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Abstract. — The classic Brusselator model consists of four reactions involving six components A,

B, D, E, X, Y. In a typical run, the final products D and E are removed instantly, while, the concen-
trations of the reactants A and B are kept constant. Then, the classic Brusselator model consisting of

two equations for the intermediate X and Y is obtained. When the component B is not considered
constant, it is added to the mixture and the so-called full Brusselator model is considered. In this

paper, the full Brusselator model is studied. In particular, the boundedness of solutions and the e¤ect
of di¤usion on the linear stability is analyzed. Moreover, su‰cient conditions ensuring that the

unique steady state, unstable (stable) in the ODEs system, becomes stable (unstable) in presence of
di¤usion, are performed and a first nonlinear stability result is obtained.
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1. Introduction

It is well known that reaction and di¤usion of chemical or biochemical species
can produce a variety of spatial patterns. This class of reaction di¤usion systems
includes some significant pattern formation equations arising from the modeling
of kinetics of chemical or biochemical reactions and from the biological pattern
formation theory. In this group, the Brusselator model is typically important and
serves as mathematical model in physical chemistry and in biology. Nonlinear
reaction-di¤usion equations and systems play an important role in the modeling
and study of many phenomena ([15]–[17] and references therein). Historically, the
Brussels school led by the renowned physical chemist and Nobel Prize laureate
(1977), Ilya Prigogine, made remarkable contributions in the research of com-
plexity of cubic auto-catalytic reactions. The mathematical model signifying their
seminal work was named as the Brusselator (the name was coined by Tyson),
which is originally a system of two ordinary di¤erential equations [7]. The classic
Brusselator model is a famous model of chemical reactions with oscillations and
a theoretical model for a type of auto-catalytic reaction [8]. In particular, the
Brusselator model consists of four reactions involving six-components A, B, D,
E, X, Y where the chemical reactions follow the scheme

A ! X ;ð1Þ
Bþ X ! Y þD;



2X þ Y ! 3X ;

X ! E:

Adding these reactions one obtains

Aþ Bþ 4X þ Y ! 4X þ Y þDþ E

and hence Aþ B ! Dþ E then, X and Y are catalysis (in particular, (1)3 shows
that X is auto-catalytic and provides the nonlinearity). There are several known
examples of auto-catalysis which can be modeled by the Brusselator equations,
such as ferrocyanide-iodate-sulphite reaction, chlorite-iodite-malonic acid reac-
tion, arsenite-iodate reaction, some enzyme catalytic reactions and fungal mycelia
growth [21]–[23], [27]. In a typical run, the final products D and E are removed
instantly since they do not a¤ect the reaction kinetics, while, the reactant concen-
trations are kept in excess and, if A and B are held constant during the reaction
process, all the concentrations are fixed quantities. In this case it is coming to a
system of two equations for intermediates X and Y , and hence the well-known
binary Brusselator model is obtained. This is when it is realistic to assume all
the reactant concentrations to be constant [5, 29]. When the component B is not
considered constant and it is added to the mixture with a constant rate a, the so-
called full Brusselator model is considered [28]. The behavior of the full model
di¤ers substantially from that of the simplified model but in literature we have
not seen many advancing results [20, 24, 28]. In 1993 two consecutive papers
[25, 26], discovered a variety of interesting self-replicating pattern formation as-
sociated with cubic-autocatalytic reaction-di¤usion systems, respectively by an
experimental approach and a numerical simulation approach. Since then numer-
ous studies by mathematical and computational analysis have shown that the
cubic-autocatalytic reaction-di¤usion systems such as Brusselator equations and
Gray–Scott equations [18]–[19] exhibit rich spatial patterns (for instance Turing
patterns) and complex bifurcations as well as interesting dynamics. For this rea-
son, the Brusselator model has been widely studied and many properties of it had
been researched by many people via di¤erent methods (see for instance [9]–[14]
and reference therein). To make theory more realistic, for Brusselator equations
and other cubic-autocatalytic equations, extended systems [2]–[4], [6] ( just to give
an idea, six coupled components with partial reversibility, forced systems) have
been introduced, and dynamics more challenging and cumbersome have been
shown. In the present paper, we consider the full Brusselator model, introduced
in [28], aimed to investigate for the e¤ect of di¤usion on the stability of the
(unique) constant steady state. The plan of the paper is as follows. Section 2 is
devoted to the introduction of the mathematical model. The boundedness of solu-
tions is proved in Section 3 while the existence of meaningful equilibria is ana-
lyzed in Section 4. Linear stability analysis is performed in Section 5 where, in
particular, both the stabilizing or destabilizing e¤ect of di¤usion have been high-
lighted. Nonlinear stability analysis is investigated in Section 6. The paper ends
with Section 7 in which the model is analyzed under Robin boundary condi-
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tions and the stability of the meaningful equilibrium is investigated via numerical
simulations.

