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Partial Differential Equations — W2 2-solvability of the Dirichlet problem for a
class of elliptic equations with discontinuous coefficients, by FLAVIA GIANNETTI
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ABSTRACT. — We study the Dirichlet problem for the second order elliptic equation

72% M%/m

in a bounded regular domain Q ¢ RV, N > 2. We assume that / € L? and that the coefficients ajj
are measurable and bounded functions with the first derivatives in the Marcinkiewicz class weak-L"
and having a sufficiently small distance to L*. Under these assumptions we prove the solvability of
the problem in W22 ~ W,"*", where 2* = 2. An higher integrability result for the gradient of the
solution is achieved when f € L?, p > 2.

KEey worDs: Nondivergence elliptic equations, Dirichlet problem

MATHEMATICS SUBJECT CLASSIFICATION: 35J25, 35B45

1. INTRODUCTION

We consider the Dirichlet problem

2

(1.1) Z% G /) mQ

i,j=1
u(x) =0 on 0Q

where Q is a bounded domain sufficiently regular in RY, N > 2 (see Section 2),
/€ L*(Q) and a; are measurable functions satisfying the following conditions

ay(x) = (%)

N
P < Y ag(x)eg < MIEP

i,j=1

(1.2)

for every £ € RY and for x e Q a.e.

The study of the existence and uniqueness in W2 N W1 2 of the solution for
problem (1.1) requires a particular attention if N > 2 since, in this case, some
additional regularity of the coefficients are needed.
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In [14] and [15] the problem has been solved by C. Miranda under the hypoth-
esis @; € W'V and this assumption has been replaced in [7] with the condition
Oa el forl<s<N-—1.
0X;

Later, a significant improvement has been given by A. Alvino and G.
Trombetti (see [2]) assuming that the first derivatives of the coefficients belong
to the Marcinkiewicz class weak-L" with a suitable controll on the norms.

It is worth pointing out that, in [6], the authors proved a well-posedness
result in the class W27 A W,?, 1 < p < +oo, for the Dirichlet problem (1.1)
with f e L?, assuming a condition on the coefficients themselves, i.e. a; €
VMO n L. Finally, in [10], the problem has been faced under a smallness con-
dition on the BMO-norm of a;. Observe that in [10] the coefficients could be
unbounded.

On the other hand more recently, in [8] and in [11], some second order elliptic
equations with lower order terms in divergence form, respectively linear and non-
linear, have been considered and the existence, the uniqueness and the regularity
of the solutions have been studied, assuming that the coefficients of the lower
order terms, lying in L">* have a distance to L* sufficiently small. Note that
this condition doesn’t imply the smallness of the LY *-norm of the coefficients
themselves (see Section 2).

In the present paper, motivated by these last results and by the fact that
the equation in (1.1) written in the variational form presents lower order terms
(see Section 2), we study the solvability in W22(Q) A W, *(Q) of the problem
(1.1), assuming that the first derivatives of the functions a; belong to the class
LY*(Q), N > 2, and satisfy some smallness conditions on their distances to
L™,

Actually, we solve the problem in W?>2(Q) n W, * (Q) and our main result
can be stated as follows

THEOREM 1.1. Let us assume that the functions a;; satisfy (1.2) and that their first
0 ij 5 Oa;i

i’, s=1,...,N, belong to the class L"*(Q). Set b = (3, ”j)l and
E=Y,[>, derts—tus)] ®If the following conditions hold

Oxy

derivatives

N —
2w

N—2' 1)2

. 2 ]
(1.3)  distov (b, L*) < : dlstLg%(E,L“o)<(

and f € L*(Q), then the Dirichlet problem (1.1) admits a unique solution u e

w(Q)n Wol"z(Q). Moreover Vu € L* (Q) and there exists a positive constant
C, depending on N and the distances in (1.3), such that

(1.4) [Vull 22 ) + HD2“||L2(Q) < C(If 2 + bl 12())-

EXA%PLE 1.2. Consider the following Dirichlet problem in the cube Q =
(0,1]
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N . .
(1.5) - (51‘,1 + A;lf’ + sa(x))ux,.x,. = f(x) inQ
J
u(x) =0 on 0Q.

with ¢ € C'(Q), ¢ > 0, and f € L*(Q). Observe that the coefficients of the equa-
tion in (1.5) verify all the assumptions of Theorem 1.1. In particular, their deriv-
atives are in LY *(Q), but they do not belong to the Lebesgue space LY (Q) (for
more details we refer to [17]). It follows that our result cannot be deduced by the
one obtained by C. Miranda in [14] and [15]. Remark also that conditions in (1.3)
are verified provided the constant A is not too large.

