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Abstract. — In this paper we describe a new method to derive di¤erent type of decay estimates

for solutions of evolution equations which allow to describe the asymptotic behavior of the solu-
tions both in presence or absence of ‘‘immediate’’ regularizing properties. Moreover, we give various

examples of applications some of which new and dealing with a class of nonlinear problems with
degenerate coercivity.
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1. Introduction

In this paper we describe a new approach, developed in [17] and [19], to the study
of the regularity, asymptotic behavior and decay estimates (of di¤erent type) for
solutions of evolution equations. This new method allows to prove decay esti-
mates of the type

kuðtÞkLrðWÞ aC
ku0kh0

Lr0 ðWÞ
th1

for every t > 0:

where 1a raþl, h0 and h1 are positive exponents and u0 a Lr0ðWÞ ðr0 b 1Þ is
the initial datum of the evolution problem satisfied by u.

We recall that if r ¼ þl the previous estimates are often called in literature as
‘‘ultracontractive estimates’’, while if r0 < r < þl they are referred as ‘‘super-
contractive estimates’’.

Here both the cases of ‘‘immediate regularization phenomena’’ (supercontrac-
tive and ultracontractive estimates) r0 < raþl are considered together with
the case of decay without any improvement of regularity 1a ra r0. This new
approach will allow to derive all these decay estimates (of any type) simply by
suitable integral estimates.

We will describe this method together with some possible applications in the
following Section 2.

We point out that further examples and developments of the theory can be
found in [15]–[23].



Then, in Section 3 we state new results concerning the asymptotic behavior of
a class of nonlinear problems with degenerate coercivity whose prototype is the
following equation

ut ¼ div
�

‘u
ð1þjujÞ g

�
in W� ð0;þlÞ;

u ¼ 0 on qW� ð0;þlÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:ð1:1Þ

where g > 0 and u0 a Lr0ðWÞ, with r0 b 1.
We will also investigate the influence in (1.1) of lower order terms of the type

a0jujs�1
u ðsb 1Þ on the regularity and asymptotic behavior of these solutions

proving, for example, that it is su‰cient any power s > 1 to provoke the immedi-
ate boundedness of the solutions whatever is the summability of the initial datum
and the value g of the degeneracy of the equation.

Finally, in Section 4 we give the proofs of these results using the approach
presented in Section 2.

2. A new approach to decay estimates

Let us consider the classical example of the heat equation

ut ¼su in W� ð0;þlÞ;
u ¼ 0 on qW� ð0;lÞ;
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:

where W is an open set of RN . Although the initial datum u0 is only in L1ðWÞ the
following regularity result (decay estimate) holds true

kuðtÞkLlðWÞ aC
ku0kL1ðWÞ

t
N
2

for every t > 0:

Moreover, if u0 is more regular, for example if it belongs to Lr0ðWÞ, r0 > 1, then
it results

kuðtÞkLlðWÞ aC
ku0kLr0 ðWÞ

t
N
2r0

for every t > 0:ð2:1Þ

In other words, it is su‰cient to have summable initial data u0 to obtain Ll-
estimates, but if the initial datum is more summable and belongs to Lr0ðWÞ, then
the exponent r0 influences the L

l-estimate satisfied by the solution.
Notice that estimate (2.1) remains true also doing a slight change in the equa-

tion. In detail, if we consider the following problem

ut ¼ divðAðx; tÞ‘uÞ; in W� ð0;þlÞ;
u ¼ 0 on qW� ð0;þlÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:ð2:2Þ
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where A is a bounded matrix satisfying

ðAx; xÞb ajxj2 for every x a RN ; a > 0;ð2:3Þ

then there exists a solution u of (2.2) satisfying (2.1) (see [26], [9] and [17]).
Hence all these linear equations exhibit the following very strong ‘‘Regulariz-

ing e¤ect’’:

u0 a L1ðWÞ ) uðtÞ a LlðWÞ for every t > 0

and Ll estimates of the type

kuðtÞkLlðWÞ aC
ku0kh0

Lr0 ðWÞ
th1

for every t > 0

hold true with h0 and h1 positive exponents. As recalled in the introduction, esti-
mates of the previous type are known in literature as ‘‘decay estimates’’ or ‘‘ultra-
contractive estimates’’.

The interest in studying these kind of estimates consists of the consequences
and the applications that follow by them.

As a matter of fact, these estimates are the starting point of the ‘‘improvement
process’’ of regularity: if you are interested in continuity (or more regularity of
the solutions) the first step is to prove the boundedness of the solutions. More-
over, they allow to describe the ‘‘behavior of the solutions for t large’’ (i.e. how
the solution decays when t tends to þl) together with the ‘‘behavior of the solu-
tions for t small’’ (i.e. what happens to the solution for t that tends to zero).
Indeed, the improvement of regularity is often strongly related also to the unique-
ness of solutions. As a matter of fact, in many cases these solutions that regu-
larize are the only regular solutions (see [8], [18], [20] and [22]).

Decay estimates have been proved not only in the linear framework but also
for numerous nonlinear problems (or even doublynonlinear) which can be also
degenerate or singular. A famous example is the porous medium equation

ut ¼sðjujm�1
uÞ; in WT CW� ð0;þlÞ;

u ¼ 0 on qW� ð0;þlÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:

where m > 1. It is known that there exists a solution of this degenerate equation
satisfying

kuðtÞkLlðWÞ a c
ku0k

2r0
Nðm�1Þþ2r0

Lr0 ðWÞ

t
N

Nðm�1Þþ2r0

for every t > 0:ð2:4Þ

(see [26], [4], [1], [5] and [25]).
It is worth to notice that if m ! 1þ (formally) the porous medium equation

becomes the heat equation and the decay estimate (2.4) becomes the decay esti-
mate (2.1) satisfied by the solution of the heat equation.
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Moreover, if W is a bounded set a faster decay (at infinity) appears and the
following bound holds

kuðtÞkLlðWÞ a
C

t
1

m�1

for every t > 0;ð2:5Þ

where the constant C does not depend of the initial datum u0: for this reason
these kind of inequalities are also called universal estimates (see [26]). Indeed, it
is su‰cient to assume that W has finite measure to get universal estimates (see [7]
if W is a connected domain and [17] in the remaining case). Notice that in absence
of this condition on W these estimates fail (see [25]).

