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Partial Di¤erential Equations — Stability of evolution equations with small com-
mutators in a Banach space, by Michael Gil’, communicated on April 20, 2018.

Abstract. — Let A be a generator of a C0-semigroup in a Banach space X, and BðtÞ ðtb 0Þ
be a variable bounded piece-wise strongly continuous operator in X. We consider the equation
dyðtÞ=dt ¼ ðAþ BðtÞÞyðtÞ ðtb 0Þ. It is assumed that the commutator KðtÞ ¼ ABðtÞ � BðtÞA is a

bounded operator. Under that condition, exponential stability conditions are derived in terms of
the commutator.
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1. Introduction and statement of the main result

Let X be a Banach space with a norm k:k and the identity operator I . By BðXÞ
the set of all bounded operators in X is denoted. For a linear operator C,
DomðCÞ is the domain. If C a BðXÞ, then kCk is its operator norm.

Throughout this paper A is a generator of a C0-semigroup eAt on X, and BðtÞ
ðtb 0Þ is a variable bounded piece-wise strongly continuous operator mapping
DomðAÞ into itself for each tb 0. We will investigate exponential stability condi-
tions for the equation

dyðtÞ
dt

¼ ðAþ BðtÞÞyðtÞ ðtb 0Þ:ð1:1Þ

It is assumed that the commutator KðtÞ ¼ ABðtÞ � BðtÞA is uniformly bounded
on ½0;lÞ, i.e. the norms of ðABðtÞ � BAðtÞÞx ðx a DomðAÞ; kxk ¼ 1Þ are uni-
formly bounded. So ABðtÞ � BðtÞA can be extended to X as a bounded operator.
That extension is denoted by KðtÞ. Moreover,

k :¼ sup
tb0

kKðtÞk < l:ð1:2Þ

A solution to (1.1) for given y0 a DomðAÞ is a function y : ½0;lÞ ! DomðAÞ
having at each point t > 0 a strong derivative, at zero the right strong derivative,
and satisfying (1.1) for all t > 0 and yð0Þ ¼ y0. Since BðtÞ is bounded, maps the
domain of A into itself, and A is a generator of a C0-semigroup, the existence,
uniqueness and continuous dependence on initial vectors of solutions is due to
the well-known Theorem II.3.4 [10].



Equation (1.1) is said to be exponentially stable, if there are positive constants
M and e, such that kyðtÞkaM exp½�et�kyð0Þk ðtb 0Þ for any solution yðtÞ of
(1.1).

Equation (1.1) can be considered as the equation

dyðtÞ
dt

¼ CðtÞyðtÞð1:3Þ

with a variable linear operator CðtÞ. Observe that CðtÞ in the considered case has
a special form: it is the sum of operators A and BðtÞ. This fact allows us to use the
information about the coe‰cients more completely than the theory of di¤erential
equations (1.3) containing an arbitrary operator CðtÞ.

The literature on stability theory of di¤erentievolution equations in a Banach
space is very rich, cf. [1]–[6], [11]–[14] and the references given therein, but to the
best of our knowledge, stability conditions for equation (1.1) in terms of the com-
mutator were not investigated. Note that equation (1.1) is usually considered as
a perturbation of a stable semigroup generated by A (see e.g. [7, 8, 9], and refer-
ences given in these papers). At the same time as we will see, stability conditions
in terms of the commutator enable us to investigate equations with an unstable
semigroup eAt. This fact, in particular, is important for stabilization of systems
with distributed parameters.

Let UBðt; sÞ ðtb sb 0Þ be the evolution operator of the equation

_uuðtÞ ¼ BðtÞuðtÞ ðtb 0Þ:ð1:4Þ

Suppose that there are constants c0 b 1 and b0 a R, such that

kUBðt; sÞka c0 exp½b0ðt� sÞ� ðtb sb 0Þ:ð1:5Þ

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.2) and (1.5) hold, and the operator Aþ b0I gen-

erate an exponentially stable semigroup eðAþb0IÞt. In addition, let

z :¼ kc0

�Z l

0

keðAþb0IÞtk dt
�2

< 1:ð1:6Þ

Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. It is sharp: if BðtÞ f ¼ b0 f ð f a XÞ,
then z ¼ 0 and Theorem 1.1 gives us necessary and su‰cient exponential stability
conditions for (1.1): eðAþb0IÞt should be exponentially stable.

