Rend. Lincei Mat. Appl. 29 (2018), 679–687 DOI 10.4171/RLM/828

Functional Analysis — Some progress on the polynomial Dunford–Pettis property, by RAFFAELLA CILIA and JOAQUÍN M. GUTIÉRREZ, communicated on May 11, 2018.

ABSTRACT. — A Banach space E has the Dunford–Pettis property (DPP, for short) if every weakly compact (linear) operator on E is completely continuous. In 1979 R. A. Ryan proved that E has the DPP if and only if every weakly compact polynomial on E is completely continuous. Every *k*-homogeneous (continuous) polynomial $P \in \mathcal{P}(kE, F)$ between Banach spaces E and F admits an extension $\tilde{P} \in \mathcal{P}(k_{E^{**}}, F^{**})$ to the biduals called the Aron–Berner extension. The Aron–Berner extension of every weakly compact polynomial $P \in \mathcal{P}(kE, F)$ is F-valued, that is, $\tilde{P}(E^{**}) \subseteq F$, but there are non-weakly compact polynomials with F-valued Aron–Berner extension. For Banach spaces F with weak-star sequentially compact dual unit ball B_{F^*} , we strengthen Ryan's result by showing that E has the DPP if and only if every polynomial $P \in \mathcal{P}({}^k E, F)$ with F-valued Aron– Berner extension is completely continuous. This gives a partial answer to a question raised in 2003 by I. Villanueva and the second named author. They proved the result for spaces E such that every operator from E into its dual E^* is weakly compact, but the question remained open for other spaces.

KEY WORDS: Aron–Berner extension of polynomials, Dunford–Pettis property, Dunford–Pettis set, completely continuous polynomials

Mathematics Subject Classification (primary; secondary): 47H60; 46G25, 46B03

1. Introduction

Throughout E, F, and G denote Banach spaces, E^* is the dual of E, and B_E stands for its closed unit ball. The closed unit ball B_{E^*} will alwa[ys](#page-7-0) [be](#page-7-0) en[dow](#page-7-0)ed with the w[eak-](#page-7-0)star topology. By $\mathbb N$ we represent the set of all natural numbers [and](#page-7-0) [by](#page-7-0) K the scalar field (real or complex). We use the symbol $\mathcal{L}(E, F)$ for the space of all (linear bounded) operators from E into F endowed with the operator norm. For $T \in \mathcal{L}(E, F)$ we denote its adjoint by $T^* \in$ $\mathscr{L}(F^*, E^*).$

Given $k \in \mathbb{N}$, we use $\mathcal{P}({}^k E, F)$ for the space of all k-homogeneous (continuous) polynomials from E into F endowed with the supremum norm. When $F = \mathbb{K}$, we omit the range space: hence, $\mathcal{P}({}^k E)$ will stand for $\mathcal{P}({}^k E, \mathbb{K})$. For the general theory of polynomials on Banach spaces, we refer the reader to [Din] and [Mu]. For unexplained notation and results in Banach space theory, the reader may see [Di, DJT, DU].

A polynomial $P \in \mathcal{P}(\binom{k}{E}, F)$ is (weakly) compact if $P(B_E)$ is relatively (weakly) compact in F.

Given a polynomial $P \in \mathcal{P}({}^kE, F)$, its *adjoint* P^* is the operator

$$
P^*: F^* \to \mathcal{P}({}^k E)
$$

[given by](#page-7-0) $P^*(\psi) := \psi \circ P$ for every $\psi \in F^*$. It is well-known that P is (weakly) compact if and only if P^* is (weakly) compact (see [AS, Proposition 3.2] for the compact case and [R2, Proposition 2.1] for the weakly compact case).

We say that a polynomial $P \in \mathcal{P}(kE, F)$ is *completely continuous* if it takes weak Cauchy sequences into norm convergent sequences. We say that P is *uncon*ditionally converging if, for every weakly unconditionally Cauchy series $\sum x_n$ in E, the sequence $(P(s_m))_{m=1}^{\infty}$ is norm convergent, where $s_m := \sum_{n=1}^m x_n$.

