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Abstract. — We prove an equivalence between the infinitesimal Torelli theorem for top forms

on a hypersurface X contained inside a Grassmannian and the theory of adjoint volume forms.
More precisely, via this theory and a suitable generalization of Macaulay’s theorem we show that

the di¤erential of the period map vanishes on an infinitesimal deformation if and only if certain
explicitly given twisted volume forms go in the generalized Jacobi ideal of X via the cup product

homomorphism.
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1. Introduction

Let L be a line bundle over a smooth variety Y and let X � Y be the zero locus
of a global section s : Y !L. To study the infinitesimal deformations of X ,
M. L. Green introduced the notion of pseudo-Jacobi ideal JL;s; see [Green1,
Formula (2.11) page 144]. The quotient RL;s :¼ H 0ðX ;LÞ=JL;s coincides with
the tangent space of the Kuranishi family of (embedded) deformations and it is a
piece of a graded ring R :¼0

mb0
RLnm;s, the so called generalized Jacobi ring;

a notion that returns the standard Jacobian ring if Y is a projective space and
X ¼ ðF ¼ 0Þ is a smooth hypersurface. Following the fundamental papers by
Gri‰ths, see [Gri¤1], in [Green1] it is proved that if X is su‰ciently ample then
the infinitesimal Torelli theorem holds for X , that is dPX is injective, and it is
also possible to associate to the couple ðY ;X Þ a multiplicative structure on R
which is a perfect pairing.

Now suppose that PicðYÞ ¼ ½H� � Z where H is an e¤ective divisor. Hence for
any e¤ective divisor X � Y there exists a unique m a Nb0 such that X is an ele-
ment of the linear system jmHj. Thus a natural problem is to find the minimum
m a N such that the multiplicative structure on R gives a perfect pairing and dPX

is injective where X is a smooth element of jmHj; as far as we know the problem
has been fully solved only in the case where Y is a projective space, see also: [Do]
and c.f. [RZ2], and in the case of Kähler C-spaces, see: [K]. In this work we con-
sider the case of Grassmannians, which is a particular case of [K], but we give a
criterion to check if a local family is trivial, in terms of the geometry of certain



top forms; the reader will realize that the ampleness degree in Green’s proof can
be clarified for many other important ambient spaces using our method.

Let Y ¼ G :¼ Gðs; l þ 1Þ be the Grassmannian of s-planes in C lþ1 where
1 < s < l and lb 3. Let X � G be an e¤ective divisor. By Lefschetz theorem
we know that if OGð1Þ is the invertible sheaf which gives the Plükher embedding
and H is an hyperplane section, then X is the zero locus of a global section s
of jaHj where a a N>0. As a consequence of [K] we know that, if ab 3, dPX is
injective. In this paper we only consider the case where X is of general type or
of Calabi Yau type. Once we know that the infinitesimal Torelli theorem holds,
a basic problem stands out if we consider the embedding X � G. Indeed if X ¼
ðs ¼ 0Þ, s a H 0ðG;OGðaÞÞ, any infinitesimal deformation is induced by a local
family ðsþ et ¼ 0Þ where t a H 0ðG;OGðaÞÞ; see: Proposition 4.0.6. Hence it
would be useful to have criteria to check which of these families actually induce
the trivial deformation on X . The theory of generalized adjoint forms, also called
Massey products, is a tool to solve this problem.

Let us briefly recall the notion of generalized adjoint form. The details of the
general theory are discussed in [RZ2]; here we recall that this theory has been suc-
cessfully used in [BAN], [Ra], [CNP], [G], [RZ3], and that the foundations of the
theory of adjoint forms in dimensionb 2 are in [PZ]; see also [RZ1] and [Ri].

