) — 0 (respectively, — o).

PROPOSITION 4. Let L(u) = [o 55 (|Au”™ dx + a(x)[u""™) dx, then

1. L: X — R is sequentially weakly lower semi continuous, L € C'(X,R).
2. The mapping L' : X — X * is a strictly monotone, bounded homeomorphism and
is of type (Sy), that is, if u, — u and limsup L' (u,)(u, — u) <0, then u, — u.

n—+oo

We recall that the critical Sobolev exponent is defined as follows:

P = s ) <
p*(x) = +o0, p(x) > %

We point out that if g € C*(Q) and ¢(x) < p*(x) for all x € Q, then X is con-
tinuously and compactly embedded in L4 (Q).



444 K. KEFI AND V. D. RADULESCU

The Lebesgue and Sobolev spaces with variable exponents coincide with the
usual Lebesgue and Sobolev spaces provided that p is constant. According to
(36, pp. 8-9], the function spaces L?™) and W'») have some non-usual prop-
erties, such as:

(i) If p > 1 is a real number, then the following co-area formula
o0
[ as=p [ ix e @ifuto) > o ar
Q 0
has no analogue in the framework of variable exponents (namely, if p : Q —
[1, 00) is a nonconstant smooth function).

(ii) Spaces L?Y) do not satisfy the mean continuity property. More exactly, if p
is nonconstant and continuous in an open ball B, then there is some u €
L”™(B) such that u(x + h) ¢ LP™Y)(B) for every h € RY with arbitrary small
norm.

(i) Function spaces with variable exponent are never invariant with respect to

translations. The convolution is also limited. For instance, the classical
Young inequality

|f* g|p(x) < C|f|p(x)||g||L1

remains true if and only if p is constant.

3. AUXILIARY PROPERTIES AND MAIN RESULT FOR PROBLEM (1)

Throughout this section, the letters c,¢;,i = 1,2,.... denote positive constants
which may change from line to line. Let s{(x) denote the conjugate exponent
51(x)g(x)

of the function s;(x) and set rj(x) := S0 —a0)

bedding property.

. Then we have the following em-

REMARK 1. Assume that assumption (H>) is fulfilled, then max(r; (x), sy (x)g(x))
< p*(x), for all x € Q, consequently the embeddings X — L) (Q) and X —
L"¥)(Q) are compact and continuous.

DEFINITION 2. We say that 1 € R is an eigenvalue of problem (1), if there exists
u € X\{0} such that Au =0 on 0Q and

1 ’
u( / (1A e+ ™ ) / (JAul?™ 2 Audo + alul?™2uv) dx
ap(x) Q

:A”/ Vi) 79w dx,
Q

for any v e X. If 1 is an eigenvalue of problem (1), then the corresponding
u € X\{0} is a weak solution of problem (1).
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The first main result of this part is the following.

THEOREM 1. Assume that hypotheses (H,), (H,), (H>) are fulfilled. Then there
exists 1* > 0, such that any A € (0,1") is an eigenvalue of problem (1).

In order to describe the variational framework associated to (1), we define the
functionals ®@,J : X — R defined as follows:

e 1 plx p(x _ [ 1)
Ou) = 31 [ o (80" + )l ) and ) = [ D

By Proposition 2 and Remark 1, J is well defined and for all u € X

1) dx.

1 q- .

1 T|V1|S x|u|’J 9 1f|u|3‘/xtx Sl,

100 < = lyol Wl = 7, 1
! = Wil g 1 g0 > 1

The Euler—Lagrange functional corresponding to problem (1) is ¥, : X — R
and is defined by

W, (u) := ®(u) — AJ(u).
3.1. Proof of Theorem 1

We start with the following auxiliary property.

PROPOSITION 5. Assume that hypotheses (Hy), (H) and (Hy) are fulfilled. Then
¥, e CY(X,R) is weakly lower semi-continuous and u € X is a critical point of P,
if and only if u is a weak solution of problem (1).