The basic idea in the proof of Theorem 1.1 is to combine the result of the exis-
tence and uniqueness in WOI’Z(Q) proved in [8] with Miranda’s tools. This combi-
nation will be possible thanks to the fact that, as observed above, the equation in
(1.1) can be opportunely written in divergence form. First of all, our strategy will
consist in establishing the estimate in (1.4) for regular solutions. Once such a
priori estimate will be proved, we shall consider regularized problems, whose
solvability is known, and show that the limit of the regularized solutions solves
problem (1.1).

In Section 4, assuming conditions on the coefficients a; similar to that of
Theorem 1.1, we also obtain higher integrability of the gradient of the solution.
More precisely, under the hypothesis f € L?(Q), p > 2, we prove that Vu e
L (Q).

We conclude underlining that our conditions on the distances are clearly
0d;j
0X;
in particular if they belong to L":¢ with 1 < ¢ < oo, since such distances are
null.

satisfied if the derivatives belong to any space in which L* is dense, and then

2. NOTATION AND PRELIMINARY RESULTS

Our assumption on the domain Q will be expressed in terms of validity of C.
Miranda’s tools. More precisely, we shall consider domains of class C3 which are
defined as follows

DEFINITION 2.1. A bounded domain Q ¢ R" is of class C? if at each point
xo € 0Q there is a ball B = B(xp) and a one-to-one mapping y of B onto D =
¥(B) c R such that

Y(BnQ) CRY; y(BnoQ)cdRY; yeC*(B); v 'eCD).

2.1. Lorentz spaces

In order to frame our problem, we recall some definitions and results useful in the
sequel.
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For 1 < p,q < +o0, the Lorentz space L?9(Q) consists of all measurable
functions f defined on Q such that

+0o0 ‘
119, =p / Q4 dr < o0
0

where we have used the notation Q, = {x € Q: |f(x)| > ¢}, for t > 0, and |Q,|
for the Lebesgue measure of the set Q,. For p = ¢, the space L”9(Q) coincides
with the Lebesgue space L”(Q).

Finally, the class L?*(Q), also known as the Marcinkiewicz class weak-
L?(Q), consists of all functions f such that

|f\;’joO = sup 7|Q,| < +o0
' >0

and it is a Banach space equipped with the norm

(2.1) 11, = sup [E}F~" / /] dx.
EcCQ E
Since it holds that
p—1)7
22) T T

(see [3], Lemma A.2) we shall use the notation L?* or weak-L?, with the norm
(2.1), indifferently.

It is useful for our aims to observe that for f belonging to weak-L?(R") and
g € L'(R"), the convolution f * g belongs to weak-L?(R") and

(2.3) 1f gl Lo < SN prllgllz

(see [18], Theorem &, p. 119 and [3], Lemma A.4).
Note that the following inclusions hold

LPYcLPlic P forl <g<r<+w
LPricP*CcL” forl<r<p l<qg<+4ow

and that the distance of a given f € weak-L” to L™ is defined as

distzr~(f, L") = inf |/ —g|, -
geL”*

For an exaustive discussion on the distance to L* we refer to [5]. Here, we only
stress that if we consider the truncation operator, defined for /# > 0 as

S i
Y%fi_|f|nunﬂfmh}7
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we have that

(2.4) distze (f,L7) = lim |[f = Tif |, ...

We remark that for any p € (1, 00), L* is not dense in L?”*. Moreover, assum-
ing that dist;». - (f, L™) is small does not give any smallness control on the norm
in L”™ (see [8]).

The Sobolev Embedding theorem in Lorentz spaces will be useful for us (see

(1], [9))-

THEOREM 2.2. Letus assume 1 < p < N, g > 1. Then every function u € Wol’](Q)

verifying |Vu| € L4 actually belongs to L?"+4, where p* = Np

= N—_pand
[Ju

g < C||Vu||p’q

— oy UN_»
where C = wy " 5.

We shall need also the following local estimate near curved boundaries proved
in [2].

THEOREM 2.3. Forany t > 0 there is some R, > 0 such that, ifu € W?(Bg. 0 Q)
and suppu C QN By, then

(2:5) [ull 222 By < C(1+7)|[ V4|

N4l
2N
N-2"

LZ(QﬁBRT>

where C =

Note that we used the notation By to indicate a ball centered in the origin
with radius R,.