In our case we twist by OX ð2Þ the exact sequence associated to the infinitesi-
mal deformation x a H 1ðX ;YX Þ to obtain

0! OX ð2Þ ! W1
XjX ð2Þ ! W1

X ð2Þ ! 0:ð1:1Þ

The cup-product homomorphism qx : H
0ðX ;W1

X ð2ÞÞ ! H 1ðX ;OX ð2ÞÞ is trivial
since H 1ðX ;OX ð2ÞÞ ¼ 0. Now take a generic nþ 1-dimensional vector space
W < H 0ðX ;W1

X ð2ÞÞ and denote by l iW the image of 5i
W through the natural

homomorphism l i : 5i
H 0ðX ;W1

X ð2ÞÞ ! H 0ðX ;5iðW1
X ð2ÞÞÞ. Let B :¼ 3h1; . . . ;

hnþ14 be a basis of W and s1; . . . ; snþ1 a H 0ðX ;W1
XjX ð2ÞÞ liftings of, respectively,

h1; . . . ; hnþ1, then the map

Lnþ1 : 5
nþ1

H 0ðX ;W1
XjX ð2ÞÞ ! H 0ðX ; detðW1

XjX ð2ÞÞÞ

gives the twisted volume form W :¼ Lnþ1ðs1bs2b� � �bsnþ1Þ a H 0ðX ;
detðW1

XjX ð2ÞÞÞ which is called generalized adjoint form or Massey product associ-
ated to x, W , and B. On the other hand we also have nþ 1 top forms of W1

X ð2Þ.
Indeed consider the nþ 1 elements oi :¼ lnðh1b� � �bhi�1bbhihibhiþ1b� � �bhnþ1Þ,
i ¼ 1; . . . ; nþ 1 obtained by the basis 3h1b� � �bhi�1bbhihibhiþ1b� � �bhnþ14

nþ1
i¼1 of

5n
W . By sequence (1.1), detðW1

XjX ð2ÞÞ ¼ detðW1
X ð2ÞÞnOX

OX ð2Þ, and we can
construct an obvious homomorphism:

H 0ðX ;OX ð2ÞÞn lnW ! H 0ðX ; detðW1
XjX ð2ÞÞ:ð1:2Þ

The Generalized Adjoint Theorem, see 2.1.4 (and the therein quoted bibliog-
raphy), fully characterizes the condition W a ImH 0ðX ;OX ð2ÞÞn lnW ! H 0ðX ;
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detðW1
XjX ð2ÞÞÞ; but the important point is that to check this condition is tanta-

mount to check if dPX ðxÞ ¼ 0. More deeply, we can construct an explicit space
of generalized adjoint forms associated to x in the following way. First we lift
the sections hi’s from H 0ðX ;W1

X ð2ÞÞ to H 0ðG;W1
Gð2ÞÞ, then we take the wedge

product to obtain a twisted volume form ~WW, independent from x, such that ~WW a
H 0ðG;WN

G ð2NÞÞ. Finally by taking the form R a H 0ðG;OGðaÞÞ which induces
the deformation x, we consider the class R � ~WW a H 0ðG;WN

G ð2N þ aÞÞ which by
adjunction restricts to

W a H 0ðX ;WN�1
X ð2NÞÞ ¼ H 0ðX ; detðW1

X ð2ÞÞnOX
OX ð2ÞÞ:

We show:

Main Theorem. Let a > l and let ðs ¼ 0Þ ¼ X a jaHj as above. The following
are equivalent:

i) the di¤erential of the period map dPX is zero on the infinitesimal deformation x
induced by R a H 0ðG;OGðaÞÞ;

ii) R is an element of the pseudo-Jacobi ideal JOGðaÞ;s;

iii) for a generic x-adjoint W it holds W a ImH 0ðX ;OX ð2ÞÞn lnW ! H 0ðX ;
WN�1

X ð2NÞÞ;
iv) if ~WW a H 0ðG;WN

G ð2NÞÞ restricts to a generalized adjoint form then R~WW a
JWN

G ð2NþaÞ;s
.

This last part of our theory relies on a perfect equivalence between the infini-
tesimal theory of periods and our theory of Massey products which will be ex-
plored in the more general context of rational homogeneous varieties in a forth-
coming paper.

