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Abstract. — We study the Dirichlet problem for the second order elliptic equation

�
XN
i; j¼1

aijðxÞ
q2u

qxiqxj
¼ f ðxÞ

in a bounded regular domain W � RN , N > 2. We assume that f a L2 and that the coe‰cients aij
are measurable and bounded functions with the first derivatives in the Marcinkiewicz class weak-LN

and having a su‰ciently small distance to Ll. Under these assumptions we prove the solvability of
the problem in W 2; 2 BW

1; 2 �

0 , where 2� ¼ 2N
N�2 . An higher integrability result for the gradient of the

solution is achieved when f a L p, p > 2.
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1. Introduction

We consider the Dirichlet problem

LuðxÞ ¼ �
XN
i; j¼1

aijðxÞ
q2u

qxiqxj
¼ f ðxÞ in W

uðxÞ ¼ 0 on qW

8>><
>>:ð1:1Þ

where W is a bounded domain su‰ciently regular in RN , N > 2 (see Section 2),
f a L2ðWÞ and aij are measurable functions satisfying the following conditions

aijðxÞ ¼ ajiðxÞ

jxj2 a
XN
i; j¼1

aijðxÞxixj aMjxj2

8>><
>>:ð1:2Þ

for every x a RN and for x a W a.e.
The study of the existence and uniqueness in W 2;2BW

1;2
0 of the solution for

problem (1.1) requires a particular attention if N > 2 since, in this case, some
additional regularity of the coe‰cients are needed.



In [14] and [15] the problem has been solved by C. Miranda under the hypoth-
esis aij a W 1;N and this assumption has been replaced in [7] with the condition
qaij

qxs
a LN , for 1a saN � 1.

Later, a significant improvement has been given by A. Alvino and G.
Trombetti (see [2]) assuming that the first derivatives of the coe‰cients belong
to the Marcinkiewicz class weak-LN with a suitable controll on the norms.

It is worth pointing out that, in [6], the authors proved a well-posedness
result in the class W 2;pBW

1;p
0 , 1 < p < þl, for the Dirichlet problem (1.1)

with f a Lp, assuming a condition on the coe‰cients themselves, i.e. aij a
VMOBLl. Finally, in [10], the problem has been faced under a smallness con-
dition on the BMO-norm of aij. Observe that in [10] the coe‰cients could be
unbounded.

On the other hand more recently, in [8] and in [11], some second order elliptic
equations with lower order terms in divergence form, respectively linear and non-
linear, have been considered and the existence, the uniqueness and the regularity
of the solutions have been studied, assuming that the coe‰cients of the lower
order terms, lying in LN;l, have a distance to Ll su‰ciently small. Note that
this condition doesn’t imply the smallness of the LN;l-norm of the coe‰cients
themselves (see Section 2).

In the present paper, motivated by these last results and by the fact that
the equation in (1.1) written in the variational form presents lower order terms
(see Section 2), we study the solvability in W 2;2ðWÞBW

1;2
0 ðWÞ of the problem

(1.1), assuming that the first derivatives of the functions aij belong to the class
LN;lðWÞ, N > 2, and satisfy some smallness conditions on their distances to
Ll.

Actually, we solve the problem in W 2;2ðWÞBW
1;2�

0 ðWÞ and our main result
can be stated as follows

Theorem 1.1. Let us assume that the functions aij satisfy (1.2) and that their first

derivatives
qaij

qxs
, s ¼ 1; . . . ;N, belong to the class LN;lðWÞ. Set b ¼

�P
j

qaij
qxj

�
i
and

E ¼
P

irs

�P
k
qðairaks�aikarsÞ

qxk

�2
: If the following conditions hold

distLN;lðb;LlÞ < N � 2

4
; dist

L
N
2
;lðE;LlÞ <

�N � 2

4
� 2� 1

N

�2
ð1:3Þ

and f a L2ðWÞ, then the Dirichlet problem (1.1) admits a unique solution u a

W 2;2ðWÞBW
1;2
0 ðWÞ. Moreover ‘u a L2� ðWÞ and there exists a positive constant

C, depending on N and the distances in (1.3), such that

k‘ukL2� ðWÞ þ kD2ukL2ðWÞ aCðk f kL2ðWÞ þ kbkL2ðWÞÞ:ð1:4Þ

Example 1.2. Consider the following Dirichlet problem in the cube Q ¼
ð0; 1�N
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�
XN
i; j¼1

�
di; j þ

Axixj

jxj2
þ jðxÞ

�
uxixj ¼ f ðxÞ in Q

uðxÞ ¼ 0 on qQ:

8>><
>>:ð1:5Þ

with j a C1ðQÞ, jb 0, and f a L2ðQÞ. Observe that the coe‰cients of the equa-
tion in (1.5) verify all the assumptions of Theorem 1.1. In particular, their deriv-
atives are in LN;lðQÞ, but they do not belong to the Lebesgue space LNðQÞ (for
more details we refer to [17]). It follows that our result cannot be deduced by the
one obtained by C. Miranda in [14] and [15]. Remark also that conditions in (1.3)
are verified provided the constant A is not too large.

The basic idea in the proof of Theorem 1.1 is to combine the result of the exis-
tence and uniqueness in W 1;2

0 ðWÞ proved in [8] with Miranda’s tools. This combi-
nation will be possible thanks to the fact that, as observed above, the equation in
(1.1) can be opportunely written in divergence form. First of all, our strategy will
consist in establishing the estimate in (1.4) for regular solutions. Once such a
priori estimate will be proved, we shall consider regularized problems, whose
solvability is known, and show that the limit of the regularized solutions solves
problem (1.1).

In Section 4, assuming conditions on the coe‰cients aij similar to that of
Theorem 1.1, we also obtain higher integrability of the gradient of the solution.
More precisely, under the hypothesis f a LpðWÞ, p > 2, we prove that ‘u a
Lp�ðWÞ.

