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ABSTRACT. — Given a continuous, injective function ¢ defined on the boundary of a planar open
set Q, we consider the problem of minimizing the total variation among all the BV homeomorphisms
on Q coinciding with ¢ on the boundary. We find the explicit value of this infimum in the model case
when Q is a rectangle. We also present two important consequences of this result: first, whatever the
domain Q is, the infimum above remains the same also if one restricts himself to consider only W':!
homeomorphisms. Second, any BV homeomorphism can be approximated in the strict BV sense
with piecewise affine homeomorphisms and with diffeomorphisms.
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1. INTRODUCTION

In this paper we consider the problem of minimizing the total variation of BV
homeomorphisms on Q extending a given boundary datum on 0. More pre-
cisely, let Q C R? be an open set, let ¢ : 9Q — R? be a continuous, injective func-
tion, and let us denote by Ext(p) the set of the homeomorphisms on Q which are
continuous up to the boundary and coincide with ¢ there; we are interested in the
minimization of |Du|(Q) among all the BV homeomorphisms « € Ext(¢). Our
main result is an explicit expression of the infimum in the case when Q is a rect-
angle. To state it, we need the following simple definition.

DEFINITION 1.1. Let R = [a~,a*] x [b~,b"] be a rectangle, let ¢ : IR — R> be
a continuous, injective curve. We denote by P = P(p) its internal part, that is, the
bounded closed set whose boundary is the image of ¢. For every x, y € P, we call
dp(x, y) the geodesic distance in P between x and y, that is, the infimum of the
lengths of the paths connecting x and y in the interior of P. We define ¥(p) € R"
as
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Through the whole paper, we will denote by || - || the standard Manhattan,
or L', norm in R?, that is, ||(x,y)|| = |x| + |y|. Accordingly, for a function
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u € BV(Q) we will write || Du||(Q) = |Du|(Q) + |D>u|(£2). Our result is then the
following.

THEOREM A (Explicit infimum of the total variation). Let R =[a~,a"] X

[b=,b"] be a rectangle, and let ¢ : OR — R be a continuous, injective function.
Then

(1.1) inf{]| Dul|(R) : u € BV(R) n Ext(p)} = ¥(p).

Moreover, for every &> 0 there exists a piecewise affine homeomorphism v €
Ext(p) such that

(1.2) IDel|(R) = [ 1D0] < i)+

Finally, if ¢ is piecewise linear then the function v above can be taken finitely piece-
wise affine.

In this result, as throughout the paper, by “piecewise affine function” we mean
a function which is piecewise affine on each triangle of a locally finite decomposi-
tion of Q; in other words, it is possible to write Q as a countable but locally finite
union of triangles, on each of which the function is affine.

Our theorem is not only interesting by itself; in fact, extension results of this
kind are always of primary importance in order to show approximation results.
The reason is simple to explain: assume that « is a homeomorphism in a given
class (for instance, Sobolev or bi-Sobolev homeomorphisms), and that an approx-
imation of ¥ made by “good” homeomorphisms (for instance, piecewise affine
ones, or diffeomorphisms) is required. Then, a convenient strategy is to subdivide
the domain in small squares, and to look for an approximation inside each one,
keeping the boundary values on the boundaries; at least in some ““bad” squares, it
can be convenient simply to take any homeomorphism having the correct bound-
ary value and not too large energy, hence an extension result is needed.

In the last years, the search for this kind of approximation results is extremely
active (see for instance [7, 6, 3, 5, 9, 11, 2]). For the reason just explained, each
of these papers uses some extension result in the spirit of Theorem A. The novelty
of our result is two-fold: on one hand, we are able to deal with BV homeomor-
phisms, while in the past only Sobolev ones were considered (hence the total vari-
ation is replaced by the L” norm of the differential). And on the other hand,
which is probably more remarkable, we are able to give an explicit expression of
the infimum, while in the past only non-sharp estimates were reached.

We will also present two interesting results which follow from our main theo-
rem. The first one asserts that, whatever the domain Q and the boundary datum
¢ are, the minimal total variation of homeomorphisms extending ¢ is the same
if one consider all the BV homeomorphisms, or just the W!! ones. The second
one, instead, is an approximation result for BV homeomorphisms with piecewise
affine ones, or diffeomorphisms: as already explained above, extension results are
always a powerful tool to prove approximation results. Since homeomorphisms
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are not necessarily continuous up to the boundary, we give the following defini-
tion which extends the notion of being equal on the boundary.

DEFINITION 1.2 (Uniformly coincidence at the boundary). Let Q be an open
set, and fix any continuous, strictly increasing function J — #(J) with #(0) = 0.
Given two homeomorphisms u,v: Q — R?, we say that u and v uniformly co-
incide at 0Q if, whenever x € Q has distance less than ¢ from R?\Q, one has

ju(x) = v(x)| < 7(0).

This definition is extremely demanding: in fact, if both « and v are continuous
up to the boundary, the property is stronger than having u = v on Q2. More-
over, if both u and v belong to some W' space, this property is stronger than
U—ve WO1 7(Q), up to choose 7(5) small enough. Our two consequences of The-
orem A are then the following.

THEOREM 1.3. Let Q C R? be an open set, and let ¢ : dQ — R? be a continuous,
injective function. Then,

inf{|Du|(Q) : u € Ext(p) nBV(Q)} = inf{/Q |Du| : u € Ext(p) n W“(Q)}.

THEOREM 1.4. Let Q be an open set, and let u € BV(Q;R?) be a homeomor-
phism. Then, there exists a sequence {u;} of piecewise affine homeomorphisms, or
of diffeomorphisms, each one uniformly coinciding with u at 0Q, that converges to u

uniformly and in the strict sense, while also {uj’l} converges uniformly to u='.

A few comments about these two results are in order. Concerning Theorem
1.3, it is known (see [5]) that the infimum of [, |Du| is the same if one considers
homeomorphic extensions of ¢ which are in W!!(Q), or which are piecewise
affine, or which are diffeomorphisms. Hence, Theorem 1.3 says in fact the the in-
fimum in the class of BV homeomorphisms coincides with the infima in the other
three classes. Concerning Theorem 1.4 keep in mind that, as shown in [4], a BV
homeomorphism is always bi-BV (that is, the inverse is also a BV homeomor-
phism); in addition, the two total variations coincide. In particular, in Theorem
1.4 the functions u~! are also BV, and the sequence {u; '} also converges strictly
to #~!. We underline that in the proof of Theorem 1.4 the choice of the function
7(0) in Definition 1.2 does not play any role, so basically each element of our
approximating sequence approximates u arbitrarily good around the boundary.
We also mention that, in the paper [10], which is appearing contemporarily to
this one, a stronger, actually sharp, version of Theorem 1.4 is shown, namely,
the strict convergence can be replaced by the area-strict one (which is, roughly
speaking, the strongest possible convergence in BV which is weaker than the
strong one).

The plan of the paper is very simple. In Section 2, which is almost the whole
paper, we prove the particular case of Theorem A when ¢ is piecewise linear.
Then, in Section 3 we deduce the general case, and in Section 4 we prove Theo-
rem 1.3 and Theorem 1.4.
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2. THE PROOF OF THEOREM A: THE CASE WHEN ¢ IS PIECEWISE LINEAR

This section is devoted to show Theorem A in the particular case when the
boundary datum ¢ is piecewise linear. First of all, we can start by observing
that one inequality in (1.1) is more or less trivial.

LEMMA 2.1. Let R=[a",a*] x [b=,b*] be a rectangle, let u € BV(R;R*) N
C(R) be a homeomorphism, and let ¢ be the restriction of u to 0R. Then
[1Dul|(R) = ¥(p).

ProOOE. First of all recall that, being u a BV function, then for almost every x
the function f(y) = u(x, y) is a BV function in [b~,b*], whose distributional
derivative is the measure Dyu(x,-): this is a standard property of BV functions,
see for instance [1]. Let us then take any such x; since u is continuous, then so is
f, and the total variation |Df|([p—, b™]) coincides with the length of the curve f;
this latter is a curve, contained in u(R) = P(¢p), connecting f(b~) = u(x,b”) =
@(x,b7) with f(b") = u(x,b*) = ¢(x,b"). We derive then

|D2M(X, )|([b7,b+]) = |Df|([b77b+]) > dP((ﬂ(va7)7(ﬂ(va+))~

Since this is true for almost every x € [a™, a™], integrating we get

at +

Da®) = [ Date b ez [ dplpte b ) gl b)) d

X=da

The analogous argument, done for the horizontal slicing instead of the vertical
ones, gives

b+
Dyl(R) > / do(p(a™, y).p(a*, y)) dy.

y=b=-
Adding the last two estimates, by Definition 1.1 we get
[ Dul|(R) = [D1u|(R) + [D2u|(R) = ¥(p),
which concludes the proof. O

Thanks to this lemma, in order to get Theorem A it is enough to build a piece-
wise affine homeomorphism v € Ext(¢p) satisfying (1.2). In particular, in this sec-
tion we assume that ¢ is piecewise linear, thus we need the function v to be finitely
piecewise affine. In other words, the validity of Theorem A in the case of ¢ piece-
wise linear is an obvious consequence of the above Lemma 2.1 and of the follow-
ing result.

PROPOSITION 2.2. Let R =[a",a"| x [b~,b"] be a rectangle, and let ¢ : OR —
R? be a piecewise linear and injective function. For every & >0 there exists a
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finitely piecewise affine homeomorphism v : R — R? such that v = ¢ on 0R and

[ 1Dl < () +
R

The remaining of this section is devoted to present the proof of Proposition
2.2, which is quite involved. For the sake of clarity, we will divide our construc-
tion into four subsections.

2.1. Some geometrical definitions and facts

In this section, we prepare our construction with some technical geometrical def-
initions and some simple facts. Here, and in the following, we will call “poly-
gons” only the connected and simply connected ones. Then, for every polygon
P C R? there exists some rectangle R = [¢—,a "] x [b~,b"] and some continuous,
injective and piecewise linear function ¢ : 9R — R? such that P = P(p), in the
sense of Definition 1.1. Through the paper, when some points Py, P»,..., Py
are given, we denote by PP, ... Py the piecewise linear path obtained by joining
the points P; with i ranging from 1 to H.

DEFINITION 2.3 (Geodesics and modified geodesics). Let P C R? be a polygon,
and let 4 and B be any two distinct points in P. We define y,p the unique geode-
sic (i.e., curve of minimal length) connecting them in P: notice that y,p is a piece-
wise linear curve, having as vertices only A4, B and vertices of 0P corresponding
to internal angles of width at least #. Assume now that 4, B e 0P, and let
Wi, W, ..., Wg be all the vertices of P met by y,p, so that y,p = AW W, ...
WkB. Fix now any ¢ > 0: for every 1 <i < K, let W; # W, be some arbitrary
point in the internal bisector of the angle at W; having distance from W; smaller
than 6. The piecewise linear curve y,, = AW W,... WxB is then called a
d-modification of y,5. Notice that there exists a constant 5(P), depending on P
but not on 4 and B, such that the interior of j,5 is contained in the interior of
P if 5 <5(P), unless the segment AB is contained in 9P, in which case K = 0
and then p,p = 7,5 C 0P. Finally, assume that 4 and B are not vertices of P,
and let 4 and B be two points in P in the same sides as 4 and B, and with
distance smaller than 6 from 4 and B. Then, the piecewise linear curve y,p =
AW W, ... WgB is called a d-modification of y,p with variable endpoints.

LEMMA 2.4. Let A, B, C and D be four distinct points in a polygon P. Then the
intersection Y p N\ Ycp is either empty or connected. Assume now also that the
points belong to 0P, which is then divided in two connected parts by C and D. if
A and B belong to two different parts, then the intersection between y,p and ycp
is surely not empty; if they belong to the same part and the intersection is not
empty, then the first and last point of this intersection must be vertices of P, unless
they coincide with one of the points A, B, C and D.

PrOOF. The connectedness of the intersection between two geodesics is an im-
mediate consequence of the uniqueness of the geodesics. For the second part,
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assume first that 4 and B belong to the two different connected components of
0P divided by C and D: since any curve in P connecting C and D divides P in
two or more connected components, and 4 and B surely belong to two different
ones, we can say more in general that any curve in P between A and B must in-
tersect any curve in P connecting C and D. Suppose now that 4 and B belong to
the same connected component of ¢P: in this case, the two geodesics y,p and
ycp may also not intersect. But, if they do, the first intersection point P must be
a vertex of P, unless it coincides with one of the points A, B, C and D: otherwise,
P would be internal to both the geodesics, and they would be both linear for a
while before and after P. This would imply that in a small neighborhood of P
there are no other intersection points, and since the intersection must be con-
nected this contradicts the fact that B is on the same side of 0P as A. The analo-
gous argument works for the last intersection point. |

LeEMMA 2.5. Let P be a polygon, let A, B € 0P be two points such that the seg-
ment AB is not contained in 0P, let § < 5(P) and let § 45 be a modified geodesic in
the sense of Definition 2.3. Let also Py and P, be the two polygons in which P is
divided by y,p, and let ¢ > 0 be a given constant. If 0 is small enough, depending
only on & and P, then the following is true:

(i) For any two points C,D € P;, being | € {1,2}, one has
(2.1) dp,(C,D) < dp(C,D) +¢.

(i) If C € Py, D € Py, and E € 0Py, N 0P, is any point with distance at most o
Sfrom yep,

(2.2) dp,(C,E) + dp,(E, D) < dp(C, D) +e.

PROOF. Let us begin by observing that, for any two points P, Q € j 5, the length
of 7,5 between P and Q is at most the geodesic distance dp(P, Q) plus an error
of order ¢ (more precisely, the error can be bounded by ¢ times the number of
vertices of P). Up to take 0 « ¢, then, we have that the length of y,, between
any two its points P and Q is at most dp(P, Q) + ¢/3.