2. Review on the theory of adjoint forms

2.1. Definition of generalized adjoint form

The theory of generalized adjoint is built in [RZ2]. Here we recall only the basic
notions we need.

Let X and x be respectively a smooth compact complex variety of dimension
m and a class x a Ext1ðF;LÞ where F and L are two locally free sheaves on X
of rank n and 1 respectively. Then the extension class x gives a rank nþ 1 vector
bundle E on X which fits in an exact sequence:

0!L! E!F! 0ð2:1Þ

By wedge-sequences naturally associated to the sequence (2.1) we find that the
invertible sheaf detF :¼5n

F fits into the exact sequence:

0! 5
n�1

FnL!5
n

E! detF! 0;ð2:2Þ

691on green’s proof of the infinitesimal torelli theorem for hypersurfaces



which still corresponds to x under the isomorphism Ext1ðF;LÞGExt1ðdetF;
5n�1

FnLÞGH 1ðX ;F4nLÞ.
A natural problem is to find conditions on the behavior of the global sections

of the involved vector bundles in order to have the splitting of (2.1). From now
on, assume that the connecting homomorphism qx : H

0ðX ;FÞ ! H 1ðX ;LÞ has
a kernel of su‰ciently high dimension. More precisely assume that there exists
a subspace W � kerðqxÞ of dimension nþ 1. Choose a basis B :¼ fh1; . . . ; hnþ1g
of W . By definition we can take liftings s1; . . . ; snþ1 a H 0ðX ;EÞ of the sections
h1; . . . ; hnþ1. If we consider the natural map

Ln : 5
n

H 0ðX ;EÞ ! H 0
�
X ;5

n

E
�

we can define the sections

Wi :¼ Lnðs1b� � �bbsisib� � �bsnþ1Þð2:3Þ

for i ¼ 1; . . . ; nþ 1. Denote by oi, for i ¼ 1; . . . ; nþ 1, the corresponding sec-
tions in H 0ðX ; detFÞ. By commutativity between evaluation of wedge product
and restriction it easily follows that oi ¼ lnðh1b� � �bbhihib� � �bhnþ1Þ, where ln

is the natural morphism

ln : 5
n

H 0ðX ;FÞ ! H 0ðX ; detFÞ:

Definition 2.1.1. We denote by lnW the subspace of H 0ðX ; detFÞ generated
by o1; . . . ;onþ1. If lnW is nontrivial, the induced sublinear system jlnW j �
PðH 0ðX ; detFÞÞ is called adjoint sublinear system of W . We call DW its fixed di-
visor and ZW the base locus of its moving part jMW j � PðH 0ðX ; detFð�DW ÞÞÞ.

Definition 2.1.2. The form W a H 0ðX ; detEÞ corresponding to s1b� � �bsnþ1
via

Lnþ1 : 5
nþ1

H 0ðX ;EÞ ! H 0ðX ; detEÞð2:4Þ

is called generalized adjoint form or Massey product associated to W .

Remark 2.1.3. It is easy to see by local computation that this section is in the
image of the natural injection detEð�DW ÞnIZW

! detE.

The basic idea of the theory of adjoint forms is that, in a split exact sequence,
generalized adjoint forms as W do not add any information which is not already
given by the top forms oi a H 0ðX ; detFÞ, i ¼ 1; . . . ; nþ 1. More precisely, since
detðEÞ ¼ detðFÞnL, everything is reduced to check the condition

W a ImðH 0ðX ;LÞn lnW ! H 0ðX ; detEÞÞ:ð2:5Þ

By [RZ2, Theorem [A] and Theorem [B]] we have:
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Theorem 2.1.4. Let W a H 0ðX ; detEÞ be a generalized adjoint form asso-
ciated to W as above. If W a ImðH 0ðX ;LÞn lnW ! H 0ðX ; detEÞÞ then
x a kerðH 1ðX ;F4nLÞ ! H 1ðX ;F4nLðDW ÞÞÞ. Viceversa. If H 0ðX ;LÞG
H 0ðX ;LðDW ÞÞ and if x a kerðH 1ðX ;F4nLÞ ! H 1ðX ;F4nLðDW ÞÞÞ, then
W a ImðH 0ðX ;LÞn lnW ! H 0ðX ; detEÞÞ.