PrOOF. To show that ¥; € C'(X,R), we establish that for all ¢ € X,

o Wil 19) = Wi(w)

—0+ t

=<d¥;(u), 9>,

and d¥, : X — X* continuous, where we denote by X * the dual space of X.
For all p € X we have

lim J(u+tp) — J(u)

t—0+ t

. d B d Vl (x) q(x)
= G w)lg =5 [ DS g

L)

=/ V1(3) |+ 19| " sgn(u + tp)p|,_q dx
Q

Z/W@W+WWHW+W%wW
Q
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_ / V2 (00) 1] 120
Q

= dJ (u), p).

The differentiation under the integral is allowed, since for all |¢| < 1 we have:
VA(0)lu+ 10"+ tp)g] < V1)l + o))" o] € L1(Q),
Since u, 9 € X we have
ul,lp] € X — L1(Q) and |p| e X — L"M(Q).
Due to the fact that ¥} € L™ (Q), the conclusion is an immediate consequence
of the generalized Holder inequality (5).
Next, we show that for all u € X, dJ(u) is in X *. We first observe that dJ(u) is

linear. Since there is a continuous embedding X — L"()(Q), we have

(6) 0l < cllvfl,, forallve X,

Using inequalities (5) and (6) we obtain
[{dJ(u),p)| = ‘/ Vl(x)|u|q(x)72u(pdx
Q

s/mme“mw
Q

x)—1
< IVl o 10" g 11,
q(x)—
-1
< Wil o1 g ol
q(x)—

Thus, there exists ¢; := ¢| ¥} (x)] | |u|?™ "] . > 0 such that

[<dJ (u), 97| < erl[oll,-

Using the linearity of dJ(u) and the above inequality we deduce that dJ(u) € X*.
For the Fréchet differentiability we need the following auxiliary property.

q(x)
LEMMA 1 (See [5]). The map u € LY(Q) — |u|"™ 2y e Li51(Q) is continuous.
We conclude that J is Fréchet differentiable.

The functional @ is well defined, is continuously Gateaux differentiable and its
Gateaux derivative is given by
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dD(u), vy = M(/Q%x) (|Aul”™ dx + a(x)|u|"™ dx))

X / (|Au" 2 AuAv + a(x)[u)”™uv) dx,
Q

for all u,v € X.

We deduce that ¥, € C!(X,R) because ®,J € C' (X, R). Moreover
b
p(x)

X /(|Au|p(x)2AuAv + a(x)|u)”2up) dx
Q

¥, o> = (| (18 dx+ at) ™ )

—)»/ V() | “ 2w dx
Q

for all u,v € X.
Let u be a critical point of ¥;. Then we have d¥,(u) = Ox-, that is,

d¥,(u),vy =0, forallveX.

Therefore

u( / LA™ dx + a()|ul?® dx)) / (AulP™ 2 AuAv + a() [u"D2up) dx
o p(x) Q

= i/ V1 (x) | 72w dx,
Q

for all v € X. It follows that u is a weak solution of problem (1).

Now we assume that u is a weak solution of (1). By Definition 2 we deduce
that (d¥,(u),v) =0, for all v € X. We obtain d¥,(u) = Oy-, hence u is a critical
point of ¥,. This completes the proof of Proposition 5. O

The following property shows the existence of a mountain for ¥, near the
origin.

LEMMA 2. Suppose that the hypotheses of Theorem 1 are fulfilled. Then for all
p € (0,1), there exist 2* > 0 and b > 0 such that for all u € X with ||u||, = p

Y (u)=b>0 forall L€ (0,1%).
PROOF. Since the embedding X — L*4¥)(Q) is continuous, we have
(7) |“|s;(x)q(x) < o|ull,, forallue X.