Take now two points C and D in P;, for [ € {1,2}: if yp does not intersect
748, then it is entirely contained in P;, so we have dp,(C, D) = dp(C, D), which
is even more than (2.1). Otherwise, let P and Q be the first and the last point of
this intersection. Then, let us call y’ the curve yp with the piece between P and
O replaced by the part of 7,5 between P and Q. Since y’ is by definition entirely
contained in P;, by the above consideration we get

, & &
(2.3) dp,(C,D) < A (y") < A (ycp) +3=dp(C,D) +3,

which is stronger than (2.1).
Let us now take C € Py and D € P,, and let E € y,5 = 0P; n 0P, be a point
with distance at most 0 from yp, so in particular there is some point F € yp
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with |F — E| < J. Applying estimate (2.3) first to C and E, which are both in P,
and then to E and D, which are both in P, and keeping in mind that § « &, we
get then

D Wl o
™

dPl(CvE) +dP2(E7D) < dP(CaE) +d'P(E7D) +
< dp(C,F)+dp(F,D) +§8+25

= dp(c, D) +§8+ 20 < dp(c, D) +é&

that is, (2.2). O

DEFINITION 2.6. Let P be a polygon. For every 4, B € 0P, there is a unique
ordered set X (A, B) = {X1,X5,..., Xy} such that the geodesic in P between
A and B is the piecewise linear curve 4X...XyB, and the points X; are all
the vertices of P met by the geodesic y,p (except A and B themselves in
case they are vertices). The set X(A4, B) will be called the set of the vertices of

V4B-

The following is a simple but useful geometric property of the geodesics.

LEMMA 2.7. Let P be a polygon. For every & < 1, there exists a positive o < &
such that, whenever A and B are two points in 0P, and y is any curve in P con-
necting A and B with length less than #(yg) + o, then the Hausdorff distance
between y,p and y is less than &. In addition, suppose that y is a piecewise linear
curve AX{X, ... Xy, B, being all the X vertices of P, and let y,5 = AX1 ... XyB,
being the pomts X as in Deﬁmtlon 2. 6 If'y # y,p, then there are three consecutive
points, either in the set {4,X{,X5,..., Xy, B} orin {4,X,...,Xn, B}, which
are aligned up to an error ¢.

ProoF. The first property is an immediate consequence of the uniqueness of the
geodesics, the continuity of the length, and the compactness of 0P, so we only
have to deal with the second property.

For simplicity of notations, we will write Xo = X; =4 and Xy, =Xy, =
B. Notice that, without loss of generality, we can assume that the distance be-
tween A and X is more than &, because otherwise the three points 4, X; and
X are obviously aligned up to an error ¢, and similarly we can assume that the
distances between 4 and X|, Xy and B, and X ;w and B are more than &. Since
y # y4p, there must be a “ﬁrst difference” at some k > 1, that is, X; = X; ! for
every j < k, but X; # X. Let us assume that H! ( Xk 1Xk) <! (Xk le)
can do this without loss of generality, since otherwise the very same argument
exchanging the two curves applies. If X, = B, then X} must be at a distance at
most o« < ¢ from B, and actually all the points X ]’ with j > k are within a range o
from B; in partlcular X_1, X, and X, are aligned up to an error &. Therefore,
we can assume that X; # B. Now, the point X} has distance smaller than & from
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the segment X;_;X,, and this implies that the three points X, X; and X, are
aligned up to an error ¢. Moreover, also X has distance less than & from y,5; as
a consequence, either X, is very close to the segment X; X1, or Xiyy is very
close to the segment X;_;X,: in both cases, the three points X;_;, X and Xy
are aligned up to an error &. O

DEFINITION 2.8. Let R = [a,at] x [b~,b"] be a rectangle, and let ¢ : R —
R? be a piecewise linear and injective map. For any b~ <t < b™ we will call
A;=(a",t), Bi=(a",t), A,=¢p(A,;) and B, = ¢(B;), and we will denote by
X(t) = X(A;, B;) the set of vertices of y,p according to Definition 2.6. For
any maximal interval / C 0R on which ¢ is linear, we will call generalised vertex
of P the image of each of the two endpoints of I; moreover, whenever A, is
a generalised vertex of P, we call generalised vertex also B,, and we do the
same if B;, or ¢(t,b™), or ¢(t,b") is a generalised vertex. Moreover, we call
generalised side of P any interval between two consecutive generalised vertices:
notice that every side of P is a finite union of generalised sides, and each vertex
is also a generalised vertex, as well as the image of each of the four vertices
of R.

DEFINITION 2.9. Let R = [a—,a*] x [b—,b"] be a rectangle, let ¢ : R — R? be
a piecewise linear and injective function, and let P be the associated polygon. We
say that the map ¢ is not aligned if every three generalised vertices which are not
on a same side of P are not aligned and moreover, for every b~ < ¢t < b™, calling
X(t) ={X1,X>,...,Xn}, if 4, is aligned with X and X, then B, is not aligned
with Xy_; and Xy.

DEerINITION 2.10. Let R, ¢ and P be as in Definition 2.9, and let 6 > 0 be much
smaller than the length of any side of P. Assume that ¢ is linear on {a~} x
[b=,b"] and on {a™} x [b~,b*], and that there are points X, X>,..., Xy € 0P
such that for every 7 € (b—,b") one has X(7) = {X,X2,...,Xn}. We will say
that P is an upper o-tube with number N if it is possible to write ¢([a—,a™] x
{b}) = Ay Y Y,... YyBy+, where for any 1 < j < N the point Y, lies on the
internal bisector of the angle at X; and 0 < |Y; — X;| < 6: notice that it is admis-
sible to choose Y| = Ap+, as well as Yy = B,+. The polygon P will be said a
lower o-tube with number N if the analolgous property, with points Z; instead of
Y;, holds for ¢([a—,a™] x {b~}). If P is both an upper and a lower J-tube, we will
say that it is a d-tube.

Figure 1 depicts the situation of an upper J-tube and of a J-tube. Notice
that, if P is a J-tube, then for every 1 < j < N it must be either X; = Y;, or
X, =2Z,.

2.2. The proof of Lemma 2.11

This subsection is devoted to show the main brick of our construction. Basically,
we are going to take a polygon and subdivide it in several subregions: the top one
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Figure 1. An upper J-tube and a o-tube.

will be a lower d-tube, the bottom one will be an upper J-tube, and all the internal
ones will be J-tubes.

LEMMA 2.11. Let R =[a",a"] x [b~,b"] be a rectangle, let ¢ : IR — R* be a
piecewise linear, injective and not aligned function, and let P = P(¢p) be the associ-
ated polygon Then, for every n > 0 there exist finitely many ordinates b~ = yy <
V1< <Yy <yy=>bt, such that y; .\ < y;+n for every () < i< M, and

there exists also a piecewise linear and injective function ¢ : U VoRr; — R?,
where R; = [a~,a™] X [yi, yi+1], so that ¢ = ¢ on R and

M—1
(2.4) (o (p) +n(b" —b7),

i=0

being ¢; the restriction of ¢ to 0R;. Moreover, for each 0 < i < M — 1 there is a
finitely piecewise affine bijection ®; : R*> — R2, with bi-Lipschitz constant smaller
than 1 +n, and there is 6; < n/M much smaller than the length of any side of
P(9;), such that P(®; o ¢;) is an upper o,-tube with number N; if i < M — 1, and a
lower 6;-tube with number N; if i > 0, and N; < T, being T the number of vertices

of P(g).

ProOOF. We can assume that every two consecutive generalised vertices in P
have distance smaller than #. This is of course admissible: up to an arbitrarily
small reparameterization of ¢ we can add generalised vertices to P, in partic-
ular we can add a finite number of generalised vertices, so that the distance
between any two consecutive ones becomes smaller than #, while ¢ remains
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piecewise linear, injective and not aligned. We divide our construction in a few
steps.

Step 1. Definition of the ordinates t;, 0 <i < M.

Assume that, for some ¢ < ¢/, the points 4, and A, given by Definition 2.8
belong to a same side of P, and the same happens to B, and B, and moreover
X(t) = X(¢'): then, by Lemma 2.4 one immediately gets that X (¢”) = X(¢) =
X(¢') for any ¢ < ¢” < t'. An immediate consequence of this fact, together with
the fact that the generalised sides of P are finitely many, and so are also the pos-
sible values of X(7), is the following. There exists finitely many ordinates b~ =
fo <t <. <ty <ty=>b", and corresponding ordered sets X; for 0 < i <
M such that, for each 0 < i < M, the points 4, with ¢; < t < t;,1 belong all to a
same generalised side of P, the same happens to the points B,, and the ordered
sets X(7) all equal X;. In particular, we choose the “minimal” such sequence
{t;}, in the sense that, for every 1 <i < M — 1, either 4, and B, are generalised
vertices of P, or X; # X;_;. Of course, whenever 4, and B, are generalised ver-
tices, then ¢ is one of the coordinates #;. Suppose, on the other hand, that for
some 1 < i < M the points A4, and B,, are not generalised vertices, so necessarily
X; # X;_1; by continuity of the length, if we call X;_; = {X,X>,..., Xy} and
X ={X{,X5,..., X} }, then both the paths 4, X ... XyB, and 4,X| ... X, B,
are geodesics in P between A4, and B, so by uniqueness they coincide. Since
Xi_1 # X;, and since A, and B,, are not generalised vertices, the only possibility
is that A4,, is aligned with the first two vertices of X;_; or of X;, or B, is aligned
with the last two vertices of X;_; or of X; (and only one of these things can hap-
pen, since ¢ is not aligned). Observe also that #,.; — #; < 5 for every i, since the
maximal distance between two consecutive generalised vertices is less than #. Fi-
nally, notice that the set of coordinates {#;} depends on the polygon P and on the
parameterization of ¢ on the two vertical sides {a~} x[b,b"] and
{a™} x [b=,b7], but not on the parameterization of ¢ on the two horizontal sides.
The number M is already the one of the claim, and each ordinate y; will be very
close to the corresponding ¢;.

Step II. Definition of y\ and of 5, = ¢([a~,a™] x {y1}).

The goal of this step is to define the ordinate y; and the curve j,, internal to
P, which will be the image of the segment [¢~,a™| x {y;} under ¢. The precise
parameterization of ¢ on [a~,a*] x {y;} will be presented in the next step, where
we will2 also take care of (2.4): in this step, we only aim to define the curve
5 C R

Before doing that, we observe that the curve y, will divide the polygon P in
two polygons, namely, a polygon Py which contains the image of [, a™| x {b™}
under ¢, and the remaining part P; in particular, P will be the polygon corre-
sponding to the function ¢ on the boundary of [a—,a™] x [y1,bT]. As a conse-
quence, as soon as 7, is defined, it will be possible to repeat the definition of
the coordinates #; for the polygon P*: indeed, as noticed above, this construc-
tion does not depend on the precise parameterization of ¢ on the horizontal side
[a=,a™] x {y1}, which will be presented in the next step. Hence, we will find co-
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ordinates y; =1 < t] <--- < t},_, <t} = b*. Our definition of y; and of 7,
will be done in such a way that

(2.5) M =M-1,

and actually every ¢/ will be very close to #;1. The basic idea of the construction
is the following: one would like to set y; =7, and to let y; be a modification,
in the sense of Definition 2.3, of the geodesic between A4,, and B,, . This is not
always possible, because it could generate a map on the boundary of the rectangle
[a=,a™] x [y1,b"] which fails to be not aligned, while we want to have a not
aligned map, so to be able to argue by recursion.

Let us now recall that the map ¢ is not aligned: as a consequence, there is
some constant ¢ > 0 such that no three generalised vertices of ¢ are aligned up
to an error 2&; we can also assume that ¢ is much smaller than the length of any
of the segments 4, 4,,, and B, B, . We let o be the number corresponding to the
constant ¢ and the polygon P in Lemma 2.7.

We divide our construction of y; and 9, in two cases.

Step Ila. The case when A,, and B,, are generalised vertices.

First of all, let us suppose that 4, and B;, are generalised vertices. In this case,
we let y; =1t and we call y; =y A, B,, the geodesic in P between 4,, and B, . Let
us write Xo = {X1,X>,..., Xy}, and let us notice that the vertices of y; which
are not endpoints are all the points X, except X if 4, = X1, and except Xy if
B, = Xy. Let now y; be a J-modification of y; in the sense of Definition 2.3,
where 6 « /M will be precised later: we can write j; = A4, Y Y>...YyB,,
with |Y; — X;| <o for every 1 < j <N, and with Y; =X, if 4, =X, and
Yy = Xy if B,, = Xy. Figure 2 depicts this situation.

In order to check that this curve satisfies our requirements, in particular that
(2.5) holds, we need to study the shape of the geodesics between 4, and B, in P,
forevery b~ <t < y;, and in P* for y; < < b". We start now with the case of
t = y1, the other case (which is analogous, yet much simpler) will be done later.
Let us then consider the geodesic ™ between A4, and B, in P*, and call X'(¢) its
set of vertices. A first guess could be that X’(¢) = X(¢), but this is false, and what
one really needs is actually something a bit different.

We need to be more precise here. Let us write X(¢) = { V1, Va,..., Pk}, and
notice that the points F; are all vertices of P, and above y, by Lemma 2.4. Let
us now concentrate for a moment on a given point V. If this point does not equal
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Figure 2. The situation in Step Ila: the coloured region is Py.
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any of the points X;, then it is also a vertex of P, and a reasonable guess, that
we will investigate later, is that it is also an element of X’(z).

Suppose instead that V; coincides with some point X;. In this case, V; could be
a point of &P, as X, and X5 in Figure 2, or a point not in dP*, as X, X3 and
X4. If V; = X; does not belong to oP™, then of course it cannot be an element
of X'(¢), and thlS shows that trying to prove the equality X (7) = X'(z) would be
pointless. However, in this case the reasonable guess (to be investigated later) is
that X'(¢) contains the corresponding point ¥;, which is in fact in dP*. Finally,
if ¥, = X; belongs to 0P, then both the points X; and Y, are in fact in 0P™.
Nevertheless, the point ¥; is surely not in X’(), since it corresponds to an angle
smaller than z, and this time the obvious guess is again that X’(7) should contain
X;.