Remark 2.1.5. Note that if DW ¼ 0 the above theorem is a criterion for the
vanishing of x.

3. The pseudo-Jacobi ring

Recall the following definition from [Green1]

Definition 3.0.6. We say that a property holds for a su‰ciently ample line
bundle L on a projective variety X if there exists an ample line bundle L0 such
that the property holds for all L with LnL�10 ample.

Take an n-dimensional smooth variety Y and a su‰ciently ample line bundle
L on Y . Let s a H 0ðY ;LÞ be a global section and X the corresponding divisor.
Assume that X is smooth.

3.1. Pseudo-Jacobi ideal

In the case that we are studying, the usual Jacobian ideal can be replaced by the
so called pseudo-Jacobi ideal introduced in [Green1] and [Green2]. We briefly
recall how it is constructed.

Given a line bundle L on Y and the sheaf YY of regular vector fields, consider
the extension

0! OY ! SL !
t
YY ! 0ð3:1Þ

with extension class �c1ðLÞ a H 1ðY ;W1
Y Þ. SL is a sheaf of di¤erential operators

of order less or equal to 1 on the sections of L. In an open subset of Y with coor-
dinates x1; . . . ; xn this sheaf is free and is generated by the constant section 1 and
the sections Di, for i ¼ 1; . . . ; n, which operates on the sections of L by

Dið f � lÞ ¼
qf

qxi
� l

where l is a trivialization of L. The operators Di are sent to
q
qxi

in YY .
In particular to a global section s of L, we can associate a global section fdsds of

LnS4L . If locally s ¼ f � l, then fdsds is given by

fdsds ¼ f � l � 14þ
Xn

i¼1

qf

qxi
� l �D4

ið3:2Þ

where f14;D4
1 ; . . . ;D

4
n g is a local basis of S4L dual to f1;D1; . . . ;Dng.
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Given a line bundle E, the contraction by fdsds gives a map

EnSL nL4! E:

To give an idea in the case E ¼ OY , the contraction SLnL4! OY is given
explicitly in local coordinates by

a0 � l4n 1þ
Xn

i¼1
ai � l4nDi 7! a0 � f þ

Xn

i¼1
ai �

qf

qxi
:

Definition 3.1.1. The pseudo-Jacobi ideal JE;s is the image of the map

H 0ðY ;EnSL nL4Þ ! H 0ðY ;EÞ:ð3:3Þ

The quotient H 0ðY ;EÞ=JE;s is denoted by RE;s.
The k-graded piece of the usual Jacobian ideal of a homogeneous polynomial

F of degree d is recovered taking L ¼ OPnðdÞ and E ¼ OPnðkÞ. In this case it easy
to see that SL ¼0nþ1

i¼1 OPnð1Þ and sequence (3.1) is the Euler sequence

0! OPn !0
nþ1

OPnð1Þ ! YPn ! 0:ð3:4Þ

The pseudo-Jacobi ideal JOPn ðkÞ;F � H 0ðPn;OPnðkÞÞ is generated by qF
qx0

; . . . ; qF
qxn

,
that is it is the degree k part of the Jacobian ideal.

In the case of a smooth algebraic variety Y of dimension n with a smooth
hypersurface X , we take L to be the sheaf OY ðX Þ, the section s a H 0ðY ;LÞ is
such that X ¼ divðsÞ, and E ¼ L ¼ OY ðX Þ. We consider the deformations of X
inside the ambient space Y . Exactly as in the case of projective hypersurfaces,
such an infinitesimal deformation of X is given by sþ eR ¼ 0, e2 ¼ 0, where
R a H 0ðY ;LÞ. Define AutðY ;LÞ ¼ f f : Y ! Y such that f �ðLÞ ¼ Lg. The base
of the Kuranishi family for X is jLj=AutðY ;LÞ and we have

Proposition 3.1.2. The tangent space to jLj=AutðY ;LÞ at X is RL;s.

