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ABSTRACT. — We prove an equivalence between the infinitesimal Torelli theorem for top forms
on a hypersurface X contained inside a Grassmannian and the theory of adjoint volume forms.
More precisely, via this theory and a suitable generalization of Macaulay’s theorem we show that
the differential of the period map vanishes on an infinitesimal deformation if and only if certain
explicitly given twisted volume forms go in the generalized Jacobi ideal of X via the cup product
homomorphism.
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1. INTRODUCTION

Let & be a line bundle over a smooth variety Y and let X C Y be the zero locus
of a global section o: Y — . To study the infinitesimal deformations of X,
M. L. Green introduced the notion of pseudo-Jacobi ideal ¢, ,; see [Greenl,
Formula (2.11) page 144]. The quotient Ry , := H(X, %)/ 4 , coincides with
the tangent space of the Kuranishi family of (embedded) deformations and it is a
piece of a graded ring # := P, _, R o 4, the so called generalized Jacobi ring;
a notion that returns the standard Jacobian ring if Y is a projective space and
X = (F =0) is a smooth hypersurface. Following the fundamental papers by
Griffiths, see [Griff1], in [Greenl] it is proved that if X is sufficiently ample then
the infinitesimal Torelli theorem holds for X, that is dZy is injective, and it is
also possible to associate to the couple (Y, X) a multiplicative structure on %
which is a perfect pairing.

Now suppose that Pic(Y) = [H] - Z where H is an effective divisor. Hence for
any effective divisor X C Y there exists a unique m € N such that X is an ele-
ment of the linear system |mH|. Thus a natural problem is to find the minimum
m € N such that the multiplicative structure on Z gives a perfect pairing and d2y
is injective where X is a smooth element of [mH]|; as far as we know the problem
has been fully solved only in the case where Y is a projective space, see also: [Do]
and c.f. [RZ2], and in the case of Kdhler C-spaces, see: [K]. In this work we con-
sider the case of Grassmannians, which is a particular case of [K], but we give a
criterion to check if a local family is trivial, in terms of the geometry of certain
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top forms; the reader will realize that the ampleness degree in Green’s proof can
be clarified for many other important ambient spaces using our method.

Let ¥ =G := G(s,/ + 1) be the Grassmannian of s-planes in C'*! where
l<s<land />3. Let X C G be an effective divisor. By Lefschetz theorem
we know that if Og (1) is the invertible sheaf which gives the Plikher embedding
and H is an hyperplane section, then X is the zero locus of a global section o
of |aH| where a € N.. As a consequence of [K| we know that, if a > 3, dPy is
injective. In this paper we only consider the case where X is of general type or
of Calabi Yau type. Once we know that the infinitesimal Torelli theorem holds,
a basic problem stands out if we consider the embedding X C G. Indeed if X =
(6 =0), 0 € H'(G, Ug(a)), any infinitesimal deformation is induced by a local
family (o + et = 0) where 7€ H%(G, Og(a)); see: Proposition 4.0.6. Hence it
would be useful to have criteria to check which of these families actually induce
the trivial deformation on X. The theory of generalized adjoint forms, also called
Massey products, is a tool to solve this problem.

Let us briefly recall the notion of generalized adjoint form. The details of the
general theory are discussed in [RZ2]; here we recall that this theory has been suc-
cessfully used in [BAN], [Ra], [CNP], [G], [RZ3], and that the foundations of the
theory of adjoint forms in dimension > 2 are in [PZ]; see also [RZ1] and [Ri].

In our case we twist by Ox(2) the exact sequence associated to the infinitesi-
mal deformation ¢ € H!(X,®y) to obtain

(1.1) 0 — Ox(2) = Qjyx(2) — Qx(2) — 0.

The cup-product homomorphism d; : H(X,Q}(2)) — H' (X, 0x(2)) is trivial
since H'(X,0x(2)) =0. Now take a generic n+ l-dimensional vector space
W < H'(X,Q}(2)) and denote by AW the image of /\' W through the natural
homomorphism 2’ : A\ HO(X,Q}(2)) — H'(X, \(Q}(2))). Let % := (...,
N, be a basis of W and sy,...,s,41 € H(X, Q}z‘\x@)) liftings of, respectively,
N»-- >Ny, then the map

n+1

AN HO(X, QG (2)) — HO(X det(Qy(2)))

gives the twisted volume form Q:=A""'(s;AsA---As,.1) € HOX,
det(Qé‘ +(2))) which is called generalized adjoint form or Massey product associ-
ated to ¢, W, and Z. On the other hand we also have n + 1 top forms of Q}(2).
Indeed consider the n+ 1 elements w; := A" (i A~ ARy A AR A ATy,
i=1,...,n+ 1 obtained by the basis {5y A--- Ap_| A; ANy /\~--/\;7n+1>}’:ﬁl of
/\' W. By sequence (1.1), det(Q‘;lXQ)) = det(Q}(2)) ®¢, Ox(2), and we can
construct an obvious homomorphism:

