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Abstract. — The present paper deals with the analysis of combined e¤ects of an absorption term

and a small perturbation of the reaction term in a pðxÞ-biharmonic Kirchho¤ problem with Navier
boundary condition. The main result in this work establishes the existence of a continuous spectrum

consisting in an interval. The proofs combine variational methods with energy estimates.
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1. Introduction

The qualitative analysis of nonlinear problems with one or several variable expo-
nents started with the pioneering papers of Halsey [19] and Zhikov [38], in strong
relationship with the behavior of strongly anisotropic materials. Their work is an
important contribution to the refined mathematical analysis of nonlinear prob-
lems with one or more variable exponents, mainly because it allows the under-
standing of some classes of nonlinear problems with possible lack of uniform
convexity. Nonlinear problems with this structure are motivated by numerous
models in the applied sciences that are driven by partial di¤erential equations
with one or more variable exponents. In some circumstances, the standard anal-
ysis based on the theory of usual Lebesgue and Sobolev function spaces, Lp

and W 1;p, is not appropriate in the framework of material that involve non-
homogeneities. For instance, both electro-rheological ‘‘smart’’ fluids and phe-
nomena arising in image processing are described in a correct way by nonlinear
models in which the exponent p is not necessarily constant. The variable expo-
nent describe the geometry of a material which is allowed to change its hardening
exponent according to the point. This leads to the analysis of variable exponents
Lebesgue and Sobolev function spaces (denoted by LpðxÞ and W 1;pðxÞ), where p is
a real-valued (non-constant) function. This is a common abstract framework
in homogenization and nonlinear elasticity. We refer here to the monograph by
Rădulescu and Repovš [36], which includes a thorough variational and topologi-
cal analysis of several classes of problems with variable exponent (see also the
survey paper Rădulescu [35] and the important contributions by Pucci et al.
[8, 32, 34]).



In this paper, we first discuss the existence of a continuous spectrum consist-
ing in an interval for the following nonlocal biharmonic problem with variable
exponent:

MðtÞðD2
pðxÞuþ aðxÞjujpðxÞ�2

uÞ ¼ lV1ðxÞjujqðxÞ�2
u; in W

u ¼ Du ¼ 0; on qW;

�
ð1Þ

where D2
pðxÞu ¼ DðjDujpðxÞ�2DuÞ is the pðxÞ-biharmonic operator and W is a

smooth bounded domain in RN . We assume that MðtÞ is a continuous function
and

t :¼
Z
W

1

pðxÞ ðjDuj
pðxÞ

dxþ aðxÞjujpðxÞÞ dx;

l is a positive parameter, p, q are continuous functions on W and a a LlðWÞ
such that essinfx AW aðxÞ > 0. We assume that V1 is a weight function in a gener-
alized Lebesgue space such that V1 > 0 in an open set W0 �� W, where jW0j > 0.

Next, we focus on the following perturbed problem

MðtÞðD2
pðxÞuþ aðxÞjujpðxÞ�2

uÞ
¼ lðV1ðxÞjujqðxÞ�2

u� V2ðxÞjujaðxÞ�2
uÞ in W

u ¼ Du ¼ 0; on qW;

8><
>:ð2Þ

where a is a continuous function on W and V2 is a nonnegative one in a gener-
alized Lebesgue spaces.

Problems (1) and (2) are nonlocal problems because of the presence of the term
M, which implies that the equations in (1) and (2) are no longer pointwise. This
provokes some mathematical di‰culties which make the study of such a problem
particulary interesting.

In 1883, Kirchho¤ [24] introduced a model given by the equation

r
q2u

qt2
� r0

h
þ E

2L

Z L

0

qu

qx

����
����
2

dx

 !
q2u

qx2
¼ 0;ð3Þ

which extends the classical d’Alembert’s wave equation by considering the e¤ects
of the changes in the length of the strings during the vibrations. The parameters
in the above equation have the following meanings: L is the length of the string,
h is the area of the cross-section, E is the young modulus of the material, r is
the mass density and r0 is the initial tension. A feature of problem (3) is that the
equation contains a nonlocal coe‰cient r0

h
þ E

2L

R L

0
qu
qx

�� ��2 dx, which depends on the
average 1

2L

R L

0
qu
qx

�� ��2 dx: Nonlocal e¤ects also find various applications in biological
systems.

After the work of Lions [25], various equations of Kirchho¤ type have
been investigated, see [2, 12]. Moreover, Kirchho¤-type equations involving
p-Laplacian and pðxÞ-Laplacian have been studied in many papers; see, [11, 15,
18, 21, 30]. A parabolic version of problem (3) can be used to describe the growth
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and movement of a particular species. The movement, modeled by the integral
term, is assumed to be dependent on the energy of the entire system with u being
its population density. Alternatively, the movement of particular species may be
subject to the total population density within the domain (for instance, the spread-
ing of bacteria), which gives rise to nonlocal parabolic equations. We refer to [33]
for details.

We also mention that fourth-order elliptic equations arise in many domains
like micro-electro-mechanical systems, surface di¤usion on solids, thin film
theory, flow in Hele–Shaw cells and phase field models of multiphasic systems,
see [3, 17, 29]. Recent contributions concerning a fourth order elliptic problems
with pðxÞ biharmonic operators can be found in [23].

In the present paper, we study problem (1) under the following assumptions:

ðH0Þ M : R ! ½m0;þlÞ is a continuous function, with m0 > 0;
ðH1Þ there exists 0 < y < 1 such that

M̂MðtÞb ð1� yÞMðtÞt for all tb 0; where M̂MðtÞ ¼
Z t

0

MðsÞ ds;

ðH2Þ 1 < qðxÞ < pðxÞ < N
2 < s1ðxÞ, for all x a W, V1 a Ls1ðxÞðWÞ and V1 > 0 in

W0 �� W, with jW0j > 0.

We point out that Kefi [22] was the first to introduce assumption like ðH2Þ to
study problems involving Lebesgue and Sobolev spaces with variable exponents.

2. Terminology and abstract setting

To study pðxÞ-biharmonic problems, we need some results on the spaces

LpðxÞðWÞ, W 1;pðxÞðWÞ and Wk;pðxÞðWÞ; see [20, 35, 36] for details, complements
and proofs.

Let

CþðWÞ :¼ fh : h a CðWÞ; hðxÞ > 1; for all x a Wg:

For any p a CþðWÞ, we denote 1 < p� :¼ min
x AW

pðxÞa pþ ¼ max
x AW

pðxÞ < l and

LpðxÞðWÞ ¼ u : W ! R measurable and

Z
W

juðxÞjpðxÞ dx < l

� �
:

The spaces LpðxÞðWÞ have been introduced by Orlicz [31].

