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Abstract. — In this short note we announce the main results of [2] about variational problems

involving 1-dimensional connected sets in the Euclidean plane, such as for example the Steiner tree
problem and the irrigation (Gilbert–Steiner) problem.
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In this note we describe the main results obtained in [2] concerning problems
involving 1-dimensional structures, focusing our attention on the two classical
examples given by the Euclidean Steiner tree problem and Gilbert–Steiner (or
irrigation type) problems. The Steiner tree problem in Rd can be stated as fol-
lows: given N distinct points P1; . . . ;PN in Rd , find the shortest connected graph
containing the points Pi, or equivalently

inffH1ðLÞ; L connected; L � fP1; . . . ;PNgg:ðSTPÞ

An optimal (not necessarily unique) graph L always exists and also the structure
of L is known: a union of segments connecting the endpoints, possibly meeting at
120� in at most N � 2 further branch points, called Steiner points. On the other
hand, the Gilbert–Steiner problem for N � 1 unit sources and one sink fits within
the realm of optimal transportation problems and can be formulated as follows:
identifying networks L connecting the Pi as streamlines of a vector measure m ¼
yðxÞtðxÞ �H1

KL flowing unit masses located at Pi, i < N, to PN , find an opti-
mal network minimizing a transport cost which is a sublinear (concave) function
of the mass density, to favour branching (see [11]). More precisely, for 0 < aa 1,
we have

inf

Z
Rd

jyðxÞja dH1
KL; div m ¼

XN�1

i¼1

dPi
� ðN � 1ÞdPN

( )
:ðIaÞ

1This paper is related to a talk given at ‘‘XXVII Convegno Nazionale di Calcolo delle Varia-
zioni’’ – Levico Terme (Trento) 6–10 February, 2017.



In the recent years many di¤erent variational approximations have been pro-
posed for the treatment of (STP) or ðIaÞ, see for example [10, 7, 4, 5], but mainly
for the two dimensional setting using a phase field based approach together with
some coercive regularization. Here, following [8, 9], we analyse this kind of opti-
mization problems on Euclidean graphs with fixed endpoints set A, like (STP) or
irrigation-type problems, and we rephrase them as optimal partition-type prob-
lems in the planar case R2, obtaining a variational approximation in the sense
of G-convergence (Theorem 3.2). Moreover we propose a convex relaxation and
identify numerically the optimal networks. The corresponding analysis in Rd ,
db 3, is contained in the companion paper [3].

1. Acyclic graphs and rank one tensor valued measures

Fix a set of N distinct points A ¼ fP1; . . . ;PNg � Rd , db 2. Define GðAÞ to
be the set of (connected) acyclic graphs L that can be described as the union
L ¼

SN�1
i¼1 li, where li are simple rectifiable curves connecting Pi to PN and

oriented by H1-measurable unit vector fields ti satisfying tiðxÞ ¼ tjðxÞ for
H1-a.e. x a li B lj (i.e. the orientation of li is coherent with that of lj on their
intersection).

For each L a GðAÞ, we identify the curves li with the vector measures
Li ¼ ti �H1

Kli, so that all the information concerning this acyclic graph L
is encoded in the rank one tensor valued measure L ¼ tn g �H1

KL, where
t a Rd is the H1-measurable unit vector field carrying the orientation of the

graph L, with spt t ¼ L, t ¼ ti H
1-a.e. on li, and g a RN�1 is an H1-measurable

vector map over L whose components gi are defined by gi �H1
KL ¼ H1

Kli ¼
jLij, with jLij the total variation measure of Li. Observe that gi a f0; 1g a.e. for
any i and the measures Li verify the property

divLi ¼ dPi
� dPN

:ð1:1Þ

Definition 1.1. Given L a GðAÞ, we call the above constructed measure
L ¼ tn g �H1

KL the canonical (rank one) tensor valued measure representa-
tion of the acyclic graph L.

To any connected set S � A with H1ðSÞ finite, i.e. to any candidate minimizer
for (STP), we can associate in a canonical way (see e.g. Lemma 2.1 in [8]) an acy-
clic graph L � A such that H1ðLÞaH1ðSÞ and L a GðAÞ. Given now a graph
L a GðAÞ canonically represented by the tensor valued measure L, we observe
that H1

KL ¼ supiðH1
KliÞ ¼ supijLij, i.e. the measure H1

KL corresponds to
the smallest positive measure dominating the family of measures jLij ¼ H1

Kli.
We thus have

H1ðLÞ ¼
Z
Rd

dH1
KL ¼

Z
Rd

sup
i

jLij ¼: F0ðLÞ;
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and we recognize that minimizing F0 among graphs L a GðAÞ, i.e. among rank
one tensor valued measures L ¼ tn g �H1

KL which are the canonical repre-
sentation of acyclic graphs L a GðAÞ, solves (STP) in Rd .