We conclude underlining that our conditions on the distances are clearly

satisfied if the derivatives
qaij

qxs
belong to any space in which Ll is dense, and then

in particular if they belong to LN;q with 1 < q < l, since such distances are
null.

2. Notation and preliminary results

Our assumption on the domain W will be expressed in terms of validity of C.
Miranda’s tools. More precisely, we shall consider domains of class C3 which are
defined as follows

Definition 2.1. A bounded domain W � RN is of class C3 if at each point
x0 a qW there is a ball B ¼ Bðx0Þ and a one-to-one mapping c of B onto D ¼
cðBÞ � RN such that

cðBBWÞ � RN
þ ; cðBB qWÞ � qRN

þ ; c a C3ðBÞ; c�1 a C3ðDÞ:

2.1. Lorentz spaces

In order to frame our problem, we recall some definitions and results useful in the
sequel.
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For 1 < p; q < þl, the Lorentz space L p;qðWÞ consists of all measurable
functions f defined on W such that

k f kqp;q ¼ p

Z þl

0

jWtj
q

ptq�1 dt < þl

where we have used the notation Wt ¼ fx a W : j f ðxÞj > tg, for tb 0, and jWtj
for the Lebesgue measure of the set Wt. For p ¼ q, the space Lp;qðWÞ coincides
with the Lebesgue space LpðWÞ.

Finally, the class Lp;lðWÞ, also known as the Marcinkiewicz class weak-
LpðWÞ, consists of all functions f such that

j f jpp;l ¼ sup
t>0

t pjWtj < þl

and it is a Banach space equipped with the norm

k f kp;l ¼ sup
E�W

jEj
1
p
�1

Z
E

j f j dx:ð2:1Þ

Since it holds that

ðp� 1Þ p

p pþ1
k f kp

p;l a j f jpp;l a k f kp
p;l;ð2:2Þ

(see [3], Lemma A.2) we shall use the notation Lp;l or weak-Lp, with the norm
(2.1), indi¤erently.

It is useful for our aims to observe that for f belonging to weak-LpðRNÞ and
g a L1ðRNÞ, the convolution f � g belongs to weak-LpðRNÞ and

k f � gkL p;l a k f kL p;lkgkL1ð2:3Þ

(see [18], Theorem 8, p. 119 and [3], Lemma A.4).
Note that the following inclusions hold

Lp;1 � Lp;q � Lp; r for 1 < q < r < þl

Lp;q � Lp;l � Lr for 1 < r < p; 1 < q < þl

and that the distance of a given f a weak-Lp to Ll is defined as

distL p;lð f ;LlÞ ¼ inf
g ALl

k f � gkp;l:

For an exaustive discussion on the distance to Ll we refer to [5]. Here, we only
stress that if we consider the truncation operator, defined for h > 0 as

Th f ¼ f

j f j minfj f j; hg;
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we have that

distL p;lð f ;LlÞ ¼ lim
h!l

k f � Th f kp;l:ð2:4Þ

We remark that for any p a ð1;lÞ, Ll is not dense in Lp;l. Moreover, assum-
ing that distL p;lð f ;LlÞ is small does not give any smallness control on the norm
in Lp;l (see [8]).

The Sobolev Embedding theorem in Lorentz spaces will be useful for us (see
[1], [9]).

Theorem 2.2. Let us assume 1 < p <N, qb1. Then every function u a W 1;1
0 ðWÞ

verifying j‘uj a Lp;q actually belongs to L p�;q, where p� ¼ Np

N�p
and

kukp�;q aCk‘ukp;q

where C ¼ o
�1=N
N

p

N�p
.

We shall need also the following local estimate near curved boundaries proved
in [2].

Theorem 2.3. For any t > 0 there is some Rt > 0 such that, if u a W 1;2ðBRt
BWÞ

and supp u � WBBRt
then

kukL2� ; 2ðWBBRt Þ aCð1þ tÞk‘ukL2ðWBBRt Þð2:5Þ

where C ¼ 2
Nþ1
N

N�2 .

Note that we used the notation BRt
to indicate a ball centered in the origin

with radius Rt.

2.2. A useful estimate

As observed in the Introduction, our approach is based on the fact that the equa-
tion in (1.1) can be written in the variational form

�
X
j

q

qxj

�X
i

aij
qu

qxi

�
þ
X
i

bi
qu

qxi
¼ fð2:6Þ

provided

biðxÞ ¼
X
j

qaij

qxj
:ð2:7Þ

For this reason, we start with the following result in the variational context.
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Theorem 2.4. Let AðxÞ a matrix-valued, bounded function on W satisfying the
ellipticity condition

AðxÞx � xb jxj2

for all ðx; xÞ a W� RN, and let b a LN;lðW;RNÞ such that

distLN;lðb;LlÞ < N � 2

4
:

Then

(1) if f a L
2N
Nþ2, there exists a unique solution u a W

1;2
0 of the equation

�divðAðxÞ‘uÞ þ bðxÞ � ‘u ¼ f ðxÞ:ð2:8Þ

Moreover there exists a positive constant c depending on N and distLN;lðb;LlÞ
such that

k‘uk2 a cðk f k 2N
Nþ2

þ kbk2Þ;ð2:9Þ

(2) if f a Lp, 2N
Nþ2 < p < N

2 , the solution u a Lðp�Þ� and the following estimate
holds

kukðp�Þ� a cðk f kp þ kuk2Þ;ð2:10Þ

for some constant c ¼ cðp;NÞ;
(3) if f a Lp, p > N

2 , the solution u a Ll.

Actually the real novelty in the previous result is the estimate (2.9), since the
second and the third assertion can be easily deduced arguing respectively as in
Theorem 4.1 and Theorem 4.9 of [8].

