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Abstract. — We prove well-posedness for a class of second-order SPDEs with multiplicative

Wiener noise and doubly nonlinear drift of the form �div gð‘�Þ þ bð�Þ, where g is the subdi¤erential
of a convex function on Rd and b is a maximal monotone graph everywhere defined on R, on which

neither growth nor continuity assumptions are imposed.
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1. Introduction

Let D be a bounded domain of Rd with smooth boundary and T > 0 a fixed
number. We shall establish well-posedness in the strong sense for stochastic par-
tial di¤erential equations of the type

duðtÞ � div gð‘uðtÞÞ dtþ bðuðtÞÞ dt C Bðt; uðtÞÞ dWðtÞ in ð0;TÞ �D;

u ¼ 0 in ð0;TÞ � qD;

uð0Þ ¼ u0 in D;

8><
>:ð1:1Þ

where g � Rd � Rd and b � R� R are everywhere-defined maximal monotone
graphs, the first one of which is assumed to be the subdi¤erential of a convex
function k : Rd ! R. Furthermore, W is a cylindrical Wiener process on a sepa-
rable Hilbert space U , and B takes values in the space of Hilbert–Schmidt oper-
ators from U to L2ðDÞ. Precise assumptions on the data of the problem are given
in §2 below.

Equations with drift in divergence type, both in deterministic and stochastic
settings, have a long history and are thoroughly studied, especially because of
their physical significance. From a mathematical point of view, they are particu-
larly interesting because they are fully nonlinear, in the sense that they do not con-
tain any ‘‘leading’’ linear term. For stochastic equations, the first well-posedness
result is most likely due to Pardoux, as an application of his general results in
[12] on monotone stochastic evolution equations in the variational setting (see
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also [4] for improved results under more general assumptions on B). In this case
one needs to assume b ¼ 0 and

gðxÞ � xl jxjp � 1; jgðxÞjk jxjp�1 � 1 Ex a Rd ;

with p > 1 (the centered dot stands for the usual Euclidean scalar product in Rd ).
These are precisely the classical Leray–Lions conditions, well known in the deter-
ministic theory (cf. [5]). In some special cases a simple polynomial-type b can
be added: for instance, if g corresponds to the p-Laplacian, i.e. gðxÞ ¼ jxjp�2

x,
pb 2, one may consider bðrÞ ¼ jrjp�2

r (cf. [6, p. 83]). However, it is well known
that if two nonlinear operators satisfy the conditions needed in the variational
setting, their sum in general does not. This phenomenon already gives rise to
severe restrictions on the class of semilinear equations with polynomial nonlinear-
ities that can be solved by such methods.

In some recent works we have obtained well-posedness results for (1.1) under
much more general hypotheses than those mentioned above. In particular, in [13]
it is assumed that g still satisfies the classical Leray–Lions assumptions, but no
growth restriction on b is imposed: a very mild symmetry-like condition on its
behavior at infinity is shown to su‰ce. On the other hand, in [9] we consider the
case b ¼ 0, with no hypotheses on the growth of g, but with the additional re-
quirement that g is single-valued (a symmetry-like assumption on g is needed
in this case as well). Equations with more general, possibly multivalued g, are
treated in [10], where, however, less regular solutions are obtained.

Our goal is to unify and extend the above-mentioned well-posedness results
for equation (1.1), thus treating the case where both g and b can be multivalued,
without any restriction on their rate of growth. We shall also show that we can
do so without loosing any regularity of solutions with respect to the results of
[9]. The approach we take, initiated in [11] and further refined and extended in
[7]–[10], consists in a combination of (deterministic and stochastic) variational
techniques and weak compactness in L1 spaces. A key feature is the construc-
tion of a candidate solution as pathwise limit, in suitable topologies, of solutions
to regularized equations. In particular, due to this type of construction, in order
to obtain measurability properties of solutions, uniqueness of limits is crucial.
Roughly speaking, we can prove that �div gð‘uÞ þ bðuÞ is unique, hence that it
is measurable, but showing that each one of them is unique (hence measurable)
seems di‰cult, if not impossible. This is the reason why g was assumed to be
single-valued in [9, 13]. In the general setting of this work we thus need di¤erent
ideas: let ul, gl, and bl be suitable regularizations of u, g, and b, respectively, and
set hl :¼ glð‘ulÞ and xl :¼ blðulÞ. Comparing weak limits, obtained in di¤erent
ways, of the image of the pair ðhl; xlÞ under a continuous linear map, we are go-
ing to prove that there exist two limiting processes h and x, ‘‘sections’’ of gð‘uÞ
and bðuÞ, respectively, that are indeed predictable and satisfy suitable uniqueness
properties. One may say that we restore uniqueness working in a suitable quo-
tient space, although quotient spaces do not appear explicitly.