(1.2) HO(X,0x(2) @ "W — H(X,det(Q}(2))-

The Generalized Adjoint Theorem, see 2.1.4 (and the therein quoted bibliog-
raphy), fully characterizes the condition Q € Im H(X, 0x(2)) ® A"W — HO(X,
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det(Qjﬂ +(2))); but the important point is that to check this condition is tanta-
mount to check if d2?y (&) = 0. More deeply, we can construct an explicit space
of generalized adjoint forms associated to ¢ in the following way. First we lift
the sections #,’s from H°(X,Q}(2)) to H’(G,Q{(2)), then we take the wedge
product to obtain a twisted volume form Q, independent from &, such that Q €
H°(G,QY(2N)). Finally by taking the form R € H(G, (g (a)) which induces
the deformation ¢, we consider the class R-Q € H(G,QY (2N + a)) which by
adjunction restricts to

Qe H'(X,Q) 7 (2N)) = H'(X, det(Q}(2)) ®, Ox(2)).
We show:

MAIN THEOREM. Let a > [ and let (6 =0) = X € |aH| as above. The following
are equivalent:

1) the differential of the period map dPy is zero on the infinitesimal deformation &
induced by R € H(G, Ug(a));
ii) R is an element of the pseudo-Jacobi ideal #;, ) .5
iti) for a generic E-adjoint Q it holds Q e ImH°(X,0x(2)) ® \"W — H(X,
QY '2N)); .
iv) if Qe HY(G,QXY(2N)) restricts to a generalized adjoint form then RQ e
ng(2N+a), a

This last part of our theory relies on a perfect equivalence between the infini-
tesimal theory of periods and our theory of Massey products which will be ex-
plored in the more general context of rational homogeneous varieties in a forth-
coming paper.

2. REVIEW ON THE THEORY OF ADJOINT FORMS
2.1. Definition of generalized adjoint form

The theory of generalized adjoint is built in [RZ2]. Here we recall only the basic
notions we need.

Let X and ¢ be respectively a smooth compact complex variety of dimension
m and a class ¢ € Ext' (7, %) where # and & are two locally free sheaves on X
of rankn and 1 respectively. Then the extension class & gives a rankn + 1 vector
bundle & on X which fits in an exact sequence:

(2.1) 0-¥Y—-&6—-F —0

By wedge-sequences naturally associated to the sequence (2.1) we find that the
invertible sheaf det # := /\n Z fits into the exact sequence:

n—1

(2.2) 0 ANFRYL — N6 —det7 — 0,
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which still corresponds to ¢ under the isomorphism Ext!(#, %) ~ Ext'(det.Z,
N'Z@L) ~H'(X, 7' %L).

A natural problem is to find conditions on the behavior of the global sections
of the involved vector bundles in order to have the splitting of (2.1). From now
on, assume that the connecting homomorphism 0; : H*(X,#) — H'(X, %) has
a kernel of sufficiently high dimension. More precisely assume that there exists
a subspace W C ker(d¢) of dimension n + 1. Choose a basis % := {n,...,7,,1}
of W. By definition we can take liftings s1,...,s,.1 € H°(X,&) of the sections
N, -, N,41- If we consider the natural map

A" NHY(X, &) — HO(X, /\g)
we can define the sections

(2.3) Qi =A"(SIA - ASiA- - ASps1)

fori=1,...,n+ 1. Denote by w;, for i=1,...,n+ 1, the corresponding sec-
tions in H°(X,det.#). By commutativity between evaluation of wedge product
and restriction it easily follows that w; = A"(5; A--- Af; A+ A1), Where A"
is the natural morphism

AV NHY X, 7) — HY(X,det 7).

DEFINITION 2.1.1. We denote by A" W the subspace of H°(X,det.#) generated
by wi,...,w,1. If AW is nontrivial, the induced sublinear system |[A"W/| C
P(H°(X,detF)) is called adjoint sublinear system of W. We call Dy its fixed di-
visor and Zy the base locus of its moving part |My| C P(H°(X,det Z (—Dw))).

DEFINITION 2.1.2. The form Q € H°(X,det &) corresponding to s; A -+ - A Syt
via

n+1

(2.4) AN HY(X, ) — HY(X,det &)
is called generalized adjoint form or Massey product associated to W.

REMARK 2.1.3. It is easy to see by local computation that this section is in the
image of the natural injection det &(—Dy) ® Jz, — deté.

The basic idea of the theory of adjoint forms is that, in a split exact sequence,
generalized adjoint forms as Q do not add any information which is not already
given by the top forms w; € H(X,det.#),i=1,...,n+ 1. More precisely, since
det(&) = det(F) ® &, everything is reduced to check the condition

(2.5) QeIm(H(X,Z)® M"W — H°(X,det£)).

By [RZ2, Theorem [A] and Theorem [B]] we have:
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THEOREM 2.1.4. Let Qe H°(X,det&) be a generalized adjoint form asso-
ciated to W as above. If QeIm(H*(X,L)® A"W — H°(X,deté)) then
Eeker(H' (X, 7' ® %) — H\(X, 7' ® Z(Dw))). Viceversa. If H (X, %) =
HY(X,2(Dw)) and if ¢ e ker(H' (X, 7' @ £) — H'(X,F"¥ @ L (Dw))), then
Qelm(H' (X, Z)® "W — H°(X,det&)).