We remark that if W has finite measure also the solution u of the heat equation
has a faster decay at infinity but of a ‘‘di¤erent type’’ since the following expo-
nential decay occurs

kuðtÞkLlðWÞ aC
ku0kLr0 ðWÞ

t
N
2r0est

for every t > 0:ð2:6Þ

where s depends on the measure of W (see [7] and [17]).
Another interesting case for which these estimates hold is the fast di¤usion

equation

ut ¼sðjujm�1
uÞ; in W� ð0;þlÞ;

u ¼ 0 on qW� ð0;þlÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:

formally the same equation of the porous medium equation but now 0 < m < 1
and hence the equation is singular. In this case, the behavior of the solutions
changes: if W has finite measure it is not true that uniform estimates hold and
restrictions on the coe‰cient m (in dependence of the summability r0 of the initial
datum u0) are needed in order to have Ll-regularization (see [25]). In detail,
if

N � 2r0
N

< m < 1:ð2:7Þ

then there is a solution that becomes immediately bounded and satisfies the decay
estimate (2.4) (see [3], [26], [13], [25]). Notice that once again this decay estimate
becomes the decay estimate of the heat equation letting m ! 1�.

Another nonlinear parabolic equation exhibiting regularizing phenomena is
the p-Laplacian equation

ut � divðj‘ujp�2‘uÞ ¼ 0 in W� ð0;þlÞ;
u ¼ 0 on qW� ð0;þlÞ
uðx; 0Þ ¼ u0ðxÞ on W:

8><
>:ð2:8Þ
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In the degenerate case p > 2 the behavior is similar to the porous medium equa-
tion: we have the decay estimate

kuðtÞkLlðWÞ a c4
ku0k

pr0
Nð p�2Þþ pr0

Lr0 ðWÞ

t
N

Nð p�2Þþ pr0

for every t > 0;ð2:9Þ

that becomes the decay estimate (2.1) of the heat equation letting p ! 2þ (i.e.
when formally the p-Laplacian equation becomes the heat equation), while if W
has finite measure the following universal bound holds

kuðtÞkLlðWÞ a
C

t
1

p�2

for every t > 0;ð2:10Þ

(see [26], [14], [10], [7] and [25]). In the singular case 1 < p < 2, the behavior of
the solutions of (2.8) is similar at all to the case of the fast di¤usion: no universal
bounds are satisfied and a restriction on the di¤usion exponent p (once again de-
pending on r0) is needed to have a Ll-decay estimate which is the same estimate
of the degenerate case (see [26], [14], [11], and [25]).

The previous nonlinear problems are only possible examples of PDE problems
exhibiting these Ll-decay estimates and there is a wide literature on the subject.

The proofs of these decay estimates vary from one problem to the other and in
general the main tool is to derive suitable families of logarithmic Sobolev inequal-
ities which reflect the operator involved in the problem considered.

We recall a di¤erent approach developed in [17] that allows to derive Ll-
decay estimates simply by suitable integral estimates.

Let use define the following function which often appears in many regularity
proofs

GkðuÞ ¼ ðjuj � kÞþ signðuÞ:

The method relies in applying one of the following results.

Theorem 2.1 (Theorem 2.1 in [17]). Assume that u is in Cðð0;TÞ;LrðWÞÞB
Lbð0;T ;LqðWÞÞBCð½0;TÞ;Lr0ðWÞÞ, where W is an open set of RN (not necessary
bounded ) Nb 1, 0 < T aþl and

1a r0 < r < qaþl; b0 < b < q; b0 ¼
ðr� r0Þ
1� r0

q

;ð2:11Þ

where here (and in the rest of the paper) we consider 1
þl ¼ 0. Assume that u satis-

fies the following integral estimates for every k > 0Z
W

jGkðuÞjrðt2Þ dx�
Z
W

jGkðuÞjrðt1Þ dxþ c1

Z t2

t1

kGkðuÞðtÞkb
LqðWÞ dtð2:12Þ

a 0 for every 0 < t1 < t2 < T ;

kGkðuÞðtÞkLr0 ðWÞ a c2kGkðuÞðt0ÞkLr0 ðWÞ for every 0a t0 < t < T ;ð2:13Þ
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where c1 and c2 are positive constants independent of k and

u0C uðx; 0Þ a Lr0ðWÞ:ð2:14Þ

Then there exists a positive constant C1 depending only on N, c1, c2, r, r0, q and b
such that

kuðtÞkLlðWÞ aC1

ku0kh0
Lr0 ðWÞ
th1

for every t a ð0;TÞ;ð2:15Þ

where

h1 ¼
1

b� ðr� r0Þ � r0b
q

; h0 ¼ h1

�
1� b

q

�
r0:ð2:16Þ

Moreover if W has finite measure we have an exponential decay if b ¼ r and
universal bounds if b > r. More in details we have the following result.

Theorem 2.2 (Theorem 2.2 in [17]). Let the assumptions of Theorem 2.1 hold
true. If W has finite measure and b ¼ r the following exponential decay occurs

kuðtÞkLlðWÞ aC2

ku0kLr0 ðWÞ
th1est

for every t a ð0;TÞ;ð2:17Þ

where C2 is a positive constant depending only on N, c1, c2, r, r0, b and q, h1 is as
in (2.16) and

s ¼ c1k

4ðr� r0ÞjWj1�
b
q

; k arbitrarily fixed in
�
0; 1� r0

r

�
:ð2:18Þ

If otherwise W has finite measure and b > r we have the following universal
bound

kuðtÞkLlðWÞ a
Ca

th2
for every t a ð0;TÞ;ð2:19Þ

where

h2 ¼ h1 þ
h0

b� r
¼ 1

b� r
;ð2:20Þ

and Ca is a constant depending only on r, r0, q, b, c1, c2 and the measure of W.

We point out that the previous Theorems are ‘‘abstract results’’ where it is not
assumed that u solves any partial di¤erential equation. Moreover, it is possible to
estimate the constants C1, C2 and Ca above (see [17]) and some further general-
izations of these ‘‘abstract results’’ are allowed (see again [17]).
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We show now how to apply the previous results by means of the following
easy example. Consider the linear problem (2.2) above with u0 a L1ðWÞ, i.e.

ut ¼ divðAðx; tÞ‘uÞ in W� ð0;þlÞ;
u ¼ 0 on qW� ð0;þlÞ;
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:

where A is a bounded matrix satisfying (2.3) and W is an open set of RN , N > 2
(not necessary bounded or with finite measure). Notice that the case considered
here is not included in the papers of [26] and [9]. To avoid technicality we do a
‘‘formal calculus’’ (but the rigorous one is very easy and can be found in [17]).
Taking GkðuÞ as test function we deduce for every 0 < t1 < t2 < þl

1

2

Z
W

jGkðuÞj2ðt2Þ �
1

2

Z
W

jGkðuÞj2ðt1Þ þ
Z t2

t1

Z
W

Aðx; tÞ‘u‘GkðuÞa 0:

Using the coercivity condition (2.3) and the Sobolev inequality1 (with p ¼ 2) we
obtainZ t2

t1

Z
W

Aðx; tÞ‘u‘GkðuÞ ¼
Z t2

t1

Z
W

Aðx; tÞ‘GkðuÞ‘GkðuÞ

b a

Z t2

t1

Z
W

j‘GkðuÞj2 b acS

Z t2

t1

kGkðuÞk2L2� ðWÞ;

where cS is the Sobolev immersion constant defined in (2.21). Putting together the
previous estimates we deduce that for every 0 < t1 < t2 < þlZ

W

jGkðuÞj2ðt2Þ �
Z
W

jGkðuÞj2ðt1Þð2:22Þ

þ 2acS

Z t2

t1

kGkðuÞk2
L

2N
N�2ðWÞ

a 0;

i.e. the integral estimate (2.12) holds true with r ¼ b ¼ 2, c1 ¼ 2acS, q ¼ 2N
N�2 , and

b0 ¼ 2N
Nþ2 . Notice that now r0 ¼ 1 and this choice of exponents satisfies the alge-

braic conditions in (2.11). To show that also (2.13) holds true it is again su‰cient

to choose a suitable test function. In detail, take j ¼ 1� 1

½1þjGkðuÞj� d

n o
signðuÞ

ðd > 1Þ as test function in W� ð0; tÞ, where t > 0 is arbitrarily fixed. Notice
that j is nonzero only on the set of finite measure Ak C fðx; tÞ a W� ð0; tÞ :
juðx; tÞj > kg. We deduce for every 0a t0 a t < þl

1The Sobolev inequality: there exists a constant cs depending only on N and p ðN > pÞ such that

cs

�Z
W

jvjp
�
dx

� p

p �
a

Z
W

j‘vjp dx for every v a W
1; p
0 ðWÞ; p� ¼ pN

N � p
:ð2:21Þ
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Z
W

jGkðuÞjðtÞ þ
1

d� 1

Z
A

t0
k

1� 1

½1þ jGkðuÞjðt0Þ�d�1

( )
ð2:23Þ

þ d

Z t

t0

Z
W

aðx; t; u;‘uÞ ‘GkðuÞ
½1þ jGkðuÞjðtÞ�dþ1

a

Z
W

jGkðuÞjðt0Þ þ
1

d� 1

Z
At

k

1� 1

½1þ jGkðuÞjðtÞ�d�1

( )
:

where At
k C fx a W : juðx; tÞj > kg. Notice that also At

k has finite measure. Using
again (2.3) (and that d > 1) from (2.23) we obtain

Z
W

jGkðuÞjðtÞa
Z
W

jGkðuÞjðt0Þ þ
1

d� 1

Z
At

k

1� 1

½1þ jGkðuÞjðtÞ�d�1

( )

a

Z
W

jGkðuÞjðt0Þ þ
jAt

kj
d� 1

;

which implies that (2.13) holds true for every 0a t0 < t < þl thanks to the
arbitrary choice of d > 1. Now applying Theorem 2.1 we obtain the decay
estimate

kuðtÞkLlðWÞ aC0

ku0kL1ðWÞ

t
N
2

for every t > 0;ð2:24Þ

with C0 ¼ C0ða; cS;NÞ2 which is, once again, the same decay estimate of the heat
equation.

Moreover, if jWj < þl, we can apply also Theorem 2.2 concluding that also
the exponential decay estimate (2.6) is satisfied. Hence the behavior of the solu-
tion of the linear equation above is at all similar to that of the heat equation and
the exponential estimates are not a peculiarity of the heat equation.

The previous method works also with the classical equations (porous medium
etc.) recalled above and since the algebraic conditions become the sharp known
bounds to have the Ll decay we think that these conditions on the exponents
could be sharp. Indeed, also the formulas of the exponents give (in the known
cases) the sharp exponents.

An obvious consequence of this new approach is the following result.

Corollary 2.1. If the solutions of di¤erent evolution problems satisfy the same
integral inequalities (2.12) and (2.13) then they satisfy the same Ll-regularizing
property and Ll-decay estimates.

2Here and everywhere in the paper we denote by Cð� ; � ; �Þ a positive constant that depends only
on the variables in brackets.
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Hence, we can finally explain the reason why surprisingly the solutions of dif-
ferent problems like, for example, the heat equation, the linear problem (2.2) and
the nonlinear Leray–Lions operator with growth 2 or the p-Laplacian and the
Leray–Lions operators with growth p, satisfy exactly the same Ll-decay esti-
mates. The motivation is very easy, but not clear at all with di¤erent approaches,
and relies (as stated in Corollary 2.1) in the fact that all these solutions that sat-
isfy the same decay estimates verify the same integral estimates too and hence, by
the results presented above, they have exactly the same regularizing and decay
properties.

This new approach allows to prove a lot of new decay results in a very simple
way: you just need to prove the integral estimates ‘‘of energy type’’ (2.12) and
(2.13). Easy applications to evolution equations like for example anisotropic
problems can be found in [17].

As just recalled above, in many ‘‘classical’’ evolution problems when this
strong Ll regularizing property appears these ‘‘regular solutions’’ are unique, as
for example, in the case of the porous medium equation with summable initial
data (see [8]). Hence, now that you have an easy method to prove this improve-
ment of regularity, you can also check if also other problems for which this im-
provement of regularity appears exhibit this uniqueness property too. We point
out that this approach to uniqueness works also for other parabolic PDE like,
for example, Leray–Lions problems (see [18]).

We have described above some interesting properties of the solutions that
‘‘immediately’’ regularize into LlðWÞ and an easy method to recognize these solu-
tions but there are many evolution problems for which this strong improvement
of regularity do not appear. Hence it would be interesting to study also what is
the behavior in these other cases.