The well-posedness result obtained here may be interesting also in the deter-
ministic setting, as our results extend to the doubly nonlinear case the sharpest
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results available for equations with b ¼ 0 and B ¼ 0, whose hypotheses on g are
identical to ours (cf. [2, p. 207-¤ ]).

Our interest for stochastic PDEs with singular monotone drift has been influ-
enced by reading the article [1], which, however, deals with semilinear equations
only.

The paper is organized as follows: in Section 2 we state the assumptions and
the main result, which is then proved in Section 3.

2. Main result

Before stating the main result, we fix notation and introduce the necessary
assumptions.

As already mentioned, D stands for a bounded domain in Rd with smooth
boundary. We shall denote the Hilbert space L2ðDÞ by H, its norm and scalar
product by k � k and 3� ; �4, respectively. We shall denote the Dirichlet Laplacian
on L1ðDÞ (as well as on L2ðDÞ, without notationally distinguish them) by D. The
space of Hilbert–Schmidt operators from the separable Hilbert space U to H is
denoted by L2ðU ;HÞ. We shall write ak b to mean that there exists a constant
N > 0 such that aaNb.

Let ðW;F;PÞ be a probability space, endowed with a filtration ðFtÞt A ½0;T � sat-

isfying the so-called usual conditions, on which all random elements will be
defined. Equality of stochastic processes is meant to be in the sense of indistin-
guishability, unless otherwise stated. We assume that the di¤usion coe‰cient

B : W� ½0;T � �H ! L2ðU ;HÞ

is such that Bð�; �; hÞ is progressively measurable for all h a H, and there exists a
positive constant NB such that

kBðo; t; xÞkL2ðU ;HÞ aNBð1þ kxkÞ;
kBðo; t; xÞ � Bðo; t; yÞkL2ðU ;HÞ aNBkx� yk

for all ðo; tÞ a W� ½0;T � and x; y a H. Moreover, let the initial datum u0 be
F0-measurable with finite second moment, i.e. u0 a L2ðW;F0;HÞ.

Let k : Rd ! Rþ be a convex function with kð0Þ ¼ 0 such that

lim sup
jxj!þl

kðxÞ
kð�xÞ < þl; lim

jxj!þl

kðxÞ
jxj ¼ þl

(we shall call the second condition superlinearity at infinity). Then its sub-
di¤erential g :¼ qk is a maximal monotone graph in Rd � Rd . We assume that
the domain of g coincides with Rd , which implies that k�, the convex conjugate
of k, is superlinear at infinity as well. Moreover, let j : R ! Rþ be a further con-
vex function with jð0Þ ¼ 0 such that

lim sup
jxj!þl

jðxÞ
jð�xÞ < þl;
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whose subdi¤erential b :¼ qj is an everywhere defined maximal monotone graph
in R� R, so that j � is superlinear at infinity. The condition on j involving the
upper limit at infinity can be interpreted as a natural generalization of symmetry,
in the sense that its rates of growth at þl and �l are assumed to be compa-
rable. The corresponding condition on k has the same interpretation, after re-
stricting k to any ray in Rd . All notions of convex analysis and from the theory
of maximal monotone operators used thus far and in the sequel are standard and
are treated in detail, for instance, in [2].

We can now give the notion of solution to (1.1) that we are going to work
with. Throughout the work, V0 is a separable Hilbert space continuously em-
bedded in both W 1;lðDÞ and H 1

0 ðDÞ: for instance one can take, thanks to
Sobolev embedding theorems, V0 :¼ Hk

0 ðDÞ for k a N su‰ciently large. More-
over, the divergence operator is defined as

div : L1ðDÞd ! V 0
0

f 7! ½g 7! �3 f ;‘g4�;

which is thus linear and bounded. In fact, for any f a L1ðDÞd and g a V0,

j3 f ;‘g4ja k f kL1ðDÞkgkW 1;lðDÞ k k f kL1ðDÞkgkV0

because V0 is continuously embedded in W 1;lðDÞ.