The estimate (2.9), which will be proved below, reveals to be a key tool in the
proof of the a priori bound for the solution u a W 2;2BW

1;2
0 of the problem

(1.1).
Indeed, by virtue of the observation at the beginning of this section, we can

easily deduce by Theorem 2.4 the following

Theorem 2.5. Let u a W
1;2
0 be the solution of the Dirichlet problem associated

to (2.6), where the functions aij satisfy (1.2), f a L2ðWÞ and b ¼
�P

j
qaij
qxj

�
i
a LN;l

is such that

distLN;lðb;LlÞ < N � 2

4
:

Then there exist a positive constant c depending on N and distLN;lðb;LlÞ such that

k‘uk2 a cðk f k2 þ kbk2Þ:
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For the proof of Theorem 2.4, we shall need the following version of the
Sobolev–Poincaré inequality contained in [12].

Lemma 2.6. For each matrix field H a L1
locðW;RNÞ with divH a LrðWÞ, 1 < r <

N, there exists a divergence free matrix field H0 a L1
locðWÞ such that

�Z
B

jH �H0j
Nr
N�r dx

�N�r
Nr

a cðN; rÞ
�Z

B

jdivHjr dx
�1

rð2:11Þ

for every ball B strictly contained in W.

Proof of Theorem 2.4. Fix F a L2ðWÞ such that divF ðxÞ ¼ f ðxÞ and observe
that obviously we can write the variational equation in (2.8) as

�divðAðxÞ‘uÞ þ bðxÞ � ‘u ¼ divFðxÞ:ð2:12Þ

Note now that the associated Dirichlet problem is dual to the following

divðAðxÞ‘wþ wbðxÞÞ ¼ divGðxÞ in W

wðxÞ ¼ 0 on qW

�
ð2:13Þ

with G a L2ðW;RNÞ. If we suppose that b0 a Ll is such that kb� b0kN;l < N�2
4 ,

arguing as in [8] and [11], we rewrite the equation in (2.13) as

divðA‘wþ wðb� b0ÞÞ ¼ divðG � wb0Þð2:14Þ

and obtain the existence of a unique solution w a W
1;2
0 of the problem (2.13).

Since, in particular, w solves equation (2.14), we obviously haveZ
W

A‘w � ‘wþ wðb� b0Þ � ‘wdx ¼
Z
W

ðG � wb0Þ‘wdx:

By using Hölder’s inequality and Sobolev’s embedding, we get

Z
W

jwðb� b0Þ � ‘wj dxa
2

N � 2
kb� b0kN;lk‘wk22 ;

and therefore, recalling the ellipticity assumption and that kb� b0kN;l < N�2
4 ,

we get Z
W

A‘w � ‘wþ wðb� b0Þ � ‘wdxb
1

2
k‘wk22:ð2:15Þ

On the other hand, setting for any constant k > 0

Wk ¼ fx a W : jwðxÞj > kg;

it holds
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Z
W

ðG � wb0Þ‘wdxa kGk2k‘wk2 þ
Z
W

jwj jb0j j‘wj dx

¼ kGk2k‘wk2 þ
Z
WnWk

jwj jb0j j‘wj dxþ
Z
Wk

jwj jb0j j‘wj dx

a kGk2k‘wk2 þ kkb0k2k‘wk2 þ kb0kLN;lðWkÞkwk2�;2k‘wk2

a kGk2k‘wk2 þ kkb0k2k‘wk2 þ
2

N � 2
kb0kLN;lðWkÞk‘wk

2
2

a kGk2k‘wk2 þ kkb0k2k‘wk2 þ cðNÞkb0kljWkj k‘wk22

where we used once again Hölder’s inequality and Sobolev’s embedding.
By last inequality and (2.15), it follows that

1

2
k‘wk2 a kGk2 þ kkb0k2 þ cðNÞkb0kljWkj k‘wk2:ð2:16Þ

Since by Lemma 3.2 in [16], we have thatZ
W

jlogð1þ jwjÞj2
�

� 	 2
2�

a 2
� 2

N � 2

�2
ðkbk22 þ kGk22Þ;

we can deduce that

jWkj
2�
2 <

2

log2ð1þ kÞ

� 2

N � 2

�2
ðkbk22 þ kGk22Þ:

It follows that there exists a constant k such that Ek > k it is

jWkj <
1

4ðcðNÞkb0klÞ

so that, by (2.16), we have Ek > k

1

2
k‘wk2 a kGk2 þ kkb0k2 þ

1

4
k‘wk2ð2:17Þ

and therefore

1

4
k‘wk2 a kGk2 þ kkb0k2:

Now observe that the assumption distLN;lðb;LlÞ < N�2
4 , thanks to the equality

(2.4), gives the existence of a constant h ¼ hðb;NÞ such that kb� ThbkN;l <
N�2
4 , so it is legitimate to choose b0 ¼ Thb in the previous arguments getting

k‘wk2 a cðkGk2 þ kkbk2Þð2:18Þ
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where the constant c obviously depends only on N. Clearly the constant k
depends on the distLN;lðb;LlÞ.