Indeed, di¤erent behavior are allowed and the previous approach, that
makes use only of integral inequalities, can be extended to study also this di¤er-
ent framework. In particular, there are cases for which ‘‘no smoothing e¤ect’’
appears:

uðtÞ a L1ðWÞ for every t > 0; ðwith uðtÞ B LrðWÞ for every r > 1Þ

like for example when u is a solution of the singular p-Laplacian or of the fast
di¤usion equations for suitable choices of the exponents p and m. There are
PDE problems exhibiting a ‘‘very strong regularizing e¤ect’’:

uðtÞ a LrðWÞ for every r a ð1;þl� and for every t > 0

like the case of the solution of the heat equation or of the linear problem
(2.2) discussed above. It is also possible that a ‘‘weak regularizing e¤ect’’
appears:

uðtÞ a LrðWÞ for every r a ðr0;þlÞ and uðtÞ B LlðWÞ

as in the case of the solution u of the ‘‘porous media equation with two
weights’’

643asymptotic behavior



rnut � divðrm‘ðjuj
m�1

uÞÞ ¼ 0 in W� ð0;lÞ;
u ¼ 0 on qW� ð0;lÞ;
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:ð2:25Þ

where m > 1 and the weights n ¼ nðxÞ and m ¼ mðxÞ are suitable functions defined
on W (see [12]). Another possibility is a ‘‘very weak regularizing e¤ect’’:

uðtÞ a LrðWÞ r a ðr0; r1Þ r1Aþl

but

uðtÞ B LrðWÞ for every r > r1:

An example of problem for which this last phenomenon holds true is the heat
equation with a singular potential term

ut � Du ¼ l u

jxj2
in W� ð0;lÞ;

u ¼ 0 on qW� ð0;lÞ;
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:ð2:26Þ

where W is a bounded domain of RN containing the origin and l > 0 (see [19] and
[23]).

It is also possible to prove that in all the di¤erent cases presented above
of ‘‘strong’’, ‘‘weak’’ or ‘‘very weak’’ regularization phenomena a decay of the
LrðWÞ-norms of the solutions (with r as above suitable chosen satisfying r > r0)
appears.

Indeed, it can also appear a decay of the LrðWÞ-norm of solutions that do not
satisfy any regularization like for example the p-Laplacian equation with p suit-
able small; in these cases the values of r satisfy r < r0 (see [18] and [19]).

All these results can be proved extending the previous approach to the Ll-
regularization phenomena. In other words, again if a solution satisfies suitable
integral estimates (similar but weaker than (2.11) and (2.12) in Theorem 2.1)
then it belongs to LrðWÞ and decays in the LrðWÞ-norm, where the allowed values
of r depend on the integral estimates that these solutions verify. This new ap-
proach, presented in [19] (together with some possible applications of this new
method), allows to determine which kind of ‘‘regularization’’ appears together
with the decay bounds satisfied by the solutions. Further developments and appli-
cations can be found in [15], [16], [18], [20]–[23] and in Section 3 of this paper.

For the convenience of the reader, we conclude this section stating two of the
‘‘abstract results’’ in [19] that we will use in Section 4 to prove new decay results
on some nonlinear degenerate parabolic equations, that, as said before, we state
with all the details in the following section.

Theorem 2.3 (Theorem 2.1 in [19]). Let u0 be in Lr0ðWÞ and u in Cðð0;TÞ;
LrðWÞÞBLbð0;T ;LqðWÞÞBCð½0;TÞ;Lr0ðWÞÞ, where W is an open set of RN

(not necessary bounded ), Nb 1 and 0 < T aþl. Assume that for every
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0 < t1 < t2 < TZ
W

jujrðt2Þ �
Z
W

jujrðt1Þ þ c1

Z t2

t1

kuðtÞkb
LqðWÞ dta 0;ð2:27Þ

1aminfr0; qg < r < maxfr0; qgaþl; b > b0; b0 ¼
r� r0

1� r0
q

;ð2:28Þ

and

kuðtÞkLr0 ðWÞ a c2ku0kLr0 ðWÞ a:e: 0 < t < T :ð2:29Þ

Then the following estimate holds true

kuðtÞkLrðWÞ a c3
ku0kg0

Lr0 ðWÞ
tg1

for every t a ð0;TÞ;

where

g1 ¼
r
r0
� 1

r b
r0
�
�
r
r0
� 1

�
� b

q

h i g0 ¼
b
�
1� r

q

�
r b

r0
�
�
r
r0
� 1

�
� b

q

h i
and

c3 ¼
�rg1
c1

�g1
c
g0
2 :

Theorem 2.4 (Theorem 2.8 in [19]). Let u be in Cðð0;TÞ;LrðWÞÞB
Llð0;T ;Lr0ðWÞÞ where 0 < ra r0 < l. Suppose also that jWj < þl if rA r0
(no assumption are needed on jWj if r ¼ r0). If u satisfiesZ

W

jujrðt2Þ �
Z
W

jujrðt1Þ þ c1

Z t2

t1

kuðtÞkr
LrðWÞ dta 0ð2:30Þ

for every 0 < t1 < t2 < T ;

and there exists u0 a Lr0ðWÞ such that

kuðtÞkLr0 ðWÞ a c2ku0kLr0 ðWÞ for almost every t a ð0;TÞ;ð2:31Þ

where ci, i ¼ 1; 2 are real positive numbers, then the following estimate holds true

kuðtÞkLrðWÞ a c4
ku0kLr0 ðWÞ

est
for every 0 < t < T ;ð2:32Þ

where

c4 ¼ c2jWj
1
r
� 1

r0 if r < r0;

1 if r ¼ r0;

(
s ¼ c1

r
:

645asymptotic behavior



3. An application to nonlinear problems with degenerate

coercivity

We show here some new applications of the method presented above. In detail,
we consider a class of nonlinear, degenerate and non coercive parabolic equations

ut ¼ divðAðx; t; uÞ‘uÞ in WT CW� ð0;TÞ;
u ¼ 0 on qW� ð0;TÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:ð3:1Þ

where W is a bounded domain of RN ðNb 2Þ with a smooth boundary, 0 < T <

þl and Aðx; t; sÞ : W� ð0;TÞ � R ! RN 2

is a bounded symmetric matrix func-
tion, continuous with respect to ðx; sÞ and measurable with respect to t (for every
ðx; sÞ a W� R) such that for any x a RN , s a R and a.e. ðx; tÞ a WT

ajxj2

ð1þ jsjÞg a 3Aðx; t; sÞx; x4a bjxj2

ð1þ jsjÞgð3:2Þ

where

a > 0 b > 0 and g > 0:

The model case we have in mind is the following

ut ¼ div
�

a‘u
ð1þjujÞ g

�
in WT ;

u ¼ 0 on qW� ð0;TÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:ð3:3Þ

We observe that these parabolic problems degenerate as soon as the solutions
are unbounded. Moreover, if the initial datum u0 belongs to Lr0ðWÞ, r0 b 1, we
cannot hope (without further assumptions) that ‘u always exists, even in a
weak sense. Hence, to overcome this di‰culty and to define a solution of this
problem in [24] it was considered the gradient of an auxiliary function GðuÞ de-
fined as

GðsÞC
Z s

0

1

ð1þ jzjÞg dz z a Rð3:4Þ

and the following notion of solution is considered.