Let us assume that |ju||, < min(1,1/c,), where ¢, is the positive constant of
inequality (7). It follows that |u|sl,(x)q(x) < 1. Moreover, by hypothesis (Hy), we
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have M() > myt. Consequently, by combining Holder’s inequality (4), Proposi-
tion 3 and inequality (7), we deduce that for all u € X with [ju|, = p,

W) = b1 /Q ﬁ (1" 4 a(x) ™) dx) - qi /Q Vil d
> 20 —j|m|ﬁ<x>| R
> % 2 — qi|V1|s1<x>|”|sq/<x)q<x>
= %Ilullf — W et Nl
_ %pm —qi_cglVllsl(qu = pt (%pf—q* — ;_ §7|V1|S1<x)).

By the above inequality, we remark that if we define

+ _ g —
Pra mop? 1 q

(8) = ;
2t G Vil

then for any A € (0,4%) and u € X with |Ju||, = p there exists b > 0 such that
¥, (u) >b>0.
The proof of Lemma 2 is complete. O
The following result asserts the existence of a valley for W, near the origin.

LEMMA 3. There exists ¢ € X\{0} such that ¢ >0 and ¥ ,(tp) <0, for t >0
small enough.

PrOOE. By hypothesis (H;), there exists # > 0 such that for all 7 > #,, we have

- M (1)

M(l) < lﬁ = C3lﬁ.

=

Iy

Moreover, by (H,), we have ¢(x) < p(x), for all x € Q.
In the sequel, we denote

g, '=1infg(x) and p, :=inf p(x).
Q() QO

Let ¢ be such that ¢y + & < py. Since ¢ € C(Qy), there exists an open set
Q; C Qp such that |g(x) — ¢y | < e, for all x e Q. It follows that g(x) <
gy +¢é0 < pg, forall x € Q.
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Let ¢pe Cy(Q) be such that supp(p) C Qi CQy, ¢=1 in a subset
Q; C supp(p), and 0 < ¢ < 1 in Q. It follows that

19 = M1 [ 18P+ alo ) ds) = 2 [ T api
)

px n N ’
< oo [ S et +alor ) ) = [ Dy gl

e . At .
= (/ (|Ap|”™ (x)|¢|p<'))dx> h p /Vl(x)|g0|q(’)dx

0

o X X + }Ltqa+£0 q(x
< ot ([ a0l + atlpp™) ax) 7 S [ ofgl )
0

0

Therefore
\Pz(lw) <0
for t < §'/(Po % ~%) with

(‘417 le Vl |¢|q
(Jo, (Ap”"™ + a(x) 0" dx) 7

0 <J < ming 1,

Finally, we point out that

/ (Ap"™ & a(x)|p"™) dx > 0.
Qo

Indeed, supposing the contrary we have [,(|Ap|” ) 4 a(x)ul” (x)) dx =0. By
Proposition 3, we deduce that ||¢||, = 0 and consequently ¢ = 0 in Q, a contra-
diction. The proof of Lemma 3 is complete. O

PROOF OF THEOREM 1 COMPLETED. Let 1" > 0 be defined as in (8) and 4 €
(0,27). By Lemma 2 it follows that on the boundary of the ball centered at the
origin and of radius p in X, denoted by B,(0), we have

(9) inf ¥; > 0.
0B,(0)

On the other hand, by Lemma 3, there exists ¢ € X such that ¥, (7p) < 0 for all
t > 0 small enough. Moreover, by hypothesis (Hy), Holder’s inequality (4), Prop-
osition 3 and inequality (7), we deduce that for any u € B,(0) we have

u

Wilu) = || [

3 1Vl o [l
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It follows that

—wo < c:=inf ¥; <0.
B,(0)

Let 0 <e< inf[)Bﬂ(()) V¥, —inf B,(0) ¥;. Due to the above information, the func-
tional ¥, : B,(0) — R is lower bounded on B,(0) and ¥, € C!(B,(0), R). Thus,
by Ekeland’s variational principle [14], there exists u, € B,(0) such that

{c<‘~P;( u,) <c
0<\P,1( - ¥,

+
aue) +e - flu—well,, u # .