! Summarizing, it seems reasonable to believe that, for each 1 </ < K, the
set X'(¢) contains the point ¥; whenever it belongs to dP", and the point ¥;
whenever V; ¢ 0P", where the index j is uniquely identified by the equality
Vi=X;. As a consequence, for every V; e X(t), we set V; =V, whenever
Vi e 0P*, while otherwise, if V; = X; ¢ 0P", we set V, = Y;. We will write
X(1) ~ X'(t) whenever X' (1) = {V}, V..., Vk}.

With this notation in mind, we apply Lemma 2.5 to get that, if ¢ is small
enough depending on P and on «, then #'(y*) < #'(y) + /2, denoting for
brevity by y = 7, p the geodesic between 4, and B, in P. Keep in mind that every
vertex of y* is a vertex of P, so it is either a vertex of P or a vertex of j;; let us
then define y’ the modification of ™ made by keeping all its vertices which are on
0P, while substituting every vertex Y; in p; with the corresponding vertex X; in
0P. By construction, y’ is a piecewise hnear curve in P between A, and B, whose
vertices all belong to 6P, and its length is extremely close to that of y™, in partic-
ular #'(y') < #'(y) + o. By Lemma 2.7, we deduce that either y’ = 7, or there
are three vertices of y or of »” which are aligned up to an error &. Notice that the
equality " = y is equivalent to say that X(7) ~ X'(¢).

Let us consider the possibility that y’ # 7, so there are three consecutive ver-
tices of y or of ' which are aligned up to an error £. By construction, this never
happens with three vertices of P, and since all the vertices of y and of 7’ are ver-
tices of P except possibly 4, and B,, we obtain that the only possibility, in order
to have X(r) # X'(¢), is that A4, is aligned, up to an error &, with the first two
points of y, or of y’, or B, is aligned, up to an error &, with the last two points
of y or of y’: in particular, this can happen only if 4, and B, have at least dis-
tance ¢ from every generalised vertex of P. Therefore, the equality X(7) ~ X’(¢) is
surely true around every generalised vertex (which is also by definition one of the
points 7;). We want to show that the equality is also true if 7 is not very close to
some of the points ¢;.

To do so, let us assume that X(¢) # X'(¢): as already pointed out, this can
happen only if 4, is aligned, up to an error ¢, with the first two points of y (or
of y"), or the analogous property holds for B;. Let us say that A, is aligned up to
an error ¢ with P and Q, the first two vertices of one of the paths y and y’: then,
A, belongs to the interior of some generalised side of P, which also contains a
point A4; aligned with P and Q. We want to show that there is some #; between
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t and 7 (included): indeed, if there is no #; in the open interval between ¢ and
f, then by continuity the geodes1c V4,8, Passes through both P and Q. And in
turn, this implies that X' changes at 7, so 7 itself is one of the points #;. In other
words, every ¢/ must be very close to some ;.

To conclude that M" = M — 1 and that for every 1 <i < M one has t,_; = t;,
which is even stronger than (2.5), we have to show that around every #; with i > 1
there is exactly one t;. Since we have already noticed that X(¢) = A”(¢) whenever
t is close to a generalised vertex, and on the other hand every generalised vertex
must correspond to one of the #; (as well as one of the #/), we immediately obtain
what we wanted around every ¢; corresponding to a generalised vertex of P
(hence, also of P*); so, in particular there is no problem around #;. To conclude,
let us restrict our attention to a small neighborhood of some ¢; corresponding to
points A, and B, which are not generalised vertices, so in particular X;_; # X.
As we have already noticed, this implies that either A4, is aligned with the
first two vertices of the geodesic y4 p , or B, with the last two; by symmetry, let
us assume that A4, is aligned with the first two points, call them P and Q. The
points P and Q need not necessarily to be also vertices of P, but we call again

P (resp., Q) the vertex of P* which coincides with P (resp., Q) or is very close to
it: recall that the distance between them is smaller than J, which is by construc-
tion much smaller than &. The point A4, need not to be aligned with P and Q
nevertheless, since A4;, is not close to a generalised vertex of P, on the same side
of 0P to which A, belongs, there is for sure exactly one point, say A;, which is
aligned with P and Q. We deduce that 7 is one of the coordinates t;, and actually
the only one near #;. Then, we have obtained (2.5).

We can now pass to consider the case of ¢ < y;: the situation is completely
analogous to the one with # > y;, yet much simpler because there is no ¢; be-
tween 7y and #; = y1, and because 4,, can not be aligned with X; and X, be-
cause ¢ is not aligned. Then, the very same argument as for > y; implies
that the equality X'(7) ~ X'(r) holds for every #) < ¢ < y;. In particular, X'() =
{Xl,Xz,..~XN} where for every 1 < j < N one has X; = X if X; € 0Py, and
otherwise X; = Y: for instance, in the situation of Figure 2, one has X; = X for
j=13 and 4, Whlle X Y; for j=2and 5. Thus, we obtam that Py is an upper
0- tube in the sense of Deﬁnltlon 2.10: notice that, in this case, @y is the identity
map.

Since we will argue by recursion, we will need to be sure that the map ¢ is
not aligned on the boundary of the rectangle [a—,a™]| x [y1,b"]. At this moment,
we cannot check the validity of this property, because we still didn’t give the pre-
cise parameterization of ¢ on the segment [a~,a™| x {y;}, we only decided that
its image is the curve ;. Nevertheless, we can already check almost everything:
more precisely, since ¢ is not aligned, we know that, for every y; <t <b™, if A4,
is aligned with the first two vertices of X(7), then B, is not aligned with the last
two. Since this alignment can only happen at ordinates ¢ coinciding with some ¢;,
by the above construction we have the same property also in the polygon P with
the sets of vertices X'(z), as soon as ¢ is small enough. Then, to obtain that ¢ is
not aligned on [¢~,a™] x [y1,b"], we need to check that every three generalised
vertices of ¢ on P* are not aligned. Again, this is a property that we already
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know for ¢ on P; thus, again up to take ¢ small enough, the non-alignment is
surely true for every three points taken in the set of the generalised vertices of P,
plus the vertices of P, since every vertex of P has distance at most § from some
vertex of P. To conclude, we will only need to take care also of the points of y,
which will be generalised vertices but not vertices of P*. We cannot do this now,
because the generalised vertices of P depend on the parameterisation of @, which
will be done in the next step.

Step IIb. The case when A, and B,, are not generalised vertices (hence Xy # X).

Let us now consider the second possible case for ¢}, namely, that the points
A, and B,, are not generalised vertices. As already pointed out, this means that
either 4, is aligned with the first two vertices of X(¢;), or B, with the last two,
and the two things cannot happen contemporarily because ¢ is not aligned. Let us
assume without loss of generality that A, is aligned with the first two vertices of
X(t), the case for B, is of course identical.

What we will do, is again to define y, the geodesic in P between A4, and B;,.
This time, we cannot choose y; = t1, in fact y; will be very close to 7 but dif-
ferent from it. As a consequence, while in Step Ila the curve j;, was a generic
o-modification of y,, this time 7, will be a suitable 5-modification of y, with vari-
able endpoints, in the sense of Definition 2.3. In particular, ; must connect 4,
with B, .

This definition has to be made in such a way that (2.5) is still valid; moreover,
as in Step Ila, we have to check that the polygon P, is an upper J-tube, up to a
finitely piecewise affine bijection close to the identity, and that there is no obstruc-
tion to the property of ¢ of being not aligned on [a—,a™] x [y;,b"]. Most of the
proof in this step will coincide with the analogous parts in Step Ila, we will only
need a few modifications.

Let us be more precise: once y; and the curve y, are defined, we can repeat
verbatim everything that we have done in Step Ila, except the parts in which we
used that 4,, and B,, were generalised vertices, which is no more true in this case.
In particular, in Step Ila we checked first that the equality X(z) ~ X’(¢) holds
for every ¢ not close to some ¢;, and then that it also holds around every ¢; corre-
sponding to a generalised vertex: the very same arguments work also in this case.
Then, we showed that around every #; not corresponding to a generalised vertex
there was exactly one t]f . More precisely, we did the following: we took #; not cor-
responding to a generalised vertex, so with A4, aligned with the first two vertices
P and Q of X(¢;) (or B, with the last two); then we observed that, in the same
generalised side containing A,,, there was surely exactly one point, say A4;, aligned
with P and Q@ (the points in P corresponding to P and Q); and finally, we de-
duced that # was one of the coordinates ljf, and in fact the only one near ¢;. The
very same argument can be done now, except around ¢#;. Indeed, the generalised
side containing A,, is not completely in P, it has a part in P* and a part in P,
so the existence of the coordinate 7 does not work as for the case i > 1. Moreover,
since by construction we already have #) = #;, we do not want to find any new
coordinate 7 near /;: such a new coordinate bigger than yi, so in PT, would let
(2.5) fail, while smaller than y;, so in Py, would let the property of Py of being
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an upper o-tube fail. In other words, there must be no special coordinate near ;.
It is important to observe that we did not have such a problem in Step Ila, be-
cause in that case 7; was corresponding to a generalised vertex, so X (1) ~ X'(r)
was ensured around ¢#,. This is the reason why we need now to select a particular
modification of y,, not simply taking a generic one as in the previous step.

Instead, the last part of Step Ila can be again repeated also in this case. More
precisely, we considered the property of ¢ of being not aligned. First we observed
that, for every ¢ > yy, if A, is aligned with the first two vertices of X’(¢), then B,
is not aligned with the last two, as soon as ¢ is small enough; and the very same
argument works perfectly also in this case. Then, we noticed that there are no
three aligned points among the generalised vertices of P and the vertices of 7;:
this was an obvious consequence, again for ¢ small enough, of the fact that every
vertex of y; was very close to a vertex of P. We have to slightly modify the argu-
ment now, since it is no more true that vertices of 9, are close to vertices of P, in
particular this fails for 4,, and B,, (we did not have this problem before because
it was y; = 1 there, and A4,, and B,, were generalised vertices). However, as soon
as yp is very close to | and not equal to it, we have that 4, and B, are not
aligned to any two generalised vertices of P. In other words, also in this case we
have no obstruction to the property of ¢ of being not aligned, and again we will
have only to take care of the non alignment for the generalised vertices of P™.
And in turn, this is something we can only do in next step, having defined the
precise parameterisation of ¢.

Summarizing, what we have to do in this step is only to select some yi, close
to #; but different from it, and to define a J-modification y, of y, with variable
endpoints, connecting 4,, with B),, in such a way that Py is an upper o-tube, up
to a finitely piecewise affine bijection close to the identity, and that there are no
coordinates ¢/ close to #; = #) in P* or in Py (this means that X’(¢) is constant in
an upper neighborhood of y;, as well as in a lower neighborhood of it).

To do so, we have to further distinguish this case into four possible subcases;
let us describe how. As we said, the point 4,, is aligned with P and Q, which are
the first two points of X(z). Then, there are two points P = (p;, p2) and Q =
(¢1,42) in OR such that p(P) = P and ¢(Q) = Q. Notice that p, # 1, and ¢» # t;:
indeed, the only points in R with #; as second coordinate are 4,, and B,,, and
on the other hand P and Q are surely different from A4, and B, . Hence, we
have that either p, < t;, or p, > f;: this means that the point P is respectively
below or above the geodesic y,, by Lemma 2.4; similarly, also Q can be either
above or below y;, depending whether ¢, is bigger or smaller than #,. There are
then in general four possible subcases to consider; the first two are depicted in
Figure 3.

Subcase 1. If P and Q are both below y,.

In this case, we select y; < t;, with #; — y; « J, for some ¢ extremely small. Then,
we let 9, be a J-modification of y, with variable endpoints. This can be any
o-modification satisfying the following two requirements: first of all, y; must con-
nect 4, with B, ; and second, the points P and Q corresponding to P and Q
must be aligned with 4,,, as in Figure 3 left.
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Figure 3. The situation in Step IIb, subcase 1 and subcase 2.

Let us check that X'(z) is constant for all # < y; near y;, as well as for
all > y; near y;. Let us write X(#;) = {X1,X>,..., Xy}, with X; = P and
X, =0.Asin Step I, for every 1 < j < N let us call X; = X; if X; € 0Py, while
otherwise X; is the point of 7, very close to X;. It is clear by continuity that, if ¢
is small enough, then for every ¢ < y; close to y; the geodesic in Py connecting
A; and B, surely has to pass through X; for every j > 2, so for instance through
0 =X, =X, and it cannot pass through other vertices, except possibly P =
X1 = X;. What is not obvious, is for which 7 < y; it also has to pass through P:
we have to show that this happens for every ¢ < y;, so we will get that X'(¢) is
constant in [yo, y1]. In fact, since P and Q are aligned with 4, and A4,, is below
A,,, so also A, is below A,,, the segment connecting 4, with Q is not entirely con-
tained in P, so the geodesic, in order to start at 4, and to reach @, must necessar-
ily pass through P. Similarly, for # > y; and ¢ close to yi, the geodesic in P* con-
necting 4, and B, must necessarily pass through @, and the question is whether
it also passes through P: we have to show that this does not happen. And in fact,
it is surely so, because geodesics in a polygon only touch the boundary of the
polygon at vertices corresponding to angles strictly larger than z, while P is not
a vertex of 0P+,

Finally, the fact that P, is an upper J-tube, again with map ®, coinciding with
the identity, is again obvious: indeed, for any yg < ¢ < y; the geodesic in P, be-
tween A, and B, is A, X; ... XyB,, and ¢([a™,at] x {y1}) = 7, is a 6-modification
of y; with variable endpoints connecting 4,, and B,,.

Subcase 2. If P is above y, and Q is below.
In this case, we select a point @ on the internal bisector at @ in P, with distance
from @ much smaller than some small J. Then, as in Figure 3 right, we call 4; the
point in the side of P containing 4,, such that the points 4;, P and Q are aligned.
Notice that 7 < #;, and 1, — 7 « J. We fix now y; € (4,11), with y; —f < 11 — yy,
and finally we take P on the internal bisector at P in P, with |P — P| < |A,, — A4;|.
Then, we let j; be a 5-modification of y; with variable endpoints, connecting A,
with B, and passing through P and Q.