Assume now that u is a solution of the Dirichlet problem associated to the
equation (2.12) and that w a W 1;2

0 is a solution of (2.13) with G ¼ ‘u. It follows
that Z

W

3AðxÞ‘u;‘j4þ ðbðxÞ � ‘uÞj ¼ �
Z
W

F‘j Ej a W
1;2
0ð2:19Þ

and Z
W

3AðxÞ‘w;‘j4þ ðwbðxÞÞ‘j ¼
Z
W

‘u‘j Ej a W
1;2
0 :ð2:20Þ

Therefore, by taking j ¼ w in the first equation and j ¼ u in the second equation,
we obtain that Z

W

j‘uj2 dx ¼ �
Z
W

F‘wdx:ð2:21Þ

Hence, by Young’s inequality

k‘uk22 a ek‘wk22 þ cðeÞkFk22

and by using the estimate in (2.18), we have for a constant c ¼ cðNÞ that

k‘uk22 a ecðk‘uk22 þ kkbk22Þ þ cðeÞkFk22:

By a suitable choice of e, it follows that

k‘uk2 a c 0ðkFk2 þ kkbk2Þ:ð2:22Þ

Replacing F with F � F0, where F0 is chosen with divergence free and such that
Lemma 2.6 holds, we can easily deduce from (2.22) and inequality (2.11) the fol-
lowing estimate

k‘uk2 a cðkdivFk 2N
Nþ2

þ kbk2Þ;

that is

k‘uk2 a cðk f k 2N
Nþ2

þ kbk2Þ;ð2:23Þ

with c ¼ cðN; distLN;lðb;LlÞÞ. r

3. The main result

This section is devoted to the proof of Theorem 1.1. As already observed in the
Introduction, the existence and the uniqueness will follow by approximation
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arguments once obtained an a priori estimate for regular solutions of the problem
(1.1). To this aim, we shall prove first an interior estimate (see Theorem 3.1) and
then we shall extend it to the entire domain. In order to obtain this extension,
we shall need to assume that the boundary is su‰ciently smooth. Following
Miranda’s arguments (see [15]) we shall require W of class C3 (see Definition 2.1
above).

Let us start proving the following interior estimate

Theorem 3.1. Under the assumptions of Theorem 1.1, if u a ClðWÞ is a solution
of the equation Lu ¼ f , then for every subdomain W 0 �� W, there exists a positive
constant C depending on N and the distances in (1.3) such that

k‘ukL2� ðW 0Þ þ kD2ukL2ðW 0Þ aCðk f kL2ðWÞ þ kbkL2ðWÞÞ:ð3:1Þ

Proof. For a fixed j a Cl
0 ðWÞ such that jC 1 on W 0 �� W, consider the func-

tion v ¼ ju. We get

Lv ¼ jf � uLj�
X
i; j

aij

�qj
qxi

qu

qxj
þ qu

qxi

qj

qxj

�
:¼ Fð3:2Þ

and therefore the following inequality proved in [14]

X
i;k

� q2v

qxiqxk

�2
aF 2 þ

X
irks

Airks

q

qxk

� qv

qxi

q2v

qxrqxs

�
;ð3:3Þ

where we have used the notation Airks ¼ airaks � aikars.
It follows that

X
i;k

Z
W

� q2v

qxiqxk

�2
dxa

Z
W

F 2 dx�
X
irks

Z
W

� qv

qxi

q2v

qxrqxs

� q

qxk
Airks dxð3:4Þ

:¼ I1 þ I2

We immediately deduce from (3.2) that, in order to estimate jI1j, we can use the
bound of kuk

W
1; 2
0
. Therefore, by mean of Theorem 2.5 we get

jI1ja cðk f k2 þ kbk2Þ
2

with c ¼ cðN; distLN;lðb;LlÞÞ.
Let us carry on with an estimate for jI2j.
By using Schwartz inequality, we immediately obtain that

jI2ja
�X

r; s

Z
W

� q2v

qxrqxs

�2
dx

�1
2
�Z

W

�X
i

� qv

qxi

�2��X
irs

�X
k

qAirks

qxk

�2�
dx

�1
2
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or equivalently that

jI2ja kD2vkL2ðWÞ

�Z
W

EðxÞj‘vj2 dx
�1

2

;ð3:5Þ

where we have used the notation

E ¼
X
irs

X
k

qAirks

qxk

" #2
:

Now, by virtue of the second assumption in (1.3), it is legitimate to choose

E0 a LlðWÞ such that kE � E0kLN=2;lðWÞ <
�
N�2
4

�2
. We have that

jI2ja kD2vkL2ðWÞ

�Z
W

jE � E0j j‘vj2 dxþ
Z
W

jE0j j‘vj2 dx
�1

2

a kD2vkL2ðWÞ

�Z
W

jE � E0j j‘vj2 dx
�1

2 þ
�Z

W

jE0j j‘vj2 dx
�1

2

� 	

a kD2vkL2ðWÞ

�Z
W

jE � E0j j‘vj2 dx
�1

2 þ kE0k
1
2

LlðWÞk‘vkL2ðWÞ

� 	

a kD2vkL2ðWÞ½ðkE � E0kLN=2;lðWÞk‘vk
2
L2� ; 2Þ

1
2 þ kE0k

1
2

LlðWÞk‘vkL2ðWÞ�

a kD2vkL2ðWÞ

��� 2

N � 2

�2

kE � E0kLN=2;lðWÞkD2vk2L2ðWÞ

�1
2

þ kE0k
1
2

LlðWÞk‘vkL2ðWÞ

	

where, in the last two lines we used Hölder’s inequality and the Embedding
Theorem 2.2.

Combining the estimate of jI1j and jI2j with (3.4), we have

kD2vk2L2ðWÞ a kD2vkL2ðWÞ

��� 2

N � 2

�2

kE � E0kLN=2;lðWÞkD2vk2L2ðWÞ

�1
2

þ kE0k
1
2

LlðWÞk‘vkL2ðWÞ

	
þ cðk f kL2ðWÞ þ kbkL2ðWÞÞ

2

and hence, using that kE � E0kLN=2;lðWÞ a
�
N�2
4

�2
,

1

2
kD2vk2L2ðWÞ a kD2vk2kE0k

1
2
lk‘vk2 þ cðk f k2 þ kbk2Þ

2:

At this point, the use of Young’s inequality gives

1

2
kD2vk2L2ðWÞ a ekD2vk22 þ cðeÞkE0klk‘vk22 þ cðk f k2 þ kbk2Þ

2:
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A suitable choice of e yields to reabsorb the first term in the right hand side of the
previous estimate to the left hand side and recalling Theorem 2.5, we get

kD2vk2L2ðWÞ aCðk f kL2ðWÞ þ kbkL2ðWÞÞ
2

with a constant C ¼ CðN; distLN;lðb;LlÞ; dist
L

N
2
;lðE;LlÞÞ.

