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Partial Differential Equations — Stability of evolution equations with small com-
mutators in a Banach space, by MICHAEL GIL’, communicated on April 20, 2018.

ABSTRACT. — Let 4 be a generator of a Cp-semigroup in a Banach space 2, and B(¢) (¢ > 0)
be a variable bounded piece-wise strongly continuous operator in 2. We consider the equation
dy(t)/dt = (A+ B(1)) y(¢) (t=0). It is assumed that the commutator K(#) = AB(t) — B(t)A4 is a
bounded operator. Under that condition, exponential stability conditions are derived in terms of
the commutator.
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l. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let Z be a Banach space with a norm ||.|| and the identity operator /. By #(Z)
the set of all bounded operators in % is denoted. For a linear operator C,
Dom(C) is the domain. If C € Z(%), then ||C|| is its operator norm.

Throughout this paper A is a generator of a Cy-semigroup e' on X, and B(t)
(t>=0) is a variable bounded piece-wise strongly continuous operator mapping
Dom(A) into itself for each t > 0. We will investigate exponential stability condi-
tions for the equation

(1.1) dyT(tl)z(AJrB(t))y(z) (t=>0).

It is assumed that the commutator K(7) = AB(t) — B(t)A is uniformly bounded
on [0,00), i.e. the norms of (AB(t) — BA(t))x (x € Dom(4), ||x| = 1) are uni-
formly bounded. So AB(¢) — B(t)A can be extended to 2" as a bounded operator.
That extension is denoted by K(#). Moreover,

(1.2) K :=sup ||K(?)|| < 0.
>0

A solution to (1.1) for given yy € Dom(A4) is a function y : [0, c0) — Dom(A4)
having at each point ¢ > 0 a strong derivative, at zero the right strong derivative,
and satisfying (1.1) for all 7 > 0 and y(0) = yy. Since B(¢) is bounded, maps the
domain of 4 into itself, and A is a generator of a Cy-semigroup, the existence,
uniqueness and continuous dependence on initial vectors of solutions is due to
the well-known Theorem 11.3.4 [10].
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Equation (1.1) is said to be exponentially stable, if there are positive constants
M and &, such that || y(¢)|| < M exp|—et]||y(0)]| (# > 0) for any solution y(z) of
(1.1).

Equation (1.1) can be considered as the equation
dy(t
(1.3) # = C()»(1)

with a variable linear operator C(z). Observe that C(z) in the considered case has
a special form: it is the sum of operators 4 and B(¢). This fact allows us to use the
information about the coefficients more completely than the theory of differential
equations (1.3) containing an arbitrary operator C(¢).

The literature on stability theory of differentievolution equations in a Banach
space is very rich, cf. [1]-[6], [11]-[14] and the references given therein, but to the
best of our knowledge, stability conditions for equation (1.1) in terms of the com-
mutator were not investigated. Note that equation (1.1) is usually considered as
a perturbation of a stable semigroup generated by 4 (see e.g. [7, 8, 9], and refer-
ences given in these papers). At the same time as we will see, stability conditions
in terms of the commutator enable us to investigate equations with an unstable
semigroup e’ This fact, in particular, is important for stabilization of systems
with distributed parameters.

Let Ug(t,s) (t > s > 0) be the evolution operator of the equation

(1.4) u(t) = B(t)u(t) (t=0).
Suppose that there are constants ¢y > 1 and by € R, such that
(1.5) |Ug(2,)|| < coexplbo(t—s)] (t=s5=>0).
Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. Let conditions (1.2) and (1.5) hold, and the operator A + byl gen-
erate an exponentially stable semigroup A" In addition, let

0 2
(1.6) «:::Kco(/o e+ dr)” < 1.

Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. It is sharp: if B(¢)f = bof (f € ¥),
then { = 0 and Theorem 1.1 gives us necessary and sufficient exponential stability
conditions for (1.1): e“*?)) should be exponentially stable.

2. PROOF OF THEOREM 1.1

Put [, B(r)] := "1 B(r) — B(r)e™".
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LEMMA 2.1. Let A generate a Cy-semigroup e, B(r) € B(Z) (r =0) map
Dom(A) into itself and condition (1.2) hold. Then for all r,t >0 the operator
[e!, B(r)] == e B(r) — B(r)e?" is bounded and

t
[ed, B(r)] = / K (r)el =94 ds.
0

Moreover, [e?!, B(r)] maps Dom(A) into itself.

PROOF. On Dom(A4) we have
t t
/ e K (r)e! M ds = / e (AB(r) — B(r)A)e!" 9" ds
0 0

t
—/ (e“'AAB(r)e(H)A —eSAB(r)Ae(’*"')A)ds
0

t
_ J sA (1—s)4 sA J (1—s5)A
/ (ds B(r)e + e B(r) i )ds

= [ e B ds = e
= e B(r) — B(r)e™.

Since the operator [; e K(r)e""94 ds is bounded, and B(r) maps Dom(4) into
itself, we get the required result. O

Denote by X(z,s) the evolution operator of (I1.1) and put Y(z,s) =
A=) Upg(t, s), and

1Z]l¢ == sup [[Z(z )]

t>5>0

for an operator function Z(z, s) uniformly bounded on 0 < s <t < 0.

LEMMA 2.2. With the notation F(t,s) := [e4=9) B(t)]Up(t,s) (t=s=0), let
| Y]l < o0 and

2.1) 2(F) = Sgp/% IF(1, )| di < 1.
Then
||YH
and
23) ¥ - v < 20 e.