REMARK 2.1.5. Note that if Dy = 0 the above theorem is a criterion for the
vanishing of &.

3. THE PSEUDO-JACOBI RING
Recall the following definition from [Greenl]

DEerINITION 3.0.6. We say that a property holds for a sufficiently ample line
bundle L on a projective variety X if there exists an ample line bundle Ly such
that the property holds for all L with L ® Ly ' ample.

Take an n-dimensional smooth variety Y and a sufficiently ample line bundle
LonY.Letoe H(Y,L) be a global section and X the corresponding divisor.
Assume that X is smooth.

3.1. Pseudo-Jacobi ideal

In the case that we are studying, the usual Jacobian ideal can be replaced by the
so called pseudo-Jacobi ideal introduced in [Greenl] and [Green2]. We briefly
recall how it is constructed.

Given a line bundle L on Y and the sheaf ®y of regular vector fields, consider
the extension

(3.1) 0— 0y -2, 50Oy —0

with extension class —c;(L) € H'(Y,Q}). Z; is a sheaf of differential operators
of order less or equal to 1 on the sections of L. In an open subset of ¥ with coor-

dinates xp, ..., x, this sheaf is free and is generated by the constant section 1 and
the sections D;, for i = 1,...,n, which operates on the sections of L by
g,
Dif D) =1-
Xi

where / is a trivialization of L. The operators D; are sent to x in Oy.
In particular to a global section o of L, we can associate a global section do of
L®ZX]. Iflocally o = f - [, then do is given by

(3.2) %:f'l-lv+2%~l~DlY
i=1 !

where {1V, DY,...,D,’} is a local basis of X} dual to {1,Dy,...,D,}.
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Given a line bundle E, the contraction by do gives a map
EFERIL®LY — E.

To give an idea in the case E = (y, the contraction X; ® LY — (y is given
explicitly in local coordinates by

n n P
aO'lv®1+Za[~lv®DiHa0-f+Zai.a_£'
i=1 i=1 i

DEFINITION 3.1.1. The pseudo-Jacobi ideal gy , is the image of the map
(3.3) HY (Y E®I, ®L") — H(Y,E).

The quotient H(Y, E)/ 7y , is denoted by R .

The k-graded piece of the usual Jacobian ideal of a homogeneous polynomial
F of degree d is recovered taking L = Op»(d) and E = (Up»(k). In this case it easy
to see that X, = @::_11 OUp»(1) and sequence (3.1) is the Euler sequence

n+1

(34) O — (Q[PJ" — @(OP”(I) — @pn — 0

The pseudo-Jacobi ideal 7, r C H'(P", Opn(k)) is generated by £&, ... IF,
that is it is the degree k part of the Jacobian ideal.

In the case of a smooth algebraic variety Y of dimension n with a smooth
hypersurface X, we take L to be the sheaf Oy (X), the section ¢ € H(Y,L) is
such that X = div(g), and E = L = Oy(X). We consider the deformations of X
inside the ambient space Y. Exactly as in the case of projective hypersurfaces,
such an infinitesimal deformation of X is given by ¢ + &R = 0, &> = 0, where
Re H(Y,L). Define Aut(Y,L) = {f : Y — Y such that /*(L) = L}. The base
of the Kuranishi family for X is |L|/Aut(Y, L) and we have

PROPOSITION 3.1.2. The tangent space to |L|/Aut(Y,L) at X is Ry ,.

PRrROOF. See [Green2, Corollary page 48]. O

4. INFINITESIMAL TORELLI THEOREM AND SMOOTH GRASSMANNIAN
HYPERSURFACES

Following Green’s strategy we will reprove the infinitesimal Torelli theorem for
hypersurfaces in Grassmannians in a way suitable for later use. A proof valid in a
more general context is given in [K].

Let G = Grass(s,/ + 1) be the Grassmannian variety of s-planes in C'*!. For
I =1,2 we obtain only P! and P2, hence we will assume / > 3. Denote by N =
s(I +1 — ) the dimension of G and note that N > /. Let X be a smooth hyper-
surface in |Og (a)|.
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To prove that the infinitesimal Torelli holds for X in our case it is enough to
show that the map

(4.1) H'(X,0y) — Hom(H(X,Ky), H'(X,Q)™?))

is injective. In fact this map is the highest piece of the derivative of the period
map, hence if (4.1) is injective, the derivative of the period map is itself injective.
The idea is to prove the surjectivity of the dual of (4.1), which is

(4.2) HY(X, Q¥ )" ® H'(X,Ky) — H'(X,0x)".
LeEMMA 4.0.3. For a > 1, (4.2) fits into the following commutative diagram
(43) HOX,Kx((N—2)a))® H(X,Ky) —— H(X,K2*(N —2)a)

J l

H'(X,97 %) ® H(X,Ky) H'(X,0x)"

ProoOF. This is, essentially, the content of [Greenl, Lemma 1.14]. Following
[Greenl, Lemma 1.10] the claim follows by the vanishing of certain cohomolo-
gies, that we recall here:

(1) H(G,QL @ K5'(—m — 1)a) = HY(G,QL @ Kg'(=m —2)a) =0 for 0 <
I<N-1L1<j<N-1,1<m<N-3

(2) H(G,QL(—ma)) = H’“(G,Qé(—m —1Da)=0 for i<N-1, 0<;<
N-1,1<m<N-1.