Definition 2.1. A strong solution to (1.1) is a triplet ðu; h; xÞ, where u, h, and x

are adapted processes taking values in W 1;1
0 ðDÞBH, L1ðDÞd , and L1ðDÞ, respec-

tively, such that h a gð‘uÞ and x a bðuÞ a.e. in W� ð0;TÞ �D,

u a L0ðW;Cð½0;T �;HÞÞBL0ðW;L1ð0;T ;W 1;1
0 ðDÞÞÞ;

h a L0ðW;L1ðð0;TÞ �DÞdÞ;
x a L0ðW;L1ðð0;TÞ �DÞÞ;

‘u � hþ ux a L0ðW;L1ðð0;TÞ �DÞÞ;

and

3u; f4þ
Z �

0

3hðsÞ;‘f4 dsþ
Z �

0

3xðsÞ; f4 ds ¼ 3u0; f4þ
Z �

0

Bðs; uðsÞÞ dWðsÞ; f
� �

for all f a V0.

The last identity in the above definition is equivalent to the validity in the dual
of V0 of the equality

u�
Z �

0

div hðsÞ dsþ
Z �

0

xðsÞ ds ¼ u0 þ
Z �

0

Bðs; uðsÞÞ dWðsÞ:
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Note that u, u0 and the stochastic integrals take values in H and the third term
on the left-hand side takes values in L1ðDÞ, hence also the second term on the
right-hand side belongs to L1ðDÞ, so that the equality holds also in L1ðDÞ. The
same reasoning implies that the sum of the second and third terms on the left-
hand side take values in H, so that the above equality can also be seen as valid
in H.

The main result of the paper is the following. The proof is given in §3
below.

Theorem 2.2. There exists a strong solution ðu; h; xÞ to equation (1.1). It is pre-
dictable and satisfies the following properties:

u a L2ðW;Cð½0;T �;HÞÞBL1ðW;L1ð0;T ;W 1;1
0 ðDÞÞÞ;

h a L1ðW� ð0;TÞ �DÞd ;
x a L1ðW� ð0;TÞ �DÞ;

‘u � h a L1ðW� ð0;TÞ �DÞ;
ux a L1ðW� ð0;TÞ �DÞ:

Moreover, the solution map

L2ðW;F0;HÞ ! L2ðW;Cð½0;T �;HÞÞ
u0 7! u

is Lipschitz-continuous. In particular, if ðu1; h1; x1Þ and ðu2; h2; x2Þ are any two
strong solutions satisfying the properties above, then u1 ¼ u2 and �div h1 þ x1 ¼
�div h2 þ x2 in L2ðW;Cð½0;T �;HÞÞ and L1ðW;L1ð0;T ;V 0

0ÞÞ, respectively.

3. Proof of Theorem 2.2

3.1. Itô’s formula for the square of the H-norm

We establish a version of Itô’s formula for the square of the H-norm in a gen-
eralized variational setting, which will play an important role in the sequel. The
result is interesting in its own right, as it does not follow from the classical ones
in [4, 12], and is apparently new for Itô processes containing a drift term in diver-
gence form with minimal integrability properties.

Proposition 3.1. Let Y, f , and g be measurable adapted processes with values
in HBW

1;1
0 ðDÞ, L1ðDÞd , and L1ðDÞ, respectively, such that

Y a L0ðW;Llð0;T ;HÞÞBL0ðW;L1ð0;T ;W 1;1
0 ðDÞÞÞ;

f a L0ðW;L1ðð0;TÞ �DÞdÞ;
g a L0ðW;L1ðð0;TÞ �DÞÞ;
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and there exists constants a, b > 0 such that

kða‘uÞ þ k�ðaf Þ þ jðbuÞ þ j �ðbgÞ a L0ðW;L1ðð0;TÞ �DÞÞ:

Moreover, let Y0 a L0ðW;F0;HÞ and G be an L2ðU ;HÞ-valued progressively
measurable process such that G a L0ðW;L2ð0;T ;L2ðU ;HÞÞÞ. If

Y �
Z �

0

div f ðsÞ dsþ
Z �

0

gðsÞ ds ¼ Y0 þ
Z �

0

GðsÞ dWðsÞ

as an identity in V 0
0, then

1

2
kYk2 þ

Z �

0

Z
D

f ðsÞ � ‘YðsÞ dsþ
Z �

0

Z
D

gðsÞY ðsÞ ds

¼ 1

2
kY0k2 þ

1

2

Z �

0

kGðsÞk2L2ðU ;HÞ dsþ
Z �

0

Y ðsÞGðsÞ dWðsÞ:

Proof. The proof is essentially a combination of arguments described in great
detail in [8, 9], hence we shall limit ourselves to a sketch only. Using a superscript
d to denote the action of ðI � dDÞ�m, for a su‰ciently large m a N, we have,
thanks to Sobolev embedding theorems and classical elliptic regularity results,