The space LpðxÞðWÞ is endowed with the Luxemburg norm, which is defined
by

jujpðxÞ ¼ inf m > 0 :

Z
W

uðxÞ
m

����
����
pðxÞ

dxa 1

( )
:
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Clearly, when pðxÞC p, the space LpðxÞðWÞ reduces to the classical Lebesgue
space LpðWÞ and the norm jujpðxÞ reduces to the standard norm kukL p ¼
ð
R
W jujp dxÞ

1
p in LpðWÞ.

For any positive integer k, let

Wk;pðxÞðWÞ ¼ fu a LpðxÞðWÞ : Dau a LpðxÞðWÞ; jaja kg;

where a ¼ ða1; a2; . . . ; aNÞ is a multi-index, jaj ¼
PN

i¼1 ai and Dau ¼ q jaju
q
a1
x1
���qaN

xN

:

Then Wk;pðxÞðWÞ is a separable and reflexive Banach space equipped with the
norm

kukk;pðxÞ ¼
X
jajak

jDaujpðxÞ:

The space W
k;pðxÞ
0 ðWÞ is the closure of Cl

0 ðWÞ in Wk;pðxÞðWÞ:
Let Lp 0ðxÞðWÞ be the conjugate space of LpðxÞðWÞ with 1

p
þ 1

p 0 ¼ 1. Then the
following Hölder-type inequalityZ

W

uv dx

����
����a� 1

p�
þ 1

ðp 0Þ�
�
jujpðxÞjvjp 0ðxÞ; for all u a LpðxÞðWÞ; v a Lp 0ðxÞðWÞð4Þ

holds. Moreover, if h1, h2 and h3 : W ! ð1;lÞ are Lipschitz continuous func-
tions such that 1=h1ðxÞ þ 1=h2ðxÞ þ 1=h3ðxÞ ¼ 1, then for any u a Lh1ðxÞðWÞ, v a
Lh2ðxÞðWÞ and w a Lh3ðxÞðWÞ the following inequality holds (see [16, Proposition
2.5]): Z

W

uvw dx

����
����a� 1

h�1
þ 1

h�2
þ 1

h�3

�
jujh1ðxÞjvjh2ðxÞjwjh3ðxÞ:ð5Þ

Inequality (4) and its generalized version (5) are due to Orlicz [31].
The modular on the space LpðxÞðWÞ is the map rpðxÞ : L

pðxÞðWÞ ! R defined
by

rpðxÞðuÞ :¼
Z
W

jujpðxÞ dx:

Proposition 1 (See [28]). For all u; v a LpðxÞðWÞ, we have

1. jujpðxÞ < 1 ðresp: ¼ 1; > 1Þ , rpðxÞðuÞ < 1 ðresp: ¼ 1; > 1Þ:
2. minðjujp

�

pðxÞ; juj
pþ

pðxÞÞa rpðxÞðuÞamaxðjujp
�

pðxÞ; juj
pþ

pðxÞÞ:
3. rpðxÞðu� vÞ ! 0 , ju� vjpðxÞ ! 0:

Proposition 2 (See [13]). Let p and q be measurable functions such that
p a LlðWÞ, and 1a pðxÞqðxÞal, for a.e. x a W. Let u a LqðxÞðWÞ, uA 0. Thens

minðjujp
þ

pðxÞqðxÞ; juj
p�

pðxÞqðxÞÞa j jujpðxÞjqðxÞ amaxðjujp
�

pðxÞqðxÞ; juj
pþ

pðxÞqðxÞÞ:
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Definition 1. Assume that spaces E, F are Banach spaces, we define the norm
on the space X :¼ EBF as kukX ¼ kukE þ kukF .

In order to discuss problems (1) and (2), we need some properties of the space
X :¼ W

1;pðxÞ
0 ðWÞBW 2;pðxÞðWÞ. From Definition 1, we know that for any u a X

we have kuk ¼ kuk1;pðxÞ þ kuk2;pðxÞ, thus kuk ¼ jujpðxÞ þ j‘ujpðxÞ þ
P

jaj¼2 jDaujpðxÞ:
In Zang and Fu [37], the equivalence of the norms was proved, and it was even
proved that the norm jDujpðxÞ is equivalent to the norm kuk (see [37, Theorem
4.4]). Note that ðX ; k:kÞ is a separable and reflexive Banach space.

Let

kuka :¼ inf m > 0 :

Z
W

Du

m

����
����
pðxÞ

þ aðxÞ u
m

����
����
pðxÞ

 !
dxa 1

( )
for u a X :

Since a a LlðWÞ and essinfx AW a > 0, we deduce that kuka is equivalent to the
norms kuk and jDujpðxÞ in X . In our paper, we will use the norm kuka and the
modular is defined as rpðxÞ : X ! R by

rpðxÞðuÞ ¼
Z
W

jDujpðxÞ þ aðxÞjujpðxÞ dx;

which satisfies the same properties as Proposition 2. Accordingly, we have the
following property.

Proposition 3. For all u a LpðxÞðWÞ, we have

1. kuka < 1 ðresp: ¼ 1; > 1Þ , rpðxÞðuÞ < 1 ðresp: ¼ 1; > 1Þ:
2. minðkukp�

a ; kukpþ

a Þa rpðxÞðuÞamaxðkukp�

a ; kukpþ

a Þ:
3. kunka ! 0 ðrespectively;!lÞ , rpðxÞðunÞ ! 0 ðrespectively;!lÞ:

Proposition 4. Let LðuÞ ¼
R
W

1
pðxÞ ðjDuj

pðxÞ
dxþ aðxÞjujpðxÞÞ dx, then

1. L : X ! R is sequentially weakly lower semi continuous, L a C1ðX ;RÞ.
2. The mapping L 0 : X ! X � is a strictly monotone, bounded homeomorphism and

is of type ðSþÞ, that is, if un * u and lim sup
n!þl

L 0ðunÞðun � uÞa 0, then un ! u.

We recall that the critical Sobolev exponent is defined as follows:

p�ðxÞ ¼ NpðxÞ
N � 2pðxÞ ; pðxÞ < N

2
;

p�ðxÞ ¼ þl; pðxÞb N

2
:

8>><
>>:

We point out that if q a CþðWÞ and qðxÞ < p�ðxÞ for all x a W, then X is con-
tinuously and compactly embedded in LqðxÞðWÞ.
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The Lebesgue and Sobolev spaces with variable exponents coincide with the
usual Lebesgue and Sobolev spaces provided that p is constant. According to
[36, pp. 8–9], the function spaces LpðxÞ and W 1;pðxÞ have some non-usual prop-
erties, such as:

(i) If pb 1 is a real number, then the following co-area formula

Z
W

juðxÞjp dx ¼ p

Z l

0

t p�1jfx a W; juðxÞj > tgj dt

has no analogue in the framework of variable exponents (namely, if p : W !
½1;lÞ is a nonconstant smooth function).