We use the notation $\otimes^k E := E \otimes \cdots \otimes E$ for the k-fold tensor product of E, and $E \hat{\otimes}_{\pi} F$ for the completed projective tensor product of E and F (see [DU, DF] for the theory of tensor products). By $\otimes_s^k E := E \otimes_s \stackrel{(k)}{\cdots} \otimes_s E$ we denote the k -fold symmetric tensor product of E , that is, the set of all elements $u \in \otimes^k E$ of the form

(1)
$$
u = \sum_{j=1}^n \lambda_j x_j \otimes \stackrel{(k)}{\cdots} \otimes x_j \quad (n \in \mathbb{N}, \lambda_j \in \mathbb{K}, x_j \in E, 1 \le j \le n).
$$

On the space $\otimes_s^k E$ we can define the *projective symm[et](#page-7-0)ric tensor norm* π_s by

$$
\pi_s(u) := \inf \sum_{j=1}^n |\lambda_j| \|x_j\|^k,
$$

where the infimum is taken over all representations of $u \in \otimes_s^k E$ of the form (1). We write $\hat{\otimes}_{\pi_s}^k E$ for the completion of $\otimes_s^k E$ endowed with the π_s norm.

For symmetric tensor products, the reader is referred to [F].

For a polynomial $P \in \mathcal{P}({}^kE, F)$, its linearization

$$
\bar{P}:\hat{\otimes }_{\pi _{s},\,s}^{k}E\rightarrow F
$$

is the oper[ator give](#page-6-0)n by

$$
\overline{P}\Big(\sum_{j=1}^n \lambda_j x_j \otimes \stackrel{(k)}{\cdots} \otimes x_j\Big) := \sum_{j=1}^n \lambda_j P(x_j)
$$

for all $x_j \in E$ and $\lambda_j \in \mathbb{K}$ $(1 \le j \le n)$.

Every polynomial $P \in \mathcal{P}(\binom{k}{E}, F)$ between Banach spaces admits an extension $\tilde{P} \in \mathcal{P}(k^*F^{**}, F^{**})$ called the Aron–Berner extension. We recall its construction following [CGKM, $\S2$]. Let A be the symmetric k-linear mapping associated with P. We can extend A to a k-linear mapping \tilde{A} from E^{**} into F^{**} in such a

some progress on the polynomial dunford–pettis property 681

way that for each fixed j $(1 \le j \le k)$ and for each fixed $x_1, \ldots, x_{j-1} \in E$ and $z_{j+1}, \ldots, z_k \in E^{**}$, the linear mapping

(2)
$$
z \mapsto \tilde{A}(x_1, \ldots, x_{j-1}, z, z_{j+1}, \ldots, z_k) \quad (z \in E^{**})
$$

is weak^{$*$}-to-weak^{*} continuous. In other words, we define the image of the mapping in (2) to be the weak^{*}-limit of the net

$$
(\tilde{A}(x_1,\ldots,x_{j-1},x_{\alpha},z_{j+1},\ldots,z_k))_{\alpha}
$$

for a weak*-convergent net $(x_\alpha)_\alpha \subset E$. By this weak*-to-weak* continuity, A can be extended to a k-linear mapping \tilde{A} from E^{**} into F^{**} beginning with the last variable and working backwards to the first. Then [the](#page-6-0) restriction

$$
\tilde{P}(z) := \tilde{A}(z, \dots, z) \quad (z \in E^{**})
$$

is c[alled](#page-6-0) [the](#page-6-0) Ar[on–Berner](#page-6-0) [extension](#page-6-0) of P[.](#page-7-0) [G](#page-7-0)i[ven](#page-7-0) $z \in E^{**}$ [a](#page-7-0)nd $w \in F^*$ [,](#page-7-0) [we](#page-7-0) [h](#page-7-0)ave

(3)
$$
\tilde{P}(z)(w) = \widetilde{w \circ P}(z).
$$

Actually this equality is often used as the definition of the vector-valued Aron– Berner extension based upon the scalar-valued Aron–Berner extension. Recall that \vec{A} is not symmetric in general.

The Aron–Berner extension was introduced in [AB]. A survey of its properties [may](#page-7-0) be seen in $[Z]$. It has been studied by many mathematicians. Some examples are [AB, ACG, Ca, CG, CL, CGKM, DG, DGG, GGMM, GV, PVWY].