2.2. A useful estimate

As observed in the Introduction, our approach is based on the fact that the equa-
tion in (1.1) can be written in the variational form

0 ou ou
(26) _;6)61<Zal/axl>+2blﬁxz:f
provided

(2.7) bix) =Y Oay.

— Ox;
] j

For this reason, we start with the following result in the variational context.



562 F. GIANNETTI AND G. MOSCARIELLO

THEOREM 2.4. Let </ (x) a matrix-valued, bounded function on Q satisfying the
ellipticity condition

A(X)E-& = (¢
for all (x,&) € Q x RN, and let b e LY (Q, R") such that

N -2
i

distLN. £ (b, LOO> <

Then

(1) if f € L¥+=, there exists a unique solution u € WO1 2 of the equation

(2.8) —div(eZ (x)Vu) +b(x) - Vu = f(x).

Moreover there exists a positive constant ¢ depending on N and disty v« (b, L)
such that

(2.9) IVully < ([l 1l 2, + [bl],);

(2)if felL?, 1\%—12 < p <X, the solution ue L'?)" and the following estimate
holds

(2.10) [ull oy < el + [luall);

for some constant ¢ = ¢(p,N);
. N . 3
(3) if f € L?, p > 5, the solution u € L.

Actually the real novelty in the previous result is the estimate (2.9), since the
second and the third assertion can be easily deduced arguing respectively as in
Theorem 4.1 and Theorem 4.9 of [8].

The estimate (2.9), which will be proved below, reveals to be a key tool in the
proof of the a priori bound for the solution u € W22 WOI"2 of the problem
(1.1).

Indeed, by virtue of the observation at the beginning of this section, we can
easily deduce by Theorem 2.4 the following

THEOREM 2.5. Let u e Wol’2 be the solution of the Dirichlet problem associated
t0 (2.6), where the functions a; satisfy (1.2), f € L*(Q) andb = (3;52), € L™
is such that ’

N -2

disty .« (b, L*) < =

Then there exist a positive constant ¢ depending on N and disty ~. (b, L*) such that

[Vully < e[l 1]y + [Ibll)-
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For the proof of Theorem 2.4, we shall need the following version of the
Sobolev—Poincaré inequality contained in [12].

LEMMA 2.6. For each matrix field H € L} (Q, RN) withdivH € L"(Q), 1 <r<
N, there exists a divergence free matrix field Hy € L}, (Q) such that

(2.11) /|H Ho|* dx) c(N,r)(/B |divH|’dx)%

for every ball B strictly contained in Q.

PROOF OF THEOREM 2.4. Fix F € L*(Q) such that div F(x) = f(x) and observe
that obviously we can write the variational equation in (2.8) as

(2.12) —div(.eZ(x)Vu) +b(x) - Vu = div F(x).
Note now that the associated Dirichlet problem is dual to the following

(2.13) { div(/ (x)Vw + wh(x)) = div G(x) inQ

w(x) =0 on 0Q

with G e L*(Q, RY). If we suppose that by € L* is such that [[b — by ,, <22,
arguing as in [8] and [11], we rewrite the equation in (2.13) as '

(2.14) div(Z/Vw + w(b — b)) = div(G — why)

and obtain the existence of a unique solution w € Wol’2 of the problem (2.13).
Since, in particular, w solves equation (2.14), we obviously have

/%VW'VW—I—W(b—bo)-dex—/(G—wbo)dex.
Q Q

By using Holder’s inequality and Sobolev’s embedding, we get

2
[ st b0y Vasla < = = bl [V,
A -

. . .« o . -2
and therefore, recalling the ellipticity assumption and that ||b — by|| Noo < NT,

we get
1
(2.15) / AVw - Vw 4+ w(b —by) - Vwdx > §||Vw||§
Q

On the other hand, setting for any constant k > 0
Q= {xeQ:|w)| >k},
it holds
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/(G — who)Vwdx < |G|, ||Vwl, —|—/ (w| [bo| [Vw|dx
Q Q

— 1G]l [IVw]l> + / 0] bo] [ V0] dx + / 9] o Vv dx
Q\Qk Qi
< 1GI1 IVl + KlIbollo 1Vl + [Boll .- gy 3] 2| V8]