(ii) Spaces LpðxÞ do not satisfy the mean continuity property. More exactly, if p
is nonconstant and continuous in an open ball B, then there is some u a
LpðxÞðBÞ such that uðxþ hÞ B LpðxÞðBÞ for every h a RN with arbitrary small
norm.

(iii) Function spaces with variable exponent are never invariant with respect to
translations. The convolution is also limited. For instance, the classical
Young inequality

j f � gjpðxÞ aCj f jpðxÞkgkL1

remains true if and only if p is constant.

3. Auxiliary properties and main result for problem (1)

Throughout this section, the letters c; ci; i ¼ 1; 2; . . . : denote positive constants
which may change from line to line. Let s 01ðxÞ denote the conjugate exponent

of the function s1ðxÞ and set r1ðxÞ :¼ s1ðxÞqðxÞ
s1ðxÞ�qðxÞ . Then we have the following em-

bedding property.

Remark 1. Assume that assumption ðH2Þ is fulfilled, then maxðr1ðxÞ; s 01ðxÞqðxÞÞ
< p�ðxÞ, for all x a W, consequently the embeddings X ,! Ls 0

1
ðxÞqðxÞðWÞ and X ,!

Lr1ðxÞðWÞ are compact and continuous.

Definition 2. We say that l a R is an eigenvalue of problem (1), if there exists
u a Xnf0g such that Du ¼ 0 on qW and

M
�Z

W

1

pðxÞ ðjDuj
pðxÞ

dxþ ajujpðxÞ dxÞ
�Z

W

ðjDujpðxÞ�2DuDvþ ajujpðxÞ�2
uvÞ dx

¼ l

Z
W

V1jujqðxÞ�2
uv dx;

for any v a X . If l is an eigenvalue of problem (1), then the corresponding
u a Xnf0g is a weak solution of problem (1).
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The first main result of this part is the following.

Theorem 1. Assume that hypotheses ðH0Þ, ðH1Þ, ðH2Þ are fulfilled. Then there
exists l� > 0, such that any l a ð0; l�Þ is an eigenvalue of problem (1).

In order to describe the variational framework associated to (1), we define the
functionals F; J : X ! R defined as follows:

FðuÞ ¼ M̂M
�Z

W

1

pðxÞ ðjDuj
pðxÞ þ aðxÞjujpðxÞÞ dx

�
and JðuÞ ¼

Z
W

V1ðxÞ
qðxÞ jujqðxÞ dx:

By Proposition 2 and Remark 1, J is well defined and for all u a X

jJðuÞja 1

q�
jV1js1ðxÞj juj

qðxÞjs 0
1
ðxÞ a

1
q� jV1js1ðxÞjuj

q�

s 0
1
ðxÞqðxÞ; if jujs 0

1
ðxÞqðxÞ a 1;

1
q� jV1js1ðxÞjuj

qþ

s 0
1
ðxÞqðxÞ; if jujs 0

1
ðxÞqðxÞ > 1:

8<
:

The Euler–Lagrange functional corresponding to problem (1) is Cl : X ! R
and is defined by

ClðuÞ :¼ FðuÞ � lJðuÞ:

3.1. Proof of Theorem 1

We start with the following auxiliary property.

Proposition 5. Assume that hypotheses ðH0Þ, ðH1Þ and ðH2Þ are fulfilled. Then
Cl a C1ðX ;RÞ is weakly lower semi-continuous and u a X is a critical point of Cl

if and only if u is a weak solution of problem (1).

Proof. To show that Cl a C1ðX ;RÞ, we establish that for all j a X ,

lim
t!0þ

Clðuþ tjÞ �ClðuÞ
t

¼ 3dClðuÞ; j4;

and dCl : X ! X � continuous, where we denote by X � the dual space of X .
For all j a X we have

lim
t!0þ

Jðuþ tjÞ � JðuÞ
t

¼ d

dt
Jðuþ tjÞjt¼0 ¼

d

dt

Z
W

V1ðxÞ
qðxÞ juþ tjjqðxÞ dxjt¼0

¼
Z
W

q

qt

�V1ðxÞ
qðxÞ juþ tjjqðxÞ

����
t¼0

dx

¼
Z
W

V1ðxÞjuþ tjjqðxÞ�1
sgnðuþ tjÞjjt¼0 dx

¼
Z
W

V1ðxÞjuþ tjjqðxÞ�2ðuþ tjÞjjt¼0 dx
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¼
Z
W

V1ðxÞjujqðxÞ�2
uj dx

¼ 3dJðuÞ; j4:

The di¤erentiation under the integral is allowed, since for all jtj < 1 we have:

jV1ðxÞjuþ tjjqðxÞ�2ðuþ tjÞjja jV1ðxÞjðjuj þ jjjÞqðxÞ�1jjj a L1ðWÞ:

Since u; j a X we have

juj; jjj a X ,! LqðxÞðWÞ and jjj a X ,! Lr1ðxÞðWÞ:

Due to the fact that V1 a Ls1ðxÞðWÞ, the conclusion is an immediate consequence
of the generalized Hölder inequality (5).

Next, we show that for all u a X , dJðuÞ is in X �. We first observe that dJðuÞ is
linear. Since there is a continuous embedding X ,! Lr1ðxÞðWÞ, we have

jvjr1ðxÞ a ckvka; for all v a X :ð6Þ

Using inequalities (5) and (6) we obtain

j3dJðuÞ; j4j ¼
Z
W

V1ðxÞjujqðxÞ�2
uj dx

����
����

a

Z
W

jV1ðxÞj jujqðxÞ�1jjj dx

a jV1js1ðxÞj juj
qðxÞ�1j qðxÞ

qðxÞ�1

jjjr1ðxÞ

a cjV1js1ðxÞj juj
qðxÞ�1j qðxÞ

qðxÞ�1

kjka:

Thus, there exists c1 :¼ cjV1ðxÞj j jujqðxÞ�1j qðxÞ
qðxÞ�1

> 0 such that

j3dJðuÞ; j4ja c1kjka:

Using the linearity of dJðuÞ and the above inequality we deduce that dJðuÞ a X �.
For the Fréchet di¤erentiability we need the following auxiliary property.

Lemma 1 (See [5]). The map u a LqðxÞðWÞ 7! jujqðxÞ�2
u a L

qðxÞ
qðxÞ�1ðWÞ is continuous.