Y d �
Z �

0

div f dðsÞ dsþ
Z �

0

gdðsÞ ds ¼ Y d
0 þ

Z �

0

G dðsÞ dWðsÞ

as an identity of H-valued processes. Itô’s formula for Hilbert-space valued con-
tinuous semimartingales thus yields

1

2
kY dk2 þ

Z �

0

Z
D

f dðsÞ � ‘Y dðsÞ dsþ
Z �

0

Z
D

gdðsÞY dðsÞ dsð3:1Þ

¼ 1

2
kY d

0 k
2 þ 1

2

Z �

0

kG dðsÞk2L2ðU ;HÞ dsþ
Z �

0

Y dðsÞG dðsÞ dWðsÞ:

Thanks to the assumptions on Y , f , g ad G, it easily follows that, P-a.s.,

Y d
0 ! Y0 in H;

Y dðtÞ ! YðtÞ in H Et a ½0;T �;
f d ! f in L1ðð0;TÞ �DÞd ;
gd ! g in L1ðð0;TÞ �DÞ;
G d ! G in L2ð0;T ;L2ðU ;HÞÞ:

Similarly, using simple properties of Hilbert–Schmidt operators and the domi-
nated convergence theorem, it is not di‰cult to verify that the quadratic variation
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of ðY dG d � YGÞ �W converges to zero in probability, so that

Z �

0

Y dG d dW !
Z �

0

YG dW

uniformly (with respect to time) in probability. Furthermore, thanks to the hy-
potheses on k and j, the families ð‘ud � Y dÞ and ðgdY dÞ are uniformly integrable
in ð0;TÞ �D P-a.s., hence by Vitali’s theorem we also have that, P-a.s.,

f d � ‘Y d ! f � ‘Y in L1ðð0;TÞ �DÞ;
gdY d ! gY in L1ðð0;TÞ �DÞ:

The proof is completed passing to the limit as d ! 0 in (3.1), in complete analogy
to [7, § 4] and [9, § 3]. r

Corollary 3.2. Under the assumptions of the previous proposition, one has

Y a L0ðW;Cð½0;T �;HÞÞ:

Proof. Since Y a Llð0;T ;HÞBCð½0;T �;V 0
0Þ, the trajectories of Y are weakly

continuous in H (see, e.g., [14]). Moreover, by Itô’s formula one has

1

2
kY ðtÞk2 � 1

2
kY ðrÞk2 þ

Z t

r

Z
D

f ðsÞ � ‘Y ðsÞ dsþ
Z t

r

Z
D

gðsÞY ðsÞ ds

¼ 1

2

Z t

r

kGðsÞk2L2ðU ;HÞ dsþ
Z t

r

Y ðsÞGðsÞ dWðsÞ

for every r; t a ½0;T �. This implies, by an argument analogous to the one used
in [8, §3], that the function t 7! kY ðtÞk is continuous on ½0;T �. By a well-known
criterion we thus conclude that Y has strongly continuous trajectories in H. r

3.2. Well-posedness in a special case

As a first step we prove existence of solutions to (1.1) assuming that the noise is
of additive type and that

B a L2ðW;L2ð0;T ;L2ðU ;V0ÞÞÞ:

For any l > 0, let gl and bl denote the Yosida approximations of g and b, respec-
tively, and consider the regularized equation

dulðtÞ � lDulðtÞ dt� div glð‘ulðtÞÞ dtþ blðulðtÞÞ dt ¼ BðtÞ dWðtÞ; ulð0Þ ¼ u0:

Since gl and bl are monotone and Lipschitz-continuous, it is not di‰cult to check
that the operator

f 7! �lDf� div glð‘fÞ þ blðfÞ

625a note on doubly nonlinear spdes with singular drift in divergence form



is hemicontinuous, monotone, coercive and bounded on the triple ðH 1
0 ðDÞ;H;

H�1ðDÞÞ, so that the classical results by Pardoux [12] provide existence and
uniqueness of a variational solution

ul a L2ðW;Cð½0;T �;HÞÞBL2ðW;L2ð0;T ;H 1
0 ðDÞÞÞ:

The a priori estimates on the solution ul contained in the next lemma can be
obtained essentially as in [9, 10, 11, 13].