Since

Y, (u;) < inf ¥, +¢< inf ¥, +¢< inf ¥,
B,(0) B,(0) 0B, (0

we deduce that u, € B,(0). Now, we define I; : B,(0) — R by I,(u) = ¥, (u) +
& |lu—u,|,. It is clear that u, is a minimum point of /; and thus

L(u,+t-v) — L(u,)
t

>0

for small # > 0 and any v € B;(0). The above relation yields

\I’,l(ug +1- D) — Ti(uc)
t

+e- v, =0

Letting r — 0 it follows that {d¥;(u;),v) +¢-|v], >0 and we infer that
[, < |
We deduce that there exists a sequence {w,} C B,(0) such that

(10) Y (w,) — ¢ and d¥,(w,) — Ox-.

The sequence {w,} is bounded in X. Thus, there exists w in X such that, up
to a subsequence, {w,} converges weakly to w in X. Since r|(x) < p*(x) for all
x € Q we deduce that there exists a compact embedding E < L") (Q) and con-
sequently {w,} converges strongly in L") (Q). In order to have strong conver-
gence, we need the following auxiliary result.

PROPOSITION 6. We have

im [ V()| w72 (0 — w) dx = 0.
n—o [q
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ProoF. Using Holder’s inequality (4) we have

x)

/ Vi (x)|wn|q(x)72wn(wn —w)dx < Vil vl \wn|q(x)72w,,(wn — w)|5{(
Q

-2
< V15l 19l 7720 [ — W, -

q(x)—1

If | |Wn|q(X)72M/n|

« > 1, by Proposition 2, we have
q(x)—1

q(x)—2 q"
[ W] wn|q(,,£;jl < |w,,|q(x).

Using now the compact embedding X — L) (Q), we conclude the proof. O
Since d¥;(w,) — 0 and {w,} is bounded in X we have

[<d¥;,(wn), wn — w)| < [KAW (W), wa | + [KdP;(wy), W]
< [d¥i(wa)ll Iwall, + 1Yz (w0) [ W] -

Moreover, by Proposition 6, we have

lim <d¥,(w,),w, —w) = 0.

n—oo

Therefore

. 1 p(x) p(x)
fm (g 0wl o) )

X /(|Aw,,|p(x)_2Awn(Awn — AW) + a(x)|wa|" 2w (W — w)) dx = 0.
Q

Combining hypothesis (Hy) and Proposition 4, we deduce that {w,} converges
strongly to w in X. Since ¥; € C'(X,R), we conclude that

(11) d¥;,(w,) — d¥,(w), asn— 0.
Now, relations (10) and (11) yield
(12) ¥Y,(w)=c<0 and d¥,(w)=0.

In order to show that w is a solution of problem (1), it remains to show that
Aw = 0 on Q. Due to relation (12), w € X'\{0} is a critical point of ¥,, so

(13) M(t)/ |AW[PO 2 AwAv dx = / m(x)vdx forallve X,
Q Q

where

m(x) = AV (x)|w| 792w — M (2)a(x)|w]|PY 2w,
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Relation (13) implies that
(14) M) / |Aw|" 2 AwAv dx = / m(x)vdx forallve CI(Q).
Q Q

Let { be the unique solution of the problem

{AC: m(x) inQ
(=0 on 0Q.

Relation (14) yields
M(1) / AP 2 AwAv dx = / (AD)vdx for all v e CF(Q).
Q Q

Using the Green formula we have

/Q(Af)vdx:/QCAvdx.

Therefore
(15) M (1) /Q |Aw|" 2 AwAv dx = /Q (Avdx  forallv e CF(Q).

On the other hand, for all w e C;°(Q) there exists a unique v € C;°(Q) such
that Av = w in Q. Thus, relation (15) can be rewritten as

/Q (M ()| Aw|" Y2 Aw — Owdx = 0 for all w e CF(Q).