2. Proof of Theorem 1.1

Put ½eAt;BðrÞ� :¼ etABðrÞ � BðrÞeAt.
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Lemma 2.1. Let A generate a C0-semigroup eAt, BðrÞ a BðXÞ ðrb 0Þ map
DomðAÞ into itself and condition (1.2) hold. Then for all r; tb 0 the operator
½eAt;BðrÞ� :¼ etABðrÞ � BðrÞeAt is bounded and

½eAt;BðrÞ� ¼
Z t

0

esAKðrÞeðt�sÞA ds:

Moreover, ½eAt;BðrÞ� maps DomðAÞ into itself.

Proof. On DomðAÞ we have
Z t

0

esAKðrÞeðt�sÞA ds ¼
Z t

0

esAðABðrÞ � BðrÞAÞeðt�sÞA ds

¼
Z t

0

ðesAABðrÞeðt�sÞA � esABðrÞAeðt�sÞAÞ ds

¼
Z t

0

� q

ds
esABðrÞeðt�sÞA þ esABðrÞ q

ds
eðt�sÞA

�
ds

¼
Z t

0

q

ds
ðesABðrÞeðt�sÞAÞ ds ¼ esABðrÞeðt�sÞAj ts¼0

¼ eAtBðrÞ � BðrÞeAt:

Since the operator
R t

0 e
sAKðrÞeðt�sÞA ds is bounded, and BðrÞ maps DomðAÞ into

itself, we get the required result. r

Denote by X ðt; sÞ the evolution operator of (1.1) and put Yðt; sÞ ¼
eAðt�sÞUBðt; sÞ, and

kZkC :¼ sup
tbsb0

kZðt; sÞk

for an operator function Zðt; sÞ uniformly bounded on 0a sa t < l.

Lemma 2.2. With the notation F ðt; sÞ :¼ ½eAðt�sÞ;BðtÞ�UBðt; sÞ ðtb sb 0Þ, let
kYkC < l and

gðFÞ :¼ sup
s

Z l

s

kF ðt; sÞk dt < 1:ð2:1Þ

Then

kXkC a
kYkC

1� gðF Þð2:2Þ

and

kX � YkC a
gðFÞkYkC
1� gðFÞ :ð2:3Þ
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Proof. Note that

dXðt; sÞh
dt

¼ ðAþ BðtÞÞX ðt; sÞh ðh a DomðAÞÞð2:4Þ

and

dYðt; sÞh
dt

¼ ðAeAðt�sÞUBðt; sÞ þ eAðt�sÞBðtÞUBðt; sÞÞhð2:5Þ

¼ ððAþ BðtÞÞeAðt�sÞUBðt; sÞ þ eAðt�sÞBðtÞUBðt; sÞ
� BðtÞeAðt�sÞUBðt; sÞÞh

¼ ðAþ BðtÞÞY ðt; sÞhþ Fðt; sÞh ðh a DomðAÞÞ:

Due to Lemma 2.1, operator Fðt; sÞ is bounded for all finite t, s and maps
DomðAÞ into itself. Subtracting (2.4) from (2.5), on DomðAÞ we get

dðYðtÞ � X ðtÞÞ
dt

¼ ðAþ BðtÞÞðY ðt; sÞ � X ðt; sÞÞ þ F ðt; sÞ:ð2:6Þ

By the di¤erentiation we obtain

ðY ðt; sÞ � Xðt; sÞÞh ¼
Z t

s

Xðt; s1ÞF ðs1; sÞh ds1 ðh a DomðAÞÞ:

Since DomðAÞ is dense, and Y ðt; sÞ, X ðt; sÞ and F ðt; sÞ are bounded, we can
write

Y ðt; sÞ � Xðt; sÞ ¼
Z t

s

Xðt; s1ÞFðs1; sÞ ds1:

Consequently,

kYðt; sÞ � Xðt; sÞka
Z t

s

kX ðt; s1Þk kFðs1; sÞk ds1;ð2:7Þ

and therefore,

kX ðt; sÞka kY ðt; sÞk þ
Z t

s

kX ðt; s1Þk kF ðs1; sÞk ds1:ð2:8Þ

Hence, for any finite t > s we obtain

sup
0asavat

kX ðv; sÞka kYkC þ sup
0asavat

kXðv; sÞkgðFÞ:
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Now (2.1) implies

sup
0asavat

kX ðv; sÞka kYkC=ð1� gðFÞÞ:ð2:9Þ

This proves (2.2). From (2.7) and (2.2), inequality (2.3) follows. This proves the
lemma. r

Proof of Theorem 1.1. By Lemma 2.1,

kF ðt; sÞka k½eAðt�sÞ;BðtÞ�k kUBðt; sÞk

a kkUBðt; sÞk
Z t

s

keAðv�sÞk keAðt�vÞk dv:

Hence,

Z l

s

kF ðt; sÞk dta ĝgðsÞ;

where

ĝgðsÞ :¼ k

Z l

s

kUBðt; sÞk
Z t

s

keAðv�sÞk keAðt�vÞk dv dt:

So gðF Þa sups ĝgðsÞ. From (1.5) and stability of eðAþb0IÞt it follows kYkC < l and

ĝgðsÞa kc0

Z l

s

eb0ðt�sÞ
Z t

s

keAðt�vÞk keAðv�sÞk dv dt

¼ kc0

Z l

s

keAðv�sÞk
Z l

v

keAðt�vÞkeb0ðt�sÞ dt dv

¼ kc0

Z l

s

keAðv�sÞk
Z l

0

keAt1keb0ðt1þv�sÞ dt1 dv

¼
Z l

s

keðAþb0Þðv�sÞk dv
Z l

0

keðAþb0Þt1k dt1:

Thus

gðFÞa kc0keðAþb0IÞtk2L1ð0;lÞ:

Here

keðAþb0IÞtkL1ð0;lÞ ¼
Z l

0

keðAþb0IÞtk dt:
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Now (1.6) and Lemma 2.2 prove relations (2.2) and (2.3). Inequality (2.2) means
that (1.1) is Lyapunov stable. Furthermore, substitute

yðtÞ ¼ ueðtÞe�et ðe > 0Þð2:10Þ

into (1.1). Then

dueðtÞ=dt ¼ ðAþ BðtÞ þ eIÞueðtÞ:ð2:11Þ

If e is small enough, then conditions (1.2), (1.5) and (1.6) hold with BðtÞ þ eI
instead of BðtÞ.

Applying our above arguments to equation (2.11) we can assert that (2.11)
is Lyapunov stable. So due to (2.10) equation (1.1) is exponentially stable. This
proves the theorem. r

3. Example

Consider the problem

q

qt
u ¼ q2u

qx2
þ TðxÞuþMðtÞu ðu ¼ uðt; xÞ; 0 < x < 1Þ;ð3:1Þ

uðt; 0Þ ¼ uðt; 1Þ ¼ 0 ðt > 0Þ;ð3:2Þ

where is TðxÞ is a twice continuously di¤erentiable in x n� n-matrix function
defined on ½0; 1�; MðtÞ is a piece-wise continuous n� n-matrix, independent of x
and uniformly bounded on ½0;lÞ.

Take X ¼ L2ð½0; 1�;CnÞ – the Hilbert space of n-vector valued functions
defined on ½0; 1� with the scalar product

ðv;wÞ ¼
Z 1

0

ðvðxÞ;wðxÞÞn dx ðv;w a L2ð½0; 1�;CnÞÞ;

where ð� ; �Þn is the scalar product in Cn. For brevity put L2ð½0; 1�;CnÞ ¼ L2
n .