For (1) take the Serre dual and use the fact that Kg = Og(—/ — 1) to obtain

44)  h(G,QL ®K:' (—m—1)a)=h""(G, Q" V(a(m+1) - - 1))

and

4.5) WG, QL @ Kg'(—m —2)a) = hN NG, QY Y (a(m +2) — 1 - 1)).

By [Sn, Page 171], these dimensions are both zero because N —i >0, N —i— 1
>0anda(m+1)—1—1>1a(m+2)—1—1>1[fora> I For (2), in the exact
same way we have that

(4.6) h(G, QL (—ma)) = KN 7(G, QY (am))
and
(4.7) WG, QL((—m — 1)a)) = KV 1(G, QN7 (a(m + 1))).

Again these dimensions are zero because N —i >0, N —i—1> 0 and am > [,
a(m+1) > 1 for a > I. Hence for a >/ we have the vanishing required in (1)
and (2) and we are done. 0



696 L. RIZZI AND F. ZUCCONI

REMARK 4.0.4. Note that in [Greenl, Lemma 1.14], M. Green works in the
general case of a smooth sufficiently ample divisor of a smooth variety. Here on
the other hand, since we work in the more concrete case of a hypersurface in
a Grassmannian manifold, we can give a precise estimate on “how ample” the
hypersurface must be.

By the previous lemma we are reduced to study the surjectivity of
(48)  H°(X,Ky((N —2)a)) ® H'(X,Ky) — H'(X,KE*(N - 2)a)
for a > [. To prove this we go back to the level of G:
LemMma 4.0.5. If'a > 1 and
(49)  H"(G,Ke((N —1)a) ® H(G, K (a)) — H(G, KE*(Na))
is surjective, then (4.8) is surjective.
PRrROOF. From the exact sequence
(4.10) 0— Og(—a) — O — Oy — 0
and the adjunction formula Ky = K¢ (a)|y, we obtain the long exact sequence
(4.11) HY(G,K2*(Na)) — H(X,KZ*((N —2)a)) — H'(G,KE*((N — 1)a)).

By the Kodaira vanishing theorem, H'(G,K2*(N — 1)a)) = 0, and by adjunc-
tion we have the following diagram

(4.12) H(G,Ks((N —1)a)) ® H*(G, Kg(a)) ——— HO(G,KE*(N)a)
HO(X,Ky((N —2)a)) ® H'(X,Ky) —— H°(X,KS*(N —2)a).
The thesis immediately follows. O

ProrosITION 4.0.6. If X C G is a smooth divisor (¢ = 0) in |aH| where a > 1
then H'(X,@y) is isomorphic to Rog(a),0

PROOEF. It easy to see using the restriction sequence 0 — Og(—a) — Og —
Og|x — 0 and the cohomology vanishings given in [Sn, Theorem page 171] that
H' (X, Og|x) = 0. Hence by the normal exact sequence 0 — @y — Og|xy —
Ox(a) — 0, we have the identification

(4.13) H'(X,0y) = H'(X, Ux(a))/Im H°(X,®g|x).

Call X the sheaf of differential operators introduced in Section 3. The diagram
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(4.14) 0 Og )y Og 0
N
Og(a)
restricted to X gives
(4.15) 0 Ox iy Ogy —— 0
N Jm
Ox(a)

and we have that the image of H%(X,®gy) in H(X, Ox(a)) is the same as the
image of H%(X,%y). Hence

(4.16) H'(X,0y) ~ H(X,0x(a))/Im H°(X,Zy)
and it remains to prove that this is isomorphic to
Ro.(w.o = H'(G,0g(a))/Im H(G,X).
To do this it is enough to check that the kernel of the composition
(4.17)  H'(G,Ug(a)) — H(X,Ox(a)) — H*(X, Ox(a))/Im H*(X,Zx)
is exactly Im H%(G, X). This easily follows by the fact that H°(G, X) surjects onto
H(X,%x). In fact by the exact sequence 0 — g (—a) — X(—a) — Og(—a) — 0
and again the vanishings of [Sn, Theorem page 171] we have that H'(G,X(—a))

=0, and we are done. O

REMARK 4.0.7. Proposition 4.0.6 means that an infinitesimal deformation of X
of the form ¢ + &¢R = 0 is trivial if and only if R is an element of the pseudo-
Jacobi ideal 7} .

Now we show the infinitesimal Torelli theorem.

THEOREM 4.0.8. The infinitesimal Torelli theorem holds for smooth hypersurfaces
X in |Og(a)| ifa>1

PrOOF. By the previous lemma it is enough to show that
(4.18)  H(G,Ks((N — 1)a) ® H'(G, K (a) — H(G,KE* (Na))

is surjective. This follows by the fact that the Grassmannian G is projectively
normal in its Pliicker embedding in P*. This means that the restriction
H(PM 0(k)) — H°(G, 0g(k)) is surjective for k > 0. Hence the surjectivity of
(4.18) follows from the polynomial one at the level of the projective space. Note
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that the hypothesis a > [ ensures that all the twists appearing in (4.18) are greater
than 0 since Kg = O(—/ —1). O

5. INFINITESIMAL TORELLI AND GENERALIZED ADJOINT

The aim of this section is to study the deformations of a smooth divisor X in
|Og(a)| with a > [ in a Grassmannian variety G using the theory of generalized
adjoint forms.