Lemma 3.3. There exists a constant N independent of l such that

kulk2L2ðW;Cð½0;T �;HÞÞ þ lk‘ulk2L2ðW;L2ð0;T ;HÞÞ

þ kglð‘ulÞ � ‘ulkL1ðW�ð0;TÞ�DÞ þ kblðulÞulkL1ðW�ð0;TÞ�DÞ < N

for all l a ð0; 1Þ. Furthermore, there exists W 0 a F with PðW 0Þ ¼ 1 such that, for
every o a W 0, there exists a constant MðoÞ independent of l such that

kulðoÞk2Cð½0;T �;HÞ þ lk‘ulðoÞk2L2ð0;T ;HÞ þ kglð‘ulðoÞÞ � ‘ulðoÞkL1ðð0;TÞ�DÞ

þ kblðulðoÞÞulðoÞkL1ðð0;TÞ�DÞ < MðoÞ

for all l a ð0; 1Þ.

Proof. It is an immediate consequence of the (proofs of the) [9, Lemmata
4.3–4.7], for the part involving g, and [11, Lemmata 5.3–5.6], for the part involv-
ing b. r

Since

k�ðglð‘ulÞÞa k�ðglð‘ulÞÞ þ kððI þ lgÞ�1‘ulÞ ¼ glð‘ulÞ � ðI þ lgÞ�1‘ul

a glð‘ulÞ � ‘ul

and

j �ðblðulÞÞa j �ðblðulÞÞ þ jððI þ lbÞ�1
ulÞ ¼ blðulÞðI þ lbÞ�1

ul a blðulÞul;

we infer that the families ðk�ðglð‘ulÞÞÞ and ð j �ðblðulÞÞÞ are uniformly bounded
in L1ðW� ð0;TÞ �DÞ. Therefore, recalling that k� and j � are superlinear,
thanks to the de la Vallée-Poussin criterion and the Dunford–Pettis theorem
we deduce that the families ðglðulÞÞ and ðblðulÞÞ are relatively weakly com-
pact in L1ðW� ð0;TÞ �DÞd and L1ðW� ð0;TÞ �DÞ, respectively. Analogously,
the families ðglðulðoÞÞÞ and ðblðulðoÞÞÞ are relatively weakly compact in

L1ðð0;TÞ �DÞd and L1ðð0;TÞ �DÞ, respectively, for P-a.e. o a W.
Let W 0 be as in the previous lemma and take o a W 0. Then we have, along a

subsequence l 0 of l depending on o,
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ul 0 ðoÞ ! uðoÞ weakly� in Llð0;T ;HÞ;
‘ul 0 ðoÞ ! ‘uðoÞ weakly in L1ðð0;TÞ �DÞd ;
l 0ul 0 ðoÞ ! 0 in L2ð0;T ;H 1

0 ðDÞÞ;
gl 0 ðul 0 ðoÞÞ ! hðoÞ weakly in L1ðð0;TÞ �DÞd ;
bl 0 ðul 0 ðoÞÞ ! xðoÞ weakly in L1ðð0;TÞ �DÞ;

hence, by passage to the weak limit in the regularized equation taking test func-
tions in V0, we have

u�
Z �

0

div hðsÞ dsþ
Z �

0

xðsÞ ds ¼ u0 þ
Z �

0

BðsÞ dWðsÞ:ð3:2Þ

Moreover, by the lower semicontinuity of convex integrals, it also follows that

kð‘uðoÞÞ þ k�ðhðoÞÞ þ jðuðoÞÞ þ j �ðxðoÞÞ a L1ðð0;TÞ �DÞ:

Arguing as in [11, pp. 27–28] and [9, pp. 18–19], one can show that the process u
constructed in this way is unique in the space L2ðW;Cð½0;T �;HÞÞ. This ensures
in turn that the convergences of ðulÞ to u hold along the entire sequence l, which
is independent of o. In particular, we have that

ulðoÞ ! uðoÞ weakly in L2ð0;T ;HÞ Eo a W 0:

Since ðulÞ is bounded in L2ðW� ð0;TÞ �DÞ, we deduce that ul converges weakly
to u also in L2ðW� ð0;TÞ;HÞ. Hence, by a direct application of Mazur’s lemma,
we infer that u is a predictable process with values in H. Unfortunately a similar
argument does not apply to h and x. In fact, by uniqueness of u, we can only infer
from (3.2) that �div hþ x is unique: namely, assume that ðhiðoÞ; xiðoÞÞ, i ¼ 1; 2,
are weak limits in L1ð0;T ;L1ðDÞÞdþ1 of ðglð‘ulðoÞÞ; blðulÞÞ along two subse-
quences of l (depending on oÞ. Then