2
< [IGl[IVwily + Kol [[Vwll; + [Bol| v« () IV I[3

2
N -2
< Gl VWl + Kllbol L, V]l + ¢(N)[boll.. [€%] V]2

where we used once again Holder’s inequality and Sobolev’s embedding.
By last inequality and (2.15), it follows that

1
(2.16) S IVwlly < N Gly + Klbolly + c(N)l[bollo [<2 ] [[Vow]l-

Since by Lemma 3.2 in [16], we have that

2

o1+ b | < 2(52) bl + 161B)

we can deduce that

2 2 2 2 5 ,
Qul™ < b|2 + ||G|13).
7 < i (=3) (blE -+ 161E)

It follows that there exists a constant k such that Vk > k it is

1
Q| < ———
4(c(N)|Iboll,,.)
so that, by (2.16), we have Vk > k
1 1
(2.17) 3 1Vwllz < IGlly + Klbolly + 7 [[Vwll

and therefore

1
2 IVwlly < 1IGlly + K][bo].

Now observe that the assumption dist; v.« (b, L) < %, thanks to the equality
(2.4), gives the existence of a constant &= A(b, N) such that b — T)b||y , <

NT‘2, so it is legitimate to choose by = 7}b in the previous arguments getting

(2.18) IVl < e(l[Gll, + KlIbll,)
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where the constant ¢ obviously depends only on N. Clearly the constant k
depends on the disty v« (b, L).

Assume now that u is a solution of the Dirichlet problem associated to the
equation (2.12) and that w € Wol’2 is a solution of (2.13) with G = Vu. It follows
that

(2.19) /@f(x)vu, Vo) + (b(x) - Vu)p = —/qu) Vo e W,
Q Q

and

(2.20) / (A (x)Vw, Vo) + (wh(x)) Ve = / VuVp Ve W,*.
Q Q

Therefore, by taking ¢ = w in the first equation and ¢ = u in the second equation,
we obtain that

(2.21) /Vu|2dx:—/Fdex.
Q Q

Hence, by Young’s inequality
IVull3 < e Vw3 + c(@)|IF |13
and by using the estimate in (2.18), we have for a constant ¢ = ¢(N) that
[Vuls < ec(I[Vull3 + K[bI) + (@) [IF5.
By a suitable choice of ¢, it follows that
(2.22) IVully < ¢'(IIFIl, + &[[bll,).-

Replacing F' with F — Fy, where Fj is chosen with divergence free and such that
Lemma 2.6 holds, we can easily deduce from (2.22) and inequality (2.11) the fol-
lowing estimate

[Vully < e(lldiv F]| 2, + [|bl],),

that is
(2.23) IVally < eI/ 1] 2, + [1bll),
with ¢ = ¢(N, distzx.« (b, L?)). O

3. THE MAIN RESULT

This section is devoted to the proof of Theorem 1.1. As already observed in the
Introduction, the existence and the uniqueness will follow by approximation
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arguments once obtained an a priori estimate for regular solutions of the problem
(1.1). To this aim, we shall prove first an interior estimate (see Theorem 3.1) and
then we shall extend it to the entire domain. In order to obtain this extension,
we shall need to assume that the boundary is sufficiently smooth. Following
Miranda’s arguments (see [15]) we shall require Q of class C* (see Definition 2.1
above).

Let us start proving the following interior estimate

THEOREM 3.1. Under the assumptions of Theorem 1.1, if u € C*(Q) is a solution

of the equation Lu = f, then for every subdomain Q' CC Q, there exists a positive
constant C depending on N and the distances in (1.3) such that

(3-1) IVull o oy + 1Dl 120y < CULF N 20y + bl 20)-

PRrROOF. For a fixed ¢ € C;°(Q) such that ¢ = 1 on Q" CC Q, consider the func-
tion v = pu. We get

B dp Ou  du Op
(3.2) Lv—gof—uLgo—;aU(a 0x,+8—xi6_xj>

and therefore the following inequality proved in [14]

v \2 o (v v
3.3 < F? Aigs— (— ———,
(3.3) ; (ﬁx,ﬁxk) - + % ks Oxy, (6x; 6x,,6xs>

where we have used the notation A = a; ks — Acys.
It follows that

61) 0% 0
2 9. s
(3.4) E /515k dx</F dx E /6,8,03 kA,rksdx

=L+D

We immediately deduce from (3.2) that, in order to estimate |/;|, we can use the
bound of [|u|| ;,1.2. Therefore, by mean of Theorem 2.5 we get
0

0] < eI/, + Ibll,)>
with ¢ = ¢(N, dist; v« (b, L%)).