2. Preliminaries

This paper deals with the full Brusselator reaction-di¤usion model governing the
evolution of X , Y , and B in (1) under the hypotheses of unit reaction rates, A
kept in excess ðA ¼ 1Þ and B added to the mixture with a constant rate a > 0
[28]. Denoting by Xi, ði ¼; 1; 2; 3Þ, the concentrations of X , Y , B, respectively,
the model is given by

X1; t ¼ 1þ X 2
1X2 � X1X3 � X1 þ g1DX1;

X2; t ¼ X1X3 � X 2
1X2 þ g2DX2;

X3; t ¼ �X1X3 þ aþ g3DX3;

8<
:ð2Þ

where gi ¼ const: > 0 ði ¼ 1; 2; 3Þ denotes the di¤usion coe‰cients of Xi and Xi; t,
ði ¼ 1; 2; 3Þ, denotes the partial time derivative of Xi. As concerns model (2) it
should be remarked that, from a mathematical point of view, it appears that for
X3 ¼ const:, (2) does not reduce to the classic binary Brusselator model ([17],
[19]). This is because the chemical reaction with X3 not kept in excess (i.e. X3 not
constant) leads to a model involving the kinetics of X3 which is di¤erent from the
binary Brusselator model. Denoting by D the bounded, connected, open subset of
R3 in which chemical reaction occurs, we assume that D has a Lipschitz bound-
ary qD and Xi : ðx; tÞ a D� ½0;l� ! Xiðx; tÞ a Rþ, Xi a W 1;2ðDÞ, ði ¼ 1; 2; 3Þ.
To (2) we append the following smooth positive initial data

Xiðx; 0Þ ¼ X 0
i ðxÞ; in D; ði ¼ 1; 2; 3Þð3Þ

with X 0
i a CðDÞ and the Robin boundary conditions

biXi þ ð1� biÞ‘Xi � n ¼ biX i; on qD� Rþ;ð4Þ

being n the outward unit normal to qD, bi a ð0; 1Þ, ði ¼ 1; 2; 3Þ and Xi ¼ const: >
0 assigned ði ¼ 1; 2; 3Þ. Boundary conditions (4) are the more general ones that
can be added to (2). However, in view of the chemistry of the problem under con-
sideration, since Xi ði ¼ 1; 2Þ are catalytic in reaction (1) while X3 is consuming, it
appears more appropriate to assume that: 1) there is no-flux at boundary for X1

and X2; 2) X3 is introduced into the chemical reaction from the outside at a con-
stant rate. This leads to assume in (4) bi ¼ 0 ði ¼ 1; 2Þ, b3 ¼ b a ð0; 1Þ and hence
to consider the following boundary conditions:

‘Xi � n ¼ 0; on qD� Rþ; ði ¼ 1; 2Þ;
bX3 þ ð1� bÞ‘X3 � n ¼ bX 3; on qD� Rþ:

�
ð5Þ

Due to the relevance in chemical applications, in Sections 3–6 we will perform
the dynamics of (2), (3), (5) and – for the sake of completeness – we will analyze
the dynamics of (2)–(4) in Section 7, via numerical simulations.
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3. Boundedness of solutions

In the sequel we will denote by: k � k, k � kl, k � kqD the L2ðDÞ, LlðDÞ and
L2ðqDÞ norm, respectively; 3� ; �4 the scalar product in L2ðDÞ; jDj the (finite)
measure of D. The following theorem – given by a direct consequence of Theo-
rem 1 of [1] – provides the LlðDÞ-norm estimates for Xi ði ¼ 1; 2; 3Þ.