Since jC 1 on W 0, we conclude that

kD2ukL2ðW 0Þ aCðk f kL2ðWÞ þ kbkL2ðWÞÞð3:6Þ

where C ¼ CðN; distLN;lðb;LlÞ; dist
L

N
2
;lðE;LlÞÞ.

Observe now that, combining the second assertion of Theorem 2.4 with the
well known interpolation inequality by Gagliardo–Nirenberg, we deduce that
‘u a L2�

and that the following inequality holds

k‘ukL2� ðW 0Þ a ckD2uk1=2
L2ðW 0Þkuk

1=2

Lð2�Þ� ðW 0Þ:

The use of Young’s inequality yields

k‘ukL2� ðW 0Þ a ekukLð2�Þ � ðW 0Þ þ cðeÞkD2ukL2ðW 0Þ

and therefore the estimate (3.1) can be easily derived by a suitable choice of e and
by inequality (3.6). r

The following theorem concerns the regularity up to the boundary of the
domain W.

Theorem 3.2. Under the same assumptions of Theorem 1.1, assume that u a
ClðWÞBC0ðWÞ is a solution of the Dirichlet problem (1.1). Then there exists a
positive constant C, depending on N, M and the distances in (1.3), such that

k‘ukL2� ðWÞ þ kD2ukL2ðWÞ aCðk f kL2ðWÞ þ kbkL2ðWÞÞ

Proof. Let us fix 0 < t < 1
2 . According to Theorem 2.3, let us cover qW with m

balls Bj centered in xj a qW and having radius Rt such that the estimate (2.5)
holds.

Moreover, let us suppose that B0 is an open subset such that B0 �� W and
W �

Sm
j¼0 Bj.

Let fxjg0ajam be a partition of unity subordinate to the covering fBjg of W

and set vj ¼ xju.
Arguing as in Theorem 3.1, we have in Wj ¼ Bj BW

Lvj ¼ xj f � uLxj �
X
rs

ars

�qxj
qxr

qu

qxs
þ

qxj

qxs

qu

qxr

�
:¼ Fj

and, by Miranda’s inequality, we get
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X
i;k

Z
Wj

� q2vj

qxiqxk

�2

dxa

Z
Wj

F 2
j dx�

X
irks

Z
Wj

�qvj
qxi

q2vj

qxrqxs

� q

qxk
Airks dxð3:7Þ

þ
X
irks

Z
qWBBj

�qvj
qxi

q2vj

qxrqxs

�
Airksnk ds ¼ J1 þ J2 þ J3

where ðn1; . . . nnÞ denotes the unit outward normal to qW.
Proceeding exactly as in Theorem 3.1 for jI1j, we obtain for jJ1j the following

estimate

jJ1ja cðk f kL2ðWjÞ þ kbkL2ðWjÞÞ
2

with c ¼ cðN; distLN;lðb;LlÞÞ while, replacing Theorem 2.2 with Theorem 2.3 in
the arguments used to estimate jI2j, for E0 a LlðWÞ such that kE � E0kLN=2;lðWÞ
<

�
N�2

2
2þ 1

N

�2
, we get

jJ2ja kD2vjkL2ðWjÞ

��� 2
Nþ1
N

N � 2
ð1þ tÞ

�2

kE � E0kLN=2;lðWjÞkD
2vjk2L2ðWjÞ

�1
2ð3:8Þ

þ kE0k
1
2
lk‘vjkL2ðWjÞ

	

Finally, it remains to estimate jJ3j. It can be checked that for C0 ¼ C0ðMÞ

jJ3jaC0

Z
qWBBj

X
i

�qvj
qxi

�2

ds

(see (2.12) in [15]) and therefore that

jJ3ja cðk‘vjk2L2ðWjÞ þ kD2vjkL2ðWjÞk‘vjkL2ðWjÞÞð3:9Þ

with c ¼ cðN;MÞ.
Hence, for any h > 0

jJ3ja c 0k‘vjk2L2ðWjÞ þ hkD2vjk2L2ðWjÞ;

that is

jJ3ja cðk f kL2ðWjÞ þ kbkL2ðWjÞÞ
2 þ hkD2vjk2L2ðWjÞ

where c ¼ cðN;M; h; distLN;lðb;LlÞÞ.
Combining the estimates obtained above for jJ1j, jJ2j, jJ3j with (3.7), we get

kD2vjk2L2ðWjÞ a
2

Nþ1
N

N � 2
ð1þ tÞkE � E0k

1
2

L
N
2
;lðWjÞ

kD2vjk2L2ðWjÞ

þ kE0k
1
2
lk‘vjkL2ðWjÞkD

2vjkL2ðWjÞ

þ cðk f kL2ðWjÞ þ kbkL2ðWjÞÞ
2 þ hkD2vjk2L2ðWjÞ:
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Reasoning analogously we have done in Theorem 3.1 and choosing h oppor-
tunely, we first obtain

kD2vjkL2ðWjÞ a cðk f kL2ðWjÞ þ kbkL2ðWjÞÞ

and then

k‘ukL2� ðWjÞ þ kD2ukL2ðWjÞ aCðk f kL2ðWjÞ þ kbkL2ðWjÞÞ

with C ¼ CðN;M; distLN;lðb;LlÞ; dist
L

N
2
;lðE;LlÞÞ.