Z t

0

ð�divðh1 � h2Þ þ ðx1 � x2ÞÞ ds ¼ 0 Et a ½0;T �;

hence �divðh1 � h2Þ þ ðx1 � x2Þ ¼ 0, or, equivalently, �div h1 þ x1 ¼ �div h2 þ
x2 in V 0

0 for a.a. t a ½0;T �. However, this allows us to claim, setting hl :¼
glð‘ulÞ and xl :¼ blðulÞ, that

�div hl þ xl ! �div hþ x weakly in L1ð0;T ;V 0
0Þ Eo a W 0

along the whole sequence l, thanks to the same uniqueness argument already
used for u. In fact, let us set, for notational convenience,

F : L1ðDÞdþ1 ! V 0
0

ðv; f Þ 7! �div vþ f
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and zl :¼ ðhl; xlÞ, z :¼ ðh; xÞ. Note that F, being a linear bounded operator, can

be extended to a linear bounded operator from L1ðð0;TÞ �DÞdþ1UL1ð0;T ;
L1ðDÞdþ1Þ to L1ð0;T ;V 0

0Þ, also when both spaces are endowed with the weak to-
pology. Then zl ! z weakly in L1ðð0;TÞ �DÞdþ1 implies that Fzl ! Fz weakly
in L1ð0;T ;V 0

0Þ for all o a W 0. Such a convergence, however, does not allow to
infer that �div hþ x is predictable as a V 0

0-valued process. The reason is that we
may certainly find, by Mazur’s lemma, a convex combination of �div hl þ xl
converging strongly to �div hþ x in L1ð0;T ;V 0

0Þ for all o a W 0, but such a con-
vex combination would depend on o, bringing us back to the same problem we
are trying to solve. We could just say that �div hþ x is weakly measurable with
respect to F and the Borel s-algebra of L1ð0;T ;V 0

0Þ. Since this space is separa-
ble, by Pettis’ theorem we also have strong measurability. This observation, how-
ever, does not seem to imply the desired result.

In order to show that �div hþ x is indeed predictable, we are first going to
prove that

�div hl þ xl ! �div hþ x weakly in L1ðW� ð0;TÞ;V 0
0Þ:

We have just shown that

Z T

0

3Fzlðo; tÞ; fðtÞ4 dt !
Z T

0

3Fzlðo; tÞ; fðtÞ4 dt

for all f a Llð0;T ;V0Þ, for all o a W 0, where 3� ; �4 stands for the duality be-
tween V 0

0 and V 00
0 ¼ V0. Let c a LlðW� ð0;TÞ;V0Þ. Then cðo; �Þ a Llð0;T ;

V0Þ for P-a.e. o a W. Indeed, the set

A :¼ fðo; tÞ a W� ½0;T � : kcðo; tÞkV0
> kckLlðW�ð0;TÞ;V0Þg

belongs to FnBð½0;T �Þ, and, by Tonelli’s theorem,

jAj ¼
Z
W

Z T

0

1A dt dP ¼
Z
W

LebðAoÞPðdoÞ;

where jAj denotes the measure of A and Ao stands for the section of A at o, i.e.

Ao :¼ ft a ½0;T � : ðo; tÞ a Ag;

which belongs to Bð½0;T �Þ for P-a.e. o a W. Since jAj ¼ 0, it follows that
jAoj ¼ 0 for P-a.e. o a W. This implies, by definition of A, that cðo; �Þ a
Llð0;TÞ for P-a.e. o a W. Consequently, we have

Z T

0

3Fzlðo; tÞ;cðo; tÞ4 dt !
Z T

0

3Fzðo; tÞ;cðo; tÞ4 dt

for P-a.e. o a W. To complete the argument it is then enough to show that the
left-hand side, as a subset of L0ðWÞ indexed by l, is uniformly integrable. To
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this end, we collect some simple facts about uniform integrability in the following
lemma.

Lemma 3.4. Let ðX ;A;mÞ be a finite measure space and I an arbitrary index
set.

(a) Let ð fiÞi A I , ðgiÞi A I � L0ðX ;RnÞ be such that j fija jgij for all i a I and assume
that ðgiÞ is uniformly integrable. Then ð fiÞ is uniformly integrable.

(b) Let ð fiÞ � L0ðX ;RnÞ be uniformly integrable and f a LlðX ;RnÞ. Then
ðf � fiÞ � L0ðX Þ is uniformly integrable.