Theorem 1. Let ðX1;X2;X3Þ be positive solution of (2)–(5). Then there exist pos-
itive constants C

ð jÞ
l ð j ¼ 1; 2; 3Þ, depending on the initial data, such that

kX1kl aC ð1Þ
l ; kX2klaC ð2Þ

l ; kX3kl aC ð3Þ
l :ð6Þ

Proof. By virtue of (2), (3), (5), let us consider the following initial-boundary
value problem

X3; t � g3DX3 ¼ �X1X3 þ a; D� Rþ;

bX3 þ ð1� bÞ‘X3 � n ¼ bX 3; qD� Rþ;

X3ðx; 0Þ ¼ X 0
3 ðxÞ; D:

8<
:ð7Þ

Since

�X1X3 þ a <
X 2

3

2
þ a;ð8Þ

in view of Theorem 1 of [1], choosing p0 ¼ 2, one obtains that, denoting by tðX 0
3 Þ

the maximal existence time of the solution X3 of (7), since – from the contin-
uous dependence on the initial data – there exists a positive constant C3ðX 0

3 Þ such
that

kX3ð�; tÞkaC3ðX 0
3 Þ; Et a ð0; tðX 0

3 ÞÞ;ð9Þ

the solution X3 exists for all time and there exists a positive constant Cl such
that

kX3ð�; tÞklaC ð3Þ
l ðX 0

3 Þ; Et > 0:ð10Þ

Now let us multiply equation ð2Þ2 by X2, then on applying Young inequality, one
obtains:

qX 2
2

qt
a�X 2

1X
2
2 þ X 2

3 þ g2DðX 2
2 Þð11Þ

and hence X 2
2 is a sub-solution of the following initial-boundary value problem:

Y2; t � g2DY2 ¼ X 2
3 ; D� Rþ;

‘Y2 � n ¼ 0; qD� Rþ;

Y2ðx; 0Þ ¼ Y
ð0Þ
2 ðxÞ ¼ max

D

ðX 0
2 ðxÞÞ

2; D:

8>><
>>:ð12Þ
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Since

X 2
3 < ðC ð3Þ

l Þ2 þ c1Y
2
2 ; c1 ¼ const: > 0; a:e: in Dð13Þ

in view of Theorem 1 of [1], choosing p0 ¼ 2, one obtains that, denoting by
t1ðY 0

2 Þ the maximal existence time of the solution Y2 of (12), since – from the
continuous dependence on the initial data – there exists a positive constant
C2ðY 0

2 Þ such that

kY2ð�; tÞkaC2ðY 0
2 Þ; Et a ð0; t1ðY 0

2 ÞÞ;ð14Þ

the solution Y2 exists for all time and there exists a positive constant ~CC ð2Þ
l such

that

kY2ð�; tÞkl a ~CC ð2Þ
l ; Et > 0:ð15Þ

Hence, since X 2
2 is a sub-solution of (12), one obtains:

kX 2
2 ð�; tÞkla kY2ð�; tÞkl a ~CC ð2Þ

l ; Et > 0:ð16Þ

From (16), then (6)2 is immediately obtained.
Finally let us consider the following initial-boundary value problem

X1; t � g1DX1 ¼ 1þ X 2
1X2 � X1X3 � X1; D� Rþ;

‘X1 � n ¼ 0; qD� Rþ;

X1ðx; 0Þ ¼ X 0
1 ðxÞ; D:

8><
>:ð17Þ

Since

j1þ X 2
1X2 � X1X3 � X1ja

�
C ð2Þ

l þ C
ð3Þ
l þ 1

2

�
X 2

1 þ
�
1þ C

ð3Þ
l þ 1

2

�
ð18Þ

in view of Theorem 1 of [1], choosing p0 ¼ 2, one obtains that, denoting by
t1ðX 0

1 Þ the maximal existence time of the solution X1 of (17), since – from the
continuous dependence on the initial data – there exists a positive constant
C1ðX 0

1 Þ such that

kX1ð�; tÞkaC1ðX 0
1 Þ; Et a ð0; t1ðX 0

1 ÞÞ;ð19Þ

the solution X1 exists for all time and there exists a positive constant C
ð1Þ
l such

that

kX1ð�; tÞkl aC ð1Þ
l ; Et > 0:ð20Þ

Remark 1. We remark that, in view of (6), there exist positive constants M1,
M2, M3 such that

kX1k2 aM1; kX2k2 aM2; kX3k2 aM3:ð21Þ
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4. Constant equilibria and preliminaries to stability

