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Abstract. — A Banach space E has the Dunford–Pettis property (DPP, for short) if every weakly

compact (linear) operator on E is completely continuous. In 1979 R. A. Ryan proved that E has
the DPP if and only if every weakly compact polynomial on E is completely continuous. Every

k-homogeneous (continuous) polynomial P a PðkE;F Þ between Banach spaces E and F admits an
extension ~PP a PðkE ��;F ��Þ to the biduals called the Aron–Berner extension. The Aron–Berner

extension of every weakly compact polynomial P a PðkE;FÞ is F -valued, that is, ~PPðE ��Þ � F , but
there are non-weakly compact polynomials with F -valued Aron–Berner extension. For Banach

spaces F with weak-star sequentially compact dual unit ball BF � , we strengthen Ryan’s result by
showing that E has the DPP if and only if every polynomial P a PðkE;FÞ with F -valued Aron–

Berner extension is completely continuous. This gives a partial answer to a question raised in 2003
by I. Villanueva and the second named author. They proved the result for spaces E such that every

operator from E into its dual E � is weakly compact, but the question remained open for other
spaces.
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1. Introduction

Throughout E, F , and G denote Banach spaces, E � is the dual of E, and BE

stands for its closed unit ball. The closed unit ball BE � will always be en-
dowed with the weak-star topology. By N we represent the set of all natural
numbers and by K the scalar field (real or complex). We use the symbol
LðE;F Þ for the space of all (linear bounded) operators from E into F endowed
with the operator norm. For T a LðE;F Þ we denote its adjoint by T � a
LðF �;E �Þ.

Given k a N, we use PðkE;F Þ for the space of all k-homogeneous (contin-
uous) polynomials from E into F endowed with the supremum norm. When
F ¼ K, we omit the range space: hence, PðkEÞ will stand for PðkE;KÞ. For the
general theory of polynomials on Banach spaces, we refer the reader to [Din] and
[Mu]. For unexplained notation and results in Banach space theory, the reader
may see [Di, DJT, DU].

A polynomial P a PðkE;FÞ is (weakly) compact if PðBEÞ is relatively (weakly)
compact in F .



Given a polynomial P a PðkE;F Þ, its adjoint P� is the operator

P� : F � ! PðkEÞ

given by P�ðcÞ :¼ c � P for every c a F �. It is well-known that P is (weakly)
compact if and only if P� is (weakly) compact (see [AS, Proposition 3.2] for
the compact case and [R2, Proposition 2.1] for the weakly compact case).

We say that a polynomial P a PðkE;F Þ is completely continuous if it takes
weak Cauchy sequences into norm convergent sequences. We say that P is uncon-
ditionally converging if, for every weakly unconditionally Cauchy series

P
xn in

E, the sequence ðPðsmÞÞlm¼1 is norm convergent, where sm :¼
Pm

n¼1 xn.
We use the notation nk E :¼ En � � �ðkÞ

nE for the k-fold tensor product of
E, and E n̂np F for the completed projective tensor product of E and F (see

[DU, DF] for the theory of tensor products). By nk
s E :¼ Ens � � �

ðkÞ
ns E we de-

note the k-fold symmetric tensor product of E, that is, the set of all elements
u a nk E of the form

u ¼
Xn

j¼1

ljxj n � � �ðkÞ
n xj ðn a N; lj a K; xj a E; 1a ja nÞ:ð1Þ

On the space nk
s E we can define the projective symmetric tensor norm ps

by

psðuÞ :¼ inf
Xn

j¼1

jljj kxjkk;

where the infimum is taken over all representations of u a nk
s E of the form (1).

We write n̂nk
ps; s

E for the completion ofnk
s E endowed with the ps norm.