5.1. Twisted normal sequence

An extension class ¢ e H'(X,@®y) = Ext'(Qy,0x) of X gives an exact se-
quence

(5.1) 0— Ox = Qyy — Qy — 0.

The sheaf Q) is the sheaf of holomorphic one-forms on the infinitesimal defor-
mation 2 of X naturally associated to &. By Proposition 4.0.6 we have that all
the deformations of X are inside the ambient space G, that is, they are given by
R e P(H(G, Og(a))). In particular we have that ¢ is in the image of the map
H°(G,0g(a)) — H'(X,0®yx) coming from the normal exact sequence

0 — Oy — Og|y — Ox(a) =0
and the restriction sequence
0— O — Og(a) — Ox(a) — 0.

We can not apply the adjoint theory directly to (5.1) because the sheaf Q)l( has
no global sections (see point (5) in the lemma below). Hence the idea is to twist
sequence (5.1) by a sheaf Oy (k). In this way we obtain

(5.2) 0 — Ox(k) = Qyy (k) — Qy (k) — 0

which is still associated to the same extension ¢ € Ext!(Q}, Uy) via the isomor-
phism Ext'(Qj (k), Ox(k)) = Ext'(Q}, Ox). Furthermore if we choose k big
enough, we will have that #°(X, Q} (k)) > N, hence we will be able to apply the
theory of adjoint forms.

The following lemma proves that & = 2 is enough for our purposes.

LeEMMA 5.1.1. It holds that:

(1) Og(a—2) is ample;

(2) the cohomology groups H'(G, Og(2)) vanish for i > 1;

(3) the groups H'(G, 0g(2 — a)) and H'(G, Og (2 — 2a)) vanish for i < N,
(4) the groups H'(X,0x(2)) and H' (X, Ox(2 — a)) vanish for 1 <i < N —2;
(5) H(X,Q)) =~ H'(X,Qf ) = H'(G, Q) = 0,
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(6) HO(X’ Q)l((z)) = HO(Xv QGIE|X(2)) = HO(G7 Qé(2));

(7) h°(X,Q4(2)) = N;

8) Doty = 0 ie. QL(2) is generated by global sections.
Qx(2) X

PROOF. Part (1) is obvious.

For (2) note that H (G, 0g(2)) =~ H'(G,Kg (I + 3)) since Kg = Ug(—1 — 1).
Hence the claim follows by the Kodaira vanishing. Point (3) also follows by the
Kodaira Vanishing theorem.

Part (4) follows by the exact sequence 0 — (g (—a) — O — Oy — 0 conven-
iently tensorized and by the vanishing in (2) and (3).

To prove (5) consider the conormal exact sequence 0 — Ox(—a) — QGIS’\ x—
Qy — 0. It gives the isomorphism H(X, Qg ) = H'(X,Q}). Furthermore the
exact sequence 0 — QF (—a) — QL — QL , — 0 and the Nakano vanishing give
the isomorphism H°(X,Q¢ ) = H(X,Qg). Finally it is well-known that
H(X, QL) =0.

We have that Og(a — 2) is ample by (1), hence (6) follows in the same fashion
as (5).

The dimension of H°(G, QL (2)) (which is equal to #°(X,Q}(2)) by the pre-
vious point) is explicitly calculated in [Sn, Theorem 3.3] and it is

3 (1+2\ /142
[+2\s+2)\s—1)°
A simple computation shows that is is grater than N = s(/ + 1 — ).
Finally (8) follows from (6) and the fact that QL (2) is generated by global sec-
tions (see [Sn]). O
5.2. Infinitesimal deformations and rational forms

Consider the diagram

(53) 0
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By the previous Lemma, H'(X,0x(2)) = H'(X,0x(2 — a)) = 0. Hence all the
global meromorphic 1-forms of Q}(2) can be lifted both to H°(X, Q}[‘ +(2)) and
HO(X,0L ,(2).

Diagram (5.3) can be completed as follows

(5.4) 0 0

0 —— Ox(2) 9 Qg x(2) — 0
(9}((2—61) —_— (9}((2—&)
0 0.

By hypothesis our deformation comes from H°(G, (g (a)), then the horizontal se-
quence completing diagram (5.4) is associated to the zero element of H' (X, Og|x)-
Therefore we have the splitting of the second row and a map ¢ as follows

(5.5) 0 0

0 —— Ox(2) Q1 (2)

| S

0 — 0x(2) — x(QDQLY(2) — QL) — 0

(OX(2 — a)