Applying the fundamental lemma of the calculus of variations, we deduce that
M) Aw"Y2Aw — =0 in Q.

According to assertion (Hy) and since { = 0 on 09, we conclude that Aw = 0 on
0Q. Thus, w is a nontrivial weak solution of problem (1) such that Aw = 0. Since
W, (lw|) = ¥, (w) then problem (1) has a non-negative solution. The proof is now
complete. O

4. MAIN RESULT FOR PROBLEM (2)

In what follows assume we the following hypothesis:

(H3) 1 <g(x) <a(x) < p(x) <5 <min(s;(x),5(x)), for all xe Q, where
sy € C(Q) and V5 e LM (Q) such that V> > 0 in Q.

Let s5(x) denote the conjugate exponent of the function s;(x) and ry(x) :=
202 “Then the following embedding properties hold.

$2(x)—(x) *




SMALL PERTURBATIONS OF NONLOCAL BIHARMONIC PROBLEMS WITH VARIABLE EXPONENT 453

REMARK 2. Under assumption (H3), we have max(rg( x)s5(x)a(x)) < p*(x), for
all x € Q. Consequently, the embeddings X — L%™*(Q) and X — L"™(Q)
are compact and continuous.

DEFINITION 3. We say that 1 € R is an eigenvalue of problem (2), if there exists
u € X\{0} such that Au =0 on 0Q and

M(Z)/(|Au|p(x)_2AuAv+a(x)u|p<x>_2uv) dx
Q

=2 [ (A2 = Vel
Q

for any v € X. If 1 is an eigenvalue of problem (2), then the corresponding u €
X\{0} is a weak solution of problem (2).

The main result on this part of the paper is the following.

THEOREM 2. Assume that hypotheses (Hy), (Hy) and (H3) are fulfilled. Then
there exists 2* > 0, such that any A € (0,1") is an eigenvalue of problem (2).

In order to describe the variational framework associated to (2), we define the
functional y : X — R as follows:

y(u) = /Q ZZ(S;) uf "

By Proposition 2 and Remark 2, y is well defined and for all u € X

LVl bl if [l < 1.

1 " x)?
w)| < —|Valy ol 14l <
|y( )| o= | 2|33(x)| | | |s2(x) |V2| |u| ) if |u| > 1.

The Euler—Lagrange functional corresponding to problem (2) is ¥, : X — R
and is defined by

Y (u) = ®(u) — AJ(u) + Ay(u).

According to Proposition 4, one has ® € C!(X, R). Moreover, under assumption
(H3) and Proposition 2 in [6] one has J,y € C'(X,R), so ¥; € C'(X,R) and

A, (u), vy = M( /Q (1Au)”™ dx + a(x)|ul”™ dx))

R

p(x)

« / (Aul”™ 2 AuAo + a(x) "™ 2up) dx
Q

—/1/ V() | 1) uvdx—i-/l/ 5 () 1) "™ 2w dx,
Q

for all u,v € X.



454 K. KEFI AND V. D. RADULESCU
4.1. Proof of Theorem 2

The following property shows the existence of a mountain for W, near the
origin.

LeEMMA 4. Suppose that the hypotheses of Theorem 2 are fulfilled. Then for all
€ (0,1), there exists 2" > 0 and b > 0 such that for all u € X with |jul|, = p

W, (u) >b>0 forall A€ (0,17).
PrOOF. Let us assume that [ju||, < min(1,1/c;), where ¢; is the positive con-
stant of inequality (7). It follows that |u| gy < 1. Since V> >0 on Q, we use

the same steps as the proof of Lemma 4 to deduce that for all u € X with
Jull, =

)

W) 2 01 [ o (™ + aou) d)

——/ V1 |M|q dx+—/ V2 |u]

mo + X
_TWM—;wmwamﬂ

my + 2 - - Raun +_ - A -
=p—+P" —q—,cg Vilywp? = p? (Fp" ! s ) Sl(x))'

By the above inequality, we remark that if we define

o mp? T g
(16) A= - :
2p+ Cg | " |51(‘c)

then for any 4 € (0,4%) and u € X with ||u||, = p there exists b > 0 such that
W(u) > b>0.
The proof of Lemma 4 is complete. |
The following result asserts the existence of a valley for W, near the origin.