Definition 3.1. A measurable function u is a weak solution of (3.1) if u a
Llð0;T ;L1ðWÞÞ, GðuÞ a L1ð0;T ;W 1

0 ðWÞÞ, Aðx; t; uÞð1þ jujÞg‘GðuÞ a ðL1ðWÞÞN
and if it results

Z T

0

Z
W

fujt þ 3Aðx; t; uÞð1þ jujÞg‘GðuÞ;‘j4g dx dt ¼
Z
W

u0jðx; 0Þ dxð3:5Þ
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for every j a W 1;1ð0;T ;LlðWÞÞBLlð0;T ;W 1;l
0 ðWÞÞ, with compact support in

½0;TÞ �W.

As noticed in Remark 2.2 in [24], if ‘u a ðL1
locðWÞÞN then

Aðx; t; uÞð1þ jujÞg‘GðuÞ ¼ Aðx; t; uÞ‘u and (3.5) becomesZ T

0

Z
W

fujt þ 3Aðx; t; uÞ‘u;‘j4g dx dt ¼
Z
W

u0jðx; 0Þ dx

We recall that the previous assumptions guarantee the existence of a weak solu-
tion for every choice of g > 0 and u0 summable initial datum. As a matter of fact,
it results

Theorem 3.1 (Theorem 2.5 in [24]). Let (3.2) hold true and u0 a Lr0ðWÞ with
r0 b 1. Then there exists a weak solution u of (3.1) in Llð0;T ;Lr0ðWÞÞ. Moreover,
it results

GðuÞ a Lqð0;T ;W 1;q
0 ðWÞÞ

q ¼ 2 if r0 > 2� g;

q ¼ 2r0
2�g

if 1 < r0 a 2� g;

q a
�
1; 2

2�g

�
if 1 ¼ r0 a 2� g:

8><
>:ð3:6Þ

Indeed, if (3.2) is satisfied for every x a RN , s a R and a.e. ðx; tÞ a W� ð0;lÞ
(in such a case we say ‘‘shortly’’ that (3.2) is satisfied in Wl) it is also possible to
prove the existence of global weak solutions of

ut ¼ divðAðx; t; uÞ‘uÞ in WT CW� ð0;þlÞ;
u ¼ 0 on qW� ð0;lÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:ð3:7Þ

where by a global weak solution of (3.7) (or equivalently by a global weak solu-
tion of (3.1)) we mean a function u which is a weak solution of (3.1) for every
T > 0. As a matter of fact, the following result holds.

Theorem 3.2. Assume that (3.2) is satisfied in Wl. Let u0 be in Lr0ðWÞ with
r0 b 1. Then there exists a global weak solution u of (3.1) in Ll

locð½0;þlÞ;
Lr0ðWÞÞ satisfying

GðuÞ a L
q
locð½0;þlÞ;W 1;q

0 ðWÞÞð3:8Þ

where q is as in (3.6).

The proof of the previous result together with the following ones are given in
Section 4.

Remark 3.1. We point out that the previous theorem completes the existence
result proved in [24] removing the restriction (imposed in Theorem 2.15 in [24])
that r0 >

gN
2 .
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We recall that if u0 is bounded than also u is bounded (see Theorem 2.6 in
[24]) and the following estimate holds true

kukLlðWT Þ a ku0kLlðWÞ:

Moreover, even if the initial datum u0 is not bounded, if r0 and g are suitable
related, there exists a solution that becomes ‘‘immediately bounded’’. In details,
if

r0 >
gN

2
ð3:9Þ

then uðtÞ a LlðWÞ and satisfies the following decay estimate

kuðtÞkLlðWÞ aK1

ku0kLr0 ðWÞ
tn

e�K2t for every t > 0ð3:10Þ

where K1, K2 and n are positive constants depending on the data in the prob-
lem (see Theorem 2.15 in [24]). Notice that condition (3.9) is a sharp condi-
tion to have this ‘‘immediate boundedness’’ (see counterexamples in Section 6 in
[24]).

To our knowledge, it is not known which is the behavior of global weak solu-
tions when (3.9) is not satisfied. Hence we want to fill this gap here studying this
lacking case.

We have the following result

Theorem 3.3. Assume that (3.2) is satisfied in Wl. Let u0 be in Lr0ðWÞ with r0
verifying

1 < r0 a
gN

2
:ð3:11Þ

If it results

ga r0;ð3:12Þ

then there exists a global weak solution u (which is the same solution given by
Theorem 3.2) which satisfies the following decay estimate

kuðtÞkLrðWÞ aC
ku0kLr0 ðWÞ

t
r0�r

rg

a:e: t > 0;ð3:13Þ

for every 1 < r < r0, where C is a positive constant independent of u (see formula
(4.17) below).

Remark 3.2. We observe that if ga 1 then assumption (3.12) is ever satisfied.
We do not know if it is possible to remove this assumption in Theorem 3.3. Any-
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way, we observe that (3.12) is ever satisfied in the regularizing case r0 >
gN
2 when,

as recalled above, the decay of the Ll-norm of uðtÞ (and hence of every Lr-norm)
holds true.

Finally, in the borderline case g ¼ 2a r0 further results and decay estimates in
ð0;TÞ for weak solutions of (3.1) can be found in [6].

We show now that if we do a slight modification in problem (3.1) introducing
a lower order term a0u, with a0 positive constant, then it is possible to show a
decay of a global weak solution u also in Lr0ðWÞ and without assuming (3.12).
Moreover, a faster decay in LrðWÞ (as t ! þl) occurs for every 1a ra r0. In
detail, let us consider the following evolution problem

ut � divðAðx; t; uÞ‘uÞ þ a0u ¼ 0 in WT CW� ð0;þlÞ;
u ¼ 0 on qW� ð0;lÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8<
:ð3:14Þ

then we have the following result.

Theorem 3.4. Assume that (3.2) is satisfied in Wl and that a0 is a positive con-
stant. Let u0 be in Lr0ðWÞ with r0 verifying

1a r0 a
gN

2
:ð3:15Þ

Then there exists a global weak3 solution u of (3.14) in Ll
locð½0;þlÞ;Lr0ðWÞÞ sat-

isfying (3.8) and such that for every 1a ra r0 the following decay estimate holds

kuðtÞkLrðWÞ aC
ku0kLr0 ðWÞ

ea0t
a:e: t > 0;ð3:17Þ

where

C ¼ jWj
1
r
� 1

r0 if r < r0

1 if r ¼ r0:

(
ð3:18Þ

Remark 3.3. Notice that the previous theorem allows to extend Theorem 3.3 to
the case r0 ¼ 1 together with (as recalled above) the cases r ¼ r0.