0 0.
Note that det(Qf(2)) = QF ™' (—a + 2N) and det(Q}(2)) = QF ' (2N).
ProOPOSITION 5.2.1. The map
P HO(X, QY (—a +2N)) — HO(X, QY 2N)

is given by the section Ry € H(X, Ox(a)).
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Proor. This is a local computation. Take on G local coordinates xi,...,xy_1, ¥
such that X is given by y = 0. Then locally the deformation of X is given by
v+ tr =0, where r is a local equation of R. From d( y + tr) = 0 we obtain on
X that dy = —rdt. Hence if a section of H°(X, det(QGI X)) is locally given by
c-dxi A--- Adxy_1 Ady, then its image in H°(X,det(Q 1\)()) is —redxi A--- A
dxy_1 A dt. Tensoring by (x(2N) gives our thesis. 0

Now we construct totally decomposable twisted volume forms. Consider N
global sections 7y, ..., 7y € H°(X,Q%(2)) which, by Lemma 5.1.1 part (7), have
unique liftings §i,...,5v € H(X, QJW( ). Call Qe HO(X, Q¥ 1(—a+2N))
the generahzed adjomt form correspondlng to S;A---Asy. If we take s :=
(1), ...,sv = od(5y) € H'(X, QI‘X@)) we have that the generalized adjoint

Qe H'(X,det(Q)4(2))) = H(X,Q} ' (2N))

corresponding to s; A --- A sy is Q = Q - R. We point out that Q does not depend
on the deformation &, while Q obviously does.

THEOREM 5.2.2. Assume that W = n,...,nyy> is a generic subspace in
HO(X,QL(2)) with JNW #0. Then R is in the pseudo-Jacobi ideal Joe)s I

and only if the adjoint form Q is in the image of H°(X,0x(2)) ®/1NW—>
HO(X, QY '(2N)).

PrOOF. By Lemma 5.1.1 (8) it follows that Q! v(2) is generated by its global sec-
tions and that Dg, ) = 0. By [PZ, Proposition 3 1.6] it follows that Dy, = 0 since
W is generlc Hence Theorem 2.1.4 gives an equlvalence Thus if Q € Im H°(X,

Ox(2) @ N W — HO(X,QY"1(2N))), then & € ker(H'(X,0x) — H'(X,0x ®
(ﬁX(DW))), that is £ =0 since Dy, = 0. Conversely if R is in the pseudo-Jacobi
ideal, then the deformation & is zero. In particular ¢ € ker(H'(X,0y) — H'(X,
Oy ® Ux(Dw))) and since Dy = 0 by the converse of Theorem 2.1.4 it follows
QeImH(X,0x(2) @ AN W — H(X, Q¥ '(2N))). O

5.3. The Generalized Macaulay’s theorem

We will prove a generalization of Macaulay’s theorem which makes explicit in
the Grassmannian case the results of [Greenl, Theorem 2.15] and of [Green2,
Theorem page 47]. The proof follows closely the one of the classical Macaulay’s
theorem; see [Vo2, Theorem 6.19], we recall it here for the reader’s convenience.
A more general duality result can be found in [K, Theorem 6.3.2].

We start with the following lemma which depends on various results con-
tained in [Sn].

LemMA 5.3.1. Call X the sheaf of differential operators introduced in Section 3.
The cohomology groups

H’(G, /k\Z(—(k _ c)a)> i#£0,N

vanish fora > 1+ c+2,c¢ > 0.
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PrOOEF. Take the exact sequence

(5.6) 0—-0g—>X—0s—0

and its wedge product

k—1 k k
(5.7) 0— A\ Os— AZ— /\Og — 0.

We proceed by steps.

Case k = c. We have to prove that H‘(G /\k X)=0 for i #0,N. Using
sequence (5.7) it is enough to prove that H'(G /\k '0g) = (B /\k ®@ =0.
Note that H(G, \' ' @) = H(G,QY" "“(1 1)) and H (G /\ Op) = H(G,
QY~*(1+1)) hence the clalm follows by [Sn, Page 171].

Case k < c¢. By sequence (5.7) twisted by —(k — ¢)a, it is enough to prove
that

k

Hf(@, kA‘ O (—(k — c)a)) - H"(@, AOc(—(k - c)a)) —0.

We have the isomorphisms

Hf(@, kAI O (—(k — c)a)) ~ HI(G, QY (—(k — c)a+ 1+ 1))

and

Hf(@, K@G(—(k — c)a)) =~ H (G, Q¥ ¥ (—(k — c)a+1+1)).

Since —(k — ¢)a+ [+ 1 > I we conclude again by [Sn, Page 171].
Case k > ¢. Working as it the previous cases we have to prove that

H’(G, ]7\1 Oc(—(k — c)a)) = Hi<G,;\®@(—(k - c)a)) =0.

By Serre duahty we will work with the duals H¥/(G, Q5 ((k — ¢)a— 1 — 1))
and HV (G, QE(k—c)a—1—-1)). If k—c>2, it 1mmed1ate1y follows that
(k—c)a—1—1>1 and we conclude as in the previous cases. If k —c =1, the
vanishing of HV(G,QE " (a—1—-1)) and HY(G,QE(a—1-1)) follows
from [Sn, Theorem page 171 (4)] and the condition a >/ + ¢ + 2. O

REMARK 5.3.2. Note that the condition ¢ > [ 4 ¢ + 2 is really needed only for
k — ¢ = 1. In all the other cases ¢ > [ is enough.