(c) Let F : Rn ! R with F ð0Þ ¼ 0 be convex and superlinear at infinity, and ð fiÞ �
L0ðX ;RnÞ be such that ðF � fiÞ is bounded in L1ðX Þ. Then ð fiÞ is uniformly
integrable.

(d) Let ðY ;B; nÞ be a further finite measure space. If ð fiÞ � L0ðX � Y ;AnB;
mn n;RnÞ is uniformly integrable, then ðgiÞ � L0ðX ;RnÞ defined by

gi :¼
Z
Y

fið�; yÞnðdyÞ

is uniformly integrable.

Proof. (a) is an immediate consequence of the definition of uniform integra-
bility.
(b) Let e > 0. By assumption, there exists d ¼ dðeÞ > 0 such that

Z
A

j fijRn dm <
e

kfkLl

EA a A; mðAÞ < d:

Then

Z
A

jf � fij dma kfkLl

Z
A

j fijRn dm < e:

(c) is a variation of the classical criterion by de la Vallée-Poussin. A detailed
proof (which is nonetheless very close to the one in the standard one-
dimensional case) can be found in [9].

(d) Let e > 0. By assumption, there exists d 0 ¼ d 0ðeÞ > 0 such that

Z
C

j fijRn dmn n < e EC a AnB; mn nðCÞ < d 0:

Let d :¼ d 0=nðY Þ and A a A with mðAÞ < d. Then

Z
A

Z
Y

fiðx; yÞnðdyÞ
����

����
Rn

mðdxÞa
Z
A�Y

j fiðx; yÞjRnmðdxÞnðdyÞ < e

because mn nðA� YÞ ¼ mðAÞnðYÞ < dnðYÞ ¼ d 0. r
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Let us now resume with the main reasoning. Since

Z T

0

3Fzl;c4k kckLlðW�ð0;TÞ;V0Þ

�Z T

0

Z
D

jhlj þ
Z T

0

Z
D

jxlj
�
;

by parts (a), (b) and (d) of the previous lemma it is su‰cient to show that ðhlÞ
and ðxlÞ are uniformly integrable in W� ð0;TÞ �D. But this is true, in view of
part (c) of the previous lemma, because k�ðhlÞ and j �ðxlÞ are uniformly bounded
in L1ðW� ð0;TÞ �DÞ. Vitali’s theorem then yields

Z T

0

3Fzlðo; tÞ;cðo; tÞ4 dt !
Z T

0

3Fzðo; tÞ;cðo; tÞ4 dt in L1ðWÞ;

hence, in particular,

Fðhl; xlÞ ! Fðh; xÞ weakly in L1ðW� ð0;TÞ;V 0
0Þ:

Furthermore, from the uniform integrability of ðhlÞ and ðxlÞ in W� ð0;TÞ �D
it also follows that, along a subsequence m of l,

ðhm; xmÞ ! ðh; xÞ weakly in L1ðW� ð0;TÞ �DÞdþ1;

hence also

Fðhm; xmÞ ! Fðh; xÞ weakly in L1ðW� ð0;TÞ;V 0
0Þ:

An application of Mazur’s lemma yields, in complete analogy to the case of u,
that h and x are predictable processes with values in L1ðDÞd and L1ðDÞ, respec-
tively. Since m is a subsequence of l, by uniqueness of the weak limit we have that
Fðh; xÞ ¼ Fðh; xÞ, i.e.

�div hþ x ¼ �div hþ x:

This implies that the identity (3.2) remains true with h and x replaced by h and x,
respectively. In other words, modulo relabeling, we can just assume, without loss
of generality, that h and x in (3.2) are predictable and that

ðhl; xlÞ ! ðh; xÞ weakly in L1ðW� ð0;TÞ �DÞdþ1:

By weak lower semicontinuity and Lemma 3.3, this also implies, arguing as in
[9, 10, 11, 13], that

u a L2ðW;Llð0;T ;HÞÞBL1ðW;L1ð0;T ;W 1;1
0 ðDÞÞÞ;

h a L1ðW� ð0;TÞ �DÞd ;
x a L1ðW� ð0;TÞ �DÞ;

kð‘uÞ þ k�ðhÞ ¼ ‘u � h a L1ðW� ð0;TÞ �DÞ;
jðuÞ þ j �ðxÞ ¼ ux a L1ðW� ð0;TÞ �DÞ:
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In order to show that h a gð‘uÞ and x a bðuÞ a.e. in W� ð0;TÞ �D, it su‰ces to
prove, by the maximal monotonicity of g and b, that

lim sup
l!0

E

Z T

0

Z
D

ðhl � ‘ul þ xlulÞa E

Z T

0

Z
D

ðh � ‘uþ xuÞð3:3Þ

(cf. [9, pp. 17–18]). To this purpose, note that the ordinary Itô formula and
Proposition 3.1 yield