The Aron–Berner extension of every weakl[y](#page-7-0) [com](#page-7-0)pact polynomial is F-valued, that is, $\tilde{P}(E^{**}) \subseteq F$ [Ca, Proposition 1.4], but there are [pol](#page-7-0)ynomials with Fvalued Aron–Berner extension which are no[t](#page-7-0) [wea](#page-7-0)kly compa[ct.](#page-7-0) [The](#page-7-0) [m](#page-7-0)ost typical and basic example may be the polynomial $Q \in \mathcal{P}(\ell_2, \ell_1)$ given by $Q(x) :=$ $(x_n^k)_{n=1}^{\infty}$ for all $x = (x_n)_{n=1}^{\infty} \in \ell_2$. The polynomials with F-valued Aro[n–B](#page-7-0)erner extension are often more useful than the weakly compact polynomials when it comes to characterize isomorphic properties of Banach spaces: see f[or](#page-7-0) [in](#page-7-0)stance [GV]. In the polynomial setting they play somehow the role of the weakly compact operators in the linear setting.

It should be noted that the statem[ent](#page-7-0) [o](#page-7-0)f [GV, Lemma 3.3] (given without proof) is wrong. This lemma is used in several places of [GV]. A corrected version of the lemma and subsequent results of [GV] is given in [PVWY, §2].

A Banach space has the Dunford–Pettis property (DPP, for short) if every weakly compact operator on E is completely continuous. Ryan proved $[R1]$ that E has the DPP if and only if every weakly compact polynomial on E is completely continuous. An attempt to strengthen this result was made in [GV] where the question was raised whether the DPP of E implies the complete continuity of every polynomial from E into an arbitrary Banach space F with $\tilde{P}(E^{**}) \subseteq F$. A partial affirmative answer was given in $[GV]$ for spaces E such that every operator from E into E^* is weakly compact (this happens in particular if E is an \mathcal{L}_{∞} space), but the question remained open in general and was unknown for instance for \mathcal{L}_1 -spaces.

In the present paper we prove that E has the DPP if and only if whenever P is a polynomial from E into an arbitrary Banach space F with weak-star sequen[tial](#page-7-0)ly compact dual unit ball B_{F^*} so that $\tilde{P}(E^{**}) \subseteq F$, then P is completely continuous. We achi[eve](#page-7-0) this result by a careful study of the composition of Dunford–Pettis operators (see definition below) with polynomials having Fvalued Aron–Berner extension.

Recall that a Banach space F is weakly compactly generated (WCG, for short) if F contains a weakly compact absolutely convex set whose linear span is dense in F. Separable Banach spaces are WCG. Reflexive Banach spaces are also WCG. A well-known result of D. Amir and J. Lindenstrauss states that every subspace of a WCG Banach space has a weak-star sequentially compact dual ball [Di, Theorem XIII.4]. If F^* contains no copy of ℓ_1 , then B_{F^*} is weak[-star](#page-7-0) sequentially compact [Di, page 226].

We summarize some characterizations of Banach space isomorphic properties that can be obtained using polynomials with F -valued Aron–Berner extension:

- The DPP as mentioned above, w[hene](#page-7-0)ver B_{F^*} is weak-star sequentially compact.
- Recall that E has the reciprocal Dunford–Pettis property (RDPP, for short) if every completely continuous operator on E is weakly compact. A space E has the RDPP if and only if every completely continuous [poly](#page-7-0)nomial from E into an arbitrary Banach space F has F -valued Aron–Berner extension [GV, Corollary 3.5].
- E is said to have *property* (V) if every uncon[ditiona](#page-7-0)lly converging operator on E is weakly compact. A space E has property (V) if and only if every unconditionally converging polynomial from E into an arbitrary Banach space F has F-valued Aron–Berner extension [GV, Corollary 4.3].
- [E](#page-6-0) has the Grothendieck property if every operator from E into c_0 is weakly compact. A space E has the Grothendieck property if and only if every polynomial from E into c_0 has c_0 -valued Aron–Berner extension [GG2, Corollary 15].

As far as we know, no other polynomial characterization of the RDPP and of property (V) has been found up to date. As for the Grothendieck property, other polynomial characterizations [are giv](#page-7-0)en in [GG2, Theorem 14 and Corollary 16].