Following [9], we can address in a similar way irrigation problems from the
point sources fP1; . . . ;PN�1g to the target point PN by using the canonical repre-
sentation as rank one tensor valued measures of graphs L a GðAÞ. For doing so
we need some additional notation: for a measure ~mm ¼ ðm1; . . . ; mMÞ, with mi posi-
tive measures on Rd , let j~mmj1 ¼

P
i mi, so that ~mm ¼ gj~mmj1 with g a RM , 0a gi a 1

for 1a iaM,
P

i gi ¼ 1. Accordingly, we denote j~mmjl the supremum mea-
sure j~mmjl ¼ supi mi ¼ ðsupi giÞj~mmj1 and for generic pb 1 we define the measure
j~mmjp :¼ jgjpj~mmj1, with jgjp ¼ ð

P
i g

p
i Þ

1=p the l p norm of g. More generally, for C a

norm on RM , we define the measure Cð~mmÞ :¼ CðgÞj~mmj1, characterized as

Cð~mmÞðRdÞ ¼ sup
XM
i¼1

Z
Rd

ji dmi; 0a ji a C0
c ðRdÞ E1a iaM; C�ð~jjÞa 1

( )

with C� the dual norm to C w.r.t. the Euclidean structure on RM .
Let now L ¼ tn~mm ¼ tn gj~mmj1 be a rank one Rd nRN�1-valued measure

with jtj ¼ 1. For 0 < aa 1 define

FaðLÞ ¼
Z
Rd

jgj1=a dj~mmj1 ¼ j~mmj1=aðRdÞð1:2Þ

and

F0ðLÞ ¼
Z
Rd

jgjl dj~mmj1 ¼
Z
Rd

�
sup

1aiaN�1
mi

�
¼ j~mmjlðRdÞ:ð1:3Þ

In other words, FaðLÞ ¼ kLkCa
, F0ðLÞ ¼ kLkC0

are total variation-type func-
tionals, with respect to the norms Ca ¼ j � jl1=a and C0 ¼ j � jll . When L ¼
tn g �H1

KL is the canonical representation of an acyclic graph L a GðAÞ,
so that in particular we have jtj ¼ 1 and gi a f0; 1g for 1a iaN � 1, we
deduce

F0ðLÞ ¼
Z
Rd

jgjl dH1
KL ¼ H1ðLÞ;

FaðLÞ ¼
Z
Rd

jgj1=a dH1
KL ¼

Z
L

jyja dH1;

where yðxÞ ¼
P

i giðxÞ
1=a ¼

P
i giðxÞ a Z, and 0a yðxÞaN � 1. We thus recog-

nize that minimizing the functional Fa among graphs L connecting P1; . . . ;PN�1

to PN solves the irrigation problem with sources P1; . . . ;PN�1 and target PN

(see [9]), while minimizing F0 among graphs L with endpoints set fP1; . . . ;PNg
solves (STP) in Rd .
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2. Acyclic graphs and partitions of R2

Our two-dimensional analysis is based on following lemma which states that two
acyclic graphs having the same endpoints set give rise to a partition of R2, or
equivalently that their oriented di¤erence corresponds to the orthogonal distri-
butional gradient of a piecewise integer valued function having bounded total
variation.

Lemma 2.1. Let fP;Rg � R2 and let l, g be simple rectifiable curves from P to R
oriented by H1-measurable unit vector fields t 0, t 00. Define L ¼ t 0 �H1

Kl and
G ¼ t 00 �H1

Kg. Then there exists a function u a SBVðR2;ZÞ such that, denoting
Du and Du? respectively the measures representing the gradient and the orthogonal
gradient of u, we have Du? ¼ G�L.