We have again to check that X’(¢) is constant for all # < y; near y;, and for all
t > yj near y;. This means that, for r < y; close to y;, we have to check that the
geodesic in P between 4, and B; passes through Q and not through P; instead,
for £ > y; close to y;, we have to check that the geodesic in P* between 4, and
B, passes through P and Q. Concerning the case ¢ < yp, the fact that the geo-
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desic passes through Q is obvious, while the fact that it does not pass through P
is true because by construction the line connecting 4,, and P is above Q, hence
the segment 4,0 is contained in Py and then the geodesic does not pass through
P. Instead, if ¢ > y is close to yj, it is again obvious that the geodesic passes
through Q; and, again by construction, the line passing through 4, and P is
below Q, so the segment 4,Q is not contained in P and then the geodesic must
pass also through P. B

Finally, this time Py is not an upper J-tube, because of P. In fact, if we call
Xo = {X1,X2,..., Xy}, so in particular X; = P and X, = Q, then for any y, <
t < y1 the set of vertices between 4, and B, in Py is Xp,(7) = {X2, X3,..., Xy}
(notice that there is no X1), with every X; with distance smaller than J from the
corresponding X, and in particular X, = Q. Instead, ¢([a~,a™] x {y1}) =7, is
a piecewise linear curve having one vertex near each X; for j > 2, and also the
vertex P which has no point of Xp(¢) around. Nevertheless, it is clear that there
is a finitely piecewise affine bijection @, : R* — R?, with bi-Lipschitz constant of
order 1 + 4, thus smaller than 1+ 7, that leaves all the sides of 0Py unchanged
except 4, P and PQ, while these two sides become on a same line: roughly speak-
ing, ®y moves P upward until it becomes aligned with 4, and Q. Obviuously,
the bijection @ transforms P, into an upper J-tube, so also in this subcase we
are done.

Subcases 3 and 4. If P and Q are both above y,, or if P is below y, and Q is
above.

Let us now briefly consider the third and fourth possible subcases: we will ob-
serve that they are almost identical to the first or the second one. More precisely,
let us first assume that P and Q are both above y,: then, to define }; we can argue
as in Subcase 1, in a specular way, in particular y; must be slightly larger than
11, and A, will remain aligned with P and Q; so, the situation is still the one de-
picted in Figure 3 left, the only difference being the orientation of the segments,
in particular Py is now above the curve 7;, in the picture. Checking that every-
thing works, in particular that Py is an upper J-tube, can be done exactly as
before.

Finally, the case when P is below y; and Q is above, is again very similar to
Subcase 2, so also this time we can do the same construction in a specular way,
and the situation is again as in Figure 3 right, with reversed orientation. To check
that X'(¢) is constant for all ¢ < y; near y;, and for all z > y; near yi, one can
again argue exactly as before. The only difference is when one has to check that
Py is an upper J-tube: indeed, in Subcase 2 the point P was missing in X, so due
to the presence of P the set Py was not an upper o-tube, without the bijection @.
Instead, in the present case P is missing from A&} but present in X, thus in this
case the set Py is already an upper J-tube, without any need of the bijection @
(that is, we can take again @, as the identity).

Step IIL. Definition of ¢ on 0Ry and (2.6).
This step is devoted to defining ¢ on [a¢~,a™] x {y}: this must be a piece-
wise linear and injective function, having as image the piecewise linear curve 7,
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already defined in Step II. Extending ¢ = ¢ on 0R, we will have then a piecewise
linear and injective function ¢ : Ry U R — R?, where Rg = [a~,a™] x [b~, y1]
and R" = [a~,a™] x [y1,b7], and then Ry U IRT =R U [a~,a™] x {y;}. Our
definition must satisfy two requirements: first of all, since in the end we want the
validity of the estimate (2.4), we aim to get

(2.6) Y(py) +¥(p") <¥(p) +n(3 —b7),

where ¢, and ¢ are the restrictions of ¢ to Ryp and R™ respectively. Moreover,
we have to check that ¢ on the rectangle R is not aligned, which will allow us
in the next step to perform a recursion. Keep in mind that, as underlined in Step
II, to obtain that ¢ is not aligned it only remains to check that every three gen-
eralised vertices of P, not on a same side, are not aligned; and in turn, we have
already checked this, except for the points in 3, C dP* which are generalised ver-
tices but not vertices of P*.

We show now that it is enough to satisfy the first requirement, namely, the va-
lidity of (2.6). Indeed, assume that we have found a piecewise linear and injective
function ¢ such that (2.6) holds true. Then, there are finitely many generalised
vertices V1, Va,..., Vg on j;; so, there are points Vi, Vs, ..., Vg in [a=,a™]| x
{1} such that ¢(V;) = V; and ¢ is linear on every V; V.. We claim that it is pos-
sible to slightly move the generalised vertices ¥; which are not vertices, in such
a way that the map ¢ becomes not aligned. This means that, for every j, we
set W; = V; if V; is a vertex of j;; otherwise, if V; is a generalised vertex but not
a Vertex we let W € 7, be a point extremely close to ¥; to be specified in a mo-
ment. We modify then the function ¢ by leaving it 11near on each segment V; V]+1,
and setting ¢(V;) = W; instead of ¢(V;) = V;: notice that, as soon as every W, is
close enough to V;, the estimate (2.6) remains valid. Let us now see how we deﬁne
the points W;. If every three generalised vertices of P*, not on a same side, are
not aligned, then there is nothing to do, and we can simply set W; = V; for every
Jj. Suppose, instead, that there are three generalised vertices of Pt Wthh are
aligned; as already observed, at least one of the three must be some point V;, in
particular a generalised vertex which is not a vertex. In other words, V; belongs to
a line /7 which contains two other given generalised vertices of P*; since we have
already checked the non alignment of points taken among the generalised vertices
of P and the vertices of 7, the line / does not contain the side of P* containing
V;. As a consequence, we can take W; # V; arbitrarily close to ¥}, and it does not
lie on the line /; since there are finitely many generalised vertices in P*, we can
do this in such a way that W; is not aligned with any other two generalised ver-
tices. By repeating this argument for all the aligned triples, so finitely many times,
we end up with the required slight modification of ¢.

Summarizing, to conclude this step we only have to find a piecewise linear and
injective parameterisation ¢ of y; such that (2.6) is satisfied. We can furhter re-
duce ourselves to simply looking for a parameterization ¢ satisfying (2.6): indeed,
once such a function is found, we can uniformly approximate it with a piecewise
linear one, then the validity of (2.6) is preserved. Hence, we look now for a bijec-
tion ¢ : [a—,at] x {y1} — 7, satisfying (2.6).
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To do so, for every a~ <t < a’ we consider the geodesic y’ in P between
C, = ¢(t,b™) and D, = ¢(¢t,b™): since the curve y; divides P into two connected
components, and C, and D, are not in the same one, then y’ must intersect 7,. Let
us call P(7) the last point (with respect to the order given by the curve 7,) in this
intersection. By construction and applying Lemma 2.4 to two geodesics y* and 7’,
we see that the function 7 — P(¢) is nondecreasing, that is, if s > ¢ then P(s) is in
the closed part of y; between P(¢) and B,,. This function is in general not con-
tinuous, nor injective, nor surjective; nevertheless, there is of course a bijection
¢:la",at] x {y1} — 7, such that ¢(z, y;) has distance less than J from P(¢) for
all # € [a—,a™] except those contained in a subset I' of [¢~,a™] of measure less
than J.

Since 7, is a J-modification of y,, with variable endpoints, we can apply
Lemma 2.5 with some ¢ to be specified later. Up to decrease d, then, we find
that for every t € [a—,a™|\'

dPo(Cty (5(17 yl)) + dP+ ((ﬁ(t; yl)7 Dt) < dP(Cta Dt) +e.
However, for each ¢, so in particular for those contain in I', we trivially get
dp,(C1, 6(t, 1)) + dp+ (§(t, 1), D) < A (OP) + A (5;) <341 (P).

Therefore, we derive
2.7) / dr,(C, 31, 1)) + dpe (§(2, 1), D) di
t=a~

335,%1(a7>)+/ dp(C,, D)) + ¢dt.
t=a~

On the other hand, still by Lemma 2.5 we have for every b~ < ¢t < y; that
dp,(A;, B;) < dp(A,, B,) + ¢,

while for every y; <t < b™ itis
dp+(A;,B;) < dp(Ay, B,) + e.

Thus,

i bt bt
(28) dPO(A[,Bt) dt"’ dP*(Atht) d[ < d’p(A[,Bt) +8dt

t=b t=n t=b

Keeping in mind Definition 1.1, from (2.7) and (2.8) we obtain
W(py) +¥(p") < W(p) + 364" (0P) +e(at —a +b" —b7),

from which the validity of (2.6) follows, up to choose ¢ and 6 small enough.
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Step IV. Recursion and conclusion.

In this last step, we want to conclude our construction. Applying Steps II and
IT1, we have already divided our rectangle R into a rectangle Ry = [a—,a"| x
[b~, y1] and the remaining part R", and we have defined ¢ on dR U R in such
a way that (2.6) holds; in addition, the polygon P(®g o ¢,) (keep in mind Defini-
tion 1.1) is an upper d-tube with a finitely piecewise affine bijection @, : R* — R?
with bi-Lipschitz constant smaller than 1 + #, and in addition ¢ is also a not
aligned function and the coordinates 7/ in the rectangle R™ with the function ¢
are exactly M — 1 thanks to (2.5).

We can then remain satisfied with the work done on R, and argue on R™:
with an obvious recursion, in the end we will have subdivided R into M rect-
angles R;, 0 <i < M — 1, and we will have defined a piecewise linear and injec-
tive function ¢ : U[ZO_ 1 oR; — R, with ® = ¢ on OR, together with constants J;
and finitely piecewise affine bijections ®; as before. Since (2.4) follows simply
adding the inequalities (2.6), we have obtained everything, except the fact that
the polygons P(p;) with 1 <i< M — 1 are also lower J-tubes, up to suitable
finitely piecewise affine bijections @;.

Again arguing by recursion, it is enough to check that P(g,) is a lower o-tube:
this is quite simple, one has only to consider three possible cases; we call again
Xo={X1. X2, ..., Xy},

Subcase 1. If X1 = X,.

Let us consider first the case when X' = X)), depicted in Figure 4 left. This means
that the points 4, and B, are necessarily generalised vertices of P, hence the
curve ¢([a_,a™] x {y1}) = 7, has been defined in Step Ila. In particular, j;, =
A, Xi...XnB,,, where each X; has distance at most Jy from the corresponding
X;. For y; <t < ys, by Step II we know that X'(¢) ~ X(¢): this means that the
geodesic in P+ between A4, and B, is 4,Y, ... YyB,, where for eachl <j<N
we have ¥; = X; if the latter belongs to éP", and otherwise ¥; = X;. If M =2,
then P(p;) = P" and we have already the fact that P(¢p,) is a lower dy-tube, again
®; being the identity. Instead, if M > 3, then there is also a curve j,, which
equals ¢([a—,a™] x {y2}), and for y; <1< y, we have again by Step II that
X'(t) ~ X"(1), where X'(¢) and X" (¢) are the sets of vertices of the geodesic be-
tween 4, and B, in P and in P(p,) respectively. This means that the geodesic
in P(p;) between A, and B, is the curve 4,Z, ... ZyB,, where Z; equals Y; if

Figure 4. The situation in Step IV, subcase 1 and subcase 2.
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the latter belongs to dP(p,), while otherwise Z; is the point of §, which is very
close to Y}, in particular [¥Y; — Z;| < ;. Then, every Z; is very close to the corre-

sponding X;, so we have that P(¢,) is a lower (d9 + J1)-tube.

Subcase 2. If A,, and By, are generalised vertices and Xy # X|.

Now, let us consider the case when 4, and B, are generalised vertices of P,
but Xy # X. Since immediate geometrical considerations ensure that XyAX; C
{4,,, By, }, the only possibility is that at least one between 4, and B, is also a
vertex of P, not only a generalised one, and that it belongs to exactly one between
Xo and X (this can also happen contemporarily to both 4, and B, ). We are
going to describe what happens if 4,, € X;\X,, so X is the set {4, ,X,...,
Xy} the situation when A4,, € X\X is completely similar, so as the analogous
cases with B), in place of 4, . The situation is depicted in Figure 4 right.

Since, as showed in Step 11, for y; < ¢ < y, one has X(7) ~ X'(¢), being X'(¢)
the set of vertices of the geodesic between A, and B, in P*, we have X'(1) =
{A4,,,Y1,..., Yy}, where each Y, coincides with X; if X; € P, while otherwise
Y; is the point of J; very close to X;. As before, if M = 2 we already have that
P(p;) = P* is a lower dy-tube, since we can write j; = 4,,4,, X, ... XyB,, (no-
tice that A, appears twice, according with Definition 2.10). And again, if
M > 2 then the set of vertices X”(¢) in P(¢p,) corresponding to y; < 1 < y, will
be simply X"(¢) ={A4,,,Z,,...,Zy}, again with either Z; = Y}, or |Z; — Y;| <
01. Thus, also for M > 2 we have proved that P(¢,) is a lower (dy + 0, )-tube, still
with @, being the identity.

Subcase 3. If A, and B, are not generalised vertices.

The last case to consider is when 4,, and B,, are not generalised vertices, so nec-
essarily X # &' and the curve 7, has been defined in Step IIb. Remember that, in
this case, the point 4, # A4, was aligned with two points P and Q in 0P, and the
only difference between Xy and X'} was that only one of them contained P. Keep
in mind that the definition of 7, was split into four subcases, depending if P and
QO were below, or above y,.

Suppose first that P and Q are both below y,, as in Figure 3 left. The situa-
tion now is then the one depicted in Figure 5 left: it is evident how, repeating
the very same arguments as above, the fact that P(¢,) is a lower J-tube follows,
once again ®; being the identity. The case when both P and Q are above y, is
identical.

