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Abstract. — This note is concerned with the Poisson equation in the unit disk of the complex

plane. Our setting is in the Sobolev space W1; pðDÞ with exponent 1 < p < l. Such a setting with
pA 2 is referred to as beyond the natural domain of definition. The novelty lies in the use of a sin-

gular integral called Beurling Transform.
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1. Introduction

Throughout this note D is the unit disk in the complex plane D ¼ fz a C :
jzj < 1g, and qD ¼ S1 ¼ fz a C : jzj ¼ 1g. To every exponent 1 < p < l there
corresponds its Hölder conjugate exponent defined by the rule pq ¼ pþ q.

We will make use of the Cauchy-Riemann derivatives:
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; where z ¼ xþ iy:

In general, to every PDE (linear or nonlinear) there corresponds the so-called
natural domain of its definition. For the Poisson equation

Du ¼ div f in D;

the natural domain consists of a given vector field f a L2ðD;R2Þ and unknown
function u in the Sobolev space W1;2

0 ðDÞ. In such setting the unique solution is
found by minimizing the energy functional

E ½u� ¼
Z
D

ðj‘uj2 � 23‘u j f 4Þ; 3� j �4� the usual scalar product in R2:

However, this variational approach is unavailable when f a LpðD;R2Þ, pA 2.
The singular integrals come into play.



An appropriate formulation of the Poisson equation takes the form:

Du ¼ j a W�1;pðDÞ for u a W1;pðDÞ; 1 < p < l:ð1:1Þ

Here W�1;pðDÞ ¼ ½W1;q
0 ðDÞ�� stands for the dual space of W1;q

0 ðDÞ, pq ¼ pþ q.
The existence, uniqueness and estimates are well known in even more general
context. We refer the interested reader to [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [15], [16], [17], [18], [19], [20], for fuller discussion.

We shall make use of the Riemann–Hilbert first order system of PDE’s in
the complex plane. The Lp-estimates are reduced to a singular integral operator
widely known as Beurling Transform. This method gains additional interest be-
cause the Beurling transform connects two homotopy classes of the first order

elliptic PDEs; precisely, it takes
qh

qz
into

qh

qz
for all h a W

1;p
0 ðDÞ, 1 < p < l.

2. Setting Poisson equation for f a W
�1;p
0 ðDÞ

The Laplace operator takes the Sobolev space W
1;p
0 ðDÞ into W�1;pðDÞ,

1 < p < l in symbols;

Du ¼ f a W�1;pðDÞ; for u a W
1;p
0 ðDÞ:ð2:1Þ

In fact the space W�1;pðDÞ consists of Schwartz distributions of the form

f ¼ div f ; where f a LpðD;R2Þ:

The action of a linear functional

f : W1;q
0 ðDÞ ! R on the test function v a W

1;q
0 ðDÞ

is given by the rule

f½v� ¼ �
Z
D

3 f j‘v4:

This integral does not depend on the choice of the vector field f once it represents
f ¼ div f . The norm of such f is defined as follows:

kfkW�1; pðDÞ ¼ inffk f kLpðDÞ; div f ¼ fg

It is clear that

D : W1;p
0 ðDÞ ! W�1;pðDÞ
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Theorem 2.1. For every f a W�1;pðDÞ, 1 < p < l, there exists a unique
u a W

1;p
0 ðDÞ such that

Du ¼ f in D:ð2:2Þ

Moreover, we have a uniform bound

k‘ukLpðDÞ aCpkfkW�1; pðDÞ:ð2:3Þ

This gives rise to the Poisson operator

P : W�1;pðDÞ ! LpðD;R2Þ;

which assigns to every f a W�1;pðDÞ the gradient field ‘u a LpðD;R2Þ. The
Poisson operator is continuous.

The proof goes in three steps:

• Step 1 Uniqueness of the solution to (2.2)

• Step 2 Existence of the solution to (2.2)

• Step 3 Estimate (2.3)

3. Uniqueness

Surprisingly, step 1 is not obvious when 1 < p < 2. The problem reduces to
showing that the Laplace equation

Du ¼ 0; for u a W
1;p
0 ðDÞ;ð3:1Þ

admits only trivial solution uC 0. The weak form of the Laplace equation reads
as follows Z

D

3‘u j‘v4 ¼ 0 for all v a Cl
0 ðDÞ:

Clearly, this equation also holds for all v a W
1;q
0 ðDÞ, by an approximation argu-

ment. To prove the uniqueness we need two Lemmas; the second one concludes
the proof of the uniqueness.