A subset A of a Banach space E is a Dunford–Pettis set (DP set, for short) [An, Theorem 1] if, for every weakly null sequence $(x_n^*) \subset E^*$, we have

$$
\lim_{n} \sup_{x \in A} |\langle x, x_n^* \rangle| = 0.
$$

An operator $S \in \mathcal{L}(G, E)$ is a *Dunford–Pettis operator* if $S(B_G)$ is a DP set in E. We denote by $\mathscr{D} \mathscr{P}$ the ideal of Dunford–Pettis operators which has been studied with a different notation in $[GG1]$.

A subset A of a Banach space E is said to be a *Rosenthal set* if every sequence in A contains a weak Cauchy subsequence.

If $A \subset E$ is a subset, $co(A)$ denotes the convex hull of A.

2. The polynomial DPP

Given $k \in \mathbb{N}$ and an operator $S \in \mathcal{L}(G, E)$, we define the operator

$$
S_k^* : \mathcal{P}({}^k E) \to \mathcal{P}({}^k G)
$$

by $S_k^*(P)(g) := P(S(g))$ for all $P \in \mathcal{P}(\binom{k}{E})$ and $g \in G$.

Note that, given an operator $S \in \mathscr{L}(G,E)$ and a polynomial $P \in \mathscr{P}({}^kE,F)$, the adjoint of the polynomial $P \circ S \in \mathcal{P}(\ ^kG, F)$ is the operator

(4)
$$
S_k^* \circ P^* : F^* \to \mathcal{P}(^k E) \to \mathcal{P}(^k G).
$$

THEOREM 2.1. Let $(P_n) \subset \mathcal{P}(k)$ be a sequence of scalar-valued polynomials such that, for every $x^{**} \in E^{**}$, we have $\widetilde{P_n}(x^{**}) \to 0$. Let $A \subset E$ be a DP set. Then,

$$
\lim_{n} \sup_{x \in A} |P_n(x)| = 0.
$$

PROOF. Assume the result fails. Then, passing to a subsequence if necessary, we can find a sequence $(x_n) \subset A$ and $\delta > 0$ such that $|P_n(x_n)| > \delta$ for all $n \in \mathbb{N}$. Let $A_n : E \times \xrightarrow{(k)} \times E \to \mathbb{K}$ be the unique symmetric k-linear form associated with P_n . Then,

$$
|A_n(x_n,\stackrel{(k)}{\ldots},x_n)| > \delta \quad (n \in \mathbb{N}).
$$

Since A is a DP set in E , the sequence

$$
(A_n(x_n,\stackrel{(k-1)}{\ldots},x_n,\cdot))_{n=1}^\infty\subset E^*
$$

is not weakly null. So, passing again to a subsequence if necessary, we can find $x_k^{**} \in E^{**}$ and $\delta_1 > 0$ such that

$$
|\widetilde{A_n}(x_n,\stackrel{(k-1)}{\ldots},x_n,x_k^{**})|>\delta_1\quad(n\in\mathbb{N}).
$$

In the same way, the sequence

$$
(\widetilde{A_n}(x_n,\stackrel{(k-2)}{\ldots},x_n,\cdot,x_k^{**}))_{n=1}^\infty\subset E^*
$$

is not weakly null so, passing to a subsequence if necessary, we can find $x_{k-1}^{**} \in E^{**}$ and $\delta_2 > 0$ such that

$$
|\widetilde{A_n}(x_n,\stackrel{(k-2)}{\ldots},x_n,x_{k-1}^{**},x_k^{**})|>\delta_2 \quad (n\in\mathbb{N}).
$$

Proceeding up to the first variable, we can find $x_1^{**} \in E^{**}$ and $\delta_k > 0$ so that

$$
|\widetilde{A_n}(x_1^{**},x_2^{**},\ldots,x_k^{**})|>\delta_k \quad (n\in\mathbb{N}).
$$