Figure 5. The situation in Step IV, subcase 3.
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Let us now consider what happens if P is above y; and Q below, as in Figure 3
right, or if P is below and Q above: the situation now is shown respectively in
Figure 5 center and in Figure 5 right. Observe that the point P is contained in
X in the first case, while in the second case the first vertex of X'} is Q. Then,
once again the same arguments as before show that P(g,) is a lower J-tube in
the first case, because P is a vertex of ; and P belongs to X[, so we get once more
the thesis with ®; being the identity. Instead, in the second case P(¢p,) is not a
lower J-tube, because the set of vertices X; starts with @, while 7, contains the
vertex P. Nevertheless, exactly as already did in Step II, we can easily notice
that the set P(®; o ¢;) is a lower J-tube, where @, is a finitely piecewise affine
bijection which does not move any side of P(¢p,) except the sides 4, P and PQ,
and these two sides become on a same line (that is, 4,,, P and Q are transformed
into three aligned points). Notice that the bi-Lipschitz constant of @, is of order
1 4+ 6, so much smaller than 1 + #; hence, also this final case is concluded.

In order to conclude the proof, we need just the following simple observation.
Strictly speaking, for every 1 <i < M — 1 we have found fwo finitely piecewise
affine bijections, and we have called both them ®;: one of them, call it ®;", was
needed to make P(¢p;) an upper J-tube, and the other one, call it @, , to make it a
lower o-tube. This if of course not admissible, we need a single bijection. But in
fact, as we observed during the proof, the bijection ®;" can fail to be the identity
only in an arbitrarily small neighborhood of the curve ,,;, while ®; can fail to
be the identity only in an arbitrarily small neighborhood of ;. As a consequence,
it is enough to define @; the finitely piecewise affine bijection which coincides with
®;" and ®; near 7, ,; and 7; respectively, and which is the identity otherwise: by
construction, this bijection satisfies our requirements. O

2.3. The extension in the o-tubes and in the upper or lower o-tubes

Thanks to Lemma 2.11, in order to build the extension v required by Proposi-
tion 2.2 we can consider separately each of the rectangles R;. And in turn, there
are two kinds of rectangles to consider: the “internal” ones, corresponding to
0 <i< M — 1, which are related to o-tubes, and the two ‘“‘external” ones, cor-
responding to i =0 and i = M — 1, which are related to polygons which are
only upper or lower d-tubes. We present immediately the result that we will use
to deal with the J-tubes, while for the upper or lower J-tubes we will use Lemma
2.15.

LEMMA 2.12. Let R = [a~,a*] x [b~,b"] be a rectangle, and let ¢ : IR — R? be
a piecewise linear and injective function such that the associated polygon P = P(¢p)

is a o-tube with number N. Then, there exists an injective, finitely piecewise affine
function v : R — R? such that v = ¢ on 0R and

(2.9) /R |Dv|| < ¥(p) + (at —a” +b" —b7)(N +2)d.

To show this lemma, we need some simple preliminary observations.



ON THE PLANAR MINIMAL BV EXTENSION PROBLEM 533

LEMMA 2.13. Let 2< K e N, and let A; and B;, for 1 <i < K, be points in
RY. For every 0 <t <1, let P(t) = (1 — t)A; + tB;, and let y(t) be the piecewise
linear curve Pi(t)Ps(t)...Px(t). Then, one has #'(y(t)) < (1 — 1) A (y(0)) +
A (5(1)).

ProoF. This is very simple: by obvious recursion, it is sufficient to consider the
case K = 2, which is in turn equivalent to show that, given two vectors v, w € RY,
the function 7 +— |v + tw| is convex. And this latter fact is obvious. O

COROLLARY 2.14. Let R =[a",a™] x [b=,b™] be a rectangle, and let ¢ : 0R —
R? be an injective function which is linear on each of the four sides of R. Then,
there exists an injective, finitely piecewise affine function v: R — R* such that
v =@ on 0R and for every 0 < t < 1 one has

A () < (L=0)A"(py) + 14 (7)),

(2.10) AN < (1—0a'00) + 1 (),

IN

where for each 0 <t <1 we denote by y,: [b~,b*] — R? and y" : [a~,a"] — R?
the curves

7.(8) =v((1 = t)a +1ta*,s), p'(s)=v(s,(1=0)b" +1b™).

In particular, one has

%1 %1 %l 0 %l 1
(2.11) / IDv|| < (a™ —a") (v0) + (y1)+(b+—b7) (") + (v )
R 2 2
ProOF. The image of ¢ is the boundary of a non self-intersecting quadrilateral
P C R?, whose vertices are

C:q)(a—,b_), D:(D(Cl+,b_), E=(0(61+7b+), F:(p(a_7b+)'

At least one of the two diagonals of P is necessarily contained in P itself, without
loss of generality we assume that the segment CE is contained in P. Hence, we
define v as the function on R which coincides with ¢ on 0R, and which is affine
on the two triangles CDE and CEF.

Notice that, if we choose K =3 and we set the pairs (4;,B;) = (C,D),
(42, By) = (C,E), (43, B3) = (F, E), then our curves y, coincide with the curves
y(t) of Lemma 2.13. Thus, the first estimate in (2.10) directly follows from
Lemma 2.13; the second estimate is completely symmetric.

Obtaining (2.11) is then immediate: for every 0 < ¢t < 1, by (2.10) one has

b+
/ D20((1 = )a” +ta*,s)|ds = A (y,) < (1= ) A (39) + 1 (1),



534 A. PRATELLI AND E. RADICI

/ |Dyv| = / / |Dav(x,s)| ds dx

/ / |Dav((1 —t)a™ +ta™,s)|dsdt
=0 Js
A () + A ()

thus

< (at -
- (a a ) 2 )
and similarly
A + 7!
hence (2.11) directly follows. O

While the above corollary is needed for the proof of Lemma 2.12, hence in
turn with the situation of the “internal” rectangles R; in the proof of Proposition
2.2, to deal with the two “external” ones we will need the following other conse-
quence of Lemma 2.13.

LEMMA 2.15. Let R =[a~,a*] x [b~,b"] be a rectangle, and let ¢ : IR — R? be
an injective and piecewise linear function. Assume that ¢ is linear on the segments
[a,at] x{b"}, {a" } x [b=,b"] and {a™} x [b~,b"], and that P(¢p) is an upper
o-tube for some & much smaller than the length of any side of P(p). Then, there
exists an injective, finitely piecewise affine function v : R — R* such that v = ¢ on

OR and
(2.12) / | Dv|| < %(a* —a +b" b)) H(6P(p)).
R

ProOF. For brevity, let us call

A=(a",b7), B=(a",b"), C=(a",b"), D= (a,b"),
A= ¢(4), B = ¢(B), C =¢(0), D = ¢(D).

Then, the image of the segments 4B, BC and AD through ¢ are the segments AB,
BC and AD, while the image of the segment CD is some piecewise linear curve
between C and D. By definition of upper J-tubes, there is some X = {X, X», ...,
Xy} such that X(7) = X for every b~ <t < b™. In particular, the geodesic in
P = P(p) between A and B is AX;X,...XyB; on the other hand, of course the
geodesic in P between A4 and B is the segment 4B itself, since it is contained in P
by construction. As a consequence, the only points that X could contain are A4
and B: in other words, either X = (), or X contains exactly one between 4 and
B, or X = {A4, B}. Let us consider separately the three possibilities.
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If X = 0, keeping in mind that P is an upper J-tube we get that the image of
CD under ¢ is the segment CD itself, so P(¢p) is the quadrilateral A BCD. More-
over, we have that the quadrilateral is convex, because otherwise there would
be some ¢ for which X(7) # (). As a consequence, we can easily reduce ourselves
to the case when ¢ is linear on the four sides of R. More precisely, there exists
finitely many coordinates a~ = xp < x| < -+ < X371 < x)r = a* such that ¢ is
linear on each segment Q;Q;.;, writing Q; = (x;,b") € 9R. We can then call
P; = (x;,b™) the corresponding points in the bottom side of R, and extend ¢ lin-
early to each segment P;Q;: by convexity of P(¢p), the extension ¢ is still piecewise
linear and injective. The rectangle R has then been subdivided in the rectangles
Ri = [xi,Xi+1] X [b~,b7], and the function ¢ is linear on the boundary of each of
these rectangles. We can then define the function v : R — R? by using Corollary
2.14 on each R;: we will get a finitely piecewise affine and injective function, and
(2.11) on each R; gives

M- 1 1
(2.13) /zHDUH < Z i1 — X)) A (PiQ;) + 2% (Pi110;41)
i=0
-1
+ ZO (P Pl+1) 5 (Q Qz+1)
at —

< 2“ max{# (AD), #"' (BC)}

bt —b~

+ (#'(AB) + #'(CD))

at—a +bt—b"
< - #'(@P(p)).

thus (2.12) is established.

Let us now consider the case when & consists of exactly one element, with-
out loss of generality let us think that X = {B}. Then, since P(p) is an upper
o-tube we know that the image of DC through ¢ is the piecewise linear curve
DQC for some point Q on the internal bisector to the angle in B, with distance
from B less than J: Figure 6 (left) depicts the situation in this case. As in the
figure, we call Q = ¢~ !(Q) € R, and we let P € 0R be the point in the bottom
side with the same abscissa xp € (¢—,a") as Q. Then, P = ¢(P) is some point
in the segment AB. We extend now the function ¢ as a linear function on the
segment PQ, as well as on the segment BQ, and we define v separately on the
rectangle APQD and on the triangles PBQ and BCQ. First of all, the restric-
tion of ¢ to the rectangle APQD is still injective and piecewise linear, and also
linear on the left, right, and bottom side, and moreover the corresponding poly-
gon is the convex quadrilateral APQD, so it is again a Jd-cube corresponding
to X = (). Since we have already considered this case, proving in particular the
estimate (2.13), we get a finitely piecewise affine function v on the rectangle
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D Q C D Q, Q, C

Figure 6. The situation when X = {B} and when X = {4, B} in Lemma 2.15.

APQD satistying

a4 bt b
(2.14) /APQDHDUHSXQ ¢ ;b b #'(64POD)

XQ—ai-i-bJr—bf

< 5 A (P(p)).

On the triangle PBQ, we let v be then the affine function extending ¢, which
makes sense since ¢ is linear on each side of the triangle. Then, we readily

get
/ |Do| = / Dyo| + / Dol
PBQ PBQ PBQ

bt —b" at —xp

#'(PB) +TJ{’1(PQ).

Then, concerning the triangle BQC, we keep in mind that ¢ is linear on the sides
BC and BQ, and piecewise linear on the side QC, and that the image under ¢
of the segment QC is the segment QC. Thus, we can define v on the triangle
BQC the finitely piecewise affine function which is affine on each triangle RSB,
being R and S any two points on QC such that ¢ is linear on RS. The result-
ing function v : R — R? is finitely piecewise affine and injective, and we get the
estimate

/ | Du| = / Dyo| + / Dol
BOC BOC BOC

bt —b~

at —x
< 0
2

H#(QC) + (#'(BC)+#'(QC)),
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which added to the previous one gives, for the rectangle PBCQ,

bt —b +at —
(2.15) / Do < a7 70 1 ap(g)).
PBCO 2

Together with the estimate (2.14) for the rectangle APQD, we get then the valid-
ity of (2.12) also in this case.

To conclude, let us consider the situation when X = {4, B}, depicted in Fig-
ure 6 (right). In this case, the fact that P(¢p) is an upper J-tube implies that the
image of DC through ¢ is the piecewise linear curve DQ,0Q,C, with Q, and Q,
very close to A and B respectively, and on the two related bisectors. Let us now
call again Q; = ¢~ 1(Q,), 0> = ¢~ '(Q,), and let P; and P, be the points on OR
below Q) and O, as before, with abscissae x; and x,. We extend now the function
@ as the linear function on the segments P;Q; and P, Q»: ¢ remains then piecewise
linear and injective because the two segments P;Q, and P,Q, are in the interior
of P(p). Moreover, R has been subdivided in three rectangles; in the central rect-
angle P1P,0,0; the function ¢ corresponds to a J-tube with X = (), so the first
considered case provides us with an extension v inside this rectangle, satisfying
(2.13), which now reads as

X2 —x1+b" b~ )
JLIE A A
152851

where we have also used the fact that the perimeter of the polygon P P,0,Q), is
less than #"' (P(p)). Instead, the situation in the right rectangle P,BCQ, is ex-
actly the same as in the previous case for the rectangle PBCQ, hence the same
argument as before gives us an extension v inside this rectangle satisfying (2.15),
which this time reads as

bt —b +at —x
[ o< TR 0P ().
P>BCO>

In the very same way, in the left rectangle 4P, Q; B we have an extension v with

bt —b +x1—a
/ |Do] < 5 (0P(g):
AP|Q\B

Adding the last three estimates, we finally find the validity of (2.12) also in this
last case. ]

We are now in position to show Lemma 2.12.
PRrOOF (OF LEMMA 2.12). We divide the proof in few steps.

Step L. Definition of the points C;, D;, P;, Q; and V;‘.
Since P(p) is a d-tube, we can call

POZ(ﬂ(aiﬂbi)v Q0:¢(a77b+)7 PN+1 :(p(ajL?bi)v QN+1 :¢(a+7b+)7
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and there are points P; and @), for 1 < j < N, such that the curve ¢ — ¢(#,b7) is
the piecewise linear curve PyP;...PyPy.;, while ¢ +— ¢(t,b") coincides with
0y0,; ... Oy0Oy,,- Notice that 0P only consists of the points P; and Q;, hence
for each 1 < j < N the point X; in the Definition 2.10 of the 5 tubes coincides
either with P; or with Q;, and in particular |P; — Q;| < J (this is in general false
for j=0 and j=N+ 1!). Recall that the points Po and P; are not necessarily
different, as well as Py and Py, Q) and Qy, and Qy and Q. However, this
does not make any substantial difference in the present proof.