For symmetric tensor products, the reader is referred to [F].
For a polynomial P a PðkE;FÞ, its linearization

P : n̂nk
ps; s

E ! F

is the operator given by

P
�Xn

j¼1

ljxj n � � �ðkÞ
n xj

�
:¼

Xn

j¼1

ljPðxjÞ

for all xj a E and lj a K ð1a ja nÞ.
Every polynomial P a PðkE;FÞ between Banach spaces admits an extension

~PP a PðkE ��;F ��Þ called the Aron–Berner extension. We recall its construction
following [CGKM, §2]. Let A be the symmetric k-linear mapping associated
with P. We can extend A to a k-linear mapping ~AA from E �� into F �� in such a
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way that for each fixed j ð1a ja kÞ and for each fixed x1; . . . ; xj�1 a E and
zjþ1; . . . ; zk a E ��, the linear mapping

z 7! ~AAðx1; . . . ; xj�1; z; zjþ1; . . . ; zkÞ ðz a E ��Þð2Þ

is weak�-to-weak� continuous. In other words, we define the image of the map-
ping in (2) to be the weak�-limit of the net

ð ~AAðx1; . . . ; xj�1; xa; zjþ1; . . . ; zkÞÞa
for a weak�-convergent net ðxaÞa � E. By this weak�-to-weak� continuity, A can
be extended to a k-linear mapping ~AA from E �� into F �� beginning with the last
variable and working backwards to the first. Then the restriction

~PPðzÞ :¼ ~AAðz; . . . ; zÞ ðz a E ��Þ

is called the Aron–Berner extension of P. Given z a E �� and w a F �, we have

~PPðzÞðwÞ ¼ gw � Pw � PðzÞ:ð3Þ

Actually this equality is often used as the definition of the vector-valued Aron–
Berner extension based upon the scalar-valued Aron–Berner extension. Recall
that ~AA is not symmetric in general.

The Aron–Berner extension was introduced in [AB]. A survey of its properties
may be seen in [Z]. It has been studied by many mathematicians. Some examples
are [AB, ACG, Ca, CG, CL, CGKM, DG, DGG, GGMM, GV, PVWY].

The Aron–Berner extension of every weakly compact polynomial is F -valued,
that is, ~PPðE ��Þ � F [Ca, Proposition 1.4], but there are polynomials with F -
valued Aron–Berner extension which are not weakly compact. The most typical
and basic example may be the polynomial Q a Pðkl2; l1Þ given by QðxÞ :¼
ðxk

n Þ
l
n¼1 for all x ¼ ðxnÞln¼1 a l2. The polynomials with F -valued Aron–Berner

extension are often more useful than the weakly compact polynomials when it
comes to characterize isomorphic properties of Banach spaces: see for instance
[GV]. In the polynomial setting they play somehow the role of the weakly com-
pact operators in the linear setting.

It should be noted that the statement of [GV, Lemma 3.3] (given without
proof ) is wrong. This lemma is used in several places of [GV]. A corrected ver-
sion of the lemma and subsequent results of [GV] is given in [PVWY, §2].

A Banach space has the Dunford–Pettis property (DPP, for short) if every
weakly compact operator on E is completely continuous. Ryan proved [R1] that
E has the DPP if and only if every weakly compact polynomial on E is com-
pletely continuous. An attempt to strengthen this result was made in [GV] where
the question was raised whether the DPP of E implies the complete continuity of
every polynomial from E into an arbitrary Banach space F with ~PPðE ��Þ � F . A
partial a‰rmative answer was given in [GV] for spaces E such that every opera-
tor from E into E � is weakly compact (this happens in particular if E is an Ll-
space), but the question remained open in general and was unknown for instance
for L1-spaces.
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In the present paper we prove that E has the DPP if and only if whenever P
is a polynomial from E into an arbitrary Banach space F with weak-star se-
quentially compact dual unit ball BF � so that ~PPðE ��Þ � F , then P is completely
continuous. We achieve this result by a careful study of the composition of
Dunford–Pettis operators (see definition below) with polynomials having F -
valued Aron–Berner extension.

Recall that a Banach space F is weakly compactly generated (WCG, for short)
if F contains a weakly compact absolutely convex set whose linear span is dense
in F . Separable Banach spaces are WCG. Reflexive Banach spaces are also
WCG. A well-known result of D. Amir and J. Lindenstrauss states that every
subspace of a WCG Banach space has a weak-star sequentially compact dual
ball [Di, Theorem XIII.4]. If F � contains no copy of l1, then BF � is weak-star
sequentially compact [Di, page 226].