The unique non negative constant solution EðX 1;X 2;X 3Þ of (2), (5) (constant
steady state) is given by E ¼ ð1; a; aÞ. Setting fu ¼ X1 � 1; v ¼ X2 � a; w ¼
X3 � ag, the system governing the evolution of the perturbation fields is

ut ¼ �ð1� aÞuþ v� wþ g1Duþ F1ðu; v;wÞ;
vt ¼ �au� vþ wþ g2Dvþ F2ðu; v;wÞ;
wt ¼ �au� wþ g3Dwþ F3ðu; v;wÞ;

8<
:ð22Þ

with Fiðu; v;wÞ non-linear terms given by:

F1 ¼ au2 þ u2vþ 2uv� uw; F2 ¼ �F1; F3 ¼ �uw:ð23Þ

To (22) we associate the boundary conditions

‘u � n ¼ 0; ‘v � n ¼ 0; bwþ ð1� bÞ‘w � n ¼ 0; on qD� Rþ;ð24Þ

with b a ð0; 1Þ.
We denote by [17]:

• H 1ðD; bÞ the functional space such that

F a H 1ðD; bÞ ) fF2 þ ð‘FÞ2 a L1ðDÞ; bFþ ð1� bÞ‘F � n ¼ 0; on qDg;

• m ¼ mðDÞ the lowest eigenvalue of the spectral problem

DFþ mF ¼ 0 in D;

bFþ ð1� bÞ‘F � n ¼ 0 on qD

�
ð25Þ

with F a H 1ðD; bÞ;
• fFngn AN an orthogonal complete sequence of eigenfunctions of (25) with eigen-
values fmngn AN such that [31]:

0 < m ¼ m1 < m2 a � � �a mn a � � �ð26Þ

As it is well known, EF a H 1ðD; bÞ the following inequality holds [17]:

k‘Fk2 þ b

1� b
kFk2qD b mkFk2:ð27Þ

For b ¼ 0 one obtains

H 1ðD; 0Þ ¼ fF2 þ ð‘FÞ2 a L1ðDÞ;‘F � n ¼ 0; on qDg
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and, in this case, on denoting by fFngn AN an orthogonal complete sequence of
eigenfunctions of the spectral problem:

DFþ sF ¼ 0 in D;

‘F � n ¼ 0 on qD;

�
ð28Þ

the eigenvalues fsngn AN are such that

0 ¼ s1 < s2 a s3 a � � �a sn a � � �ð29Þ

Denoting by J the Jacobian matrix associated to (22), for each i ¼ 1; 2; 3; . . . , l
is an eigenvalue of J if and only if l is an eigenvalue of the matrix

~JJi ¼
a� 1� sig1 1 �1

�a �1� sig2 1

�a 0 �1� mig3

0
B@

1
CA:ð30Þ

The characteristic equation of ~JJi is

l3i � I1il
2
i þ I2ili � I3i ¼ 0;ð31Þ

where Iji, ð j ¼ 1; 2; 3Þ, are the principal ~JJi-invariants given by

I1i ¼ I01 � ðg1 þ g2Þsi � g3mi;

I2i ¼ I02 þ g1g2s
2
i þ g3ðg1 þ g2Þsimi þ ½2ðg1 þ g2Þ � ag2�si þ ð2� aÞg3mi;

I3i ¼ I03 � g1g2g3s
2
i mi � g1g2s

2
i þ g3½ag2 � ðg1 þ g2Þ�simi

þ ½2ag2 � ðg1 þ g2Þ�si � g3mi;

8>>><
>>>:

ð32Þ

with I0j , ð j ¼ 1; 2; 3Þ, being the principal invariants of the linear operator in the
absence of di¤usion, i.e.

I01 ¼ a� 3; I02 ¼ 3� 2a; I03 ¼ �1:ð33Þ

The necessary and su‰cient conditions guaranteeing that all the roots of (31)
have negative real part and hence that E is linearly stable are the Routh–Hurwitz
conditions [30]:

I1i < 0; I3i < 0; I1iI2i � I3i < 0; Ei a INð34Þ

being

I1iI2i � I3i ¼ �g1g2ðg1 þ g2Þs3
i � g3ðg1 þ g2Þ

2
s2
i mi þð35Þ

� g23ðg1 þ g2Þsim2
i � ½2g21 þ ð2� aÞg22 þ 2ð3� aÞg1g2�s2

i þ
� 2g3ðg1 þ g2Þð3� aÞsimi � ½g2ða2 � 5aþ 8Þ þ 4g1ð2� aÞ�si
þ ða� 2Þg23m2

i � ða2 � 7aþ 8Þg3mi þ I01 I
0
2 � I03 :
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Let us underline that conditions (34) imply necessarily that

I2i > 0; Ei a IN:ð36Þ

Vice-versa if there exists at least one i a f1; 2; . . .g such that at least one of (34)
or (36) is not verified, then instability of E occurs.