Finally if we ‘‘increase’’ the power of the lower order term replacing a0u with
a0jujs�1

u, with s > 1, then without any restriction on g and r0 b 1 (hence also
when (3.9) is not satisfied) there exist global solutions that ‘‘immediately become

3Here a global solution of (3.14) is a weak solution in every set WT , for every T > 0, where by a

weak solution u in WT we mean that u satisfies Definition 3.1 with (3.5) replaced byZ T

0

Z
W

fujt þ 3Aðx; t; uÞð1þ jujÞ g‘GðuÞ;‘j4þ a0ujg dx dt ¼
Z
W

u0jðx; 0Þ dx:ð3:16Þ
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bounded’’. Moreover, it is also possible to show that uniform Ll-bounds hold
true. In detail, let us consider the following evolution problem

ut � divðAðx; t; uÞ‘uÞ þ a0jujs�1
u ¼ 0 in WT CW� ð0;þlÞ;

u ¼ 0 on qW� ð0;lÞ
uðx; 0Þ ¼ u0ðxÞ on W;

8><
>:ð3:19Þ

then we have the following result.

Theorem 3.5. Assume that (3.2) is satisfied in Wl. Let a0 and s be positive con-
stants with s > 1 and let u0 be in Lr0ðWÞ with r0 b 1. Then there exists a global
weak4 solution u in Ll

locð½0;þlÞ;Lr0ðWÞÞBLs
locð½0;þlÞ;LsðWÞÞ satisfying (3.8).

Moreover, u belongs to LlðW� ðe;þlÞÞ for every e > 0 and satisfies the follow-
ing decay estimate

kuðtÞkLlðWÞ a
1

a0ðs� 1Þ

� � 1
s�1 1

t
1

s�1

a:e: t > 0:ð3:21Þ

Remark 4. We observe that (3.21) is an universal decay estimate, i.e. it is inde-
pendent of the initial datum, that consequently, does not influence the decay of
the solution.

We notice also that in many of the results above, the assumptions on A can be
weakened. We have preferred to not consider the full generality to avoid further
technicality.

4. Proof of Theorems 3.2–3.5

In this section we prove all the results stated in the Section 3.

4.1. Proof of Theorem 3.2

The proof proceed by steps.

Step 1. We show here that for every fixed nb 1 ðn a NÞ there exists a global
weak solution un of the following problem

ðunÞt ¼ divðAnðx; t; unÞ‘unÞ in WT CW� ð0;þlÞ;
un ¼ 0 on qW� ð0;lÞ
unðx; 0Þ ¼ Tnðu0ðxÞÞ on W;

8<
:ð4:1Þ

4Here a global solution of (3.19) is a weak solution in every set WT , for every T > 0, where by a

weak solution u in WT we mean that u is in LsðWT Þ and satisfies Definition 3.1 with (3.5) replaced byZ T

0

Z
W

fujt þ 3Aðx; t; uÞð1þ jujÞg‘GðuÞ;‘j4þ a0juj s�1
ujg dx dt ¼

Z
W

u0jðx; 0Þ dx:ð3:20Þ
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where TnðsÞ is the usual truncated function

TnðsÞ ¼ minfjsj; ng signðsÞ:ð4:2Þ

and An is the same regularization introduced in the proof of Theorem 3.1 above
(see Theorem 2.5 in [24]), i.e. we first extend Aðx; t; sÞ in all Rn � R� R defining
Aðx; t; sÞC aI

ð1þjsjÞ g for any ðx; tÞ a ðRN � RÞ=Wl and then we consider a smooth
approximation

Anðx; t; sÞC ðA � jnÞðx; t; sÞ

where jnC nNþ1jðnx; nsÞ (for any n a N) and j a ClðRNþ1Þ is a nonnega-
tive function with support in B1 � ð�1; 1Þ and such that

R
RNþ1 jðx; sÞ dx ds ¼ 1.

Notice that these assumptions imply that for a.e. t a ð0;þlÞ, Anðx; t; sÞ a
ClðRNþ1Þ and satisfies (3.2) in Wl with a and b replaced by a 0 ¼ a 0ðaÞ and
b 0 ¼ b 0ðbÞ positive constants independent of n. Hence by Theorem 2.6 in [24],
for every fixed T > 0 there exists un in Cð½0;T �;L2ðWÞÞBLlðWTÞBL2ð0;T ;
H 1

0 ðWÞÞBC d; d2ðW� ð0;TÞÞ solution in WT of (4.1). Moreover, it results

kunkLlðWT Þ a kTnðu0ÞkLlðWÞ a nð4:3Þ

which implies

Anðx; t; unÞ ¼ Anðx; t;TnðunÞÞ

and

anjxj2 a 3Anðx; t;TnðsÞÞx; x4a bjxj2 where anC
a 0

ð1þ jnjÞg

Hence we can extend every un into a global weak solution of (4.1) (which for
sake of notation we denote again with un). Thus, we have constructed a sequence
un which solves our approximating problem (4.1) in every set WT (for every arbi-
trarily fixed T > 0).

By the regularity above and estimate (4.3) it follows that every un is in
Cð½0;þlÞ;L2ðWÞÞBLlðWlÞBL2ð0;l;H 1

0 ðWÞÞBC d; d2ðW� ð0;þlÞÞ.

Step 2. We complete the proof constructing a global weak solution u of our
problem by means of the sequence un defined in the previous step. To this
aim, we remark that by the proof of Theorem 2.5 in [24], for every fixed T > 0
there exists a subsequence of un that converges a.e. in WT to a weak solution uðTÞ

of (3.1) which belongs to Llð0;T ;Lr0ðWÞÞ and satisfies (3.6). Moreover, the pre-
vious property remain true for every subsequence of un5. Hence, let T0 > 0 arbi-

5 i.e. for every fixed T > 0 and for every subsequence unk of un, there exists a subsequence of unk
that converges a.e. in WT to a weak solution of (3.1) which belongs to Llð0;T ;Lr0 ðWÞÞ and satisfies
(3.6).
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trarily fixed and consider the subsequence of un, that we denote u
ð1Þ
n , such that

uð1Þn ! uðT0Þ a:e: in W� ð0;T0Þ

where uðT0Þ is a weak solution of (3.1) in W� ð0;T0Þ. By construction every term
of the subsequences u