We conclude that J is Fréchet di¤erentiable.
The functional F is well defined, is continuously Gâteaux di¤erentiable and its

Gâteaux derivative is given by
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3dFðuÞ; v4 ¼ M
�Z

W

1

pðxÞ ðjDuj
pðxÞ

dxþ aðxÞjujpðxÞ dxÞ
�

�
Z
W

ðjDujpðxÞ�2DuDvþ aðxÞjujpðxÞ�2
uvÞ dx;

for all u; v a X .
We deduce that Cl a C1ðX ;RÞ because F; J a C1ðX ;RÞ. Moreover

3dClðuÞ; v4 ¼ M
�Z

W

1

pðxÞ ðjDuj
pðxÞ

dxþ aðxÞjujpðxÞ dxÞ
�

�
Z
W

ðjDujpðxÞ�2DuDvþ aðxÞjujpðxÞ�2
uvÞ dx

� l

Z
W

V1ðxÞjujqðxÞ�2
uv dx

for all u; v a X .
Let u be a critical point of Cl. Then we have dClðuÞ ¼ 0X � , that is,

3dClðuÞ; v4 ¼ 0; for all v a X :

Therefore

M
�Z

W

1

pðxÞ ðjDuj
pðxÞ

dxþ aðxÞjujpðxÞ dxÞ
�Z

W

ðjDujpðxÞ�2DuDvþ aðxÞjujpðxÞ�2
uvÞ dx

¼ l

Z
W

V1ðxÞjujqðxÞ�2
uv dx;

for all v a X . It follows that u is a weak solution of problem (1).
Now we assume that u is a weak solution of (1). By Definition 2 we deduce

that 3dClðuÞ; v4 ¼ 0, for all v a X : We obtain dClðuÞ ¼ 0X � , hence u is a critical
point of Cl. This completes the proof of Proposition 5. r

The following property shows the existence of a mountain for Cl near the
origin.

Lemma 2. Suppose that the hypotheses of Theorem 1 are fulfilled. Then for all
r a ð0; 1Þ, there exist l� > 0 and b > 0 such that for all u a X with kuka ¼ r

ClðuÞb b > 0 for all l a ð0; l�Þ:

Proof. Since the embedding X ,! Ls 0
1
ðxÞqðxÞðWÞ is continuous, we have

jujs 0
1
ðxÞqðxÞ a c2kuka; for all u a X :ð7Þ

Let us assume that kuka < minð1; 1=c2Þ, where c2 is the positive constant of
inequality (7). It follows that jujs 0

1
ðxÞqðxÞ < 1. Moreover, by hypothesis ðH0Þ, we

447small perturbations of nonlocal biharmonic problems with variable exponent



have M̂MðtÞbm0t. Consequently, by combining Hölder’s inequality (4), Proposi-
tion 3 and inequality (7), we deduce that for all u a X with kuka ¼ r,

ClðuÞ ¼ M̂M
�Z

W

1

pðxÞ ðjDuj
pðxÞ þ aðxÞjujpðxÞÞ dx

�
� l

q�

Z
W

V1ðxÞjujqðxÞ dx

b
m0

pþ
kukpþ

a � l

q�
jV1js1ðxÞj juj

qðxÞjs 0ðxÞ

b
m0

pþ
kukpþ

a � l

q�
jV1js1ðxÞjuj

q�

s 0ðxÞqðxÞ

b
m0

pþ
kukpþ

a � l

q�
jV1js1ðxÞc

q�

2 kukq�

a

¼ m0

pþ
r pþ � l

q�
c
q�

2 jV1js1ðxÞr
q� ¼ rq�

�m0

pþ
r pþ�q� � l

q�
c
q�

2 jV1js1ðxÞ
�
:

By the above inequality, we remark that if we define

l� ¼ m0r
pþ�q�

2pþ
q�

c
q�

2 jV1js1ðxÞ
;ð8Þ

then for any l a ð0; l�Þ and u a X with kuka ¼ r there exists b > 0 such that

ClðuÞb b > 0:

The proof of Lemma 2 is complete. r

The following result asserts the existence of a valley for Cl near the origin.

Lemma 3. There exists j a Xnf0g such that jb 0 and ClðtjÞ < 0, for t > 0
small enough.

Proof. By hypothesis ðH1Þ, there exists t0 > 0 such that for all t > t0, we have

M̂MðtÞa M̂Mðt0Þ

t
1

1�y

0

t
1

1�y ¼ c3t
1

1�y:

Moreover, by ðH2Þ, we have qðxÞ < pðxÞ, for all x a W0.
In the sequel, we denote

q�0 :¼ inf
W0

qðxÞ and p�0 :¼ inf
W0

pðxÞ:

Let e0 be such that q�0 þ e0 < p�0 . Since q a CðW0Þ, there exists an open set
W1 � W0 such that jqðxÞ � q�0 j < e0, for all x a W1. It follows that qðxÞa
q�0 þ e0 < p�0 , for all x a W1.
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Let j a Cl
0 ðWÞ be such that suppðjÞ � W1 � W0, j ¼ 1 in a subset

W 0
1 � suppðjÞ, and 0a ja 1 in W1. It follows that

ClðtjÞ ¼ M̂M
�Z

W

1

pðxÞ ðjDðtjÞj
pðxÞ þ aðxÞjtjjpðxÞÞ dx

�
� l

Z
W

V1ðxÞ
qðxÞ jtjjqðxÞ dx

a c3

�Z
W0

t pðxÞ

pðxÞ ðjDjj
pðxÞ þ aðxÞjjjpðxÞÞdx

� 1
1�y � l

Z
W1

V1ðxÞ
qðxÞ tqðxÞVðxÞjjjqðxÞ dx

a
t
p�
0

1�y

ðp�0 Þ
1

1�y

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx
� 1

1�y � ltq
�
0
þe0

qþ0

Z
W1

V1ðxÞjjjqðxÞ dx

a c4t
p�
0

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx
� 1

1�y � ltq
�
0
þe0

qþ0

Z
W1

V1ðxÞjjjqðxÞ dx:

Therefore

ClðtjÞ < 0

for t < d1=ðp
�
0
�q�

0
�e0Þ with

0 < d < min 1;

l
c4q

þ
0

R
W1

V1ðxÞjjjqðxÞ dx

ð
R
W0
ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dxÞ

1
1�y

8<
:

9=
;:

Finally, we point out thatZ
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx > 0:

Indeed, supposing the contrary we have
R
W
ðjDjjpðxÞ þ aðxÞjujpðxÞÞ dx ¼ 0. By

Proposition 3, we deduce that kjka ¼ 0 and consequently j ¼ 0 in W, a contra-
diction. The proof of Lemma 3 is complete. r

Proof of Theorem 1 completed. Let l� > 0 be defined as in (8) and l a
ð0; l�Þ. By Lemma 2 it follows that on the boundary of the ball centered at the
origin and of radius r in X , denoted by Brð0Þ, we have

inf
qBrð0Þ

Cl > 0:ð9Þ

On the other hand, by Lemma 3, there exists j a X such that ClðtjÞ < 0 for all
t > 0 small enough. Moreover, by hypothesis ðH0Þ, Hölder’s inequality (4), Prop-
osition 3 and inequality (7), we deduce that for any u a Brð0Þ we have