The conclusion follows observing that the inequality obtained also holds for B0

by Theorem 3.1 and by observing that W �
Sm

j¼0 Bj . r

Combining Theorem 3.1 and Theorem 3.2 and using density arguments, we
deduce the desired global estimate for the solution u a W 2;2ðWÞBW

1;2�

0 ðWÞ of
(1.1).

The result of existence and uniqueness can be now easily obtained.

Proof of Theorem 1.1. Let us extend the matrix of the coe‰cients aij to RN

putting zero outside W and consider a sequence of mollifiers re.
Denoting by ae

ij ¼ re � aij, f e ¼ re � f , we have that ae
ij a ClðWÞBLlðWÞ,

ae
ij ! aij in L2 and f e ! f in L2. Moreover one can easily verify that

jxj2 a
XN
i; j¼1

ae
ijðxÞxixj aMjxj2:ð3:10Þ

and that the derivatives Dae
ij satisfy the assumptions of Theorem 1.1.

Indeed, thank to (2.3), one can observe that for be
0 and ðb� b0Þe, it holds that

kðb� b0ÞekN;l ¼ kbe � be
0kN;la kb� b0kN;l and kbe

0kl a kb0kl:

Obviously, analogous inequalities hold for kE e
0kl and kðE � E0ÞekN=2;l.

Hence the unique solution ue of the Dirichlet problem associated to the equa-
tion

�
XN
i; j¼1

ae
ijðxÞ

q2ue

qxiqxj
¼ f eðxÞ

verifies the estimate of Theorem 1.1 with a constant C independent of e.
It follows that, up to a subsequence, ue converges strongly in W 1;2 and weakly

in W 2;2 to a function u. It remains to show that u is a solution of the problem
(1.1). To this aim, let us observe that ue solves the variational equation

�
X
j

q

qxj

�X
i

ae
ij

que

qxi

�
þ
X
i

be
i

que

qxi
¼ f eð3:11Þ
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with

be
i ðxÞ ¼

X
j

qae
ij

qxj
;ð3:12Þ

that is Z
W

3ae
ijðxÞ‘ue;‘j4þ ðbe

i ðxÞ‘ueÞj ¼
Z
W

f ej Ej a Cl
0 ðWÞ:ð3:13Þ

Since ae
ij ! aij in L2ðWÞ, be

i ! bi in L2ðWÞ and f e ! f in L2ðWÞ, the function u is
the unique solution of (1.1). r

4. The higher integrability

The aim of this section is to prove that it is possible to get a bound for the solu-
tion in W 2;2ðWÞ of the problem (1.1) more significant than the one obtained in
Theorem 1.1, as well as we assume an higher integrability of the right hand side.
More precisely we shall prove the following

Theorem 4.1. Let us assume that the functions aij satisfy (1.2) and that their first

derivatives
qaij

qxs
, s ¼ 1; . . . ;N, belong to the class LN;l. Set

~EE ¼
X
j;h

�X
k

qajh

qxk

�2

; E ¼
X
irs

X
k

qðairaks � aikarsÞ
qxk

" #2
:

and assume f a Lp, 2 < p < N. Then there exists s0 > 0 such that, if

dist
L

N
2
;lð ~EE;LlÞ < s0; dist

L
N
2
;lðE;LlÞ < s0;ð4:1Þ

the unique solution u a W 2;2ðWÞ of the problem (1.1) satisfies the following in-
equality

k‘uk
L

Np

N�pðWÞ
þ kD2ukL2ðWÞ aCðk f kL pðWÞ þ kbkL2ðWÞÞð4:2Þ

for a positive constant C depending on N, p, M and the distances in (4.1).

Remark 4.2. Observe that the smallness of the dist
L

N
2
;lð ~EE;LlÞ implies the

smallness of the distLN;lðb;LlÞ and hence the assumptions of Theorem 1.1 are
satisfied for a suitable choice of s0.

Proof. We confine ourselves to the case u a ClðWÞBC0ðWÞ. Once we will
show that (4.2) holds, it will be necessary to use density arguments.

As we have done in Theorem 3.1, we start from the inequality (3.3) applied to
the function v ¼ ju for a fixed j a Cl

0 ðWÞ such that jC 1 on W 0 �� W. For a
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positive function Q a C1ðWÞ we getZ
W

Q
X
i;k

� q2v

qxiqxk

�2

dxa

Z
W

QF 2 dx�
Z
W

X
irks

� qv

qxi

q2v

qxrqxs

� qQ

qxk
Airks dxð4:3Þ

�
Z
W

Q
X
irks

� qv

qxi

q2v

qxrqxs

� q

qxk
Airks dx

¼ I 01 þ I 02 þ I 03:

Let m > 0 a real number such that

2Nðmþ 1Þ
N � 2

¼ 2mp

p� 2
¼ Np

N � p
;ð4:4Þ

set

Q ¼ Qm ¼
�XN
i;k¼1

aik
qv

qxi

qv

qxk

�m
; Pm ¼

Z
W

�X
i

� qv

qxi

�2�m X
i;k

� q2v

qxiqxk

�2

dx

and let’s give an estimate for each of the integrals above.
By a simple use of Hölder’s inequality, we have for the first integral

jI 01ja kFk2pkQk p

p�2
a c1kFk2pk‘vk

2m
2mp
p�2

¼ c1kFk2pk‘vk
2m
Np
N�p

;

where the constant c1 ¼ c1ðN;M; pÞ.
For I 02 we first observe that

I 02 ¼ m

Z
W

X
ikrs

� qv

qxi

q2v

qxrqxs

�
AirksQm�1

q

qxk

�X
jh

ajh
qv

qxj

qv

qxh

�
ð4:5Þ

and then, by using the second assumption in (1.2) and the Cauchy–Schwartz
inequality, we obtain