LEMMA 5. There exists ¢ € X\{0} such that ¢ >0 and ¥ ,(t9) <0, for t >0
small enough.

PROOF. By assumption (H3), one has g(x) < a(x), for all x € Q. In the sequel,
we denote

gy = 1£r210fq(x), po = 151210fp(x) and o := 180foc(x).
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Let & be such that gy +¢& < o . Since g € C(Qq), there exists an open set
Q; C Qp such that |g(x) —¢q;| < e, for all x e Q. It follows that ¢(x) <
gy +éo < oy, forall x € Q.

Let g e Cy(Q) be such that supp(p) C Q) CQy, ¢=1 in a subset
Q; C supp(p), and 0 < ¢ < 1 in Q. It follows that

W) = 31 [ (18 + a<x>|z¢|f’<">>dx)

V](X) oc‘c
—/I/Q 200 |to |" dx+/1/ )|(p|

3c3(/ " e
h

p(x
Vi(x) o 1)

1909 | 1) dx 4 ) / V()| dx
L 4(%) 0 %(x)

tl/ %
| (/ (18017 + a(x) ol d)

] (/
4(x) 1 ()
V1(x)|o| ™ dx + 41— Vo (x)|p| ™ dx
Q % Joy,

(/ (18017 + a(x) ol d)
](}

At 0 . % alx
A / Vi)l ) dx 4+ 2 / V() o] dx
Q) % Q

o 0
max(cs, 1)t

~ min(ag, (p5)77)

a(x At teo X
y Vz<x>|¢|“dx]— “ [ i ax
Q

(18017 + a0l dx)

[(10 +éo

[ (180" + () pl?™) die)
Q

Q 0
Therefore
Tg(l(p) <0
for t < o'/ —% =) with
Amin(o;
mdx?c@ le Vl |¢|q

0 <J <ming 1, = L
(Jo, (1A0["™ + a(x )\(ol” N dx)T7 + o, Va(x) g
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Finally, we point out that

_1
(] 80l + atwlol)ax) ™+ | vaolol ™ dx >0,
Qg Q0

Indeed, supposing the contrary we have ([,(|Ap|” 4 a(x) |ul?™ dx))ﬁ—f-

Ja, Va(x)|p| ™™ dx = 0. By Proposition 3, we deduce that ||p||, = 0 and conse-
quently ¢ = 0 in Q, a contradiction. The proof of Lemma 5 is complete. O

PROOF OF THEOREM 2 COMPLETED. Let 1* > 0 be defined as in (16) and
2 € (0,27). By Lemma 4 it follows that on the boundary of the ball centered at
the origin and of radius p in X, denoted by B,(0), we have

17 inf ¥, > 0.
(17) Anf Wi >

On the other hand, by Lemma 5, there exists ¢ € X such that ¥,(z¢p) < 0 for all
¢t > 0 small enough. Moreover, by hypothesis (Hy), Holder’s inequality (4), Prop-
osition 3 and inequality (7), we deduce that for any u € B,(0) we have

my + A _ -
‘HW)ZEIWM —;ﬂ?HﬂMMWM~

It follows that

—o0 < ¢:= inf ¥, <0,
B,(0)

Let 0 <& <infyp o) ¥, — infp o) ¥;. Due to the above information, the func-
tional ¥ : B,(0) — R is lower bounded on B,(0) and ¥; € C'(B,(0), R). Thus,
by Ekeland’s variational principle, there exists u, € B,(0) such that

{QSTZ(I’[E) <c+te
0<W)(u)—Wi(u:) +¢-|lu—ul, u+#u,.