Let us carry on with an estimate for |/|.
By using Schwartz inequality, we immediately obtain that

2 (5 L) ) (LG G
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or equivalently that
2, \?
2
(35) Bl < D%l (| ECOIVOP ds)

where we have used the notation

E=),

irs

ZaAzrks
0xy,
Now, by virtue of the second assumption in (1.3), it is legitimate to choose
Ey € L*(Q) such that ||[E — Eol| ;v q) < (¥)2, We have that

rol—

b| < ||D2v||L2(Q)(/Q |E—E0||Vv|2dx+/ o] Vo] )
< ||D21)||L2( /lE E()||VU| dx /|E()||VU| dx)]

< 1D%] 20y | ( /Q [E — Ey| Vol dx) +||Eo||zx<m||wuy<m]

2 1
< 1D?0ll 2 [(IE = Eollpvzo ) IV0ll E22)* + IEol;. @lIVoll 2]

Q)
1
2

.o :
< 1D%l g | ((F7=7) IIE — Bollve @ ID7l 22y
< |[|D%vl| v —3) IIE— Eoll [regll

1
+ 1Bl 190l
where, in the last two lines we used Holder’s inequality and the Embedding

Theorem 2.2.
Combining the estimate of |/;| and || with (3.4), we have

2 \2 5
2 2
1D%320) < 1Dl 20 [((m) 1E = Eoll v« 1Dl e

1
} 2
1B zx(mnwnm)] + el 12 + bl 2c)
and hence, using that ||E — Ep[| vz q) < (P57 2)2,
1 2 1 2
3 ||D2“||L2(Q) < | D?oll,[| Eoll% Volly + eIl 115 + [Ibll2)*

At this point, the use of Young’s inequality gives

1 2 2 2 2
3 1D?0l 720 < ellD?0ll3 + e(e)llEoll. IVolly + e(llf 11, + [bl5)*.
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A suitable choice of ¢ yields to reabsorb the first term in the right hand side of the
previous estimate to the left hand side and recalling Theorem 2.5, we get

1Dl 220y < CULS 2@ + bl 2()

with a constant C = C(N, disty~.« (b, L"O),distL%m(E, L™?)).
Since ¢ = 1 on Q’, we conclude that

(3.6) 1D?ull 20y < C(If 22 + 1Bl 2

where C = C(N, distyv.« (b, L%), dlst L(E,L™)).

Observe now that, combining the" second assertion of Theorem 2.4 with the
well known 1nterpolat10n inequality by Gagliardo—Nirenberg, we deduce that
Vu € L*" and that the following inequality holds

1/2 1/2
IVall 2y < ell D2l gyl 2

L2(Q)

The use of Young’s inequality yields
Vel 2 0y < llutll oy @) + (@)1 Dul g

and therefore the estimate (3.1) can be easily derived by a suitable choice of ¢ and
by inequality (3.6). |

The following theorem concerns the regularity up to the boundary of the
domain Q.

THEOREM 3.2. Under the same assumptions of Theorem 1.1, assume that u €
C*(Q) N C*Q) is a solution of the Dirichlet problem (1.1). Then there exists a
positive constant C, depending on N, M and the distances in (1.3), such that

||V”||L2*(Q) + ||D2u||L2(Q) = C(Hf||L2(Q) + ||b||L2(Q))

PrROOF. Letusfix 0 <7< % According to Theorem 2.3, let us cover 0Q2 with m
balls B; centered in x; € 0Q and having radius R, such that the estimate (2.5)
holds.

Moreover, let us suppose that By is an open subset such that By CC Q and
QcUy, B

Let {é]}o <j<m be a partition of unity subordinate to the covering {B;} of Q
and set v; = u.

Arguing as in Theorem 3.1, we have in ; = B; n Q

0 ou 66_' ouy
muls - Za”(a o, 6715) =4

and, by Miranda’s inequality, we get
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a v] 2 61)] 6 U] 0
F - Air s d
3.7 Z/ 0x; Xk / dx Z/ 0x; 0xy axs oy *

61)j 521)]-
o0x: A-l‘ d = J J J
" ; /ﬁQmB/ (ﬁxi 6x,‘5xs> irksVik AT ATy AT A

where (vy,...v,) denotes the unit outward normal to 9Q.
Proceeding exactly as in Theorem 3.1 for |/;|, we obtain for |J/;| the following

estimate
2
] < e(lf N2y + bl 2p)

with ¢ = ¢(N, dist; ~.« (b, L*)) while, replacing Theorem 2.2 with Theorem 2.3 in
the arguments used to estimate |bf, for £y € L*(Q) such that [[E — Eol| v (q)

< (N’lz) , we get

22ty

N+1
2% !