Lemma 3.1. For every v a W
1;p
0 ðDÞ and c a ClðDÞ it holds:

Z
D

ðvzcz � vzczÞ dsðzÞ ¼ 0; dsðzÞ ¼ dx dyð3:2Þ

Proof. In view of density of Cl
0 ðDÞ in W

1;p
0 ðDÞ, it su‰ces to prove (3.2) for

v a Cl
0 ðDÞ. In this case the equation is immediate from Stokes’ Theorem:
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Z
D

ðvzcz � vzczÞ dsðzÞ ¼
i

2

Z
D

d½vcz dzþ vcz dz�

¼ i

2

Z
qD

½vcz dzþ vcz dz� ¼ 0: r

Lemma 3.2. The Laplace Equation

Du ¼ 0

for u a W
1;p
0 ðDÞ, 1a p < l, has only trivial solution, uC 0.

Proof. Let us begin with the case 2a p < l in which W
1;p
0 ðDÞ � W1;2

0 ðDÞ.
It is a simple matter of integration by parts to see that the Dirichlet energy of u
vanishes. Indeed, the weak form of the Laplace equation reads as,Z

D

3‘u j‘w4 dx dy ¼ 0 for all w a W1;2
0 ðDÞ:

Letting w ¼ u we conclude with ‘uC 0. Thus u is constant and, in view of the
zero boundary condition, uC 0.

The case 1a p < 2 requires more work. The idea is to show that u actually
belongs to W1;2

0 ðDÞ. In fact we are going to show that u extends as Cl-smooth
function on the entire complex plane. For this purpose, consider a measurable
function defined in C by the rule:

gðzÞ ¼ uzðzÞ for jzj < 1

z�2uzð1=zÞ for jzj > 1:

�
ð3:3Þ

It is immaterial what values of gðzÞ are prescribed on the circle S1. Notice that g
is analytic in D, because

q

qz
gðzÞ ¼ uzz ¼

1

4
Du ¼ 0:ð3:4Þ

For all z a CnS1 we have the following relation

gðzÞ ¼ z�2gð1=zÞ; equivalently gð1=zÞ ¼ z2gðzÞ:ð3:5Þ

This shows that g is also analytic in CnD. With the aid of Weyl’s Lemma we shall
show that g is analytic in C. Weyl’s Lemma asserts that a function g a L1

locðCÞ is
analytic if and only ifZ

C

gðzÞhzðzÞ dsðzÞ ¼ 0; for every test function h a Cl
0 ðCÞ:ð3:6Þ

Since g is analytic in both D and CnD we may, and do, assume that h is sup-
ported in a neighborhood of S1 ¼ qD. Precisely, h a Cl

0 ðsÞ wheres¼
�
z a C :
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0 < r < jzj < 1
r
< l

�
. We decompose h as hðzÞ ¼ jðzÞ þ cðzÞ, where

jðzÞ ¼ 1

2
½hðzÞ � hð1=zÞ� and cðzÞ ¼ 1

2
½hðzÞ þ hð1=zÞ�

Here both j and c belong to Cl
0 ðsÞ. In addition, we note that j ¼ 0 on S1. In

particular, j a W
1;q
0 ðDÞBW

1;q
0 ðCnDÞ, with 2 < qal. This yieldsZ

C

gjz ¼
Z
D

gjz þ
Z
CnD

gjz ¼ 0þ 0 ¼ 0:

The computation of the term
R
C
gcz is more involved. As before, we split

this integral into two integrals; one over D and the other over CnD. We trans-
form the integral over CnD into an integral over D, simply by changing the

variable z into 1=z. The Jacobian of this transformation equals jzj�4, so we
have Z

C

gðzÞczðzÞ dsðzÞ ¼
Z
D

gðzÞczðzÞ dsðzÞ þ
Z
CnD

gðzÞczðzÞ dsðzÞð3:7Þ

¼
Z
D

gðzÞczðzÞ dsðzÞ þ
Z
D

gð1=zÞczð1=zÞ
dsðzÞ
jzj4

:

Analogously to (3.5), we have the following identity

czð1=zÞ ¼ �z2czðzÞ; for every z a C

Hence the latter integral takes the form

�
Z
D

z2gðzÞz2czðzÞ
dsðzÞ
jzj4

:

Therefore, by the definition of g,Z
C

gðzÞczðzÞ dsðzÞ ¼
Z
D

½gðzÞczðzÞ � gðzÞczðzÞ� dsðzÞð3:8Þ

¼
Z
D

½uzðzÞczðzÞ � uzðzÞczðzÞ� dsðzÞ

¼
Z
D

½uzðzÞczðzÞ � uzðzÞczðzÞ� dsðzÞ

because uz ¼ uz for real functions. Applying Lemma 3.1 we getZ
C

ghz ¼ 0 for every h a Cl
0 ðCÞ:
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In conclusion, by Weyl’s Lemma, g is an entire function. It follows from the
definition of g that limz!l gðzÞ ¼ 0. Liouville’s Theorem tells us that gC 0, im-
plying that uzC 0 in D. Since u a W

1;p
0 ðDÞ, it follows that uC 0. r

4. Existence of the solution

Given f a W�1;pðDÞ we shall construct u a W
1;p
0 ðDÞ which satisfies the equation

Du ¼ f

u a W
1;p
0 ðDÞ:

�

Choose and fix any representation of f in the form

f ¼ div f ; where f ¼ ðA;BÞ a LpðD;R2Þ:

It is convenient to look at f as complex valued function f ¼ Aþ iB a LpðD;CÞ,
note that

fz ¼
1

2
ð fx � ifyÞ ¼

1

2
ðAx þ iBx � iAy þ ByÞ:

Thus

div f ¼ 2Re fz:

Next we solve the Riemann–Hilbert boundary value problem:

hz ¼ f for h a W1;pðD;CÞ
Re h a W

1;p
0 ðDÞ 1 < p < l:

(

This problem admits a solution of the form

hðzÞ ¼ 1

p

Z
D

� f ðtÞ
z� t

� zf ðtÞ
1� zt

�
dsðtÞ

see Section 4.8.1 in [3], formula (4.134). We have

hz ¼ f and hz ¼ SD f ;

where the singular integral operator SD : LpðDÞ ! LpðDÞ, 1 < p < l, is
known as Beurling transform in D. The explicit formula reads as

SD f ðzÞ ¼ � 1

p

Z
D

� f ðtÞ
ðz� tÞ2

� f ðtÞ
ð1� ztÞ2

�
dsðtÞ:

We have

kSD f kL p aCpk f kLp
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for some constant Cp b 1. This constant can be computed in terms of the norm
of Berling transform, see [3] Section 4.8.2.

Now we define

u ¼ 1

2
Re h a W

1;p
0 ðDÞ:

The following complex derivatives are understood in the sense of Schwartz
distributions:

Du ¼ 4uzz ¼ 2ðRe hÞzz
¼ ðhþ hÞzz ¼ ðhzz þ hzzÞ
¼ ð fz þ fzÞ ¼ 2Re fz ¼ div f

as desired.

Remark 4.1. Uniqueness may also be deduced from the existence result, by
so-called duality argument. Indeed, we want to prove that if v solves the homoge-
neous boundary value problem

Dv ¼ 0

v a W
1;q
0 ðDÞ

�
ð4:1Þ

then vC 0. To this end, we solve the problem

Du ¼ divðj‘vjq�2‘vÞ
u a W

1;p
0 ðDÞ

(
ð4:2Þ

We can use u as a test function for (4.1) and v as a test function for (4.2). This
yields

0 ¼
Z
D

3‘v j‘u4 ¼
Z
D

j‘vjq:

5. The Lp
-estimate

Inequality (2.3) is immediate

k‘ukLpðDÞ ¼ 2kuzkLpðDÞ

¼ 1

2
kðhþ hÞzkLpðDÞ

¼ 1

2
khz þ hzkL pðDÞ ¼

1

2
kSD f þ f kLpðDÞ

a
1

2
kSD f kL pðDÞ þ

1

2
k f kLpðDÞ aCpk f kL pðDÞ:

In conclusion, the Poisson operatorP : W�1;pðDÞ ! LpðDÞ is continuous.
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Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM).

References

[1] A. Alberico - A. Cianchi - C. Sbordone, Gradient regularity for quasilinear elliptic

Dirichlet problems in the plane, Nonlinear Anal. 145 (2016), 143–161.

[2] A. Alberico - V. Ferone, Regularity properties of solutions of elliptic equations in R2

in limit cases, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9), Mat.
Appl. 6 (1995), 237–250.

[3] K. Astala - T. Iwaniec - G. Martin, Elliptic Partial Di¤erential Equations and

Quasiconformal Mappings in the Plane, Princeton University Press, 2009.

[4] K. Astala - T. Iwaniec - Tadeusz, E. Saksman, Beltrami operators in the plane,
Duke Math. J. 107 (2001), no. 1, 27–56.

[5] P. Auscher - A. McIntosh - M. Mourgoglou, On L2 solvability of BVPs for

elliptic systems, J. Fourier Anal. Appl. 19 (2013), 478–494.
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