Since

Y, (u;) < inf ¥, +¢ < inf ¥, +¢< inf ¥,
Bp<0) Bp(O) a‘Bp(O)

we deduce that u, € B,(0). Now, we define I, : B,(0) — R by I;(u) = ¥, (u) +
&+ |lu— ul|,. It is clear that u, is a minimum point of 7; and thus

Iz(ug+l' U) —IA(MS)
t

>0

for small 7 > 0 and any v € B;(0). The above relation yields

Y (u, +t-v) — ¥ (u,)
t

+e-loll, =0
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Letting 7 — 0 it follows that {d¥;(u;),v)+¢-|v|, >0 and we infer that
| ), <. |
We deduce that there exists a sequence {w,} C B,(0) such that

(18) Y, (w,) — ¢ and d¥,(w,) — Ox-.

The sequence {w,} is bounded in X. Thus, there exists w in X such that, up
to a subsequence, {w,} converges weakly to w in X. Since max(r;(x),r(x)) <
p*(x), for all x € Q, then X is compactly embedded in L""™)(Q) and L™ (Q).
In order to establish the strong convergence of {u,} on X, we use proposition 6
and the following auxiliary property.

PROPOSITION 7. We have

im [ Va(o) ] ™ 2w (0 — u) dx = 0.
Q

n—oo

Proor. Using Holder’s inequality (4) we have
/Q V2 0) a2ttty — ) e < |V it ™t [t =

Next, by Proposition 2, if

| eta] ™ 2] 9 > 1

o(x)—1

then

al ) — ~t
™ w0 < Jnl -
olx

)—1

Using the compact embedding X < L*¥)(Q), we conclude the proof of the
proposition. O

Since d¥;(w,) — 0 and {w,} is bounded in X we have
[<d¥ ) (wy), wn — w)| < [KAW (W), wap| + [KdW¥;(wn), w)|
< ¥z (wa)llalbwall + ¥z 0wa) L[]

Moreover, by Propositions 6 and 7, we have

lim <d¥,(w,), w, —w) = 0.

n—oo

Therefore

. | p(x) p(x)
nan}O M(/QWUAW,J + a(x)|wy| )dx)

X /(|Awn|”<x>2Awn(Awn — AW) + a(x)|wa) " 2w, (W — w)) dx = 0.
Q
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Combining hypothesis (Hy) and Proposition 4, we deduce that {w,} converges
strongly to w in X. Since ¥; € C'(X, R), we conclude that

(19) d¥;(w,) — d¥,(w), asn— o0.
Now, relations (18) and (19) yield
(20) Y, (w)=c<0 and d¥,(w)=0.

In order to show that w is a solution of problem (2), it remains to show that
Aw = 0 on Q. Due to relation (20), w € X'\{0} is a critical point of ¥,, so

(21) M(t)/ |AwW|PY 2 AwAv dx = / m(x)vdx forallve X,
Q Q

where
m(x) = A(V1(x) w2 = Vo (x) || 2w) — M(Da(x)|w|" 2w

Relation (21) implies that
(22) M) / |Aw|PY 2 AwAv dx = / m(x)vdx forallve CF(Q).
Q Q

Let { be the unique solution of the problem

{AC =m(x) inQ
(=0 on 0Q.

Relation (22) yields

M(1) / |Aw|"Y 2 AwAv dx = / (Advdx for all v e C(Q).
Q Q

Using the Green formula we have

/Q(AC)vdx:/QCAvdx.

Therefore
(23) M(l)/Q|Aw|p(x)2AwAvdx = /QCAvdx for all v e C°(Q).

On the other hand, for all w e C*(Q) there exists a unique v € C;°(2) such
that Av = w in Q. Thus, relation (23) can be rewritten as

/Q (MO AWPY2Aw — Oivdx = 0 for all v € CF (Q).
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Applying the fundamental lemma of the calculus of variations, we deduce that
M(0)|Aw[PY2Aw — (=0 inQ.