1

2
EkulðTÞk2 þ E

Z T

0

Z
D

ðhl � ‘ul þ xlulÞ ¼
1

2
Eku0k2 þ

1

2
E

Z T

0

kBðsÞk2L2ðU ;HÞ ds

and

1

2
EkuðTÞk2 þ E

Z T

0

Z
D

ðh � ‘uþ xuÞ ¼ 1

2
Eku0k2 þ

1

2
E

Z T

0

kBðsÞk2L2ðU ;HÞ ds;

respectively (the stochastic integrals appearing in both versions of Itô’s for-
mula are in fact martingales, not just local martingales, hence their expecta-
tion is zero). Since ulðTÞ ! uðTÞ weakly in L2ðW;HÞ, one has EkuðTÞk2 a
lim infl!0 EkulðTÞk2, hence, by comparison, (3.3) follows.

Finally, the strong pathwise continuity (in H) of u is an immediate conse-
quence of the corollary to Proposition 3.1.

Remark 3.5. Another way to ‘‘restore’’ uniqueness of limits for the pair
zl ¼ ðhl; xlÞ is to view it as element of the quotient space L1ðDÞdþ1=M, where
M :¼ kerF. Note that M is a closed subset of L1 (we suppress the superscript
as well as the indication of the domain just within this remark), as the inverse
image of the closed set f0g through a continuous linear map, hence L1=M
is a Banach space. However, working with the spaces L1ð0;T ;L1=MÞ and
L1ðW� ð0;TÞ;L1=MÞ present technical di‰culties due to the fact that their dual
spaces are hard to characterize. A bit more precisely, this has to do with the
fact that the dual of L1ð0;T ;EÞ is Llð0;T ;E0Þ if and only if E has the Radon–
Nikodym property. This property is enjoyed by reflexive spaces, but not by L1

spaces (see, e.g., [3]).

3.3. Well-posedness in the general case

Let us consider now equation (1.1) with general additive noise, i.e. with

B a L2ðW;L2ð0;T ;L2ðU ;HÞÞÞ:

Thanks to classical elliptic regularity results, there exists m a N such that the
ðI � dDÞ�m is a continuous linear map from L1ðDÞ to W 1;lðDÞBH 1

0 ðDÞ for
every d > 0. Setting then V0 :¼ ðI � DÞ�mðHÞ and Bd :¼ ðI � dDÞ�m

B, we have
Bd a L2ðW;L2ð0;T ;L2ðU ;V0ÞÞÞ, hence, by the well-posedness results already

631a note on doubly nonlinear spdes with singular drift in divergence form



obtained, the equation

dud � div gð‘udÞ dtþ bðudÞ dt C Bd dW ; udð0Þ ¼ u0;

admits a strong solution ðud; hd; xdÞ. Arguing as in [9, 10, 11, 13], one can show
using Itô’s formula that ðudÞ is a Cauchy sequence in L2ðW;Cð½0;T �;HÞÞ and that
ð‘udÞ, ðhdÞ, and ðxdÞ are relatively weakly compact in L1ðW� ð0;TÞ �DÞ, so
that

ud ! u in L2ðW;Cð½0;T �;HÞÞ;
ud ! u weakly in L1ðW� ð0;TÞ;W 1;1

0 ðDÞÞ;
hd ! h weakly in L1ðW� ð0;TÞ �DÞd ;
xd ! x weakly in L1ðW� ð0;TÞ �DÞ;

from which it follows that ðu; h; xÞ solves the original equation. Moreover, the
strong-weak closure of b readily implies that x a bðuÞ a.e. in W� ð0;TÞ �D.
Finally, arguing as in the previous subsection, by weak lower semicontinuity of
convex integrals and Itô’s formula one can show that

lim sup
l!0

E

Z T

0

Z
D

hl � ‘ul a E

Z T

0

Z
D

h � ‘u;

so that h a gð‘uÞ a.e. in W� ð0;TÞ �D as well.
Continuous dependence on the initial datum is a consequence of Itô’s formula

and the monotonicity of g and b. Finally, the generalization to the case of multi-
plicative noise follows using the Lipschitz continuity of B and a classical fixed
point argument. A detailed exposition of the arguments needed to prove these
claims can be found in [9, 10, 11, 13].
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