The idea is now to take advantage of this lemma to reformulate the minimiza-
tion of Fa as an optimization problem over the class of integer valued SBV func-
tions. For this purpose fix once and for all an acyclic graph G connecting the end-
points set A, for example

G ¼
SN�1

i¼1 gi; with gi the segment joining Pi to PN ;ð2:1Þ

denote ti ¼ PN�Pi

jPN�Pi j the orientation of each segment and identify gi with the vector

measure Gi ¼ ti �H1
Kgi, so that H1ðGÞ ¼ jGjðR2Þ and jGj ¼ supijGij. Taking

into account Lemma 2.1, and in the simplest case of F0, we have

Corollary 2.2. Let A ¼ fP1; . . . ;PNg � R2 be a set of terminal points and
G a GðAÞ as above. For any acyclic graph L a GðAÞ, denoting G (resp. L) the
canonical tensor valued representation of G (resp. L), we have

H1ðLÞ ¼
Z
R2

sup
i

jLij ¼
Z
R2

sup
i

jDu?
i � Gij

for suitable ui a SBVðR2;ZÞ, 1a iaN � 1.

Thus, having fixed the family of measures G ¼ ðG1; . . . ;GN�1Þ, we are led to con-

sider the minimization for U ¼ ðu1; . . . ; uN�1Þ a SBVðR2;ZN�1Þ of the functional

F0ðUÞCF0ðDU ? � GÞ ¼
Z
R2

sup
i

jDu?
i � Gij:

We have already seen that to each acyclic graph L a GðAÞ we can associate a

U a SBVðR2;ZN�1Þ such that H1ðLÞ ¼ F0ðUÞ. Moreover we can also prove
that for each minimizer U a SBVðR2;ZN�1Þ of F0 we can identify, in the sup-
port of the family of measures fGi �Du?

i gi, an acyclic graph L connecting the
terminal points P1; . . . ;PN and such that F0ðUÞ ¼ H1ðLÞ. This means that we
have a relationship between (STP) and the minimization of F0 over functions in
SBVðR2;ZN�1Þ, and a similar connection can be made between the a-irrigation
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problem and minimization over the same space of FaðUÞCFaðDU ? � GÞ. To
this family of functionals Fa we now provide an approximation in the sense of
G-convergence through Modica–Mortola type energies.

3. G-convergence

We first consider Modica–Mortola functionals for functions having a prescribed
jump part: for any given i a f1; . . . ;N � 1g consider the measure Gi ¼ ti �
H1

Kgi defined for G as in (2.1), and let

F i
e ðu;BÞ ¼

Z
B

eieðuÞ dx ¼
Z
B

jDu? � Gij2 þ
1

e2
WðuÞ dx;ð3:1Þ

defined for u a Hi CW 1;2
loc ðR

2ngiÞBBVðR2Þ and B � R2nfP1; . . . ;PNg open,
where W ðuÞb 0 is a smooth 1-periodic potential vanishing on Z and let

c0 ¼ 2
R 1

0

ffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
ds (we can take for example WðuÞ ¼ sin2ðpuÞ, then c0 ¼ 2=p).

Observe that due to summability issues for the absolutely continuous part of the
gradient we work in local spaces.

For each fixed i a f1; . . . ;N � 1g functionals feF i
e ge, which are just ‘‘shifted’’

variants of the classical Modica–Mortola ones, G-converge as e ! 0 to the limit-
ing functional F iðu;BÞ ¼ c0

R
B
djDu? � Gij (Section 3.1 in [2] or see also [1]).

Based on this ‘‘component-wise’’ result we can now address the general problem
involving total variation type functionals such as Fa.

Corollary 3.1 (G-convergence). Let C : RN�1 ! ½0;þlÞ be a norm on RN�1,
define H ¼ H1 � � � � �HN�1 and consider the functionals

FC
e ðU ;BÞ ¼

Z
B

eCð~eeeðUÞÞ dx; for U ¼ ðu1; . . . ; uN�1Þ a H;ð3:2Þ

FCðU ;BÞ ¼
Z
B

CðgÞdjDU? � Gj1; for U a SBVðR2;ZN�1Þ;ð3:3Þ

for B � R2nfP1; . . . ;PNg open, where we set ~eeeðUÞ ¼ ðe1e ðu1Þ; . . . ; eN�1
e ðuN�1ÞÞ,

g ¼ ðg1; . . . ; gN�1Þ and, for 1a iaN � 1, jDu?
i � Gij ¼ gijDU ? � Gj1, with

jDU ? � Gj1 :¼
PN�1

i¼1 jDu?
i � Gij. Then we have

(1) (Compactness and lower bound inequality) For all Ue a H such that FC
e ðUe;BÞ

aCðBÞ, B � R2nfP1; . . . ;PNg, there exists U a SBVðR2;ZN�1Þ such that (up
to a subsequence) Ue ! U in L1ðR2;RN�1Þ. Moreover,

lim inf
e!0

FC
e ðUe;BÞb c0F

CðU ;BÞð3:4Þ

(2) (Upper bound (in)-equality) Let L ¼ tn g �H1
KL be a rank one tensor

valued measure canonically representing an acyclic graph L connecting
P1; . . . ;PN, and let U a SBVðR2;ZN�1Þ such that Du?

i ¼ Gi �Li for any
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i ¼ 1; . . . ;N � 1. Then there exists a sequence Ue a H such that Ue ! U in
L1ðR2;RN�1Þ and

lim sup
e!0

FC
e ðUe;BÞa c0F

CðU ;BÞð3:5Þ

for any open subset B � R2nfP1; . . . ;PNg.