ClðuÞb
m0

pþ
kukpþ

a � l

q�
c
q�
2 jV1js1ðxÞkuk

q�

a :
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It follows that

�l < c :¼ inf
Brð0Þ

Cl < 0:

Let 0 < e < infqBrð0Þ Cl � infBrð0Þ Cl. Due to the above information, the func-

tional Cl : Brð0Þ ! R is lower bounded on Brð0Þ and Cl a C1ðBrð0Þ;RÞ. Thus,
by Ekeland’s variational principle [14], there exists ue a Brð0Þ such that

caClðueÞa cþ e

0 < ClðuÞ �ClðueÞ þ e � ku� ueka; uA ue:

�

Since

ClðueÞa inf
Brð0Þ

Cl þ ea inf
Brð0Þ

Cl þ e < inf
qBrð0Þ

Cl;

we deduce that ue a Brð0Þ: Now, we define Il : Brð0Þ ! R by IlðuÞ ¼ ClðuÞ þ
e � ku� ueka: It is clear that ue is a minimum point of Il and thus

Ilðue þ t � vÞ � IlðueÞ
t

b 0

for small t > 0 and any v a B1ð0Þ. The above relation yields

Clðue þ t � vÞ �ClðueÞ
t

þ e � kvka b 0

Letting t ! 0 it follows that 3dClðueÞ; v4þ e � kvka b 0 and we infer that
kdClðueÞka a e.

We deduce that there exists a sequence fwng � Brð0Þ such that

ClðwnÞ ! c and dClðwnÞ ! 0X � :ð10Þ

The sequence fwng is bounded in X . Thus, there exists w in X such that, up
to a subsequence, fwng converges weakly to w in X . Since r1ðxÞ < p�ðxÞ for all
x a W we deduce that there exists a compact embedding E ,! Lr1ðxÞðWÞ and con-
sequently fwng converges strongly in Lr1ðxÞðWÞ. In order to have strong conver-
gence, we need the following auxiliary result.

Proposition 6. We have

lim
n!l

Z
W

V1ðxÞjwnjqðxÞ�2
wnðwn � wÞ dx ¼ 0:
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Proof. Using Hölder’s inequality (4) we haveZ
W

V1ðxÞjwnjqðxÞ�2
wnðwn � wÞ dxa jV1js1ðxÞj jwnjqðxÞ�2

wnðwn � wÞjs 0
1
ðxÞ

a jV1js1ðxÞj jwnjqðxÞ�2
wnj qðxÞ

qðxÞ�1

jwn � wjr1ðxÞ:

If j jwnjqðxÞ�2
wnj qðxÞ

qðxÞ�1

> 1, by Proposition 2, we have

j jwnjqðxÞ�2
wnj qðxÞ

qðxÞ�1

a jwnjq
þ

qðxÞ:

Using now the compact embedding X ,! LqðxÞðWÞ, we conclude the proof. r

Since dClðwnÞ ! 0 and fwng is bounded in X we have

j3dClðwnÞ;wn � w4ja j3dClðwnÞ;wn4j þ j3dClðwnÞ;w4j
a kdClðwnÞkakwnka þ kdClðwnÞkakwka:

Moreover, by Proposition 6, we have

lim
n!l

3dClðwnÞ;wn � w4 ¼ 0:

Therefore

lim
n!l

M
�Z

W

1

pðxÞ ðjDwnjpðxÞ þ aðxÞjwnjpðxÞÞ dx
�

�
Z
W

ðjDwnjpðxÞ�2DwnðDwn � DwÞ þ aðxÞjwnjpðxÞ�2
wnðwn � wÞÞ dx ¼ 0:

Combining hypothesis ðH0Þ and Proposition 4, we deduce that fwng converges
strongly to w in X . Since Cl a C1ðX ;RÞ, we conclude that

dClðwnÞ ! dClðwÞ; as n ! l:ð11Þ

Now, relations (10) and (11) yield

ClðwÞ ¼ c < 0 and dClðwÞ ¼ 0:ð12Þ

In order to show that w is a solution of problem (1), it remains to show that
Dw ¼ 0 on qW. Due to relation (12), w a Xnf0g is a critical point of Cl, so

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

mðxÞv dx for all v a X ;ð13Þ

where

mðxÞ ¼ lV1ðxÞjwjqðxÞ�2
w�MðtÞaðxÞjwjpðxÞ�2

w:
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Relation (13) implies that

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

mðxÞv dx for all v a Cl
0 ðWÞ:ð14Þ

Let z be the unique solution of the problem

Dz ¼ mðxÞ in W

z ¼ 0 on qW:

�

Relation (14) yields

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

ðDzÞv dx for all v a Cl
0 ðWÞ:

Using the Green formula we haveZ
W

ðDzÞv dx ¼
Z
W

zDv dx:

Therefore

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

zDv dx for all v a Cl
0 ðWÞ:ð15Þ

On the other hand, for all ~ww a Cl
0 ðWÞ there exists a unique v a Cl

0 ðWÞ such
that Dv ¼ ~ww in W. Thus, relation (15) can be rewritten asZ

W

ðMðtÞjDwjpðxÞ�2Dw� zÞ~wwdx ¼ 0 for all ~ww a Cl
0 ðWÞ:

Applying the fundamental lemma of the calculus of variations, we deduce that

MðtÞjDwjpðxÞ�2Dw� z ¼ 0 in W:

According to assertion ðH0Þ and since z ¼ 0 on qW, we conclude that Dw ¼ 0 on
qW. Thus, w is a nontrivial weak solution of problem (1) such that Dw ¼ 0. Since
ClðjwjÞ ¼ ClðwÞ then problem (1) has a non-negative solution. The proof is now
complete. r

4. Main result for problem (2)

In what follows assume we the following hypothesis:

ðH3Þ 1 < qðxÞ < aðxÞ < pðxÞ < N
2 < minðs1ðxÞ; s2ðxÞÞ, for all x a W, where

s2 a CðWÞ and V2 a Ls2ðxÞðWÞ such that V2 b 0 in W.

Let s 02ðxÞ denote the conjugate exponent of the function s2ðxÞ and r2ðxÞ :¼
s2ðxÞaðxÞ
s2ðxÞ�aðxÞ . Then the following embedding properties hold.
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Remark 2. Under assumption ðH3Þ, we have maxðr2ðxÞs 02ðxÞaðxÞÞ < p�ðxÞ, for
all x a W. Consequently, the embeddings X ,! Ls 0

2
ðxÞaðxÞðWÞ and X ,! Lr2ðxÞðWÞ

are compact and continuous.