2 2
(3:8) Mol < 1D g, [( (=5 +0) 1 = Eollove <) 10020

1
; ||E0|§o||VU/||L2(Q,>]

Finally, it remains to estimate |J3|. It can be checked that for Cy = Cy(M)

ovi\ 2
|/3] < Gy /agmz;_/.z(a;i) do

(see (2.12) in [15]) and therefore that
(3.9) 3] < eIVl 2 + 10701l 22 IV91 | 22()

with ¢ = ¢(N, M).
Hence, for any > 0

T3] < ¢l|Vl17 20y + 11D 20
that is
2 2
3] < e(llf 1120 + Ibllz20,)” + 1l1D*0il1 12 q

where ¢ = ¢(N, M, 5, distyv.» (b, L*)).
Combining the estimates obtained above for |J,], |J2|, |3 with (3.7), we get

25
N -2
1
+ 1EolI2 V05|20 19?01l 12

2 2
+ (/1 2@ + bl L20y)” + ’7||D2Uj||u(gj)

2 1 2
I1D%0]|7210) < A+IE-Eol*s ., [1D?0ll720,
L7 (&)
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Reasoning analogously we have done in Theorem 3.1 and choosing # oppor-
tunely, we first obtain

10?012 < eI/l + bl 2()

and then
IVutll 2+ @) + 1D?utll 12y < CU M 2200y + Bl 220,

with C = C(N, M, dist;~.« (b, L), dist ., (E,L™)).
The conclusion follows observing that the inequality obtained also holds for By
by Theorem 3.1 and by observing that Q C U}, B;. 0

Combining Theorem 3.1 and Theorem 3.2 and using density arguments, we
deduce the desired global estimate for the solution u € W22(Q) n WO1 2(Q) of
(1.1).

The result of existence and uniqueness can be now easily obtained.

PROOF OF THEOREM 1.1. Let us extend the matrix of the coefficients a;; to RY
putting zero outside Q and consider a sequence of mollifiers p,.
Denoting by a; = p, * djj, f = p, * [, we have that aj € C*(Q) N L*(Q),

aj — a; in L? and /% — fin L?. Moreover one can easily Verify that

N
(3.10) P> ai(nEs < Mg

i,j=1

and that the derivatives Da. satisfy the assumptions of Theorem 1.1.
Indeed, thank to (2.3), one can observe that for b and (b — by)°, it holds that

(b —bo)*lly, o = Ib* = bgllx ., < [b—Dholly ., and |G, <boll,.

Obviously, analogous inequalities hold for [|E{||, and ||(E — Eo)| v 2,00+
Hence the unique solution #* of the Dirichlet problem associated to the equa-
tion

N 62

Z ) g =)

verifies the estimate of Theorem 1.1 with a constant C independent of e.

It follows that, up to a subsequence, u* converges strongly in W12 and weakly
in W22 to a function u. It remains to show that u is a solution of the problem
(1.1). To this aim, let us observe that u® solves the variational equation

(3.11) _Zax( aj = )+ ,~ bfgii:fs
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with
oat.
TN
(3.12) by (x) —jZ T
that is

313 [ vt Vo + @iVl = [ o voe G @),

Since aj; — a; in L*(Q), bt — b;in L*(Q) and [ — f in L*(Q), the function u is
the unique solution of (1.1). O

4. THE HIGHER INTEGRABILITY

The aim of this section is to prove that it is possible to get a bound for the solu-
tion in W?2(Q) of the problem (1.1) more significant than the one obtained in
Theorem 1.1, as well as we assume an higher integrability of the right hand side.
More precisely we shall prove the following

THEOREM 4.1. Let us assume that the functions ay satisfy (1.2) and that their first

oaj;
derivatives %, s=1,...,N, belong to the class L"-*. Set
Xs
S 2 o( )]
- ajp AjpQfes — AjkcUys

and assume f € LP,2 < p < N. Then there exists oy > 0 such that, if

(4.1) distL%_%(E, L™) < 0y, distL%m(E,L”) < gy,
the unique solution u e W?2(Q) of the problem (1.1) satisfies the following in-

equality
(4.2) IW%%®+WMMQSQMM@+me
for a positive constant C depending on N, p, M and the distances in (4.1).