Corollary 3.1, together with the convergence of minimizers (see [2]), may be sum-
marized, in case FC corresponds respectively to F0 andFa for 0 < aa 1, in the
following

Theorem 3.2. Let A ¼ fP1; . . . ;PNg � R2 and Gi ¼ t �H1
Kgi , for 1a ia

N � 1, as in Remark 2.1. For U ¼ ðu1; . . . ; uN�1Þ, ui a W
1;2
loc ðR2ngiÞBBVðR2Þ,

0 < aa 1, define

F0
e ðU ;BÞ ¼

Z
B

e sup
i

eieðuiÞ dx and Fa
e ðU ;BÞ ¼

Z
B

e
�XN�1

i¼1

eieðuiÞ
1=a

�a
dx;

where B � R2nfP1; . . . ;PNg is open and the energy densities eieðuiÞ are defined as
in formula (3.1), and let

F0ðU ;BÞCF0ðDU ? � G;BÞ; FaðU ;BÞCFaðDU ? � G;BÞð3:6Þ

be defined as in (1.3) and (1.2). Let c0 > 0 be defined as above. Then we have

F0
e !G c0F

0 and Fa
e !G c0F

a;

and G-convergence takes place with respect to the strong topology of

L1ðR2;RN�1Þ. In particular, up to subsequences, minimizers Ue of F
0
e converge,

as e ! 0, to U a SBVðR2;ZN�1Þ with DU ? � G ¼ tn g �H1
KL, and L a

Steiner Minimal Tree with terminal points in A, while minimizers Ve of F
a
e con-

verge (up to subsequences), as e ! 0, to V a SBVðR2;ZN�1Þ, where DV ? � G ¼
t 0n g 0 �H1

KLa represents an optimal a-irrigation plan with sources P1; . . . ;PN�1

and target point PN.

4. Convex relaxation

Another possible way to address the minimization of Fa is to provide suitable
convex positively 1-homogeneous relaxations of it, which in this case maintain
their validity in any dimension. We recall that the functional Fa is defined as

FaðLÞ ¼ kLkCa
¼

Z
Rd

jgj1=a dH1
KL

if the measure L is the canonical representation of an acyclic graph L with ter-
minal points fP1; . . . ;PNg � Rd , so that in particular, according to Definition
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1.1, we can write L ¼ tn g �H1
KL with jtj ¼ 1, gi a f0; 1g. For any other

d � ðN � 1Þ valued measure L on Rd we set FaðLÞ ¼ þl. We look at possible
extensions of this type from two perspectives:

Extension to rank one tensor measures. Following [2], we first propose possible
positively 1-homogeneous convex relaxations of Fa on the class of rank one
tensor valued Radon measures L ¼ tn g � j~mmj1, where jtj ¼ 1, g a RN�1 and ~mm ¼
ðm1; . . . ; mN�1Þ is a family of positive Radon measures on Rd with j~mmj1 ¼

P
i mi.

For such a L we consider extensions of the form

RaðLÞ ¼
Z
Rd

CaðgÞ dj~mmj1

for a convex positively 1-homogeneous Ca on RN�1 (i.e. a norm) verifying

jgj1=a aCaðgÞaF��
a0 ðgÞ for all g a RN�1;ð4:1Þ

with the convention 1=0 ¼ l. Here we have

F��
a0 ðgÞ ¼

� X
1aiaN�1

jgþi j
1=a

�a
þ
� X
1aiaN�1

jg�i j
1=a

�a
ð4:2Þ

for a > 0 and for a ¼ 0

F��
00 ðgÞ ¼ sup

1aiaN�1
gþi � inf

1aiaN�1
g�i ;ð4:3Þ

with gþi ¼ maxfgi; 0g and g�i ¼ minfgi; 0g. In practice F��
0a represents the convex

positively 1-homogeneous envelope of the function F0aðgÞ :¼ jgj1=a when gi b 0
for all i, þl otherwise. This relaxation depends on the choice of the function
Ca and in general it is not sharp, i.e. minimizers in suitable classes of weighted
graphs with prescribed fluxes at their terminal points, or more generally in the
class of rank one tensor valued measures having divergence prescribed by (1.1),
do not represent minimal Steiner trees (or convex combination of them): for
example, choosing C0 ¼ j � jl and minimizing R0 within the class of rank one
tensor valued Radon measures L ¼ tn g � j~mmj1 satisfying (1.1) leads to a mini-
mizer which is not acyclic (see example 4.1 in [2]).