5. Effect of diffusion on linear stability

In this Section we perform the linear stability analysis of the null solution of (22)–
(24). Furthermore, we investigate for the stabilizing/destabilizing e¤ect of di¤u-
sion comparing the linear stability results to those ones obtained in the absence
of di¤usion. In particular, we will prove su‰cient conditions guaranteeing the
stabilizing e¤ect of di¤usion and su‰cient conditions guaranteeing that Turing
instability (i.e. di¤usion driven instability) occurs. The following theorems hold
true.

Theorem 2. In the absence of di¤usion, the equilibrium E is linearly stable if and
only if

a <
9�

ffiffiffiffiffi
17

p

4
:ð37Þ

Proof. The proof follows by remarking that (37) is necessary and su‰cient to
guarantee that fI01 < 0; I03 < 0; I01 I

0
2 � I03 < 0g.

Remark 2. We remark that – in the absence of di¤usion – when

a ¼ 9�
ffiffiffiffiffi
17

p

4
;ð38Þ

instability of E can occur only via an oscillatory state. In fact (38) implies that the
characteristic equation

l3 � I01l
2 þ I02l� I03 ¼ 0;ð39Þ

admits a real negative root and the pure imaginary roots l ¼eio with

o2 ¼ I03

I01
¼ I02 a Rnf0g:ð40Þ

Theorem 3. A su‰cient condition guaranteeing the instability of E is

ab 2:ð41Þ
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Proof. In view of (32)2, it follows that (41) implies I21 < 0, i.e. (36) is not veri-
fied for i ¼ 1 and hence instability of E occurs.

In view of theorem 3, the linear stability analysis of E (i.e. in the presence of dif-
fusion), can be reduced to analyze the case a < 2.

Theorem 4. If either

a < min
g1 þ g2
2g2

;
9�

ffiffiffiffiffi
17

p

4

( )
;ð42Þ

or

9�
ffiffiffiffiffi
17

p

4
< a < min

g1 þ g2
2g2

; 2

� �
;

g2
g1

<
2

7�
ffiffiffiffiffi
17

p

m1g3 >
�a2 þ 7a� 8þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða� 1Þða2 � 5aþ 8Þ

p
2ð2� aÞ ;

8>>><
>>>:

ð43Þ

then E is linearly stable.

Proof. Both in the case (42) and ð43Þ1–ð43Þ2, since in particular a < 2, then on
accounting for (32) and (35), by simple calculations one immediately verifies that
ð34Þ1 and ð34Þ2 are satisfied. Passing to analyze the validity of ð34Þ3, on account-
ing for (35), it is certainly ensured by condition (42), while if ð43Þ1–ð43Þ2 hold
true, ð34Þ3 is verified if

ða� 2Þg23m2
i � ða2 � 7aþ 8Þg3mi þ I01 I

0
2 � I03 < 0; Ei a IN;ð44Þ

i.e.

g3mi >
�a2 þ 7a� 8þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða� 1Þða2 � 5aþ 8Þ

p
2ð2� aÞ Ei a INð45Þ

which, by virtue of (26), is guaranteed if ð43Þ3 holds true.

Remark 3. We remark that:

i) (42) implies (37) and hence implies stability in the absence of di¤usion too
(Turing instability can not occur);

ii) (43) implies that (37) does not hold, i.e. (43) implies instability in the absence
of di¤usion and stability in the presence of di¤usion (stabilizing e¤ect of di¤u-
sion).

Let us investigate for the occurrence of Turing instability. Setting
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g2 ¼
g1s2 þ 1

2a� 1� s2g1
; m2 ¼

�1� s2ðg1 þ g2Þ þ 2s2ag2 � s2
2g1g2

1þ s2ðg1 þ g2Þ � s2ag2 þ s2
2g1g2

;

d ¼ f2g1g2 � g3½ag2 � ðg1 þ g2Þ�g
2 þ 8g1g2g3½2ag2 � ðg1 þ g2Þ�;

~gg2 ¼
g1s2 þ 1

a� 1� s2g1
;

8>>>>><
>>>>>:

ð46Þ

the following theorem holds.