Using the notation

$$
\widetilde{A_n}(x^{**})^k := \widetilde{A_n}(x^{**}, \stackrel{(k)}{\ldots}, x^{**})
$$

for $x^{**} \in E^{**}$ and the polarization formula [Mu, Theorem 1.10], we obtain

$$
k!2^{k}\delta_{k} < \left| \sum_{\varepsilon_{j}=\pm 1} \varepsilon_{1} \dots \varepsilon_{k} \widetilde{A_{n}} (\varepsilon_{1} x_{1}^{**} + \dots + \varepsilon_{k} x_{k}^{**})^{k} \right|
$$

\n
$$
\leq \sum_{\varepsilon_{j}=\pm 1} |\widetilde{A_{n}} (\varepsilon_{1} x_{1}^{**} + \dots + \varepsilon_{k} x_{k}^{**})^{k}|
$$

\n
$$
= \sum_{\varepsilon_{j}=\pm 1} |\widetilde{P_{n}} (\varepsilon_{1} x_{1}^{**} + \dots + \varepsilon_{k} x_{k}^{**})| \quad (n \in N).
$$

Since each summand of (5) tends to zero as *n* goes to ∞ , we reach a contradiction. \Box

LEMMA 2.2. Given $P \in \mathcal{P}(kE, F)$, suppose that the closed unit ball B_{F^*} is weakstar sequentially compact. If the polynomial P is non-compact, then there is a weak-star null sequence (f_n^*) in F^* such that $||P^*(f_n^*)|| \nrightarrow n 0$.

PROOF. Since P is non-compact, its adjoint P^* is a non-compact operator, so there is a sequence $(f_n^*) \subset B_{F^*}$ such that the sequence $(P^*(f_n^*))_{n=1}^{\infty}$ does not have any convergent subsequence. We can assume that (f_n^*) is weak-star convergent. By linearity of P^* , we can assume that (f_n^*) is weak-star null.

THEOREM 2.3. Given a Banach space F, suppose that its closed dual unit ball B_{F^*} is weak-star sequentially compact. Let $P \in \mathcal{P}(kE, F)$ be a polynomial with $\widetilde{P}(E^{**}) \subseteq F$. If $S \in \mathscr{DP}(G,E)$, the polynomial $P \circ S$ is compact.

PROOF. Assume $P \circ S$ is non-compact. From (4) we know that its adjoint is $(P \circ S)^* = S_k^* \circ P^*$. By Lemma 2.2, there is a weak-star null sequence (f_n^*) in F^* so that the sequence $(S_k^* \circ P^*(f_n^*))_{n=1}^{\infty}$ is weak-star null but is not norm null in $\mathcal{P}({}^k G)$.

By passing to a subsequence, we can find a sequence $(g_n) \subset B_G$ and $\varepsilon > 0$ so that

(6)
$$
|P^*(f_n^*)(S(g_n))| = |S_k^* \circ P^*(f_n^*)(g_n)| > \varepsilon
$$

for all $n \in \mathbb{N}$.

The condition $\tilde{P}(E^{**}) \subseteq F$ implies that

$$
\widetilde{f_n^* \circ P}(x^{**}) = f_n^* \circ \widetilde{P}(x^{**}) \to 0
$$

for all $x^{**} \in E^{**}$. By Theorem 2.1, we have

$$
P^*(f_n^*)(S(g_n)) = f_n^* \circ P \circ S(g_n) \to 0,
$$

in contradiction with (6) .

some progress on the polynomial dunford–pettis property 685

COROLLARY 2.4. Given a Banach space F , suppose that its closed dual unit ball B_{F^*} is weak-star sequentially compact. Then every polynomial $P \in \mathcal{P}({}^kE, F)$ with $\tilde{P}(E^{**}) \subseteq F$ is weakly continuous on DP sets of E.

PROOF. Apply Theorem 2.3 and [GG1, Propositi[on](#page-7-0) [3.6](#page-7-0)].

COROLLARY 2.5. Given a Banach space E and $k \in \mathbb{N}$, the following ass[ertions](#page-7-0)

are equivalent:

(a) E has the DPP;

(b) for every Banach space F with weak-star sequentially compact dual unit ball B_{F^*} , every polynomial $P \in \mathcal{P}({}^kE, F)$ with $\tilde{P}(E^{**}) \subseteq F$ is completely continuous;

(c) every polynomial $P \in \mathcal{P}(\&K E, c_0)$ w[ith](#page-7-0) $\tilde{P}(E^{**}) \subseteq c_0$ is completely continuous.