Extension to general matrix valued measures. We turn next to the convex
relaxation of Fa for generic d � ðN � 1Þ matrix valued measures L ¼ ðL1; . . . ;
LN�1Þ, where Li, for 1a iaN � 1, are the vector measures corresponding to
the columns of L. Since we are looking for a positively 1-homogeneous extension,
we observe that whenever L ¼ p �H1

KL ¼ tn g �H1
KL, with jtj ¼ cb 0

and gi a f0; 1g, we must have

RaðLÞ ¼
Z
Rd

jtj jgj1=a dH1
KL ¼

Z
Rd

FaðpÞ dH1
KL;
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with FaðpÞ ¼ jtj jgj1=a defined only for matrices p a K0 (þl otherwise), where

K0 ¼ ftn g a Rd�ðN�1Þ; gi a f0; 1g; jtj ¼ cb 0g. Then, following [6], we look
for a ‘‘local’’ convex envelope of this energy, i.e. we look for F��

a , the positively

1-homogeneous convex envelope on Rd�ðN�1Þ of Fa, and use it to define a relax-
ation of our initial energy. Setting q ¼ ðq1; . . . ; qN�1Þ, with qi a Rd its columns, it
turns out that F��

a is the support function of the convex set

K a ¼ q a Rd�ðN�1Þ;
X
i A J

qi

�����
�����a jJja EJ � f1; . . . ;N � 1g

( )
;

and thus we are led to consider the relaxed functional

RaðLÞ ¼
Z
Rd

F��
a ðLÞ ¼ sup

XN�1

i¼1

Z
Rd

ji dLi; j a Cl
c ðRd ;K aÞ

( )
;

where j ¼ ðj1; . . . ; jN�1Þ is a matrix valued function. Observe that for L a rank
one tensor valued measure the above expression coincides with the one obtained
in the previous section choosing C0 ¼ F��

00 . In the planar case d ¼ 2 we can now
fix a measure G as for instance in (2.1) and define our relaxed energy on functions
U a BVðR2;RN�1Þ as EaðUÞ ¼ RaðDU ? � GÞ or equivalently

EaðUÞ ¼ sup

Z
R2

XN�1

i¼1

ðDu?
i � GiÞ � ji; j a Cl

c ðR2;K aÞ
( )

:

5. Numerical identification of optimal structures

The previous G-convergence result and the proposed relaxation Ea can now be
extensively used from a numerical point of view to identify optimal Steiner trees
and a-irrigation networks.

The approximation of the functionals Fa
e is carried out through the use of

ad-hoc finite element spaces which are designed to take into account the presence
of the drift terms Gi (see [2] for details). In the experiments of figure 1 we approx-
imate the optimal Steiner trees associated to the vertices of a triangle, a regular

Figure 1. Local minimizers obtained by the G-convergence approach for 3, 5 and 7
points.
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pentagon and a regular hexagon with its center. Observe that in the first two
cases we are able to recover a global minimizer while the result obtained for the
hexagon and its center is only a local minimizer. In figure 2 we focus on simple
irrigation problems and we recover the solutions of Gilbert–Steiner problems for
di¤erent values of a (for small a we can see that the irrigation network is close to
an optimal Steiner tree).

Eventually the numerical optimization of the relaxed energy Ea can be
addressed within the same framework used for the approximation of Fa

e , and in
figure 3 we can see the results in four test cases. The convex formulation is able
to approximate the (unique) optimal structure in the case of the triangle, while in
the other three examples, where the solution is not unique, the result of the opti-
mization is expected to be a convex combination of all solutions whenever the re-
laxation is sharp, as it can be observed on the second and fourth case of figure 3.
However we do not expect this behaviour to hold for any configuration of points:
for example in the third picture of figure 3 the numerical solution is not supported
on a convex combination of global solutions since the density in the middle point
is not 0.

References

[1] S. Baldo - G. Orlandi, Codimension one minimal cycles with coe‰cients in Z or Zp,

and variational functionals on fibered spaces, J. Geom. Anal. 9 (1999), no. 4, 547–568.
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