Theorem 5. If either

1

2
< aa 1; g1s2 < 2a� 1; s2g2 > g2; g3m2 < m2;ð47Þ

or

1 < a <
9�

ffiffiffiffiffi
17

p

4
; g1s2 < a� 1; g2 < s2g2 < ~gg2; g3m2 < m2;ð48Þ

or

1 < a <
9�

ffiffiffiffiffi
17

p

4
; g1s2 < a� 1; s2g2 > ~gg2;ð49Þ

or

1 < a <
9�

ffiffiffiffiffi
17

p

4
; a� 1a g1s2 < 2a� 1; s2g2 > ~gg2; g3m2 < m2;ð50Þ

then Turing instability occurs.

Proof. The proof follows by remarking that each one of conditions (47)–(50)
implies that (37) holds but I32 > 0. Hence (34)2 is not verified for i ¼ 2 and there
is the so-called di¤usion driven instability (Turing instability).

Remark 4. Let us remark that there is a destabilizing e¤ect on the unique
steady state in generalizing the classic Brusselator model by incorporating the
dynamic of B-component in (1). In fact, the classic Brusselator model governing
the evolution of X , Y , in (1) under the hypotheses of unit reaction rates, A and B
kept in excess (A ¼ 1, B ¼ b ¼ const: > 0) is given by

X1; t ¼ 1þ X 2
1X2 � bX1 � X1 þ g1DX1; in D

X2; t ¼ bX1 � X 2
1X2 þ g2DX2; in D

‘Xi � n ¼ 0; on qD� Rþ:

8<
:ð51Þ

The unique steady state of (51) is ~EE ¼ ð1; bÞ and the perturbation system is

ut ¼ ðb� 1Þuþ vþ F1 þ g1Du;

vt ¼ �bu� v� F1 þ g2Dv;

�
ð52Þ
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being u ¼ X1 � 1, v ¼ X2 � b, F1 ¼ u2ðbþ vÞ þ 2uv. The invariants of the linear
operator associated to (52) are

I
ð2Þ
1i ¼ b� 2� siðg1 þ g2Þ; I

ð2Þ
2i ¼ g1g2s

2
i þ ½g1 þ g2ð1� bÞ�si þ 1ð53Þ

with si given by (29). Hence b < 2 is necessary for the linear stability since bb 2

implies that I
ð2Þ
11 > 0. Simple calculation shows that, if

b < min 1þ g1
g2

; 2

� �
;ð54Þ

then ~EE is linearly stable. Concerning the so-called ‘‘full Brusselator model’’, the
reactant B is not considered constant and moreover it is added to the mixture
with a constant rate að> 0Þ. Adopting the ansatz that a plays the role of b

in model (2), on comparing (54) to (42), it follows that since min
9�

ffiffiffiffiffi
17

p

4
;

(
g1 þ g2
2g2

)
amin 2; 1þ g1

g2

� �
, it is possible – a priori – to find some values of b

guaranteeing stability of ~EE and instability of E. In fact, if b ¼ a and

1 < a < min
9�

ffiffiffiffiffi
17

p

4
; 1þ g1

g2

( )
;ð55Þ

holds together with (49) one has that ~EE is stable while E is unstable. A possible
combination of the parameters verifying these conditions is

1 < a <
9�

ffiffiffiffiffi
17

p

4
; g1 <

a� 1

s2
;

g2 > max
4g1

5�
ffiffiffiffiffi
17

p ;
g1ðg1s2 þ 1Þ

ða� 1Þða� 1� s2g1Þ

� �
:

8>>><
>>>:

ð56Þ

Further generalization of system (51) can be obtained incorporating both the
kinetics of A and B involved in reaction (1). In this way a PDE system governing
the dynamic of A, B, X , Y arises and we expect a deeper destabilizing e¤ect on
the unique steady state.

6. Nonlinear stability analysis

In this Section we perform the nonlinear stability analysis of E with respect to the
energy-norm

VðtÞ ¼ 1

2
½akuk2 þ kvk2 þ kwk2�:ð57Þ

Theorem 6. If a a ð0; 1=3Þ or if

a a
�1
3
; 1
�
; mg3 >

3a� 1

1� a
ð58Þ
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with m the lowest eigenvalue of (25), E is nonlinearly (locally) asymptotically stable
with respect to the V-norm.