REMARK 4.2. Observe that the smallness of the distL%v'% (E,L”) implies the

smallness of the dist;~.» (b, L) and hence the assumptions of Theorem 1.1 are
satisfied for a suitable choice of .

PrROOF. We confine ourselves to the case u € C*(Q) N C°(Q). Once we will
show that (4.2) holds, it will be necessary to use density arguments.

As we have done in Theorem 3.1, we start from the inequality (3.3) applied to
the function v = gu for a fixed ¢ € C°(Q) such that g =1 on Q' cC Q. For a
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positive function 9 € C 1(S_l) we get

v v\ 09
4 < F2 - A _Air s
3) / 3 8x,6xk dx - /QS dx /Q%;(éx,- 6xr8xs) Oxk ks A

v v\ 0
- /g ’ ; (ﬁ_xl axrﬁxs) Ty e o

=I/+15L+1.

Let u > 0 a real number such that

2N(u+1)  2pup  Np

(44) N-2 p—-2 N-p’

set

N
§=39,= (Z aik% %)H> P, = / (Z (6)6,) )ﬂ (axlaxk)

i,k=1 i,k

and let’s give an estimate for each of the integrals above.
By a simple use of Holder’s inequality, we have for the first integral

1| < IFI 182 < el F1p V0]l

Zup - Cl||F|| val

Vp?

where the constant ¢; = ¢ (N, M, p).
For I we first observe that

60 0% v Ov
(4.5) /Z 0x; 6xr8x3) irks Sy Voxe (Z i 6xj 6_x;,>

and then, by using the second assumption in (1.2) and the Cauchy—Schwartz
inequality, we obtain

L) S|

l

+uC(M)

1] < uC(M)

L) 9
x / (2(5—5)2) > (oa ]
</ Ew) / 6xl )”)1

1
= nuC(M)P;
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Let Ey € LjO(Q) be such that ||E — EoHsz «(q) < 00, where go will be chosen
later. By using Holder’s inequality and recalling (4.4), we get

1 - - N 1
1| < CP;[(/ |E—Eo||Vv|2(“+1)dx+/ |Eo| |Vv|2<”+1)dx>2+||F|| ||VU||N,,}
Q Q

Y E +1) - !
< CP[([|E = Eolly, o« IIVUIIA”W o T 1Bl Vol + I F1, Vel ]
*1

n

where C = C(N, M, p).

Using now the shortened notation £ = Z(

Z aAlrk?
we have done for 7, we have for I; k

) and arguing similarly

irs

(ut1) 3L
N,f‘y )+ IEoll Ve (R

(u+1)
where Ey € L*(Q) is such that ||[E — E()||LN/7 -
Recalling the estimates of |I/|, i =

1
|55 < Pa(llE — Eo

5[Vl

< ag.
,3, We have that

Py < cill|Fl, ||Vv|| + CPi[(|E

1) ~ 2 1)\1
OCHVUH ”* 1+|\Eo||oo||Vv||2§£L§)z

1)
+\|F||,,||Vv||¢yp}+Pﬁ(|lE—Eo||~ IIVUH o
N—p

,ll+1 )%

where ¢; and C depend on N, M and p.
Hence we deduce with the aid of Young’s inequality that

(4.6)  Pu<alFll; IIVUII eyt () C( —

(u+1)
HVUH 2u+1)
+1) 2
+ ||Eo||oo||VU||2<,’f+1 +IF], ||V”||NNi) + &Py

-

1 2 1
+c(@)(|E - Eolly, .. ||Vv|| iy I Eoll VeIl ).

. 1 .
Choosing ¢ = 7 Ve obtain

1 1)
(4.7) EPﬂ<c1||F|| ||vU|| +C(||E Eoly, IIVUIINJ‘+2 (et 1)

+ | Eoll., HVU||2 D +IIFI HVUII x)

1) 2(p+1)
+c(llE = Eolly, o Voll 5 »” )T ||E0||oo||Vv||2 o))

where C = C(M, N, p). Now observing that

IV(VolVol*)] < (u+ 1)ID%] - [Vol”,
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the use of Sobolev’s inequality yields

2
IVoIVel“|ly.,» < (u+ 1) = 1 D] [Vo]“|,

that is
1) 2 2 1
VOBt 2y < e+ 17 (57=5) 1102 1V0“[3
1.e.
2 2
(u+1) 2
(48) Vel ) < (et D (=) P