THEOREM 5.3.3 (Generalized Macaulay’s theorem for Grassmannians). Let G
and (6 =0) = X € |aH| as above. Then
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(1) R2(n+1)a).0 = C
(2) the standard multiplication map

(5.8) Reg(cay,o @ Ri2(Ni1-0)a).0 = Ri2((vi1ya).0 = C
is a perfect pairing provided that a > [ + ¢ + 2.

PROOF. Using the section do € H %(G,XY(a)) as in equation (3.2), we have the
Koszul complex:

N+1 N
(59) 0— A Z(=(N+1)a) » A\Z(~Na) — -+ — X(—a) — Og — 0.
We tensor (5.9) by Og(ca):

(5.10) 0— AK S(—(N+1-c)a) — /N\z(_(zv —a) = -

— X(—(1 = ¢)a) — Og(ca) — 0.

Now look at the corresponding hypercohomology spectral sequence. The E["
terms of this spectral sequence are

N+1-p

(5.11) El"”":H’1<G, A 2(—(N—|—1—p—c)a)>.

By Lemma 5.3.1, E/"? = 0 for ¢ # 0, N. Hence it is a spherical spectral sequence
with page E| as follows:

q
E;),N Ell,N E12,N E{\HLI,N
® ) ) e e )
0 0 0 0
® [ ] [ ] L]
0 0 0 0
® [ ] [ ] [ ]
~ ~ ~ p
E?’O E}’O E?’O . T Ef\]jrl’o

Figure 1. The page E; of the hypercohomology spectral sequence.
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Since the differential is d, : E/"? — E} 19 it follows that

(5.12) EyN = Ker(E)"" — E['Y)

N+1

— Ke (HN(G A Z(=(N +1-¢)a ))

HHN(G,KZ(—(N—c)a))),

that is, using Serre duality and the isomorphism /\NJrl pIgat /\N ®

(5.13)  EyN = (H%G,K2((N +1 - ¢)a))/ImH*(G,Z ® K2((N — ¢)a)))"

_R K2((N+1—c)a),a

Furthermore

(5.14) EYNO = ENYYIm ENY = HY(G, Og(ca)) /Tm HY(G,2(—(1 — ¢)a))
= R(f‘@(ca),o"

The fact that the spectral sequence is spherical gives that E0 N = E0 N =

Eg, fl and E, N+LO = E; ) NLI . Moreover thls spectral sequence
abuts to the hypercohomology of (5.10) which is zero because (5.10) is exact.

Hence dy. is an isomorphism dy . : EYN _, gN+LO , that is

N
N+1 N+1

(515) R@G(m)s"' = RI?é((N#»lfc)a),a'

Choosing ¢ = 0 gives part (1) of our thesis. Furthermore since the multiplica-
tion with H°(G,K2((N + 1 — ¢)a)) gives a map of the entire spectral sequence,
we deduce that (5.15) is compatible with the multiplication in the sense that given
ve H'(G,KZ((N + 1 — ¢)a)) we have a commutative diagram

\

(5.16) Ry (ca),o — (RKé((NJrlfc)a),a)

ol

RKé((N+1)a),a —_— (R('/‘G,U)v

given by the v and its dual. It follows that the pairing induced by (5.15) is given
by multiplication. a

REMARK 5.3.4. We can give a better lower bound for a in the Generalized
Macaulay’s theorem 5.3.3 assuming ¢ = 1. In this case we have to consider a
non-spherical spectral sequence. In order to do that, we leave apart only the clas-
sically well-known case where G is the standard projective space P'.

THEOREM 5.3.5 (Macaulay’s theorem for Grassmannians). Let G =
Grass(s,/ + 1) with s # 1 and X as above. Then
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(1) RKé((NH)a),o‘ =C
(2) the multiplication map

(517) RC e ® RK2 (Na),c — RKé((N+l)a),a =C.
is a perfect pairing provided that a > 1.

ProoOF. Ifa>/+c+2 =1+ 3, we can apply Theorem 5.3.3. Hence we will as-
sume / < a < [+ 3. The E; terms of the hypercohomology spectral sequence are

N+1—p

El’”":Hq(G, A 2(—(N—p)a)).

Note that the hypothesis ¢ > /+ 3 of Lemma 5.3.1 is really needed only in
the case of k —c¢ =1, that is N — p =1, hence E/"* =0 for ¢ # 0, N and p #
N — 1. The E| page is then

1 EON pLN p2N EN-LN  pNN pNt+LN
® o [ ] <. [ ] [ ]
N-1,N
0 0 0 By 0 0
® o [ ] LA [ ] [ ] [ )
EN'—l,z
: ‘e :
N-1,1
0 0 0 £y 0 0
o [ ] [ ] .. [ J [ J [ ]
' p
D—.—.—.—.—.—)
0,0 1,0 20 - 1,0 2N,0 2N+1,0
B B B} EY RN ENT
To make sure that EON —EON —E](\),ivl and EN+10 —ENJr10 cee=
EJIVVLI 0 as in the proof of Theorem 5 3 3,1t is enough to prove that EN L1 =
EY 12—0 Now we have that EN”—H G/\Z and EN7M? =
H E (G /\ ¥(—a)). Using the exact sequence
2
0— O(— /\E — A\O(—a) =0

1t 1s enough to show the Vanlshlng of HY(G,0(-a)), H*(G,0(-a)),
(G A ) and H?*(G A
If a=1 + 1 then Os(—a) = K¢ and these vanishing are classically known.
If a= l+2, we take the Serre dual and obtain HV-!(G,Q'(1)),
HY2(G,QY(1)), HV-1(G,Q%(1)) and HV-2(G,Q?*(1)). The vanishing of these
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groups come from [Sn, Theorem page 171 part (1)] using the fact that under our
hypotheses N >4 and s — 1 > 0.