1 —y(F)



Note that
@¥?&=M+BMMﬁ@h(h“”m“”
DI (4 Up(1,9) 4+ M B0 Ut )

= (4 + B(1))e " Ug(t,s) + e B(t) U(t, s)
— B(1)e ") Up(1, 5))h
=(A+B(1)Y(t,s)h+ F(t,s)h (h e Dom(A4)).
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Due to Lemma 2.1, operator F(¢,s) is bounded for all finite ¢, s and maps
Dom(A) into itself. Subtracting (2.4) from (2.5), on Dom(A4) we get

(2.6)

dYW = XWD) _ 44 B)(Y(t,5) — X(1,5)) + F(t,5).

By the differentiation we obtain

(Y(1,5) = X (1, $))h = / CX(e,50)F(s1,5)hds (h € Dom(A)).

Since Dom(A4) is dense, and Y(¢,s), X(¢,5) and F(¢,s) are bounded, we can

write
t
Y(t,5) — X(t,5) = / X (t,51)F(s1,s)ds).
Consequently,
t
(2.7) 1Y (1,8) = X(1,9)]| < / X (2, sO) || 1F (s1,5) [ s,

and therefore,

(2.8)

X (@ s)l < 1Y (2, 9)]] +/I||X(Z,S1)|I [ Cs1, )| s

Hence, for any finite 7 > s we obtain

sup ([ X (v, 9)[| < | Y]lc+ sup [ X(v,5)|[7(F).

0<s<ov<t 0<s<v<t
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Now (2.1) implies

(2.9) sup || X (v, 9)[| < [|Y][c/(1 = 7(F)).

0O<s<v<t

This proves (2.2). From (2.7) and (2.2), inequality (2.3) follows. This proves the
lemma. O

PrROOF OF THEOREM 1.1. By Lemma 2.1,
1E (e )l < ([, BOI | Up(t,9)]
< x| Us(z,5)]| /’ e ]| d.
Hence,
| I < ),
where

oe] !
i) = [ Ut )] [ e 0 dvr
s N
So y(F) < sup, j(s). From (1.5) and stability of e+/) it follows || Y|~ < oo and
o0 t
I(s) < KCo/ ebo(’_s>/ 14| {|e4@=) || dv dr
o o0
_ KC‘()/ ||eA(vfs) ” / ”eA(tfv) ”ebg(tfs) di dv
[e 0] o0
= K¢ / HeA(v—s) ” / ||eAt1 ||eb0(t1+v—s) dt, dv
K 0

_ /ao ||e(A+bo)(v—s)|| dv/oo ||e(A+bo)t1 H dt,.
K 0

Thus
2
P(F) < KCO||€<A+b°I>IHL'(0,oo)-

Here

||e(A+b01)t||Ll(0,OO) _/0 et gy,
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Now (1.6) and Lemma 2.2 prove relations (2.2) and (2.3). Inequality (2.2) means
that (1.1) is Lyapunov stable. Furthermore, substitute

(2.10) (1) = u(t)e™™ (¢ >0)
into (1.1). Then
(2.11) du,(t)/dt = (A + B(t) + &l )u,(1).

If ¢ is small enough, then conditions (1.2), (1.5) and (1.6) hold with B(z) + &l
instead of B(?).

Applying our above arguments to equation (2.11) we can assert that (2.11)
is Lyapunov stable. So due to (2.10) equation (1.1) is exponentially stable. This
proves the theorem. |

3. EXAMPLE

Consider the problem

o u

(3.2) u(t,0) = u(t,1) =0 (1> 0),

+ T(x)u+M(tu (u=u(t,x),0<x<1),

where is T'(x) is a twice continuously differentiable in x n x n-matrix function
defined on [0, 1]; M (¢) is a piece-wise continuous n x n-matrix, independent of x
and uniformly bounded on [0, o0).

Take 2 = L*([0,1];C") — the Hilbert space of n-vector valued functions
defined on [0, 1] with the scalar product

(v,w) = /Ol(v(x), w(x)),dx (v,we L2([O, 1;C"),

is the scalar product in C". For brevity put L*([0,1];C") = L2.

n

where (-, )
Take

(Af)(x) = f"(x) + T(x)f(x) and (B(1)f)(x) = M(1)[(x)
(feDom(4); 0<x<1,1>0)
with
Dom(A) = {he L?:h" e L2, h(0) = h(1) = 0}.

Then K(#) = T(x)M(t) — M(t)T(x) and

ne

i = sup [K (1) = sup|| T(x)M(1) = M()T ()]
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Here || - [|_+/(+, ) is the norm in L? and || - ||, is the norm in C". Simple calcula-
tions show that ||e!|| < exp[—(z — A(T)){] (¢ = 0), where

A(T) := sup sup R(T'(x)h,h),/(h,h),.

X heC"
Assume that the evolution operator Uy, (z,s) of the matrix differential equation
o(t) = M(t)v(r) (t=0)
satisfies the inequality
(3.3) |Um(t,s)|l, < coexplbo(t —s)] (1t =s5=>0).
Then condition (1.5) holds. If, in addition,
(3.4) n—NA(T)—by >0,
then

* 1
~(r=A(T)=bo)t gy .
/0 ¢ 7 — A(T) — bo
Now Theorem 1.1 implies the following result.
Let the conditions (3.3), (3.4) and

Ko <1
(m— A(T) = by)’

hold. Then equation (3.1) is exponentially stable.
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