Combining (4.7) and (4.8), it follows that

1/N-2 (u+1) ~ 1)
s Y o3y < COFIIVO + (1Bl + 110l ) Vel

+ C(|E — Eolly, . + |1E — Eolly, ..)[IVoll J‘“ (1)’

If we choose

%0 = min{lélc (]ZJ: 12>2 <z\272:%2)2}

and recall that || £ — E()Hﬂ < g9 and that ||E — E0||% < gp we get

o]

~ 2 1
< CUFIRIVOIZ + (1Eoll., + 1Bl ) IVell5 )]
*I

L0

,u+]
(49) IVl

where C = C(M,N,p).
On the other hand, since (4.4) holds, we easily obtain that 2(u + 1) < p* and
therefore that

+1 (u+1)

Hence, by estimate (4.9), we get

1) 2 7 +1)
(4.10) IIVvll v < ClIFIRIVOIE + (1Bl + Bl )Vellsii)
N=p

where C = C(M,N,p).
At this point, the use of Young’s inequality with exponents u + 1 an . and
the fact that, for a convenient choice of 0 < @ < 1, the following inequality holds

d et

1—
IVollagusry < IVO 3 [IVOll ™

we obtain
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1) 1)
(@11 Vel e < ||Vv||ﬂ+ +c(a)|| F|| Y

N—p

a 1—a\2 1
+ Cl1Eolls + 1 Eoll) (170l 5 1Velly ™).

Using again Young’s inequality with exponents and ]—a, we get

(u+1) (u+1) 2 1
||w|| Y < IIVvIIN" + c(e) |||

I’ N=p

1 1)
+e(&)[(I1 Bl + I Eoll o) IIVell) Y + & Vo w’” :
b

: 1 o
Choosing ¢ < 5 and taking into account that Theorem 2.5 holds, we conclude
that

(4.12) HVMIILNN_Q(Q,) < C(IA o) + bl 220))

mmczcmeLm%%AQLﬂﬁmﬁi@Lm)
For an analogous estimate up to the boundary, we obviously have to argue
similarly as we have done in Theorem 3.2 and start from the estimate

621]] 2 ) al) a v 0
. F: — '} J ir s
(4.13) ;/Q/ 8<0xi8xk) b < /Qj S dx ;/Q, Ox; 8x,8x5) a1 o

a@a% 3
8x, X, 6xs 8xk

irks dx
lrk

ov;  0%v;
’ ; /EQmB/. 9(67);[ axra‘;)Airksvk do

=J+h+ I3+ 7,

Since the estimates of |J/|, i = 1,2, 3 are similar to the estimates of |I/|, i =1,2,3
obtained above, we shall give only the estimate of |J;].
To this aim, we recall estimate (2.11) in [15] (see also [13]) and have

il < eIVl g, + PRIV )
with ¢ = ¢(N, M). Therefore similar calculations we have done for (4.6) give

I I 1)
<alFll ||VU]|| ey +c(e)C(|E — Eolly, IIVUJHn”+ (et 1)

+ 1Bl ||Vv,||2 1B IVy1%)
+1
+ 8Pyt c@1E ~ Eolly Vo3

2(u+l) 1
+ 1ol Vo1l + (IIVUJIIZ +P2||VU;||§’Z+1 )



576 F. GIANNETTI AND G. MOSCARIELLO

and applying Young’s inequality to the last term

By < AllBIFIVYI% + 6P+ c@CAE - Bl . IVo3)
o)
+ 2P+ (@) (1E — Eolly .|V Jf“( "

2 1) 1
1 Eoll IV 294 ) + &Py + () [V 120 )

1)
,u+l)

Choosing & = ¢ we get

1 1)
FPu< al| | IIVUJII .+ C(IIE = Eolly, .. V)] N/”

(u+1)

~ +] 2
+ ||Eo||w||wjn2 o) + 1B 7192113 )
N=p

1)
c(|[E = Eolly, ., [ Vo] w”f (it 1)

(u+1)
+ 1ol IV ll3taty)) + ellVeyl13(aty)

that is similar to (4.7). Hence, if we carry on arguing as for (4.12), we obtain

(4.14) Vol e CUIS N zry) + bl 20))

and therefore, taking into account that Q C |J”, B;, the estimate up to the
boundary follows. The global estimate (4.2) can be therefore obtained recalling
also the inequality (1.4). |
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