We select several numbers a~ =) <51 < -+ < sx < Sx+1 = a', in such a
way that, calling C; = (s;,b~) and D; = (s;,b™), ¢ is linear on each segment
C;Ciy1 and D;D;,y; moreover, for each 1 <i < K we define C; = ¢(C;) and
D; = ¢(D;). By continuity of the length, we can take points in such a way that,
for each 0 < i < K and for each 0 < ¢ < 1, one has

(216) |d73((1 — Z)Cl' -+ lC,'_;,_], (1 — Z)D,’ + ZD,'_H) — dp(C,‘, D,)| < 0.

For any 1 < j <N, let us now divide the segment P;Q; in K + N equal parts,
calling V7, for 0 < o < K + N, the corresponding pomts in particular V =0

while I//K+N P;. We do the same also for j =0 and j = N + 1, calling A“ and
B* (instead of V“ and Vy,,) the corresponding points. Slmllarly, we divide in
K+ N parts the segments {a~} x [b~,b"] and {a'} x [b~,b "], defining the
points A* and B* for 0 < o < K+ N. Notice that ¢p(A*) = A% and ¢(B*) = B*
since ¢ is linear on the vertical sides of R. Again by continuity of the length,
and again adding new coordinates s; if necessary, we can assume that for every
0<a<N+K-—1andevery 0 <t <1 one has

(2.17)  |dp((1 — 0)A* + tA* (1 — ©)B* + tB**Y) — dp(4*, B*)| < 6.

Step II. Definition of the curves y; and y*.

Our next aim is to define suitable piecewise linear curves y* and y; in P, for
l1<a<K+N-1and 1 <i<K. Each curve y* will connect 4* with B*, and
it will be eventually the image of the segment 4*B* under v; similarly, each curve
y; will connect C; with D;, and it will be eventually the image of the segment C;D;
under v.

The curves y* are easy to define; namely, for each 1 <o < K+ N — 1 we let
y* be the piecewise linear curve A*V{ V3 ... V3 B*: each curve y* is entirely con-
tained in the interior of P, except its two endpoints 4* and B*, and each two such
curves have empty intersection. Notice that, by definition of J-tubes, the geodesic
in P between any A” and the corresponding B”* is the curve 4°X X, ... XyB%;
then, since for every 1 <i < N one has |V} — X;| < J, we immediately derive

(2.18) #H'(y*) < dp(A*, B*) + NO.
In order to define the curves y,, we first need to consider a generic segment

P,Q/, with 1 < j < N: since ¢ is linear on the segments C;C;.; and D;D;yy,
P; must necessarily be one of the points C;, and Q; one of the points D;. So,
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we have i1(j) and i>(j) in {1,2,...,K} with the property that C;; = P; and
Cij) = 0. If i1(j) > ia(j), we will say that geodesics are arriving from left at
P;Q;, while if i1(j) < i2(j) we say that geodesics are arriving from right at P;Q;.
The reason for the name is clear: if we assume that i;(j) > i,(/), then the geodesic
between C; and D; in P crosses the segment P;Q; if and only if i>(j) < i < i;(j):
in this case, C; is “on the left” of the segment P;Q; (that is, C; € IR is on the left
of the segment ¢~'(P;)p ' (Q;) = C;,(Dy;), while D; is on the right. Notice
that, at every segment P;Q,, either geodesics are arriving from left, or they are
arriving from right, or i1 (j) = i(j).

Let us now fix 1 <i < K. Any curve in P between C; and D; must intersect
the closed segment P;Q; for every j such that

(2.19) min{ii (), (/) } < i < max{ir (), 2(/)}-

Assume that this inequality is false for every 1 < j < N: then, there must exist
some j such that C; is in the interior of the segment P;P;,i, while D; is in the
interior of Q;Q;.,. By construction, the open segment C;D; is entirely contained
in P, and we define y; = C;D;.

Assume, instead, that there are some 1 < j < N such that the inequality (2.19)
holds, and let jn, and jnm.x the minimal and the maximal j for which this
happens (of course they depend on 7). It is immediate to notice that (2.19) holds
true for all jpin < j < Jmax- If i1 (Jmin) = ©2(Jmin), then of course jmax = jmin and
the points C; and D; coincide with P; . and Q, — respectively: also in this case
we set y; = C;D;.

Otherwise, either ij (jmin) < & (Jmin) OF #1(Jmin) > ©2(Jmin), SO geodesics arrive
either from right or from left at P;, Q, . It readily follows from the definition
that in the first case geodesics arrive from right at every P;Q; with jmin < j <
Jmax, While in the second case they all arrive from left. So, we define the curve y;
as

(220) yi = T; I/j:givjmin) I/li:inl\m‘f’l) . I//:‘]E‘:]mdx> Tja

where T; = C; and T, = D; if geodesics arrive from left at P;Q;, while other-
wise T = D; and T;" = C;, and where for every 1 <i< K and 1 < j < N the
number (i, j) is defined as

i+ N —j if geodesics arrive from left at P;Q;,

221)  a(i,j) = {

J+ K —i if geodesics arrive from right at P;Q;.

Notice that we are defining «(i, j) for every i and j, except if j is so that
i1(j) = i2(j). However, in this case the definition of y; does not require the defi-
nition of «(i, j): indeed, if i # i;(j), then j does not belong to the interval
[ Jmin, jmax), SO the value of a(i, j) is not needed in (2.20); instead, if i =i (j) =
i(/), then y; is not defined through (2.20), it is simply the segment P;Q;, and so
also in this case the definition of «(i, j) is not used.
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An immediate consequence of our definition is that all the curves y; lie in the
interior of P, except their two endpoints, and two different such curves are dis-
joint: notice that the disjointness is true because of the different definitions of
a(i, j) given in the two possible cases in (2.21).

To conclude this step, we claim that

(2.22) A#(y;) < dp(C;i, D;) + NO.

In fact, depending on the position of the points we have defined y; either as the
segment between C; and D;, or through (2.20). In the first case, y; is of course the
geodesic between C; and D; in P, so in fact #°!(y;) = dp(C;, D;) and then (2.22)
clearly holds. Suppose, instead, that y; has been defined through (2.20); then, y; is
a piecewise linear path between C; and D;, and its vertices are C;, D;, and one
single point in every segment P;Q; such that j satisfies (2.19). Let us instead con-
sider the geodesic in P between C; and D;: as noticed above, it must also intersect
the segments P;Q; for all the j satisfying (2.19). Since the total number of seg-
ments P;Q; is N and each one has length smaller than ¢ by construction, the
validity of (2.22) simply comes by triangular inequality.

Step II1. Uniqueness of the intersection y; N y*.

Let usnow fix any 1 <i< K, andany 1 <a < N + K — 1. We aim to show
that the intersecion y; N »* consists of exactly one point; notice that this intersec-
tion is surely not empty, because 4* and B* are on the two different parts in
which 0R is divided by the points C; and D;, so we only have to exclude multiple
intersections.

Recall that the construction of y; has been done, in Step II, in three different
cases: we will consider them separately. The first possibility was when (2.19) was
false for every 1 < j < N: in this case, there exists some 0 < j < N such that C;
is in the open segment P:P; | and D; in the open segment Q 0- /B and y; was
simply defined as the segment C:D;. Since the whole segment y; liés in the interior
of the quadrilateral P:P i1 0,0, and in this quadrilateral also y* is a segment,
then the intersection Consists of exactly a point, so the step is concluded in this
first case.

The second case was if (2.19) holds true for some j, then in particular for
all jmin < J < Jmax, and i (Jmin) = i2(Jmin): in this case, we had noticed that
Ci=P;, and D;=Q, . and defined y; as the segment P; O, : the unique
intersection of y; with p* is then again obvious.

Let us finally consider the third and last possible case studied in Step II,
namely, (2.19) holds true for all jmin < jmax and & (Jmin) 7 i2(Jmin)- In this case,
y; has been defined through (2.20), and we have also noticed that geodesics are
arriving from left at P;Q; for every jmin < j < jmax, Or they are arriving from
right for every jmin < j < Jmax- Let us suppose that they arrive all from left, the
other case is completely similar. Then, the numbers o(i, j) defined in (2.21) are all
given by a(i,j) =i+ N — j, so they range from i+ N — ]max to i+ N — jmin-
Suppose first that « > 7+ N — jmin: in this case, the point V (iofmin) y; 1s above
the point V“ € »% on the segment P; Q; . and more 1n general the point
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Vj““‘“/ ) ey, is above V7 e y* for every jmin < j < jmax. S0, there is no intersection
between p; and y* after the segment P; O, . On the other hand, in the closed
quadrilateral P; 1P; O, O, _; both the curves y; and y* are segments, so
they have at most one point of intersection; and, since of course there is no inter-
section before P;, 10, | and the intersection cannot be empty, then y; Ny~
consist of exactly a point. So, we have proved the claim under the assumption
that o > i+ N — jnin. If, on the contrary, o < i+ N — jmax, then a completely
symmetric argument shows that y; n»* consists of exactly a point, lying in the
quadrilateral P,maxP,mxHQjmxH Q.. Finally, if i + N — jmax < o0 < i+ N — jmin,
then there exists exactly one Jjpin < J < Jmax such that o(i, j) = o. And then, the
intersection between y; and y* consists of the sole point V]9‘

Step IV. The curves y; and y* are segments between two consecutive intersections.

Thanks to Step III, for each 1 <i<K and 1 <a <N+ K —1 there is
exactly one point of intersection between y; and y“, call it S7. We can extend the
definition of the points S also to i =0 or i = K+ 1, as well as to « =0 or
o= K+ N, of course setting

0 o o o o
S/ =Ci, SV =D, Si=4", Si, =B"

The aim of this step is to show that y; is a segment between any two consecutive
points S}, and the same happens to y*. Since all the curves y; and y* are piecewise
linear, the claim is equivalent to say that every vertex of each curve y; is the inter-
section point with some y*, and analogously every vertex of each curve y* is the
intersection point with some ;. Since, by construction, every vertex of any curve
y; or »* is necessarily one of the points V7, then it is enough to show that, for
every | < j< N and 1 <& <N + K — 1, the point V]“ belongs to some curve
y,, as well as to some curve y*. Moreover, since of course V“ belongs to the curve
y*, we only have to show that it belongs to some curve y;.

Let us then consider the segment P:0;, and keep in mind that either geodesics
are arriving there from left, or from rlght or none of the two, the last possibility
being true if and only if 7;(j) = i2(/). In this last case, the curve y; 7, coincides
by definition with the whole segment P; Q hence in particular it contains V2. Let
us then suppose that geodesics are arr1V1ng at P;Q; from left, if they are arriving
from right the completely symmetric argument ¢an be done. Then, the geodesic y;
has some intersection with P-Q: if and only if i(j) < i <ij( ]) In particular,
keeping in mind (2.21), we know that for _any such i the geodesic y; passes
through the point V"™V If ih(j)+ N —j<a< i(j) + N —j, then we are
clearly done. Supposej, mstead, that @ > () + N — j, again a completely sym-
metric argument would work if & < iz( j)+ N — j. Let us then set 7 = i ( j): no-
tice that by definition C; = Ci - and jmin(i) = j. Hence, keepmg in mind

(2.20), we know that the first two pomts of the curve y; are P; and V_'I NI We
conclude simply by observing that, smce a>i(j)+N—j, then the point V— is
contained in the open segment P; paUEN=T \which is a part of 75 hence V“ r Vi
and the step is thus concluded. ’
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Step V. Conclusion.
We are now ready to conclude the construction. In fact, for every 0 <i <
K + 1 and every 0 < o < N + K we define the point S} = (s;, y,) € R, where

Vu= bt — (b"—b").

N +K
Then, we let v(S}) = S, and we extend v linearly in every segment S7S} ; and
in every segment Sf‘Sf“rl Notice that v is now defined on the one-dimensional
grid in R made by all the points whose first coordinate is one of the s;, or whose
second coordinate is one of the y,; notice also that v coincides with ¢ on JR.
By Steps III and IV we obtain that v is injective on the grid and that its image
is done by the union of the curves y; and of the curves y*. In particular, for
each rectangle R} = [, 8i+1] X [Va, Y1), the function v is injective on 0R}, and
linear on each of its four sides: therefore, we can apply Corollary 2.14 to each
rectangle.

More precisely, let us fix any 0 <i< K and 0 <o <N+ K — 1, and let us
apply Corollary 2.14 to the rectangle R, finding a finitely piecewise affine and
injective function v} : R} — R?, which extends the function v already defined on
OR} and for which 'the estimates (2.10) are valid. In particular, for every 0 < ¢ <
1 let us define (i, ), : [Va, Your1] — R* and p(i,a)" : [s;, 5:11] — R? the curves de-
fined by

p(i,0),(s) = 0 (1 = 0)si + tsi1,8), - p(1,2)"(s) = v} (s, (1 = 1) o+ tyg1);

hence, (2.10) reads as
A (i, 0),) < (1= A (7, 0)p) + 0 (93, 2)),

(2.23) Uoti o i) Lot o]

A (y(50)7) < (L= A (p(i,0)7) + 147 (p(i, ) ).

Let us finally define v : R — R? as the function which coincides with v% on each
rectangle R}: by construction, we know that v is an injective, finitely piecewise
affine function which coincides with ¢ on dR. To conclude, we need then to prove
the validity of (2.9).

To do so, let us take any b~ < y < b*; then, there exist an index 0 < o <
N+ K—1 and a number 0 <7 <1 such that y = (1 — 1)y, + ty,.1. Observe
now that the curve [a¢~,a™] >3 s+ v(s,y) is simply the union of the curves
[si,8i41] 2 8+ (i, ) (s), with i ranging from 0 to K. Therefore, by (2.23), (2.18)
and (2.17) we get

a’ K K
[ Dt nlds=> 600 < D (1= 01 (600.0°) + 08 02))

i=0 i=0
= (1= 0)A' (") + 1 ()
< (1 N l‘)dp(Aa,B“) + tdp<Ao€+1’Boc+l) + No
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<dp((1 = )A* + 14> (1 — 1)B* + tB*™") + (N 4 2)5
=dp(p(a,p),p(a",p)) + (N +2)J.