Definition 3. We say that l a R is an eigenvalue of problem (2), if there exists
u a Xnf0g such that Du ¼ 0 on qW and

MðtÞ
Z
W

ðjDujpðxÞ�2DuDvþ aðxÞjujpðxÞ�2
uvÞ dx

¼ l

Z
W

ðV1ðxÞjujqðxÞ�2 � V2ðxÞjujaðxÞ�2Þuv dx;

for any v a X . If l is an eigenvalue of problem (2), then the corresponding u a
Xnf0g is a weak solution of problem (2).

The main result on this part of the paper is the following.

Theorem 2. Assume that hypotheses ðH0Þ, ðH1Þ and ðH3Þ are fulfilled. Then
there exists l� > 0, such that any l a ð0; l�Þ is an eigenvalue of problem (2).

In order to describe the variational framework associated to (2), we define the
functional g : X ! R as follows:

gðuÞ ¼
Z
W

V2ðxÞ
aðxÞ jujaðxÞ dx:

By Proposition 2 and Remark 2, g is well defined and for all u a X

jgðuÞja 1

a�
jV2js2ðxÞj juj

aðxÞjs 0
2
ðxÞ a

1
a� jV2jsðxÞjuj

a�

s 0
2
ðxÞaðxÞ; if jujs 0

2
ðxÞaðxÞ a 1;

1
a� jV2jsðxÞjuj

aþ

s 0
2
ðxÞaðxÞ; if jujs 0

2
ðxÞaðxÞ > 1:

8<
:

The Euler–Lagrange functional corresponding to problem (2) is Cl : X ! R
and is defined by

ClðuÞ :¼ FðuÞ � lJðuÞ þ lgðuÞ:

According to Proposition 4, one has F a C1ðX ;RÞ. Moreover, under assumption
ðH3Þ and Proposition 2 in [6] one has J; g a C1ðX ;RÞ, so Cl a C1ðX ;RÞ and

3dClðuÞ; v4 ¼ M
�Z

W

1

pðxÞ ðjDuj
pðxÞ

dxþ aðxÞjujpðxÞ dxÞ
�

�
Z
W

ðjDujpðxÞ�2DuDvþ aðxÞjujpðxÞ�2
uvÞ dx

� l

Z
W

V1ðxÞjujqðxÞ�2
uv dxþ l

Z
W

V2ðxÞjujaðxÞ�2
uv dx;

for all u; v a X .
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4.1. Proof of Theorem 2

The following property shows the existence of a mountain for Cl near the
origin.

Lemma 4. Suppose that the hypotheses of Theorem 2 are fulfilled. Then for all
r a ð0; 1Þ, there exists l� > 0 and b > 0 such that for all u a X with kuka ¼ r

ClðuÞb b > 0 for all l a ð0; l�Þ:

Proof. Let us assume that kuka < minð1; 1=c2Þ, where c2 is the positive con-
stant of inequality (7). It follows that jujs 0

1
ðxÞqðxÞ < 1. Since V2 b 0 on W, we use

the same steps as the proof of Lemma 4 to deduce that for all u a X with
kuka ¼ r,

ClðuÞb M̂M
�Z

W

1

pðxÞ ðjDuj
pðxÞ þ aðxÞjujpðxÞÞ dx

�

� l

q�

Z
W

V1ðxÞjujqðxÞ dxþ l

aþ

Z
W

V2ðxÞjujaðxÞ dx

b
m0

pþ
kukpþ

a � l

q�
jV1js1ðxÞj juj

qðxÞjs 0
1
ðxÞ

¼ m0

pþ
r pþ � l

q�
c
q�

2 jV1js1ðxÞr
q� ¼ rq�

�m0

pþ
r pþ�q� � l

q�
c
q�

2 jV1js1ðxÞ
�
:

By the above inequality, we remark that if we define

l� ¼ m0r
pþ�q�

2pþ
q�

c
q�

2 jV1js1ðxÞ
;ð16Þ

then for any l a ð0; l�Þ and u a X with kuka ¼ r there exists b > 0 such that

ClðuÞb b > 0:

The proof of Lemma 4 is complete. r

The following result asserts the existence of a valley for Cl near the origin.

Lemma 5. There exists j a Xnf0g such that jb 0 and ClðtjÞ < 0, for t > 0
small enough.

Proof. By assumption ðH3Þ, one has qðxÞ < aðxÞ, for all x a W0. In the sequel,
we denote

q�0 :¼ inf
W0

qðxÞ; p�0 :¼ inf
W0

pðxÞ and a�0 :¼ inf
W0

aðxÞ:
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Let e0 be such that q�0 þ e0 < a�0 . Since q a CðW0Þ, there exists an open set
W1 � W0 such that jqðxÞ � q�0 j < e0, for all x a W1. It follows that qðxÞa
q�0 þ e0 < a�0 , for all x a W1.

Let j a Cl
0 ðWÞ be such that suppðjÞ � W1 � W0, j ¼ 1 in a subset

W 0
1 � suppðjÞ, and 0a ja 1 in W1. It follows that

ClðtjÞ ¼ M̂M
�Z

W

1

pðxÞ ðjDðtjÞj
pðxÞ þ aðxÞjtjjpðxÞÞ dx

�

� l

Z
W

V1ðxÞ
qðxÞ jtjjqðxÞ dxþ l

Z
W

taðxÞ

aðxÞV2ðxÞjjjaðxÞ dx

a c3

�Z
W0

t pðxÞ

pðxÞ ðjDjj
pðxÞ þ aðxÞjjjpðxÞÞ dx

� 1
1�y

� l

Z
W1

V1ðxÞ
qðxÞ tqðxÞjjjqðxÞ dxþ l

Z
W0

taðxÞ

aðxÞV2ðxÞjjjaðxÞ dx

a c3
t
p�
0

1�y

ðp�0 Þ
1

1�y

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx
� 1

1�y

� ltq
�
0
þe0

qþ0

Z
W1

V1ðxÞjjjqðxÞ dxþ l
ta

�
0

a�0

Z
W0

V2ðxÞjjjaðxÞ dx

a c3
t p

�
0

ðp�0 Þ
1

1�y

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx
� 1

1�y

� ltq
�
0
þe0

qþ0

Z
W1

V1ðxÞjjjqðxÞ dxþ l
ta

�
0

a�0

Z
W0

V2ðxÞjjjaðxÞ dx

a
maxðc3; 1Þta

�
0

minða�0 ; ðp�0 Þ
1

1�yÞ

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dxÞ
1

1�y

þ l

Z
W0

V2ðxÞjjjaðxÞ dx
�
� ltq

�
0
þe0

qþ0

Z
W1

V1ðxÞjjjqðxÞ dx

Therefore

ClðtjÞ < 0

for t < d1=ða
�
0
�q�

0
�e0Þ with

0 < d < min 1;

lminða�
0
; ðp�

0
Þ

1
1�yÞ

maxðc3;1Þqþ
0

R
W1

V1ðxÞjjjqðxÞ dx

ð
R
W0
ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dxÞ

1
1�y þ

R
W0

V2ðxÞjjjaðxÞ dx

8>><
>>:

9>>=
>>;:

455small perturbations of nonlocal biharmonic problems with variable exponent



Finally, we point out that

�Z
W0

ðjDjjpðxÞ þ aðxÞjjjpðxÞÞ dx
� 1

1�y þ
Z
W0

V2ðxÞjjjaðxÞ dx > 0:

Indeed, supposing the contrary we have ð
R
WðjDjj

pðxÞ þ aðxÞjujpðxÞ dxÞÞ
1

1�y þR
W0

V2ðxÞjjjaðxÞ dx ¼ 0. By Proposition 3, we deduce that kjka ¼ 0 and conse-
quently j ¼ 0 in W, a contradiction. The proof of Lemma 5 is complete. r

Proof of Theorem 2 completed. Let l� > 0 be defined as in (16) and
l a ð0; l�Þ. By Lemma 4 it follows that on the boundary of the ball centered at
the origin and of radius r in X , denoted by Brð0Þ, we have

inf
qBrð0Þ

Cl > 0:ð17Þ

On the other hand, by Lemma 5, there exists j a X such that ClðtjÞ < 0 for all
t > 0 small enough. Moreover, by hypothesis ðH0Þ, Hölder’s inequality (4), Prop-
osition 3 and inequality (7), we deduce that for any u a Brð0Þ we have

ClðuÞb
m0

pþ
kukpþ

a � l

q�
c
q�
2 jV1js1ðxÞkuk

q�

a :

It follows that

�l < c :¼ inf
Brð0Þ

Cl < 0:

Let 0 < e < infqBrð0Þ Cl � infBrð0Þ Cl. Due to the above information, the func-

tional Cl : Brð0Þ ! R is lower bounded on Brð0Þ and Cl a C1ðBrð0Þ;RÞ. Thus,
by Ekeland’s variational principle, there exists ue a Brð0Þ such that

caClðueÞa cþ e

0 < ClðuÞ �ClðueÞ þ e � ku� ueka; uA ue:

�

Since

ClðueÞa inf
Brð0Þ

Cl þ ea inf
Brð0Þ

Cl þ e < inf
qBrð0Þ

Cl;

we deduce that ue a Brð0Þ: Now, we define Il : Brð0Þ ! R by IlðuÞ ¼ ClðuÞ þ
e � ku� ueka: It is clear that ue is a minimum point of Il and thus

Ilðue þ t � vÞ � IlðueÞ
t

b 0

for small t > 0 and any v a B1ð0Þ. The above relation yields

Clðue þ t � vÞ �ClðueÞ
t

þ e � kvka b 0
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Letting t ! 0 it follows that 3dClðueÞ; v4þ e � kvka b 0 and we infer that
kdClðueÞka a e.

We deduce that there exists a sequence fwng � Brð0Þ such that

ClðwnÞ ! c and dClðwnÞ ! 0X � :ð18Þ

The sequence fwng is bounded in X . Thus, there exists w in X such that, up
to a subsequence, fwng converges weakly to w in X . Since maxðr1ðxÞ; r2ðxÞÞ <
p�ðxÞ, for all x a W, then X is compactly embedded in Lr1ðxÞðWÞ and Lr2ðxÞðWÞ.
In order to establish the strong convergence of fung on X , we use proposition 6
and the following auxiliary property.

Proposition 7. We have

lim
n!l

Z
W

V2ðxÞjunjaðxÞ�2
unðun � uÞ dx ¼ 0:

Proof. Using Hölder’s inequality (4) we haveZ
W

V2ðxÞjunjaðxÞ�2
unðun � uÞ dxa jV2js2ðxÞj junj

aðxÞ�2
unj aðxÞ

aðxÞ�1

jun � ujr2ðxÞ;

Next, by Proposition 2, if

j junjaðxÞ�2
unj aðxÞ

aðxÞ�1

> 1

then

j junjaðxÞ�2
unj aðxÞ

aðxÞ�1

a junja
þ

aðxÞ:

Using the compact embedding X ,! LaðxÞðWÞ, we conclude the proof of the
proposition. r

Since dClðwnÞ ! 0 and fwng is bounded in X we have

j3dClðwnÞ;wn � w4ja j3dClðwnÞ;wn4j þ j3dClðwnÞ;w4j
a kdClðwnÞkakwnka þ kdClðwnÞkakwka:

Moreover, by Propositions 6 and 7, we have

lim
n!l

3dClðwnÞ;wn � w4 ¼ 0:

Therefore

lim
n!l

M
�Z

W

1

pðxÞ ðjDwnjpðxÞ þ aðxÞjwnjpðxÞÞ dx
�

�
Z
W

ðjDwnjpðxÞ�2DwnðDwn � DwÞ þ aðxÞjwnjpðxÞ�2
wnðwn � wÞÞ dx ¼ 0:
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Combining hypothesis ðH0Þ and Proposition 4, we deduce that fwng converges
strongly to w in X . Since Cl a C1ðX ;RÞ, we conclude that

dClðwnÞ ! dClðwÞ; as n ! l:ð19Þ

Now, relations (18) and (19) yield

ClðwÞ ¼ c < 0 and dClðwÞ ¼ 0:ð20Þ

In order to show that w is a solution of problem (2), it remains to show that
Dw ¼ 0 on qW. Due to relation (20), w a Xnf0g is a critical point of Cl, so

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

mðxÞv dx for all v a X ;ð21Þ

where

mðxÞ ¼ lðV1ðxÞjwjqðxÞ�2
w� V2ðxÞjwjaðxÞ�2

wÞ �MðtÞaðxÞjwjpðxÞ�2
w:

Relation (21) implies that

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

mðxÞv dx for all v a Cl
0 ðWÞ:ð22Þ

Let z be the unique solution of the problem

Dz ¼ mðxÞ in W

z ¼ 0 on qW:

�

Relation (22) yields

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

ðDzÞv dx for all v a Cl
0 ðWÞ:

Using the Green formula we haveZ
W

ðDzÞv dx ¼
Z
W

zDv dx:

Therefore

MðtÞ
Z
W

jDwjpðxÞ�2DwDv dx ¼
Z
W

zDv dx for all v a Cl
0 ðWÞ:ð23Þ

On the other hand, for all ~ww a Cl
0 ðWÞ there exists a unique v a Cl

0 ðWÞ such
that Dv ¼ ~ww in W. Thus, relation (23) can be rewritten asZ

W

ðMðtÞjDwjpðxÞ�2Dw� zÞ~wwdx ¼ 0 for all ~ww a Cl
0 ðWÞ:
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Applying the fundamental lemma of the calculus of variations, we deduce that