Proof. The time derivative of V along the solutions of (22)–(24), by virtue of
(27), is given by

_VV ¼ aða� 1Þkuk2 � 2a3u;w4þ 3v;w4� kvk2 � kwk2 þð59Þ

� ag1k‘uk
2 � g2k‘vk

2 � g3k‘wk
2 � g3

b

1� b
kwk2qD þF;

being

F ¼ a3u;F14þ 3v;F24þ 3w;F34ð60Þ

with Fi ði ¼ 1; 2; 3Þ given by (23).
In view of generalized Cauchy inequality, one has

_VVðtÞa a
�
a� 1þ 2a

e1

�
kuk2 � 1

2
kvk2 � 1

2
½1þ mg3 � e1�kwk2 þð61Þ

� ag1k‘uk
2 � g2k‘vk

2 � g3k‘wk
2 þF:

By applying the Sobolev inequality k f k24 a kðDÞ½k‘f k2 þ k f k2� and (6)2, it turns
out that

Fa c1ðDÞðkuk þ kvk þ kwkÞ½kuk2 þ kvk2 þ kwk2 þ k‘uk2ð62Þ
þ k‘vk2 þ k‘wk2�;

with

c1ðDÞ ¼ kðDÞmaxfað2aþ C ð2Þ
l Þ; 3a; 5=2g:ð63Þ

Setting

k1 ¼ 2
�
1� a� 2a

e1

�
; k2 ¼ 1þ mg3 � e1;ð64Þ

substituting (62) into (61), it turns out that

_VVðtÞa� ak1

2
kuk2 � kvk2

2
� k2

2
kwk2 �minfag1; g2; g3gð65Þ

� ½k‘uk2 þ k‘vk2 þ k‘wk2� þ 2
ffiffiffi
2

p
c1ðDÞðkuk2 þ kvk2 þ kwk2Þ

3
2

þ 2
ffiffiffi
2

p
c1ðDÞðkuk2 þ kvk2 þ kwk2Þ

1
2½k‘uk2 þ k‘vk2 þ k‘wk2�:
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If a a ð0; 1=3Þ or if (58) holds, choosing e1 a
� 2a

1� a
; 1þ mg3

�
, from (65) one

has:

_VV a�ðd1 � d2V
1
2ÞV � ðd3 � d4V

1
2Þðk‘uk2 þ k‘vk2 þ k‘wk2Þ:ð66Þ

with di > 0, ði ¼ 1; 2; 3; 4Þ given by

d1 ¼ minfk1; 1; k2g; d2 ¼
8c1ðDÞ
a

ffiffiffi
a

pð67Þ

d3 ¼ minfag1; g2; g3g; d4 ¼
4c1ðDÞffiffiffi

a
p :

Hence

Vð0Þ
1
2 < min

d1

d2
;
d3

d4

� �
;ð68Þ

implies, by recursive argument, that E is nonlinearly (locally) asymptotically
stable with respect to the V-norm

7. Stability results for Robin boundary conditions and discussion

In this Section we analyze – via numerical simulations – (2) under Robin bound-
ary conditions

biXi þ ð1� biÞ‘Xi � n ¼ biX i; on qD� Rþ; i ¼ 1; 2; 3;ð69Þ

with bi a ð0; 1Þ, b1 ¼ b2A b3 and Xi assigned positive-valued bounded functions
ði ¼ 1; 2; 3Þ. In this case Xi a H 1ðD; biÞ, ði ¼ 1; 2; 3Þ. Let us denote by ~mm1 and m1
the small eigenvalues of (25) in H 1ðD; b1 ¼ b2Þ and H 1ðD; b3Þ respectively. Con-
cerning the stability analysis of E, following step by step the procedure used in
Section 5, theorems 4–5 continue to hold with ~mm1 at the place of m2 and m1 at
the place of s2.

In order to explore some specific configurations in the parameters space, that
lead to di¤erent dynamic behaviors of the system (2), (69) and of the counterpart
system of ODEs, let us refer, for the sake of simplicity, to a one-dimensional do-
main. We provide now some numerical simulations that highlight the relevance
of the di¤usion action: a steady state stable (unstable) according to the ODEs
model, can become unstable (stable) for large sets of values of the di¤usion coef-
ficients gi ði ¼ 1; 2; 3Þ, which is of great relevance in the study of real phenomena.
In fact, as performed in Figure 1, by choosing a ¼ 1:1 according to (37), the so-
lution of the counterpart system of ODEs obtained from (2) disregarding the dif-
fusion, reaches the unique constant steady state EC ð1; 1:1; 1:1Þ, starting from
non-zero initial data X 0