PROOF. (a) \Rightarrow (b). If $\tilde{P}(E^{**}) \subseteq F$, Corollary 2.4 implies that P is weakly continuous on DP sets of E . Since E has the DPP, [GG1, Proposition 1.2] implies that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1, Corollary 3.7], P is weakly uniformly continuous on Rosenthal sets and so P takes weak Cauchy sequences into norm convergent sequences.

 $(b) \Rightarrow (c)$ is obvious.

 $\tilde{R}(c) \Rightarrow (a)$. Let $P \in \mathcal{P}(kE, c_0)$ be a weakly compact polynomial. Then $\tilde{P}(E^{**}) \subseteq$ c_0 so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP.

 \Box

ACKNOWLEDGMENTS. Both authors were supported in part by Dirección General de Investigación, MTM2015-65825-P (Spain). The first named author was partially supported by GNSAGA (Italy).

REFERENCES

- [An] K. T. ANDREWS, *Dunford-Pettis sets in spaces of Bochner integrable functions*, Math. Ann. 241 (1979), 35–41.
- [AB] R. M. Aron P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3–24.
- [ACG] R. M. ARON B. J. COLE T. W. GAMELIN, Weak-star continuous analytic functions, Canad. J. Math. 47 (1995), 673–683.
- [AS] R. M. ARON M. SCHOTTENLOHER, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7–30.
- [Ca] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), 359–372.
- [CG] D. CARANDO D. GALICER, Extending polynomials in maximal and minimal ideals, Publ. Res. Inst. Math. Sci. 46 (2010), 669–680.
- [CL] D. CARANDO S. LASSALLE, Extension of vector-valued integral polynomials, J. Math. Anal. Appl. 307 (2005), 77–85.
- [CGKM] Y. S. CHOI D. GARCÍA S. G. KIM M. MAESTRE, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97–110.
- [DG] A. M. DAVIE - T. W. GAMELIN, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356.
- [DF] A. DEFANT K. FLORET, Tensor Norms and Operator Ideals, Math. Studies 176, North-Holland, Amsterdam 1993.
- [Di] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984.
- [DJT] J. DIESTEL H. JARCHOW A. TONGE, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge 1995.
- [DU] J. DIESTEL J. J. UHL, JR., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI 1977.
- [DGG] V. DIMANT D. GALICER R. GARCÍA, Geometry of integral polynomials, M-ideals and unique norm preserving extensions, J. Funct. Anal. 262 (2012), 1987–2012.
- [Din] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, Berlin 1999.
- [F] K. FLORET, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153–188.
- [GGMM] P. GALINDO D. GARCÍA M. MAESTRE J. MUJICA, Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55–76.
- [GG1] M. GONZÁLEZ J. M. GUTIÉRREZ, Weakly continuous mappings on Banach spaces with the Dunford-Pettis property, J. Math. Anal. Appl. 173 (1993), 470–482.
- [GG2] M. GONZÁLEZ J. M. GUTIÉRREZ, Polynomial Grothendieck properties, Glasgow Math. J. 37 (1995), 211–219.
- [GV] J. M. GUTIÉRREZ I. VILLANUEVA, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh 133A (2003), 549–566. See Corrigendum in [PVWY, §2].
- [Mu] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam 1986.
- [PVWY] A. M. Peralta I. Villanueva J. D. Maitland Wright K. Ylinen, Quasi-completely continuous multilinear operators, Proc. Roy. Soc. Edinburgh 140A (2010), 635–649.
- [R1] R. A. RYAN, *Dunford-Pettis properties*, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 373–379.
- [R2] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179–190.
- [Z] I. ZALDUENDO, Extending polynomials on Banach spaces A survey, Rev. Un. Mat. Argentina 46 (2005), 45–72.

Received 5 February 2018, and in revised form 8 May 2018.

> Raffaella Cilia Dipartimento di Matematica Universita` di Catania Viale Andrea Doria 6 95125 Catania, Italy cilia@dmi.unict.it

Joaquín M. Gutiérrez Departamento de Matemáticas Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid C. José Gutiérrez Abascal 2 28006 Madrid, Spain joaquin.gutierrez.alamo@gmail.com