jI 02ja mCðMÞ
Z
W

�X
i

� qv

qxi

�2�mX
rs

� q2v

qxrqxs

�2
" #1

2

�
"Z

W

�X
i

� qv

qxi

�2�mþ1 X
jh

�X
k

qajh

qxk

�2
#1

2

þ mCðMÞ
"Z

W

F 2
�X

i

� qv

qxi

�2�m
#1

2

�
"Z

W

�X
i

� qv

qxi

�2�m X
rs

� q2v

qxrqxs

�2
#1

2

¼ mCðMÞP
1
2
m

�Z
W

~EEj‘vj2ðmþ1Þ
�1

2 þ
�Z

W

F 2
�X

i

� qv

qxi

�2�m�1
2

" #
:
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Let ~EE0 a LlðWÞ be such that k ~EE � ~EE0kLN=2;lðWÞ < s0, where s0 will be chosen
later. By using Hölder’s inequality and recalling (4.4), we get

jI 02jaCP
1
2
m

�Z
W

j ~EE � ~EE0k‘vj2ðmþ1Þ
dxþ

Z
W

j ~EE0j j‘vj2ðmþ1Þ
dx

�1
2 þ kFkpk‘vk

m
Np
N�p

� 	

aCP
1
2
m½ðk ~EE � ~EE0kN

2 ;l
k‘vk2ðmþ1Þ

Np
N�p

;2ðmþ1Þ þ k ~EE0klk‘vk2ðmþ1Þ
2ðmþ1ÞÞ

1
2 þ kFkpk‘vk

m
Np
N�p

�

where C ¼ CðN;M; pÞ.
Using now the shortened notation E ¼

P
irs

�P
k

qAirks

qxk

�2
and arguing similarly

we have done for I 02, we have for I
0
3

jI 03jaP
1
2
mðkE � E0kN

2 ;l
k‘vk2ðmþ1Þ

Np
N�p

;2ðmþ1Þ þ kE0klk‘vk2ðmþ1Þ
2ðmþ1ÞÞ

1
2:

where E0 a LlðWÞ is such that kE � E0kLN=2;lðWÞ < s0.
Recalling the estimates of jI 0i j, i ¼ 1; . . . ; 3, we have that

Pma c1kFk2pk‘vk
2m
Np
N�p

þ CP
1
2
m½ðk ~EE � ~EE0kN

2 ;l
k‘vk2ðmþ1Þ

Np
N�p

;2ðmþ1Þ þ k ~EE0klk‘vk2ðmþ1Þ
2ðmþ1Þ Þ

1
2

þ kFkpk‘vk
m
Np
N�p

� þ P
1
2
mðkE � E0kN

2 ;l
k‘vk2ðmþ1Þ

Np
N�p

;2ðmþ1Þ
þ kE0klk‘vk2ðmþ1Þ

2ðmþ1ÞÞ
1
2

where c1 and C depend on N, M and p.
Hence we deduce with the aid of Young’s inequality that

Pma c1kFk2pk‘vk
2m
Np

N�p

þ ePm þ cðeÞCðk ~EE � ~EE0kN
2 ;l

k‘vk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

ð4:6Þ

þ k ~EE0klk‘vk2ðmþ1Þ
2ðmþ1Þ þ kFk2pk‘vk

2m
Np
N�p

Þ þ ePm

þ cðeÞðkE � E0kN
2 ;l

k‘vk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ þ kE0klk‘vk2ðmþ1Þ
2ðmþ1ÞÞ:

Choosing e ¼ 1

4
, we obtain

1

2
Pma c1kFk2pk‘vk

2m
Np

N�p

þ Cðk ~EE � ~EE0kN
2 ;l

k‘vk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

ð4:7Þ

þ k ~EE0klk‘vk2ðmþ1Þ
2ðmþ1Þ þ kFk2pk‘vk

2m
Np
N�p

Þ

þ cðkE � E0kN
2 ;l

k‘vk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ þ kE0klk‘vk2ðmþ1Þ
2ðmþ1ÞÞ

where C ¼ CðM;N; pÞ. Now observing that

j‘ð‘vj‘vjmÞja ðmþ 1ÞjD2vj � j‘vjm;
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the use of Sobolev’s inequality yields

k‘vj‘vjmk2�;2 a ðmþ 1Þ 2

N � 2
k jD2vj j‘vjmk2

that is

k‘vk2ðmþ1Þ
2�ðmþ1Þ;2ðmþ1Þ a ðmþ 1Þ2

� 2

N � 2

�2
k jD2vj j‘vjmk22

i.e.

k‘vk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ a ðmþ 1Þ2
� 2

N � 2

�2
Pm:ð4:8Þ

Combining (4.7) and (4.8), it follows that

1

8

�N � 2

mþ 1

�2
k‘vk2ðmþ1Þ

Np

N�p
;2ðmþ1Þ

aC½kFk2pk‘vk
2m
Np

N�p

þ ðk ~EE0kl þ kE0klÞk‘vk2ðmþ1Þ
2ðmþ1Þ �

þ Cðk ~EE � ~EE0kN
2 ;l

þ kE � E0kN
2 ;l

Þk‘vk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

:

If we choose

s0 < min
1

16C

�N � 2

mþ 1

�2
;
�N � 2

22þ
1
N

�2� 


and recall that k ~EE � ~EE0kN
2 ;l

< s0 and that kE � E0kN
2 ;l

< s0 we get

k‘vk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ aC½kFk2pk‘vk
2m
Np
N�p

þ ðk ~EE0kl þ kE0klÞk‘vk2ðmþ1Þ
2ðmþ1Þ �ð4:9Þ

where C ¼ CðM;N; pÞ.
On the other hand, since (4.4) holds, we easily obtain that 2ðmþ 1Þ < p� and

therefore that

k‘vk2ðmþ1Þ
Np
N�p

a ck‘vk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ
:

Hence, by estimate (4.9), we get

k‘vk2ðmþ1Þ
Np
N�p

aC½kFk2pk‘vk
2m
Np
N�p

þ ðk ~EE0kl þ kE0klÞk‘vk2ðmþ1Þ
2ðmþ1Þ �ð4:10Þ

where C ¼ CðM;N; pÞ.
At this point, the use of Young’s inequality with exponents mþ 1 and

mþ1
m

and
the fact that, for a convenient choice of 0 < a < 1, the following inequality holds

k‘vk2ðmþ1Þ a k‘vka
Np
N�p

k‘vk1�a
2 ;

we obtain
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k‘vk2ðmþ1Þ
Np

N�p

a ek‘vk2ðmþ1Þ
Np

N�p

þ cðeÞkFk2ðmþ1Þ
pð4:11Þ

þ Cðk ~EE0kl þ kE0klÞðk‘vka
Np
N�p

k‘vk1�a
2 Þ2ðmþ1Þ:

Using again Young’s inequality with exponents 1
a
and 1

1�a
, we get

k‘vk2ðmþ1Þ
Np
N�p

a ek‘vk2ðmþ1Þ
Np
N�p

þ cðeÞkFk2ðmþ1Þ
p

þ cðeÞ½ðk ~EE0kl þ kE0klÞ
1

1�ak‘vk2�
2ðmþ1Þ þ ek‘vk2ðmþ1Þ

Np

N�p

:

Choosing e <
1

2
and taking into account that Theorem 2.5 holds, we conclude

that

k‘uk
L

Np
N�pðW 0Þ

aCðk f kL pðWÞ þ kbkL2ðWÞÞð4:12Þ

with C ¼ CðN; p;M; dist
L

N
2
;lðE;LlÞ; dist

L
N
2
;lð ~EE;LlÞÞ.

For an analogous estimate up to the boundary, we obviously have to argue
similarly as we have done in Theorem 3.2 and start from the estimate

X
i;k

Z
Wj

Q
� q2vj

qxiqxk

�2
dxa

Z
Wj

QF 2
j dx�

X
irks

Z
Wj

Q
�qvj
qxi

q2vj

qxrqxs

� q

qxk
Airks dxð4:13Þ

þ
X
irks

Z
Wj

�qvj
qxi

q2vj

qxrqxs

� qQ

qxk
Airks dx

þ
X
irks

Z
qWBBj

Q
�qvj
qxi

q2vj

qxrqxs

�
Airksnk ds

¼ J 0
1 þ J 0

2 þ J 0
3 þ J 0

4

Since the estimates of jJ 0
i j, i ¼ 1; 2; 3 are similar to the estimates of jI 0i j, i ¼ 1; 2; 3

obtained above, we shall give only the estimate of jJ 0
4j.

To this aim, we recall estimate (2.11) in [15] (see also [13]) and have

jJ 0
4ja cðk‘vjk2ðmþ1Þ

L2ðmþ1ÞðWjÞ þ P
1
2
mk‘vjkmþ1

L2ðmþ1ÞðWjÞÞ

with c ¼ cðN;MÞ. Therefore similar calculations we have done for (4.6) give

Pm a c1kFjk2pk‘vjk
2m
Np

N�p

þ ePm þ cðeÞCðk ~EE � ~EE0kN
2 ;l

k‘vjk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

þ k ~EE0klk‘vjk2ðmþ1Þ
2ðmþ1Þ þ kFjk2pk‘vjk

2m
Np
N�p

Þ

þ ePm þ cðeÞðkE � E0kN
2 ;l

k‘vjk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

þ kE0klk‘vjk2ðmþ1Þ
2ðmþ1ÞÞ þ cðk‘vjk2ðmþ1Þ

2ðmþ1Þ þ P
1
2
mk‘vjkmþ1

2ðmþ1ÞÞ
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and applying Young’s inequality to the last term

Pma c1kFjk2pk‘vjk
2m
Np
N�p

þ ePm þ cðeÞCðk ~EE � ~EE0kN
2 ;l

k‘vjk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ

þ k ~EE0klk‘vjk2ðmþ1Þ
2ðmþ1Þ þ kFjk2pk‘vjk

2m
Np
N�p

Þ

þ ePm þ cðeÞðkE � E0kN
2 ;l

k‘vjk2ðmþ1Þ
Np

N�p
;2ðmþ1Þ

þ kE0klk‘vjk2ðmþ1Þ
2ðmþ1Þ Þ þ ePm þ cðeÞk‘vjk2ðmþ1Þ

2ðmþ1Þ

Choosing e ¼ 1
6 we get

1

2
Pm a c1kFjk2pk‘vjk

2m
Np
N�p

þ Cðk ~EE � ~EE0kN
2 ;l

k‘vjk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ

þ k ~EE0klk‘vjk2ðmþ1Þ
2ðmþ1Þ þ kFjk2pk‘vjk

2m
Np

N�p

Þ

þ cðkE � E0kN
2 ;l

k‘vjk2ðmþ1Þ
Np
N�p

;2ðmþ1Þ

þ kE0klk‘vjk2ðmþ1Þ
2ðmþ1ÞÞ þ ck‘vjk2ðmþ1Þ

2ðmþ1Þ

that is similar to (4.7). Hence, if we carry on arguing as for (4.12), we obtain

k‘vjk
L

Np
N�pðWjÞ

aCðk f kL pðWjÞ þ kbkL2ðWjÞÞð4:14Þ

and therefore, taking into account that W �
Sm

j¼0 Bj, the estimate up to the
boundary follows. The global estimate (4.2) can be therefore obtained recalling
also the inequality (1.4). r
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