1 ¼ 0:1, X 0
2 ¼ 0:03, X 0

3 ¼ 0:2. The behavior of the system,
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in the stable regime characterized by the same data set as in Figure 1, is painted
in the top box of Figure 2. A magnification of the projections on X1X2 plane (left
plot), X1X3 plane (middle plot), X2X3 plane (right plot) of the trajectory, near the
steady state, has been shown in the bottom plot of Figure 2. For such a value set
for a, the trajectories of the system (2), with g1 ¼ 0:3, g2 ¼ 3, g3 ¼ 0:2 satisfying
(50) and initial data given by X 0

1 ¼ 0:93, X 0
2 ¼ 1:1, X 0

3 ¼ 1:1, as expected, do not
go to the steady state (unstable). Precisely, the simulations show that the trajec-
tories oscillate and these dynamics, for the concentrations X1 (in the left plot), X2

(middle plot) and X3 (right plot) are shown in the Figure 3, which well highlight
the destabilizing e¤ect of di¤usion.

In order to put in evidence the stabilizing e¤ect of the di¤usion, we choose
a ¼ 1:22: For this value of a the trajectories of the counterpart system of ODEs
obtained from (2) disregarding the di¤usion, starting from non-zero initial data
X 0

1 ¼ 0:1, X 0
2 ¼ 0:3, X 0

3 ¼ 0:2 do not reach the steady state EC ð1; 1:22; 1:22Þ.

Figure 1. Trajectories of the counterpart system of ODEs when a ¼ 1:1 and X 0
1 ¼ 0:1,

X 0
2 ¼ 0:03, X 0

3 ¼ 0:2.

Figure 2. Phase space plot in stable regime: a ¼ 1:1, X 0
1 ¼ 0:1, X 0

2 ¼ 0:03, X 0
3 ¼ 0:2.

Top: The system approaches the steady state. Bottom: Enlargement of the projections on
X1X2 plane (left plot), X1X3 plane (middle plot), X2X3 plane (right plot) of the trajectory
near the steady state.
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As expected, in this case the equilibrium is unstable. Precisely, for this value of a,
according to Remark 1, the system, as performed in Figure 4, shows oscillations,
because this value falls into the range characterizing the oscillations. The be-
havior of system in such unstable regime is well depicted in the top box of Figure
5, where the system approaches a limit cycle. An enlargement of the projections

Figure 3. Trajectories of (2) with a ¼ 1:1, b1 ¼ b2 ¼ 0:25, b3 ¼ 0:4, g1 ¼ 0:3, g2 ¼ 3,
g3 ¼ 0:2 and X 0

1 ¼ 0:93, X 0
2 ¼ 1:1, X 0

3 ¼ 1:1.

Figure 4. Trajectories of the counterpart system of ODEs with a ¼ 1:22, X 0
1 ¼ 0:1,

X 0
2 ¼ 0:3, X 0

3 ¼ 0:2.

Figure 5. Phase space plot in unstable regime: a ¼ 1:22, X 0
1 ¼ 0:1, X 0

2 ¼ 0:3, X 0
3 ¼ 0:2.

Top: The system approaches a limit cycle. Bottom: Enlargement of the projections on
X1X2 plane (left plot), X1X3 plane (middle plot), X2X3 plane (right plot) of the trajectory,
in the vicinity of the limit cycle.
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on X1X2 plane (left plot), X1X3 plane (middle plot), X2X3 plane (right plot) of the
above-mentioned trajectory is given in the bottom plot of Figure 5. The approx-
imate period of a periodic solution when a is near ac ¼ ð9�

ffiffiffiffiffi
17

p
Þ=4 is given by

Tc ¼ 2p=oU 8:37, where oU 0:75 is the approximate angular frequency (pulsa-
tion), calculated by (40).

For a ¼ 1:22, choosing b1 ¼ b2 ¼ 0:15, b3 ¼ 0:4 and according to (43),
g1 ¼ 2:2, g2 ¼ 1:5, g3 ¼ 0:5, m1 ¼ 0:5 the trajectories of the system (2), starting
from initial data X 0

1 ¼ 1, X 0
2 ¼ 0:005, X 0

3 ¼ 1:22, as expected, stabilize reaching
the equilibrium E ¼ ð1; 1:22; 1:22Þ.
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