Proof. See [Green2, Corollary page 48]. r

4. Infinitesimal Torelli theorem and smooth Grassmannian

hypersurfaces

Following Green’s strategy we will reprove the infinitesimal Torelli theorem for
hypersurfaces in Grassmannians in a way suitable for later use. A proof valid in a
more general context is given in [K].

Let G ¼ Grassðs; l þ 1Þ be the Grassmannian variety of s-planes in C lþ1. For
l ¼ 1; 2 we obtain only P1 and P2, hence we will assume lb 3. Denote by N ¼
sðl þ 1� sÞ the dimension of G and note that Nb l. Let X be a smooth hyper-
surface in jOGðaÞj.
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To prove that the infinitesimal Torelli holds for X in our case it is enough to
show that the map

H 1ðX ;YX Þ ! HomðH 0ðX ;KX Þ;H 1ðX ;WN�2
X ÞÞð4:1Þ

is injective. In fact this map is the highest piece of the derivative of the period
map, hence if (4.1) is injective, the derivative of the period map is itself injective.

The idea is to prove the surjectivity of the dual of (4.1), which is

H 1ðX ;WN�2
X Þ4nH 0ðX ;KX Þ ! H 1ðX ;YX Þ4:ð4:2Þ

Lemma 4.0.3. For a > l, (4.2) fits into the following commutative diagram

H 0ðX ;KX ððN � 2ÞaÞÞnH 0ðX ;KX Þ ���! H 0ðX ;Kn2
X ðN � 2ÞaÞ???y
???y#

H 1ðX ;WN�2
X Þ4nH 0ðX ;KX Þ H 1ðX ;YX Þ4

ð4:3Þ

���������!
Proof. This is, essentially, the content of [Green1, Lemma 1.14]. Following
[Green1, Lemma 1.10] the claim follows by the vanishing of certain cohomolo-
gies, that we recall here:

(1) HiðG;W j
G nK�1G ð�m� 1ÞaÞ ¼ Hiþ1ðG;W j

G nK�1G ð�m� 2ÞaÞ ¼ 0 for 0 <
i < N � 1, 1a jaN � 1, 1amaN � 3

(2) HiðG;W j
Gð�maÞÞ ¼ Hiþ1ðG;W j

Gð�m� 1ÞaÞ ¼ 0 for i < N � 1, 0a ja
N � 1, 1amaN � 1.

For (1) take the Serre dual and use the fact that KG ¼ OGð�l � 1Þ to obtain

hiðG;W j
G nK�1G ð�m� 1ÞaÞ ¼ hN�iðG;WN�jðaðmþ 1Þ � l � 1ÞÞð4:4Þ

and

hiþ1ðG;W j
G nK�1G ð�m� 2ÞaÞ ¼ hN�i�1ðG;WN�jðaðmþ 2Þ � l � 1ÞÞ:ð4:5Þ

By [Sn, Page 171], these dimensions are both zero because N � i > 0, N � i � 1
> 0 and aðmþ 1Þ � l � 1 > l, aðmþ 2Þ � l � 1 > l for a > l. For (2), in the exact
same way we have that

hiðG;W j
Gð�maÞÞ ¼ hN�iðG;WN�jðamÞÞð4:6Þ

and

hiþ1ðG;W j
Gðð�m� 1ÞaÞÞ ¼ hN�i�1ðG;WN�jðaðmþ 1ÞÞÞ:ð4:7Þ

Again these dimensions are zero because N � i > 0, N � i � 1 > 0 and am > l,
aðmþ 1Þ > l for a > l. Hence for a > l we have the vanishing required in (1)
and (2) and we are done. r
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Remark 4.0.4. Note that in [Green1, Lemma 1.14], M. Green works in the
general case of a smooth su‰ciently ample divisor of a smooth variety. Here on
the other hand, since we work in the more concrete case of a hypersurface in
a Grassmannian manifold, we can give a precise estimate on ‘‘how ample’’ the
hypersurface must be.