It is then enough to integrate in the variable y € [b~,b*] to get

bt at
[ul= [ [ iputsldsay
R y=b— Js=a~

b+
< /b_ dP((ﬂ(a_, y),(p(a+7 y)) dy + (b+ . b_)(N n 2)5.

The very same argument, done for the “vertical” curves y — v(s, y) for any
a” < s <a", and using then (2.22) and (2.16) in place of (2.18) and (2.17), yields
that

/ |Dyv| < /a dp(p(s,b7),0(s,b7))dy + (a* —a” ) (N + 2)d.
R s=a~

Then, adding the last two estimates and recalling Definition 1.1 one obtains (2.9),
thus concluding the proof. O

2.4. The proof of Proposition 2.2

In this last subsection we can give the proof of Proposition 2.2; thanks to the
results of the previous subsections, this is now rather simple.

PrOOF (OF PROPOSITION 2.2). First of all we notice that, given any piecewise
linear and injective map ¢ : @R — R? and any ¢ « 1, there exists a finitely piece-
wise affine bijection ® : R? — R?, bi-Lipschitz with constant at most 1 + &, such
that ® o g, which is of course still piecewise linear and injective, is also not
aligned. As a consequence, we can assume without loss of generality that the
map ¢ is not aligned.

Let then # « 1 be a small constant, depending on R, on ¢ and on ¢ and to be
specified later. We apply Lemma 2.11 to ¢, thus getting the ordinates { y;} ,-]ZO, the
piecewise linear and injective extension ¢ : fz 0 PoR; — R? of ¢, the constants J;
and the bijections ®; as in the claim. In particular, ¢ satisfies (2.4).

For every 1 <i < M — 1, the polygon P(gp,) is a J;-tube, up to apply the fi-
nitely piecewise affine bijection @;, of bi-Lipschitz constant at most 1 + #; hence,
we can apply Lemma 2.12 to get a finitely piecewise affine and injective function
v : Ri — R? such that v; = ¢, on 0R; and

1
(1+7n)°

/ |Dvi|| < W¥(g;) + (@™ —a + yir1 — i) (N; + 2)d:.
Ri

Let us now call R;, = U,]Z 1_2 R;, and let v : Ripy — R? be the function coinciding
with v; on every R;; by construction, it is finitely piecewise affine and injective,
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and it coincides with ¢ on 0Ry. Since, by Lemma 2.11, for every i the number N;
is smaller than the total number T of vertices of P(¢p), while J; « /M, adding
the above inequality for all 1 <i < M — 1 we get

1 / -
2.24 — Do|| < Y(p;) + (at —a” +b" —b")Tn.
(2.24) 0 e || Do]] ; (9:) + ( )

To conclude the definition of v, we need to give it on the two strips Ro and Ry,_1:
we will concentrate on R, the case of Rj,_; will then be identical.

Consider the rectangle Ry, and the function ¢,: by construction, ¢, is piece-
wise linear and injective, and moreover ¢, is linear on the two (very short) verti-
cal sides of R. As before, we can assume without loss of generality that ¢, is also
not aligned. Then, we can apply once again Lemma 2.11, this time to ¢, and Ry;
more precisely, we apply the “rotated” version of Lemma 2.11, where the hori-
zontal side [a—,a™], instead of the vertical one, is subdivided. Thus, we get some
abscissae a~ = xg < x1 < < Xp_ < Xp = a*, and a piecewise linear and in-
jective function ¢ : Uj 672] — R?, being R} = [x;,xj11] x [0, »1], with ¢ = ¢
on 0Ry and

~
|

(2.25) (p}) < W(po) +nlat —a),

~.
Il
(=}

where goo is the restriction of ¢ to GR{) Moreover, for every 1 < j < P — 2 the
polygon P(g)) is a (rotated) J)-tube for some &) < n/P, up to a (14 p)-
biLipschitz finitely piecewise afﬁne bijection. Thus, we can apply Lemma 2.12 to
each rectangle R’ with 1 < j < P — 2 to find an extension v} of ¢ 1n51de the rect-
angle; exactly as before let us call v the function which coincides with v on each
rectangle R, hence in place of (2.24) we find

1 P72 ) B
229 / 1ol < 3 W(pl) + (@t —a + y1 — yo) T,
0,int i=1

where R, int = UJ ] R’ (notice that the total number of vertices of P(¢,) is not
greater than 7" by constructlon) Notice that, up to now, the function v has been
defined on Rin U Ry int, it is by construction injective and finitely piecewise affine,
and in addition it coincides with ¢ on dR N d(Rint U Ro.int), as well as with ¢ on
O0Rint and with @ on 0R in-

To conclude the definition of v on the whole Ry we have then only to take
care of the two rectangles RO and R ; notice that both the rectangles have
both the lengths smaller than n. Let us first consider RO by construction, the
function ¢ is linear on its left side, as well as on both its horizontal sides; in addi-
tion, by Lemma 2.11 P(¢{) is an upper d-tube (actually, since we have applied the
“rotated” version of Lemma 2.11, it would be consistent to speak about a “right
o-tube”, instead of an upper one). Then, we are allowed to apply (the rotated ver-
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sion of ) Lemma 2.15, finding an extension v of ¢) on the whole rectangle Ry
which satisfies

| 100l < 3 @Pl) < 0.

Notice that the last inequality is true as soon as the perimeter of the polygon
P(p)) is less than 1/3; but in fact, this is true up to take 7 small enough, because
the continuity of ¢ immediately implies that P(p)) can be taken arbitrarily small,
up to take 7 < 1. Since the very same can be done on the rectangle R}, we end
up with a piecewise linear and injective function v on the whole bottom rectangle
R, which by (2.26) and (2.25) satisfies

P-2
(2.27) /R 1D < (14 0)* (3 W(o) + a* — a4y = y0)Tn) +21
0 =1

< (143 ¥P(py) + (a* —a= +b" —b ) (T + )y +2n).

Of course, the very same construction done for the bottom rectangle Ry can be
done also for the top rectangle R;,_, so we find a last extension of v on the top
rectangle such that

(2.28) /R I|IDv]| < (1+ n)z(‘I’(goM,l) + (@™ —a +bt —b )T+ )+ 2y).

Altogether, our final function v : R — R? is fintely piecewise affine and injective
by construction, it coincides with ¢ on dR, and putting together (2.24), (2.27),
(2.28) and (2.4) we obtain

/ |Do = / 1Do] + / 1Do] + / 1Dy
R Rint Ro Ryt

M—

< (U4’ (X W) + (@ —a +b" —b7)3T +2)n +4n)

1

—_

<(1+7)*¥(p)+ (a" —a +b* —b )BT +3)+47) < ¥(p) +¢,

where the last inequality is clearly true up to choose # small enough, depending
only on R and on ¢. The proof is then concluded. O

3. THE PROOF OF THEOREM A: THE GENERAL CASE

This section is devoted to show the general case of Theorem A. Since we have
already proved the result in the special case of piecewise linear boundary data,
the idea is simply to reduce ourselves to that case, decomposing the rectangle as
a countable but locally finite union of rectangles, on each of which the piecewise
linear case can be applied.
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ProOF (OF THEOERM A). We start by observing, once again, that it is enough
to find a piecewise affine homeomorphism v € Ext(¢) such that (1.2) holds true,
because then (1.1) follows directly from Lemma 2.1.

For every a™ <t < a' and for every b~ < s < b™, we call

As=(a",s), By=(a",s), C,=(t,b7), D,=(1,b"),
AS = (p(AS)) BS = (p(B\')a Cf = ¢(Ct>7 Dl‘ = w(Dt)

Let us now fix an arbitrary a~ < ¢ < a™, and let us call R; and R, the two rect-
angles in which R is divided by the segment C,D;, being R the left one. We want
to extend ¢ to C;D, in such a way that, calling ¢, and ¢, the restrictions of this
extension to dR; and to dR,, one has

(3.1) ¥(p) + ¥(ps) < ¥(p)+ 7

To do so, we will argue in a way very similar to what already done in Step III
of the proof of Lemma 2.11. More precisely, let us call 6 = d(R,¢) a small con-
stant, to be specified later, and let y be a curve, contained in the interior of P(¢p),
which connects C; with D;, and such that #!(y) < dp(C,, D) + J: this curve will
eventually be the image of C,D, under the extension of ¢. Notice that, for every
two points P and Q in p, the length of y between P and Q is smaller than
dp(P, Q) + 0. As an immediate consequence, if we call P; and P, the two sets in
which P is divided by 7, being P; the one containing C, for every 7 < ¢, we get
that

(3.2) dp(C., D) < dp(Cy,D,) +

foreverya™ <t<b",wherei=1iftr<tandi=2ift > r.

Notice now that each point A belongs to P, while B, belongs to P,; there-
fore, the geodesic in P between each A, and the corresponding B; must intersect
the curve y at least once, and we call E; the last point of this intersection (that is,
the one closest to B, on the curve). Notice that, by construction,

dPl (Axa Es) + dP2 (Em Bs) < dP(As> Bs) + 0.

Moreover, by uniqueness of the geodesics we readily obtain that, whenever ¢ > s,
the point E, is “above” Ej, that is, E, belongs to the part of y connecting E; and
D,. The function s — E; is then an increasing map from (b~,b") to y: this func-
tion is in general neither continuous, now injective, nor surjective, but exactly as
in Step III of the proof of Lemma 2.11 we can easily modify it to get a continuous
bijection g : [b~,b*] — y so that

bt

dp, (A, g(s)) + dp, (g(s), By) ds < / dp(As, By) ds + 20(b* — b™).
s=b= s=b~
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Putting together this estimate and (3.2), and extending of course ¢ on C,D, as
o(t,s) = g(s), we immediately get the validity of (3.1), up to choose J small
enough.

Notice that the only requirement for y was to be a curve, contained in the in-
terior of P(¢), connecting C, and D, and with length smaller than d»(C,, D;) + o;
as a consequence, without loss of generality we can assume ¢ to be locally piece-
wise linear on C,D,: that is, for every # « 1 the function ¢ is piecewise linear on
the segment connecting (¢,a~ + 7) with (¢,a™ — ). Notice also that, of course, an
identical argument allows to divide the rectangle R with a horizontal segment,
instead of a vertical one.

Repeating the above “cutting argument’ countably many times in the obvious
way, we can write R as the countable but locally finite union of essentially dis-
joint rectangles R; CC R, extending also the function ¢ to the union of all the
boundaries of the rectangles, so that

> ¥(p) < ¥(9)+5,

ieN

where ¢, is the restriction to dR,; of the extended function ¢.

Notice now that, by construction, each function ¢; is piecewise linear on the
boundary of R;, because each rectangle R; is a positive distance apart from 0R.
Hence, we can apply Proposition 2.2 on each rectangle to get a finitely piecewise
affine function v; : R; — R? with v; = @; on 0R; and such that

&
| 1ul < ¥io) + 55

And finally, putting together all these functions v;, we obtain a piecewise affine
function v : R — R?, coinciding with ¢ on R, and satisfying (1.2). O

REMARK 3.1. From our construction, it is clear which are the optimal functions
in (1.1). In fact, a function u realizes the minimum if and only if its restriction to
any horizontal and vertical segment in R is a geodesic in P(p) between the end-
points. And in turn, this is possible if and only if ¢ is a convex quadrilateral and
its four sides are the image of the four sides of R. In all the other cases, the infi-
mum in (1.1) is not a minimum. However, it is still clear which are the minimiz-
ing sequences: more precisely, a sequence {u;} € BV(R) n Ext(p) is a minimizing
sequence for (1.1) if and only if the images of almost every horizontal and vertical
segment in R have lengths which converge to the geodesic distance between the
endpoints.

4. THE PROOF OF THEOREM 1.3 AND THEOREM 1.4

This section is devoted to prove Theorem 1.3 and Theorem 1.4; the first one will
be a very simple consequence of the latter. In order to present the proof, we first
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need to check that the geodesic distances decrease, if we linearize the Jordan
curves. Let us be more precise.

DEFINITION 4.1 (e-linearization of a Jordan curve). Let v be a Jordan curve
with finite 1ength /a_r{d let ¢ > 0 be much smaller than the diameter of P(z). Let

A Bl,AzB2, ..., AyBy be finitely many essentially disjoint arcs contalned in 7.

Let ¢ be the closed curve obtained from 7 by replacing each arc A B; with the
segment A4;B;. We will say that ¢ is an e-linearization of t if ¢ is injective and

every arc A;B; has length at most ¢ and intersects ¢ only on the segment A4;B; (but
not necessarily only at 4; and B;). The e-linearization is said complete if the union

N
of the arcs A4;B; is the whole 7, hence ¢ is piecewise linear.

LEMMA 4.2. Let ¢ be an e-linearization of some Jordan curve t of finite length.
Then, for every i,j € {1,2,..., N} one has dp,)(A;, Bj) < dp()(A;, B)).

P/R\OOF. If a p(;ip\t D belongs to 7\P(p), then it must be contained in some arc
A;B;. Let then PQ be the shortest arc oﬁ_f\ containing D and such that P and Q
belong to the segment A4;B;. The curve PQ U PQ is then a Jordan curve, whose
internal part we denote by Z. Since by construction 02 intersect ¢ only in the seg-
ment PQ, then the whole ¢\ PQ is entirely contained either outside Z or inside Z,
and the second possibility is excluded by the fact that P(z) has diameter much
larger than e.

Let now Z and Z’ be two different zones, corresponding to the points P and

0, and P’ and Q' respectively. Since by construction the open arcs I/’a and @'
are disjoint, and they are both outside P(¢), then the zones Z and Z’ are either
disjoint or contained one into the other. As a consequence, the union of the zones
(which are at most countably many, by construction) can be written as a disjoint
union of zones Z,, « € N, each one corresponding to the points P, and Q,, re-
moving those zones which are contained in some bigger one.