Take

ðAf ÞðxÞ ¼ f 00ðxÞ þ TðxÞ f ðxÞ and ðBðtÞ f ÞðxÞ ¼ MðtÞ f ðxÞ
ð f a DomðAÞ; 0a xa 1; tb 0Þ

with

DomðAÞ ¼ fh a L2
n : h 00 a L2

n ; hð0Þ ¼ hð1Þ ¼ 0g:

Then KðtÞ ¼ TðxÞMðtÞ �MðtÞTðxÞ and

k ¼ sup
t

kKðtÞk ¼ sup
x; t

kTðxÞMðtÞ �MðtÞTðxÞkn:
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Here k � k¼
ffiffiffiffiffiffiffiffiffiffi
ð� ; �Þ

p
is the norm in L2

n and k � kn is the norm in Cn. Simple calcula-
tions show that keAtka exp½�ðp�LðTÞÞt� ðtb 0Þ, where

LðTÞ :¼ sup
x

sup
h ACn

<ðTðxÞh; hÞn=ðh; hÞn:

Assume that the evolution operator UMðt; sÞ of the matrix di¤erential equation

_vvðtÞ ¼ MðtÞvðtÞ ðtb 0Þ

satisfies the inequality

kUMðt; sÞkn a c0 exp½b0ðt� sÞ� ðtb sb 0Þ:ð3:3Þ

Then condition (1.5) holds. If, in addition,

p�LðTÞ � b0 > 0;ð3:4Þ

then

Z l

0

e�ðp�LðTÞ�b0Þt dt ¼ 1

p�LðTÞ � b0
:

Now Theorem 1.1 implies the following result.

Let the conditions (3.3), (3.4) and

kc0

ðp�LðTÞ � b0Þ2
< 1

hold. Then equation (3.1) is exponentially stable.

References

[1] F. Alabau - P. Cannarsa - V. Komornik, Indirect internal stabilization of weakly

coupled evolution equations, J. Evol. Equ. 2(2) (2002), 127–150.

[2] C. Chicone - Yu. Latushkin, Evolution Semigrous in Dynamical Systems and Di¤er-

ential Equations, Amer. Math. Soc., Math. Surv. and Monographs 70, 1999.

[3] A. Cialdea - F. Lanzara, Stability of solutions of evolution equations, Rend. Lincei
Mat. Appl. 24 (2013), 451–469.

[4] R. Curtain - J. Oostveen, Necessary and su‰cient conditions for strong stability of

distributed parameter systems, Systems & Control Letters 37 (1999), 11–18.

[5] V. Dragan - T. Morozan, Criteria for exponential stability of linear di¤erential

equations with positive evolution on ordered Banach spaces, IMA Journal of Mathemat-
ical Control and Information 27 (2010), 267–307.

[6] N. Fourrier - I. Lasiecka, Regularity and stability of a wave equation with a strong

damping and dynamic boundary conditions, Evol. Equ. Control Theory 2(4) (2013),
631–667.

595stability of evolution equations with small commutators in a banach space



[7] M. I. Gil’, Stability of linear evolution equations in lattice normed spaces, Zeitschrift
fur Analysis 15(4) (1996), 949–959.

[8] M. I. Gil’, Freezing method for evolution equations, Communications in Applied Anal-
ysis 1(2) (1996), 245–256.

[9] M. I. Gil’, Integrally small perturbations of semigroups and stability of partial di¤eren-

tial equations, International Journal of Partial Di¤erential Equations, 2013 (2013),
Article ID 207581, 5 pages.

[10] S. G. Krein, Linear Equations in a Banach Space, Amer. Math. Soc., Providence, RI,
1971.

[11] H. Laasri - O. El-Mennaoui, Stability for non-autonomous linear evolution equa-

tions with Lp-maximal regularity, Czechoslovak Mathematical Journal 63(138) (2013),
887–908.

[12] S. Nicaise, Convergence and stability analyses of hierarchic models of dissipative second

order evolution equations, Collect. Math. 68(3) (2017), 433–462.

[13] J. Oostveen, Strongly Stabilizable Distributed Parameter Systems, SIAM, Frontiers in
Applied Mathematics, Philadelphia, 2000.

[14] P. Pucci - J. P. Serrin, Asymptotic stability for nonautonomous wave equation,
Comm. Pure Appl. Math. XLXX (1996), 177–216.

Received 27 October 2017,

and in revised form 18 March 2018.

Michael Gil’

Department of Mathematics

Ben Gurion University of the Negev

P.O. Box 653

Beer-Sheva 84105, Israel

gilmi@bezeqint.net

596 m. gil’


	mk1
	mk2
	mk3
	mk4
	mk5
	mk6
	mk10
	mk11
	mk12
	mk13
	mk14
	mk7
	mk8
	mk9
	mkEnd-page