By the previous lemma we are reduced to study the surjectivity of

H 0ðX ;KX ððN � 2ÞaÞÞnH 0ðX ;KX Þ ! H 0ðX ;Kn2
X ðN � 2ÞaÞð4:8Þ

for a > l. To prove this we go back to the level of G:

Lemma 4.0.5. If a > l and

H 0ðG;KGððN � 1ÞaÞÞnH 0ðG;KGðaÞÞ ! H 0ðG;Kn2
G ðNaÞÞð4:9Þ

is surjective, then (4.8) is surjective.

Proof. From the exact sequence

0! OGð�aÞ ! OG ! OX ! 0ð4:10Þ

and the adjunction formula KX ¼ KGðaÞjX , we obtain the long exact sequence

H 0ðG;Kn2
G ðNaÞÞ ! H 0ðX ;Kn2

X ððN � 2ÞaÞÞ ! H 1ðG;Kn2
G ððN � 1ÞaÞÞ:ð4:11Þ

By the Kodaira vanishing theorem, H 1ðG;Kn2
G ðN � 1ÞaÞÞ ¼ 0, and by adjunc-

tion we have the following diagram

H 0ðG;KGððN � 1ÞaÞÞnH 0ðG;KGðaÞÞ H 0ðG;Kn2
G ðNÞaÞ???y
???y#

H 0ðX ;KX ððN � 2ÞaÞÞnH 0ðX ;KX Þ H 0ðX ;Kn2
X ðN � 2ÞaÞ:

ð4:12Þ �����!

����!
The thesis immediately follows. r

Proposition 4.0.6. If X � G is a smooth divisor ðs ¼ 0Þ in jaHj where ab l
then H 1ðX ;YX Þ is isomorphic to ROGðaÞ;s.

Proof. It easy to see using the restriction sequence 0! YGð�aÞ ! YG !
YGjX ! 0 and the cohomology vanishings given in [Sn, Theorem page 171] that
H 1ðX ;YGjX Þ ¼ 0. Hence by the normal exact sequence 0! YX ! YGjX !
OX ðaÞ ! 0, we have the identification

H 1ðX ;YX ÞGH 0ðX ;OX ðaÞÞ=ImH 0ðX ;YGjX Þ:ð4:13Þ

Call S the sheaf of di¤erential operators introduced in Section 3. The diagram
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0 ���! OG ���! S ���! YG ���! 0

s

???yeds
OGðaÞ

ð4:14Þ

 ���
���

restricted to X gives

0 ���! OX ���! SjX ���! YGjX ���! 0

0

???yedsjX
OX ðaÞ

ð4:15Þ

 ���
��

 ���
��

and we have that the image of H 0ðX ;YGjX Þ in H 0ðX ;OX ðaÞÞ is the same as the
image of H 0ðX ;SjX Þ. Hence

H 1ðX ;YX ÞGH 0ðX ;OX ðaÞÞ=ImH 0ðX ;SjX Þð4:16Þ

and it remains to prove that this is isomorphic to

ROGðaÞ;s ¼ H 0ðG;OGðaÞÞ=ImH 0ðG;SÞ:

To do this it is enough to check that the kernel of the composition

H 0ðG;OGðaÞÞ ! H 0ðX ;OX ðaÞÞ ! H 0ðX ;OX ðaÞÞ=ImH 0ðX ;SjX Þð4:17Þ

is exactly ImH 0ðG;SÞ. This easily follows by the fact that H 0ðG;SÞ surjects onto
H 0ðX ;SjX Þ. In fact by the exact sequence 0! OGð�aÞ ! Sð�aÞ ! YGð�aÞ ! 0
and again the vanishings of [Sn, Theorem page 171] we have that H 1ðG;Sð�aÞÞ
¼ 0, and we are done. r

Remark 4.0.7. Proposition 4.0.6 means that an infinitesimal deformation of X
of the form sþ eR ¼ 0 is trivial if and only if R is an element of the pseudo-
Jacobi ideal JL;s.