Let us now take any point § € P(7)\P(¢). By construction, there exists some
point D € 7\ P(p) such that the open segment SD does not intersect neither ¢ nor
@; as a consequence, S is contained in the closure of the zone corresponding to
the point D, hence we deduce that

(4.1) PO\P(o) € | 2

aeN

Let us now take a geodesic y: [0, 1] — R? between 4; and B, inside P(7). I
~1(Zy) is not empty, let s, and 7, be respectively its 1nﬁmum and supremum
and let 7, : [0,1] — R? be the continuous curve, linear in [$4, ;] and coinciding
with y outside of (s,,,). If y71(Z1) = 0, we 51mp1y set y;, = 7. Of course 7, is
shorter than y, and by construction its image is contained in P(¢) U (P(7)\Z).
In the very same way, starting from y, we build a shorter curve y, contained in
P(p) U (P(r)\(Z] U 2Z,)). Continuing with the obvious recursion, we end up with
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a curve 7, shorter than y, and contained in P(p) U (P(7)\(U
(4.1). Therefore,

zen 24)) € P(p) by

dpiy) (i, B)) < A7) < A (9) = dpi) (4, By),
concluding the proof. O
The following corollary is trivial.

COROLLARY 4.3. Let R =[a",a"] x [b~,b*] be a rectangle, let t: R — R>
be a parametrized Jordan curve with finite length, and let ¢ : 0R — R* be an
e-linearization of t such that p(A;) = p(t7'(A4;)) = A; and ¢(B;) = (7' (B;)) =
B; for every 1 <i < N. Then, for every S, T € OR one has

dp)(9(S), 9(T)) < dp(r)(2(S),7(T)) + 2.
We are now ready to prove Theorem 1.4.

PRrROOF (OF THEOREM 1.4). By the result of [§] we can limit ourselves to look for
piecewise affine homeomorphisms. Let us then fix any function ¢ — #(d) as in
Definition 1.2, and any homeomorphism u € BV(Q; R?). We divide the proof in
two steps; first, we consider the strict convergence with respect to the Manhattan
norm || - || in R?, and then with respect to the standard norm.

Step I Strict convergence with respect to the Manhattan norm.

Let j € N be any number. We can write Q as a countable, but locally finite,
union of rectangles R;, i € N, all with diameter smaller than 1/;, in such a way
that the restriction of u to any side of any rectangle has finite total variation.
Since u is continuous, up to take the rectangles small enough we can assume
that

_ | L I !
(42)  diam(u(R;)) < K; mln{n(dlst(R,, R \Q))’jmax{l P xe Ri}}

for every i € N. Let us call § the union of the boundaries of the rectangles R;,
and let 7 : ¢ — R? be the restriction of u to the grid G. It is possible to define an
injective function ¢ : G — R? such that, for every rectangle R;, the restriction ¢,
of ¢ to OR; is a complete g;-linearization of the restriction z; of 7 to dR;, where
& < K; — diam(u(R;)) is an arbitrary number much smaller than the diameter of
u(R;): a proof of an even more general fact can be found for instance in [5, Prop-
osition 4.17]. In particular, we can choose

1
SR AT (0Ry)
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such that also
1
(43) VQeu(R),YPeu(Q), |P—0|<e&=|u'(P)—ul(Q)< =

By Definition 1.1 and Corollary 4.3, we get then

1
\P(gﬂl) < \P( ) + g H (672) < lP(T,‘) +W
Since the function g; is injective and piecewise linear, Proposition 2.2 provides us
with some finitely piecewise affine extension v; : R; — R? such that

1 1
(44) J 1D < W)+ 3y < W) +

Let us now call  : Q — R? the function coinciding with v; on each R;. By con-
struction, u; is a piecewise affine function on Q and for every i € N one has
[ty — ul[ -z, < diam(u(R;)) + & < K;. Hence, by (4.2) we immediately get on
one hand that u; uniformly coincides with u at 0Q, and on the other hand that
| — wjl| ;1) < 4n/j. In addition, by (4.4) and Lemma 2.1 we get

/ || = / 1ol < +qu )<t +Z||Du|| — (1 Duf|() + -
ieN

ieN ieN

Repeating this construction for every j € N, we get a sequence {u;} of piecewise
affine functions, each one uniformly coinciding with u at 0Q, which is converging
to u in L'(Q), and such that limsup||Du;||(Q) < ||Du||(Q). Then, the sequence
{u;} is converging to u in the strict BV sense, with respect to the Manhattan
norm || - ||

Notice that, since on each R; one has [u; —ul, .z, < Ki <1/j, then
|ty — ull () < 1/j, s0 u; is converging to u also unlformly Moreover take any
point P € u(Q) there exists some i € N such that P € u;(R;), hence by construc-
tion there is some Q € u(R;) such that |Q — P| < ¢;.. As a consequence, since the
diameter of R; is less than 1/j, by (4.3) we have

™ (P) = u H(P)] < Ju(Q) — ;' (P)] + Ju™'( )—u'(P)I<§,

hence also the uniform convergence of uj’l to u~ L.
Step II. Strict convergence with respect to the standard norm.

We now consider the strict convergence with respect to the standard norm.
In fact, notice that the Manhattan norm is equivalent to the standard norm, but
the corresponding strict convergences are not equivalent (while so are the corre-
sponding strong convergences, as well as the corresponding weak* convergences).
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Let us decompose Du = v|Dul, the function v: Q — S' being defined |Dul-
a.e., and let us fix an integer j € N. Then, for every 1 <« < j we define the

set
Q, —{er:v(x) € [(oc— 1)2j_7'c oc%”)}

with the usual identification of S! with [0, 27). Notice that the sets Q, are dis-
joint, and they cover Q up to |Dul-negligible sets. Let then K, C Q, be compact
sets satisfying

(45) IDul(@,\K;) < [24).

Since these are finitely many disjoint compact sets, there exists some ¢ > 0 such
that the distance between any two of these sets, and between any of these sets
and R?\Q, is much larger than e.

Let us now concentrate ourselves on a given o, and let us consider rectangles
with two sides parallel to the direction (o — 1) , which we will call “«-rotated

rectangles”; notice that, up to now, we have always only considered rectangles
with two horlzontal and two vertical sides, which corresponds to the case o = 1.
We can clearly cover the compact set K, with finitely many essentially disjoint
a-rotated rectangles R7, 1 <i < N(o), having sides smaller than ¢, in such a
way that the restriction of u to any side of any rectangle has finite total variation;
up to take these rectangles small enough, we can assume also that

N(a)
. |Dul(L,)
(4.6) |Du|(’U1 R \Q,x) <=5

Up to renumbering, we can find 0 < N~ («) < N(«) such that

|Dul(R;)

4.7) |Du|(RA\Q,) < & i< N ()

As a consequence, by (4.6) we get

1Du|(Q,) > j2|Du|(]t_j) R,?‘\Q“) > j2|Du\( U RAQ, )

i>N~—

=/* Y |Dul(RA\Q)

i>N~ (o)

> j Z [Dul(R7) = j Dl U R)

>N~ >N~
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thus from the fact that all the R} cover K, and (4.5) we deduce

|Du|<i£p(“)Rf‘)2|Du|([{ |Du|< U R) (1—§)|Du|(Qa).

Let us then call V' CC Q the union of all the rectangles R with 1 <i < N~ («)
and 1 < o < j, so that adding over 1 < o < j the last estimate gives

(4.8) [Dul(v) = (1 - %) |Du|(Q).

Notice now that V' i 1s done by finitely many essentially disjoint rectangles, in fact
each R/ and each R, with f # « have strictly positive distance by construction.
We can cover Q\ 7 with countably many essentially disjoint quadrilaterals Roms
m € N, in such a way that each R,, can be transformed into a rectangle with a
(1 + 1/j)-biLipschitz finitely piecesise affine homeomorphism, and also in such a
way that the quadrilaterals R,, are locally finitely many in Q; this means that for
every 0 > 0 there are only finitely many of these rectangles which have distance
from R*\Q larger than 6; in particular, only finitely many of these rectangles are
close to the rectangles R in V. The existence of this covering comes through a
simple geometrical argument; in particular, the sides of the quadrilaterals R,, are
generally much smaller than those of the rectangles R in V.

Let us now call G the grid made by the union of all the sides of the quad-
rilaterals R,, and of the rectangles R with 1 <o < j, i < N~ (a). As in Step
I, we let 7:G — R? be the restriction of u to G, and we find an injective
funct1on ¢:G— R? which is a complete &*-linearization (resp., a complete
en-linearization) of the restriction of 7 to OR} (resp., to 67~Zm) for every
l<a<j,1<i<N () (resp., for every m € N). We will now consider sepa-
rately each rectangle or quadrilateral. _

Let us start with a quadrilateral R,,: by construction, up to the (1 + 1/))-
biLipschitz finitely piecewise affine homeomorphlsm @, this corresponds to a
rectangle, call it R,, = ®,,(R,), and ¢, = po® ': IR, — R* is injective and
piecewise linear. We can of course assume that Rm has horizontal and vertical
sides, hence we can directly apply Proposition 2.2 to R,, to find a finitely piece-
wise affine homeomorphism v, : R,,, — R2, coinciding with ¢,, on 0R,,, and sat-
isfying, also thanks to Lemma 2.1, to Corollary 4.3, and up to have chosen ¢,
small enough,

1 1
[ 1Dl < W) + g < o @l )+
1
-1
< 1D(uo @,)[(R) + 55

Now, keep in mind that the Manhattan norm is not 1nvar1ant for rotations, hence
we cannot say that |[Dul|(R,,) is close to |D(uo ®,")||(Rn), even if the bi-
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Lipschitz constant of ®,, is very close to 1. Nevertheless, since |v| < ||v|| < v2|y|
for every v € R, calling 0,, = v,, o ®,, we have

(4.9) /sz D] < (1 +§) /R 1Dv,| < (1 +%) /Rm Doy
< (145) (12600 @)1 (R) + 5757)
SO*§X¢me®;mRm+—iﬁ

2m+1j
< (14+5) (V2 Dul(R,) +

Let us now consider a rectangle R”, with 1 <i < N~ (x). We denote by || - ||, the
Manhattan norm rotated of an angle (x — 1)2%, so the usual Manhattan norm is
Il -l =1Il-|l;- Notice that ||v|] = |v| holds true‘ifv = (a0 — 1)27’Z e S', and more in
general by definition of Q, we have that '

1

) < 61Dul(Rn) + 5,7

2m+1]

(4.10) Il = (1 +2j—”) v(x)| VxeQ,

We can then apply the “a-rotated version” of Proposition 2.2 to the restriction of
¢ to the o-rotated rectangle R/ keeping in mind Corollary 4.3, and up to have
chosen a suﬁimently small constant ¢’, we find then a finitely piecewise affine
function v} : R} — R?, coinciding w1th @ on the boundary and such that

(@11) [t [ Ul < 1Dl (R +
Now, keeping in mind (4.10) and (4.7), we can evaluate

[1Dull,(R}) = [|Dull, (R ~ Q) + || Dull,(RF\L)

<1 +2£) Dul(R* A Q) + V2| Dul(RA\Q,)

27z+\/_
< (14 Y3 1wy,
hence from (4.11) we obtain
27+ /2 1
4.12 Do?| < (1+ 2 Y5) | Dul(RE) + —=.
@.12) et = (147 IDul R+

We can finally define the function u,; : Q — R?, as the function which coincides
with v on every rectangle R}, and with v,, on every quadrilateral R,,. It is obvi-
ous by construction that u; is a piecewise affine function on Q, and arguing
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exactly as in Step I we also have that, up to have chosen sufficiently small rectan-
gles, u; uniformly coincides with # on dQ and the sequence {;} converges to u in
L'(Q). We have then only to check the strict BV convergence of u; to u. Adding
the estimates (4.12) over 1 <i < o we get

N~ ()

[ 21 (520 (Y )

i=1 R} i=1

and adding over 1 < o < j we have
2n+f 1 2n+xf
[ 1ot = (1 +ZE) o) 45 < (172 o) +

Instead, adding (4.9) over all m € N, and recalling (4.8), we obtain
1 12 1
/ |Duy| < 61Du/(@\V) + = < — [ Dul(Q) + -,
% JT J

so altogether we have
2n+vV2+12
/ |Duy| < (1 —I—N)|Du|(§2) +=
Q J

and the strict convergence of u; to u is then proved. O
Theorem 1.3 now immediately follows.

ProOOF (OF THEOREM 1.3). Let u € BV(Q) n Ext(¢) be any homeomorphism.
By Theorem 1.4, for every ¢ > 0 we get a piecewise linear homeomorphisms (or
a diffeomorphism) v € Ext(p) such that [, [Dv| < [Du[(Q) + ¢ and [[v — ul| 1 q)

e. In particular, v € W 1(Q), so we deduce the thesis. O

REMARK 4.4. It is standard to strengthen the claim of Theorem 1.4 as follows.
Assume that there exists a piecewise linear Jordan curve I' C dQ with positive
distance from the set 0Q\ P, such that u is continuous up to I and piecewise linear
there. Then, the sequence {u;} can be taken in such a way that every u; is finitely
piecewise affine in a neighborhood of I'. In particular, if Q is a polygon and u is
piecewise linear on J€, then each function u; is finitely piecewise affine. Analo-
gously, in Theorem 1.3, if ¢ is piecewise linear on some piecewise linear Jordan
curve I' C 9Q with positive distance from dQ\T", then the infimum of the energy
remains the same also if one considers only piecewise affine functions u € Ext(¢p)
which are finitely piecewise affine on a neighborhood of I". To prove the stronger
claim of Theorem 1.4 (from which the stronger claim of Theorem 1.3 trivially
follows as above), only a slight modification of our proof is needed. Namely, at
the beginning of Step I, instead of decomposing Q as a countable but locally finite
union of rectangles R;, we have to make a covering with a countable but locally
finite union of quadrilaterals R;, in such a way that those which are not rect-
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angles are only finitely many, they are all uniformly bi-Lipschitz copies of rect-
angles, they all have exactly one side on I', on which u is linear, and these sides
cover the whole I". The very same modification has to be done with the quad-
rilaterals R,, covering Q\ 7 in Step II.
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