Hence dy :ES'N — EZN +1,0 gives an isomorphism and the proof proceeds
like in Theorem 5.3.3. |

5.4. Twisted one forms and twisted decomposable volume forms

Twisted forms on Grassmannian varieties provide a natural setting to apply the
Generalized Adjoint Theory. Indeed by [BW], H%(G, det(QL (m))) is an irreduc-
ible representation and since, for every m > 2, Q! (m) is globally generated, we
have easily that any element of H°(G,det(Q (m))) is actually obtainable as a
C-linear combination of totally decomposable forms. More precisely we have, in
the case m = 2:

ProProOSITION 5.4.1. The natural map induced by the wedge product

(5.18) NH(X,Qy(2)) — H° (X, det(Qg ¢ (2)))

is surjective.
PrOOF. By Borel-Weil theorem, see also cf: [Bo, Proposition 10.2], we know
that H%(G,det(QL(2))) is an irreducible representation. By Lemma 5.1.1 (8) we
have that Qé (2) is globally generated by its global sections. Now the natural
homomorphism
N
(5.19) NH(6,95(2) — H(G, det(Qg(2)))
is surjective by Schur’s Lemma. By Lemma 5.1.1 we know that
H°(G,Q5(2)) = H°(X, Qg y(2))-
Hence the claim follows if we show that
H'(G,det(Qg(2))) — HO(X, det(Qg(2)))
is surjective. Indeed this follows by the exact sequence
(5.20) 0—QF(2N —a) - QI (2N) = QI (2N)y — 0
and the Kodaira vanishing applied to H'(G, QY 2N — a)). O

5.5. Volume forms and the infinitesimal Torelli theorem

We link the global forms of Qg (2N), which are objects coming from the ambient
variety G, to the infinitesimal deformations of X' C G contained in pseudo-Jacobi

ideal jﬁ@ (X),0°
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LEMMA 5.5.1. Let G = Grass(s,/ + 1) with s # 1 and X as above. Then the infin-
itesimal deformation R is in the pseudo-Jacobi ideal f_(x , if and only if RQ e
Jal an+a),o JOT every global section Q of H(G, QY (2N)) which restricts to a gen-

eralzzed adjomt relative to the vertical exact sequence of diagram (5.3).

ProOF. Note that a generalized Massey product of the vertical sequence of dia-
gram (5.3) is in fact an element of

H(X, (QF (2N)) ) = H'(X, QY "' 2N — a)).

We want to apply the generahzed version of Macaulay s theorem 5.3.5. We only

know that RQ € S0 aN+a).o TOT QeH O(G QX (2N)) which restricts to a gener-
alized adjoint. So now we prove that this is enough to have that

R-H"(G,Qf (2N)) C Ja¥ N ta).o°
Consider the restriction sequence
0 — QI (2N —a) — QF(2N) — QZ(2N);y — 0.
As we have seen in the proof of Proposition 5.4.1,
0— H(G,Qf (2N —a)) — H*(G,Qf (2N)) — H*(X,QJ(2N)y) — 0

is exact. By Proposition 5.4.1 we can also assume that all the global sections of
H(X, QY (2N )jx) are in fact linear combinations of generalized adjoints. Hence
our hypothes1s that RQ € Ja¥ oN-a), , for every section Q € H'(G,QY(2N))

which restricts to a generahzed adjomt in H(X,QY (2N )jx), together with the
fact that the map

HY(G,QY (2N —a)) — H*(G,QY(2N)))

is given by the multiplication by s, which is an element of the pseudo-Jacobi ideal,
implies that

R-H’(G,Qf(2N)) C Ja¥ oN+a). o

Now we apply Macaulay’s theorem 5.3.5 to deduce that R is in the pseudo-
Jacobi ideal. It is enough to show that

Ro¥ (va-2m).c ® Radonye = Ria2yva), o
is surjective. This follows from the surjectivity at the level of the H°:
H'(G,QY (Na - 2N)) ® H(G, Q¥ (2N)) — H'(G, (Q¥)(Na))

which holds by projective normality. O
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5.6. Proof of the Main Theorem

In this proof we denote as always by ¢ € H!(X,®y) the infinitesimal deforma-
tion and by [R] € Ry, (a),» the corresponding element given by Proposition 4.0.6.
We will use also Remark 2.1.5.

i) < ii). If d2(&) =0 then, by Theorem 4.0.6, £ = 0. By Proposition 4.0.6
this means [R] =0, that is R € %, (, ,- The converse is trivial by Proposition
4.0.6.

ii) < iii) This is Theorem 5.2.2.

ii) < iv) This is the content of Lemma 5.5.1.
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