According to assertion (Hy) and since { = 0 on dQ, we conclude that Aw = 0 on
0Q. Thus, w is a nontrivial weak solution of problem (2) such that Aw = 0. Since
W, (Jw|) = ¥, (w) then problem (2) has a non-negative solution. The proof is now
complete. O

4.2. Example

Let M(t) = f§ + yt, where 8, y are positive constants and ¢ := [, ;15 (|Au|”™ dx +
a(x)|u|"™) dx. We first observe that

M(t) = f>0.

Taking 0 = 5, we have

1
2

M(1) = /OtM(s)ds :ﬁt—l—%ytz > %(/34—;/[)1: (1 —0)M(1)t.

Consider the nonlocal problem

(24) {Mumgmu+a@mwﬂﬁm_xvmmwwﬂﬂm xeQ

u=A~Au=0, x € 0Q,

where a € L™ (Q) such that essinfcq a(x) > 0, the functions p, ¢ and V) satisfy
hypothesis assertion (H,). Then, by Ekeland’s variational principle, there exists
2" such that any 4 € (0,4") is eigenvalue for problem (24). Moreover if we con-
sider the problem

M (2)(Ag o + a(x) ul”™u)
(25) — (V)] ™ 2u = Vo ()" 2u), xeQ
u=~Au=0, X € 09Q),

where the functions p, ¢, « and V> satisfy hypothesis assertion (H3), then there
exists A, such that any 4 € (0, Ay) is eigenvalue for problem (25).

4.3. Final comments

(i) Problems (1) and (2) correspond to a subcritical setting, as described by
Remark 1 and Remark 2. We consider that valuable research directions cor-
respond either to the critical or to the supercritical framework (in the sense
of Sobolev variable exponents). No results are known even for the almost
critical case with lack of compactness. More precisely, with the same nota-
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tions as in Remark 1 and 2, a very interesting open problem is to study the
qualitative analysis of solutions of problem (1), provided that there exists
z1 € Q such that

max(ri(z1),51(z1)q(z1)) = p*(21),

but

max(r(x),s1(x)g(x)) < p*(x) forall z e Q\{z},
and those of problem (2) provided that there exists 21, 2> € Q such that

max(ri(z1),51(z1)q(z1)) = p*(z1) and  max(r:(z2)s3(22)a(z2)) = p*(22)

but

max(r (x), s|(x)g(x)) < p*(x) forall z e Q\{z}
and

max(r (X)s(x)(x)) < p*(x) forall z € Q\{z}.

(i) Another very interesting research direction is to extend the approach de-
veloped in this paper to the abstract setting recently studied by Mingione
et al. [4, 9, 10], namely double phase problems with associated energies of
the type

uis / (AP £ ()| Aul”) dx
Q
and

- / (AU 4 ()| Aul”™ Tog(e + |x])] dx,
Q

where pi(x) < pa(x), p1 # p2, and V(x) > 0. Considering two different
materials with power hardening exponents p;(x) and p,(x) respectively, the
coefficient V'(x) dictates the geometry of a composite of the two materials.
When V' (x) > 0 then p,(x)-material is present, otherwise the p;(x)-material
is the only one making the composite.

These problems extend to a bi-harmonic setting with variable exponents
the pioneering papers by Marcellini [26, 27] on (p, ¢)-problems, which in-
volve integral functionals of the type

u— / F(x,Vu) dx.
Q



SMALL PERTURBATIONS OF NONLOCAL BIHARMONIC PROBLEMS WITH VARIABLE EXPONENT 461

The integrand F :Q x RY — R satisfied unbalanced polynomial growth
conditions of the type

&) S F(x,&) < [¢]" withl <p<y,

for every x € Q and ¢ € RY.

(ili) We suggest to extend the methods developed in this paper to the more gen-
eral framework of Musielak—Orlicz—Sobolev spaces (see [36, Chaper 4] for a
collection of stationary problems studied in these function spaces).
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