Now we show the infinitesimal Torelli theorem.

Theorem 4.0.8. The infinitesimal Torelli theorem holds for smooth hypersurfaces
X in jOGðaÞj if a > l.

Proof. By the previous lemma it is enough to show that

H 0ðG;KGððN � 1ÞaÞÞnH 0ðG;KGðaÞÞ ! H 0ðG;Kn2
G ðNaÞÞð4:18Þ

is surjective. This follows by the fact that the Grassmannian G is projectively
normal in its Plücker embedding in PM . This means that the restriction
H 0ðPM ;OðkÞÞ ! H 0ðG;OGðkÞÞ is surjective for kb 0. Hence the surjectivity of
(4.18) follows from the polynomial one at the level of the projective space. Note
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that the hypothesis a > l ensures that all the twists appearing in (4.18) are greater
than 0 since KG GOð�l � 1Þ. r

5. Infinitesimal Torelli and generalized adjoint

The aim of this section is to study the deformations of a smooth divisor X in
jOGðaÞj with a > l in a Grassmannian variety G using the theory of generalized
adjoint forms.

5.1. Twisted normal sequence

An extension class x a H 1ðX ;YX ÞGExt1ðW1
X ;OX Þ of X gives an exact se-

quence

0! OX ! W1
XjX ! W1

X ! 0:ð5:1Þ

The sheaf W1
X is the sheaf of holomorphic one-forms on the infinitesimal defor-

mation X of X naturally associated to x. By Proposition 4.0.6 we have that all
the deformations of X are inside the ambient space G, that is, they are given by
R a PðH 0ðG;OGðaÞÞÞ. In particular we have that x is in the image of the map
H 0ðG;OGðaÞÞ ! H 1ðX ;YX Þ coming from the normal exact sequence

0! YX ! YGjX ! OX ðaÞ ! 0

and the restriction sequence

0! OG ! OGðaÞ ! OX ðaÞ ! 0:

We can not apply the adjoint theory directly to (5.1) because the sheaf W1
X has

no global sections (see point (5) in the lemma below). Hence the idea is to twist
sequence (5.1) by a sheaf OX ðkÞ. In this way we obtain

0! OX ðkÞ ! W1
XjX ðkÞ ! W1

X ðkÞ ! 0ð5:2Þ

which is still associated to the same extension x a Ext1ðW1
X ;OX Þ via the isomor-

phism Ext1ðW1
X ðkÞ;OX ðkÞÞGExt1ðW1

X ;OX Þ: Furthermore if we choose k big
enough, we will have that h0ðX ;W1

X ðkÞÞbN, hence we will be able to apply the
theory of adjoint forms.

The following lemma proves that k ¼ 2 is enough for our purposes.

Lemma 5.1.1. It holds that:

(1) OGða� 2Þ is ample;
(2) the cohomology groups H iðG;OGð2ÞÞ vanish for ib 1;
(3) the groups H iðG;OGð2� aÞÞ and H iðG;OGð2� 2aÞÞ vanish for i < N;
(4) the groups H iðX ;OX ð2ÞÞ and H iðX ;OX ð2� aÞÞ vanish for 1a iaN � 2;

(5) H 0ðX ;W1
X ÞGH 0ðX ;W1

GjX ÞGH 0ðG;W1
GÞ ¼ 0;
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(6) H 0ðX ;W1
X ð2ÞÞGH 0ðX ;W1

GjX ð2ÞÞGH 0ðG;W1
Gð2ÞÞ;

(7) h0ðX ;W1
X ð2ÞÞbN;

(8) DW1
X ð2Þ ¼ 0 i.e. W1

X ð2Þ is generated by global sections.

Proof. Part (1) is obvious.
For (2) note that HiðG;OGð2ÞÞGHiðG;KGðl þ 3ÞÞ since KG ¼ OGð�l � 1Þ.

Hence the claim follows by the Kodaira vanishing. Point (3) also follows by the
Kodaira Vanishing theorem.