ð1Þ
n is a global weak solution of (4.1). Consequently, every

u
ð1Þ
n is a weak solution of (4.1) in W� ð0; 2T0Þ. Thus, it follows that there exists

a subsequence of u
ð1Þ
n , that we denote u

ð2Þ
n (whose element by construction are all

global weak solution of (3.1)) such that

uð2Þn ! uð2T0Þ a:e: in W� ð0; 2T0Þ

where uð2T0Þ is a weak solution of (3.1) in W� ð0; 2T0Þ. We point out that it
results

uðT0Þ ¼ uð2T0Þ a:e: in W� ð0;T0Þ:

We iterate this procedure and we define a function u in W� ð0;þlÞ as follows

for every T > 0 : uðx; tÞ ¼ uðmT0Þðx; tÞ a:e: in W� ð0;TÞ

where m a N is such that T a ð0;mT0Þ. We notice that the definition of u is well
posed since by construction if T a ð0;mT0ÞB ð0; hT0Þ (with m and h in N) then it
results

uðmT0Þðx; tÞ ¼ uðhT0Þðx; tÞ a:e: in W� ð0;TÞ:

By construction, for every arbitrarily fixed T > 0 u solves (3.1) (hence is a global
weak solution of (3.1)), belongs to Ll

locð½0;þlÞ;Lr0ðWÞÞ and satisfies (3.8). r

4.2. Proof of Theorem 3.3

Let u be the global weak solution of (3.1) constructed in the proof of Theorem
3.2. The assertion will follow showing that for every arbitrarily fixed T > 0 it
results

kuðtÞkLrðWÞ aC
ku0kLr0 ðWÞ

t
r0�r

rg

a:e: t a ð0;TÞ;ð4:4Þ

where C (see formula (4.17) below) is a positive constant depending only on r0, r,
g, W and u0.

Hence, let T > 0 arbitrarily fixed. By construction, there exists a subsequence
of un, that for sake of notation we denote again by un, such that

ðunÞt ¼ divðAnðx; t; unÞ‘unÞ in WT CW� ð0;TÞ;
un ¼ 0 on qW� ð0;TÞ
unðx; 0Þ ¼ Tnðu0ðxÞÞ on W;

8<
:ð4:5Þ
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and

un ! u a:e: in WT :ð4:6Þ

Let us take j ¼ f½eþ junj�r�1 � er�1g sign ðunÞ as test function in (4.5) where e is
a positive constant arbitrarily fixed and 1 < r < r0 (if 2 < r < r0 we can choose
directly e ¼ 0). We obtain for every 0 < t1 < t2 < T

1

r

Z
W

f½eþ junðt2Þj�r � erg dx� 1

r

Z
W

f½eþ junðt1Þj�r � erg dxð4:7Þ

� er�1

Z
W

junðt2Þj dxþ er�1

Z
W

junðt1Þj dx

þ ðr� 1Þ
Z t2

t1

Z
W

j‘unj2

ð1þ junjÞg
ðeþ junjÞr�2

a 0

We estimate the last integral in (4.7). Let 1a p < 2 arbitrarily fixed (it will be
chosen below). It results

Z
W

j‘unjpðeþ jujÞ
ðr�2Þp

2 ¼
Z
W

j‘unjpðeþ junjÞ
ðr�2Þp

2

ð1þ junjÞg
p

2

ð1þ jujÞg
p

2ð4:8Þ

a

Z
W

j‘unj2ðeþ junjÞr�2

ð1þ jujÞg

" #p

2 Z
W

ð1þ junjÞ
pg

2�p

� �1� p

2

:

Let us choose p satisfying

pg

2� p
¼ r0 , p ¼ 2r0

gþ r0
:ð4:9Þ

We observe that assumption (3.12) is equivalent to require pb 1. Hence, by (4.8)
it followsZ

W

j‘unjpðeþ jujÞ
ðr�2Þp

2 a

Z
W

j‘unj2ðeþ junjÞr�2

ð1þ jujÞg

" #p

2 Z
W

ð1þ junjÞr0
� �1� p

2

:ð4:10Þ

We observe that it results

kunkLlð0;T ;Lr0 ðWÞÞ a ku0kLr0 ðWÞð4:11Þ

As a matter of fact, proceeding as in (4.7) but with r ¼ r0 and t1 ¼ 0 we deduce

1

r0

Z
W

f½eþ junðt2Þj�r0 � erg dx� 1

r

Z
W

f½eþ jTnðu0Þj�r0 � er0g dxþð4:12Þ

� er0�1

Z
W

junðt2Þj dxþ er0�1

Z
W

jTnðu0Þj dxa 0
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from which (4.11) follows letting e ! 0 since it results

kTnðu0ÞkLr0 ðWÞ a ku0kLr0 ðWÞ:

Hence, by (4.10) and (4.11) we deduce

Z t2

t1

Z
W

j‘unj2ðeþ junjÞr�2

ð1þ jujÞg bC
�2

p

0

Z t2

t1

�Z
W

j‘unjpðeþ jujÞ
ðr�2Þp

2

�2
pð4:13Þ

where C0 ¼ 2r0ðjWj1�
p

2 þ ku0k
r0ð1� p

2
Þ

Lr0 ðWÞ Þ is a constant independent of n. We estimate
the right hand side of (4.13). It results (using Poincaré inequality6)Z

W

j‘unjpðeþ jujÞ
ðr�2Þp

2 ¼
�2
r

�p
Z
W

j‘½ðeþ junjÞ
r
2 � e

r
2� signðunÞjp

b

�2
r

�p

c
p
P

Z
W

jðeþ junjÞ
r
2 � e

r
2jp:

By the previous estimates we deduceZ
W

f½eþ junðt2Þj�r � erg dx�
Z
W

f½eþ junðt1Þj�r � erg dxð4:15Þ

� rer�1

Z
W

junðt2Þj dxþ rer�1

Z
W

junðt1Þj dx

þ C1

Z t2

t1

�Z
W

jðeþ junjÞ
r
2 � e

r
2jp

�2
p

a 0

where C1 ¼ rðr� 1ÞC�2
p

0

�
2
r

�2
c2P is a positive constant independent of n. Letting

e ! 0 we deduce for every 0 < t1 < t2 < T

Z
W

junðt2Þjr �
Z
W

junðt1Þjr þ C1

Z t2

t1

�Z
W

junj
rp

2

�2
p

a 0ð4:16Þ

that is the integral estimate (2.27) with q ¼ rp

2
and b ¼ r. Notice that these coe‰-

cients satisfy the algebraic condition (2.28) (with q < r < r0). Moreover, by (4.11)
it follows that also (2.29) is verified (with c2 ¼ 1). Thus, by Theorem 2.3 it follows
that

kunðtÞkLrðWÞ aC
kTnðu0ÞkLr0 ðWÞ

t
r0�r

rg

for every t a ð0;TÞ;

6The Poincare inequality: there exists a constant cP depending only on W, N and p such that

cPkvkL pðWÞ a k‘vkL pðWÞ for every v a W
1; p
0 ðWÞ:ð4:14Þ
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where

C ¼
�r0 � r

gC1

�r0�r

rgð4:17Þ

from which the assert (4.4) follows. r

Remark 4.1. We point out that since W is bounded, the decay estimates proved
above imply the decay also of the L1-norm of uðtÞ. As a matter of fact, for every
1 < r < r0 arbitrarily fixed it results

kuðtÞkL1ðWÞ aC � ku0kL1ðWÞ

t
r0�r

rg

;

where C � ¼ CjWj1�
1
r.