We summarize some characterizations of Banach space isomorphic properties
that can be obtained using polynomials with F -valued Aron–Berner extension:

• The DPP as mentioned above, whenever BF � is weak-star sequentially com-
pact.

• Recall that E has the reciprocal Dunford–Pettis property (RDPP, for short)
if every completely continuous operator on E is weakly compact. A space E
has the RDPP if and only if every completely continuous polynomial from E
into an arbitrary Banach space F has F -valued Aron–Berner extension [GV,
Corollary 3.5].

• E is said to have property (V ) if every unconditionally converging operator on
E is weakly compact. A space E has property (V) if and only if every uncondi-
tionally converging polynomial from E into an arbitrary Banach space F has
F -valued Aron–Berner extension [GV, Corollary 4.3].

• E has the Grothendieck property if every operator from E into c0 is weakly
compact. A space E has the Grothendieck property if and only if every polyno-
mial from E into c0 has c0-valued Aron–Berner extension [GG2, Corollary 15].

As far as we know, no other polynomial characterization of the RDPP and
of property (V) has been found up to date. As for the Grothendieck property,
other polynomial characterizations are given in [GG2, Theorem 14 and Corollary
16].

A subset A of a Banach space E is a Dunford–Pettis set (DP set, for short)
[An, Theorem 1] if, for every weakly null sequence ðx�

n Þ � E �, we have

lim
n

sup
x AA

j3x; x�
n4j ¼ 0:

An operator S a LðG;EÞ is a Dunford–Pettis operator if SðBGÞ is a DP set
in E. We denote by DP the ideal of Dunford–Pettis operators which has been
studied with a di¤erent notation in [GG1].

A subset A of a Banach space E is said to be a Rosenthal set if every sequence
in A contains a weak Cauchy subsequence.

If A � E is a subset, coðAÞ denotes the convex hull of A.
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2. The polynomial DPP

Given k a N and an operator S a LðG;EÞ, we define the operator

S �
k : PðkEÞ ! PðkGÞ

by S �
k ðPÞðgÞ :¼ PðSðgÞÞ for all P a PðkEÞ and g a G.

Note that, given an operator S a LðG;EÞ and a polynomial P a PðkE;F Þ,
the adjoint of the polynomial P � S a PðkG;F Þ is the operator

S �
k � P� : F � ! PðkEÞ ! PðkGÞ:ð4Þ

Theorem 2.1. Let ðPnÞ � PðkEÞ be a sequence of scalar-valued polynomials
such that, for every x�� a E ��, we have fPnPnðx��Þ ! 0. Let A � E be a DP set. Then,

lim
n

sup
x AA

jPnðxÞj ¼ 0:

Proof. Assume the result fails. Then, passing to a subsequence if necessary,
we can find a sequence ðxnÞ � A and d > 0 such that jPnðxnÞj > d for all n a N.
Let An : E � � � �ðkÞ � E ! K be the unique symmetric k-linear form associated with
Pn. Then,

jAnðxn; . . .ðkÞ ; xnÞj > d ðn a NÞ:

Since A is a DP set in E, the sequence

ðAnðxn; . . .ðk�1Þ; xn; �ÞÞln¼1 � E �

is not weakly null. So, passing again to a subsequence if necessary, we can find
x��
k a E �� and d1 > 0 such that

jfAnAnðxn; . . .ðk�1Þ; xn; x
��
k Þj > d1 ðn a NÞ:

In the same way, the sequence

ðfAnAnðxn; . . .ðk�2Þ; xn; � ; x��
k ÞÞln¼1 � E �

is not weakly null so, passing to a subsequence if necessary, we can find
x��
k�1 a E �� and d2 > 0 such that

jfAnAnðxn; . . .ðk�2Þ; xn; x
��
k�1; x

��
k Þj > d2 ðn a NÞ:

Proceeding up to the first variable, we can find x��
1 a E �� and dk > 0 so that

jfAnAnðx��
1 ; x��

2 ; . . . ; x��
k Þj > dk ðn a NÞ:

Using the notation

fAnAnðx��Þk :¼ fAnAnðx��; . . .ðkÞ ; x��Þ
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for x�� a E �� and the polarization formula [Mu, Theorem 1.10], we obtain

k!2kdk <
X
ej¼e1

e1 . . . ekfAnAnðe1x��
1 þ � � � þ ekx

��
k Þk

������
������

a
X
ej¼e1

jfAnAnðe1x��
1 þ � � � þ ekx

��
k Þkj

¼
X
ej¼e1

jfPnPnðe1x��
1 þ � � � þ ekx

��
k Þj ðn a NÞ:ð5Þ

Since each summand of (5) tends to zero as n goes to l, we reach a contradic-
tion. r

Lemma 2.2. Given P a PðkE;F Þ, suppose that the closed unit ball BF � is weak-
star sequentially compact. If the polynomial P is non-compact, then there is a
weak-star null sequence ð f �

n Þ in F � such that kP�ð f �
n Þk 6!

n
0.

Proof. Since P is non-compact, its adjoint P� is a non-compact operator, so
there is a sequence ð f �

n Þ � BF � such that the sequence ðP�ð f �
n ÞÞ

l
n¼1 does not have

any convergent subsequence. We can assume that ð f �
n Þ is weak-star convergent.

By linearity of P�, we can assume that ð f �
n Þ is weak-star null. r

Theorem 2.3. Given a Banach space F, suppose that its closed dual unit ball
BF � is weak-star sequentially compact. Let P a PðkE;FÞ be a polynomial with
~PPðE ��Þ � F. If S a DPðG;EÞ, the polynomial P � S is compact.

Proof. Assume P � S is non-compact. From (4) we know that its adjoint is
ðP � SÞ� ¼ S �

k � P�. By Lemma 2.2, there is a weak-star null sequence ð f �
n Þ in

F � so that the sequence ðS �
k � P�ð f �

n ÞÞ
l
n¼1 is weak-star null but is not norm null

in PðkGÞ.
By passing to a subsequence, we can find a sequence ðgnÞ � BG and e > 0 so

that

jP�ð f �
n ÞðSðgnÞÞj ¼ jS �

k � P�ð f �
n ÞðgnÞj > eð6Þ

for all n a N.
The condition ~PPðE ��Þ � F implies that

gf �
n � Pf �
n � Pðx��Þ ¼ f �

n � ~PPðx��Þ ! 0

for all x�� a E ��. By Theorem 2.1, we have

P�ð f �
n ÞðSðgnÞÞ ¼ f �

n � P � SðgnÞ ! 0;

in contradiction with (6). r
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Corollary 2.4. Given a Banach space F , suppose that its closed dual unit ball
BF � is weak-star sequentially compact. Then every polynomial P a PðkE;F Þ with
~PPðE ��Þ � F is weakly continuous on DP sets of E.

Proof. Apply Theorem 2.3 and [GG1, Proposition 3.6]. r

Corollary 2.5. Given a Banach space E and k a N, the following assertions
are equivalent:

(a) E has the DPP;
(b) for every Banach space F with weak-star sequentially compact dual unit ball

BF � , every polynomial P a PðkE;FÞ with ~PPðE ��Þ � F is completely continuous;
(c) every polynomial P a PðkE; c0Þ with ~PPðE ��Þ � c0 is completely continuous.

Proof. (a) ) (b). If ~PPðE ��Þ � F , Corollary 2.4 implies that P is weakly con-
tinuous on DP sets of E. Since E has the DPP, [GG1, Proposition 1.2] implies
that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1,
Corollary 3.7], P is weakly uniformly continuous on Rosenthal sets and so P
takes weak Cauchy sequences into norm convergent sequences.

(b) ) (c) is obvious.
(c) ) (a). Let P a PðkE; c0Þ be a weakly compact polynomial. Then ~PPðE ��Þ �

c0 so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP.
r
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