MðtÞjDwjpðxÞ�2Dw� z ¼ 0 in W:

According to assertion ðH0Þ and since z ¼ 0 on qW, we conclude that Dw ¼ 0 on
qW. Thus, w is a nontrivial weak solution of problem (2) such that Dw ¼ 0. Since
ClðjwjÞ ¼ ClðwÞ then problem (2) has a non-negative solution. The proof is now
complete. r

4.2. Example

Let MðtÞ ¼ b þ gt, where b, g are positive constants and t :¼
R
W

1
pðxÞ ðjDuj

pðxÞ
dxþ

aðxÞjujpðxÞÞ dx. We first observe that

MðtÞb b > 0:

Taking y ¼ 1
2 , we have

M̂MðtÞ ¼
Z t

0

MðsÞ ds ¼ btþ 1

2
gt2 b

1

2
ðb þ gtÞt ¼ ð1� yÞMðtÞt:

Consider the nonlocal problem

MðtÞðD2
pðxÞuþ aðxÞjujpðxÞ�2

uÞ ¼ lV1ðxÞjujqðxÞ�2
u; x a W

u ¼ Du ¼ 0; x a qW;

�
ð24Þ

where a a LlðWÞ such that essinfx AW aðxÞ > 0, the functions p, q and V1 satisfy
hypothesis assertion ðH2Þ. Then, by Ekeland’s variational principle, there exists
l� such that any l a ð0; l�Þ is eigenvalue for problem (24). Moreover if we con-
sider the problem

MðtÞðD2
pðxÞuþ aðxÞjujpðxÞ�2

uÞ
¼ lðV1ðxÞjujqðxÞ�2

u� V2ðxÞjujaðxÞ�2
uÞ; x a W

u ¼ Du ¼ 0; x a qW;

8><
>:ð25Þ

where the functions p, q, a and V2 satisfy hypothesis assertion ðH3Þ, then there
exists l�

1 such that any l a ð0; l�
1 Þ is eigenvalue for problem (25).

4.3. Final comments

(i) Problems (1) and (2) correspond to a subcritical setting, as described by
Remark 1 and Remark 2. We consider that valuable research directions cor-
respond either to the critical or to the supercritical framework (in the sense
of Sobolev variable exponents). No results are known even for the almost
critical case with lack of compactness. More precisely, with the same nota-
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tions as in Remark 1 and 2, a very interesting open problem is to study the
qualitative analysis of solutions of problem (1), provided that there exists
z1 a W such that

maxðr1ðz1Þ; s 01ðz1Þqðz1ÞÞ ¼ p�ðz1Þ;

but

maxðr1ðxÞ; s 01ðxÞqðxÞÞ < p�ðxÞ for all z a Wnfz1g;

and those of problem (2) provided that there exists z1; z2 a W such that

maxðr1ðz1Þ; s 01ðz1Þqðz1ÞÞ ¼ p�ðz1Þ and maxðr2ðz2Þs 02ðz2Þaðz2ÞÞ ¼ p�ðz2Þ

but

maxðr1ðxÞ; s 01ðxÞqðxÞÞ < p�ðxÞ for all z a Wnfz1g

and

maxðr2ðxÞs 02ðxÞaðxÞÞ < p�ðxÞ for all z a Wnfz2g:

(ii) Another very interesting research direction is to extend the approach de-
veloped in this paper to the abstract setting recently studied by Mingione
et al. [4, 9, 10], namely double phase problems with associated energies of
the type

u 7!
Z
W

½jDujp1ðxÞ þ VðxÞjDujp2ðxÞ� dx

and

u 7!
Z
W

½jDujp1ðxÞ þ VðxÞjDujp2ðxÞ logðeþ jxjÞ� dx;

where p1ðxÞa p2ðxÞ, p1A p2, and VðxÞb 0. Considering two di¤erent
materials with power hardening exponents p1ðxÞ and p2ðxÞ respectively, the
coe‰cient VðxÞ dictates the geometry of a composite of the two materials.
When VðxÞ > 0 then p2ðxÞ-material is present, otherwise the p1ðxÞ-material
is the only one making the composite.

These problems extend to a bi-harmonic setting with variable exponents
the pioneering papers by Marcellini [26, 27] on ðp; qÞ-problems, which in-
volve integral functionals of the type

u 7!
Z
W

F ðx;‘uÞ dx:
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The integrand F : W� RN ! R satisfied unbalanced polynomial growth
conditions of the type

jxjp kFðx; xÞk jxjq with 1 < p < q;

for every x a W and x a RN .
(iii) We suggest to extend the methods developed in this paper to the more gen-

eral framework of Musielak–Orlicz–Sobolev spaces (see [36, Chaper 4] for a
collection of stationary problems studied in these function spaces).
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[11] F. J. S. A. Corrêa - G. M. Figueiredo, On an p-Kirchho¤ equation via Krasnosel-

skii’s genus, Appl. Math. Letters 22 (2009), 819–822.

[12] M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J. 36 (2007),
21–52.

461small perturbations of nonlocal biharmonic problems with variable exponent



[13] D. Edmunds - J. Rakosnik, Sobolev embeddings with variable exponent, Studia
Math. 143 (2000), 267–293.

[14] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

[15] M. Eleuteri - P. Marcellini - E. Mascolo, Lipschitz continuity for energy inte-

grals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27
(2016), no. 1, 61–87.

[16] X. Fan - X. Han, Existence and multiplicity of solutions for pðxÞ-Laplacian equations

in RN , Nonlinear Anal 59 (2004), 173–188.

[17] A. Ferrero - G. Warnault, On solutions of second and fourth order elliptic equations

with power-type nonlinearities, Nonlinear Anal. 70 (2009), 2889–2902.

[18] Y. Fu - Y. Shan, On the removability of isolated singular points for elliptic equations

involving variable exponent, Adv. Nonlinear Anal. 5 (2016), no. 2, 121–132.

[19] T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.
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[23] K. Kefi - V. Rãdulescu, On a pðxÞ-biharmonic problem with singular weights,
Z. Angew. Math. Phys. 68 (2017), no. 4, Art. 80, 13 pp.

[24] G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.

[25] J.-L. Lions, On some questions in boundary value problems of mathematical physics,
in Proceedings of International Symposium on Continuum Mechanics and Partial Dif-
ferential Equations, Rio de Janeiro 1977 (de la Penha, Medeiros, Eds.), Math. Stud.,
North Holland 30 (1978), 284–346.

[26] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex
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