4.3. Proof of Theorem 3.4

The existence of a global weak solution of (3.14) follows proceeding as in the
proof of Theorem 3.2 with the only change of replacing the approximating prob-
lem (4.1) with

ðunÞt � divðAnðx; t; unÞ‘unÞ þ a0un ¼ 0 in WT CW� ð0;þlÞ;
un ¼ 0 on qW� ð0;lÞ
unðx; 0Þ ¼ Tnðu0ðxÞÞ on W:

8<
:ð4:18Þ

and hence we omit it. To prove the assert, it is su‰cient to show that for every
arbitrarily fixed T > 0 it results

kunðtÞkLrðWÞ aC
ku0kLr0 ðWÞ

ea0t
for every t a ð0;TÞ;ð4:19Þ

where C is as in (3.18). The proof proceeds distinguishing two cases: the case
r0 > 1 and the case r0 ¼ 1. If r0 > 1, it is su‰cient to prove

kunðtÞkLr0 ðWÞ a
ku0kLr0 ðWÞ

ea0t
for every t a ð0;TÞ;ð4:20Þ

(i.e. the assert for r ¼ r0) since if 1a r < r0 it results

kunðtÞkLrðWÞ a kunðtÞkLr0 ðWÞjWj
1
r
� 1

r0

and hence the assertion follows by (4.20). Taking as test function j ¼
f½eþ junj�r0�1 � er0�1g sign ðunÞ we deduce that for every 0 < t1 < t2 < T it
results
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1

r0

Z
W

f½eþ junðt2Þj�r0 � er0g dx� 1

r0

Z
W

f½eþ junðt1Þj�r0 � er0g dx

� er0�1

Z
W

junðt2Þj dxþ er0�1

Z
W

junðt1Þj dx

þ ðr0 � 1Þ
Z t2

t1

Z
W

j‘unj2

ð1þ junjÞg
ðeþ junjÞr0�2

þ a0

Z t2

t1

Z
W

f½eþ junj�r0�1 � er0�1gjunja 0

which implies

1

r0

Z
W

f½eþ junðt2Þj�r0 � er0g dx� 1

r0

Z
W

f½eþ junðt1Þj�r0 � er0g dx

� er0�1

Z
W

junðt2Þj dxþ er0�1

Z
W

junðt1Þj dx

þ a0

Z t2

t1

Z
W

f½eþ junj�r0�1 � er0�1gjunja 0:

By the previous estimate we deduce (letting e ! 0) for every 0 < t1 < t2 < TZ
W

junðt2Þjr0 �
Z
W

junðt1Þjr0 þ r0a0

Z t2

t1

Z
W

junjr0 a 0:ð4:21Þ

Thus, we can apply Theorem 2.4 obtaining the following decay estimate

kunðtÞkLr0 ðWÞ a
ku0kLr0 ðWÞ

ea0t
for every t a ð0;TÞ;ð4:22Þ

which concludes the proof if r0 > 1.
If r0 ¼ 1, changing the test function in j ¼ 1� 1

½1þjunj� d

n o
signðunÞ, d > 1 (and

using assumption (3.2)) we deduce for every 0 < t1 < t2 < T

Z
W

junðt2Þj þ
1

d� 1

Z
W

1� 1

½1þ junðt1Þj�d�1

( )
þ a0

Z t2

t1

Z
W

junj 1� 1

½1þ junj�d

( )

a

Z
W

junðt1Þj þ
1

d� 1

Z
W

1� 1

½1þ junðt2Þj�d�1

( )

from which, letting d ! þl it followsZ
W

junðt2Þj �
Z
W

junðt1Þj þ a0

Z t2

t1

Z
W

junja 0ð4:23Þ
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(which is (4.21) with r0 ¼ 1). Now the assertion follows, as in the previous case,
applying Theorem 2.4. r

4.4. Proof of Theorem 3.5

As before, the existence of a global weak solution of (3.19) follows proceeding as
in the proof of Theorem 3.2 with the only change of replacing the approximating
problem (4.1) with

ðunÞt � divðAnðx; t; unÞ‘unÞ þ a0junjs�1
un ¼ 0 in WT CW� ð0;þlÞ;

un ¼ 0 on qW� ð0;lÞ
unðx; 0Þ ¼ Tnðu0ðxÞÞ on W;

8><
>:ð4:24Þ

and hence we omit it. To prove the assert, it is su‰cient to show that if r0 ¼ 1 for
every arbitrarily fixed T > 0 it results

kunðtÞkLlðWÞ a
1

a0ðs� 1Þ

� � 1
s�1 1

t
1

s�1

for every t a ð0;TÞ:ð4:25Þ

Choosing j ¼ junjr�2
un as a test function, with r > 2 arbitrarily fixed we deduce

for every 0 < t1 < t2 < T

Z
W

junðt2Þjr �
Z
W

junðt1Þjr þ ra0

Z t2

t1

Z
W

junjsþr�1
a 0ð4:26Þ

Hence assumption (2.27) of Theorem 2.3 is satisfied with b ¼ q ¼ sþ r� 1.
Notice that also the algebraic conditions in (2.28) are verified (with now r0 <
r < q). Moreover, proceeding exactly as in the proof of (4.23) we deduce that
also (2.29) is satisfied. Hence, applying Theorem 2.3 we deduce the following
decay estimate

kunðtÞkLrðWÞ aCðrÞ
ku0k

1
r

L1ðWÞ

t
r�1

rðs�1Þ
for every t a ð0;TÞ;ð4:27Þ

where

CðrÞC
� r� 1

a0rðs� 1Þ

� r�1
rðs�1Þ

:

Notice that it results

b lim
r!þl

CðrÞ ¼
� 1

a0ðs� 1Þ

� 1
s�1

:

Hence, (4.25) follows letting r ! þl in (4.27). r
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