Part (4) follows by the exact sequence 0! OGð�aÞ ! OG ! OX ! 0 conven-
iently tensorized and by the vanishing in (2) and (3).

To prove (5) consider the conormal exact sequence 0! OX ð�aÞ ! W1
GjX !

W1
X ! 0. It gives the isomorphism H 0ðX ;W1

GjX ÞGH 0ðX ;W1
X Þ. Furthermore the

exact sequence 0! W1
Gð�aÞ ! W1

G ! W1
GjX ! 0 and the Nakano vanishing give

the isomorphism H 0ðX ;W1
GjX ÞGH 0ðX ;W1

GÞ. Finally it is well-known that
H 0ðX ;W1

GÞ ¼ 0.
We have that OGða� 2Þ is ample by (1), hence (6) follows in the same fashion

as (5).
The dimension of H 0ðG;W1

Gð2ÞÞ (which is equal to h0ðX ;W1
X ð2ÞÞ by the pre-

vious point) is explicitly calculated in [Sn, Theorem 3.3] and it is

3

l þ 2

l þ 2

sþ 2

� �
l þ 2

s� 1

� �
:

A simple computation shows that is is grater than N ¼ sðl þ 1� sÞ.
Finally (8) follows from (6) and the fact that W1

Gð2Þ is generated by global sec-
tions (see [Sn]). r

5.2. Infinitesimal deformations and rational forms

Consider the diagram

0x???
0 ���! OX ð2Þ ���! W1

XjX ð2Þ ���! W1
X ð2Þ ���! 0x???

W1
GjX ð2Þx???

OX ð2� aÞx???
0:

ð5:3Þ
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By the previous Lemma, H 1ðX ;OX ð2ÞÞ ¼ H 1ðX ;OX ð2� aÞÞ ¼ 0. Hence all the
global meromorphic 1-forms of W1

X ð2Þ can be lifted both to H 0ðX ;W1
XjX ð2ÞÞ and

H 0ðX ;W1
GjX ð2ÞÞ.

Diagram (5.3) can be completed as follows

0 0x???
x???

0 ���! OX ð2Þ ���! W1
XjX ð2Þ W1

X ð2Þ 0����
x???

x???
0 ���! OX ð2Þ G W1

GjX ð2Þ ���! 0x???
x???

OX ð2� aÞ OX ð2� aÞx???
x???

0 0:

ð5:4Þ

�����! ����!

�����! �������!

By hypothesis our deformation comes from H 0ðG;OGðaÞÞ, then the horizontal se-
quence completing diagram (5.4) is associated to the zero element ofH 1ðX ;YGjX Þ.
Therefore we have the splitting of the second row and a map f as follows

0 0x???
x???

0 ���! OX ð2Þ W1
XjX ð2Þ W1

X ð2Þ 0����
x??? f

x???
0 ���! OX ð2Þ ���! OX ð2ÞaW1

GjX ð2Þ ���! W1
GjX ð2Þ ���! 0x???
x???

OX ð2� aÞ OX ð2� aÞx???
x???

0 0:

ð5:5Þ

������! �������! ����!

�������
��!

Note that detðW1
GjX ð2ÞÞGWN�1

X ð�aþ 2NÞ and detðW1
XjX ð2ÞÞGWN�1

X ð2NÞ.

Proposition 5.2.1. The map

fn : H 0ðX ;WN�1
X ð�aþ 2NÞÞ ! H 0ðX ;WN�1

X ð2NÞÞ

is given by the section RjX a H 0ðX ;OX ðaÞÞ.
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Proof. This is a local computation. Take on G local coordinates x1; . . . ; xN�1; y
such that X is given by y ¼ 0. Then locally the deformation of X is given by
yþ tr ¼ 0, where r is a local equation of R. From dðyþ trÞ ¼ 0 we obtain on
X that dy ¼ �r dt. Hence if a section of H 0ðX ; detðW1

GjX ÞÞ is locally given by

c � dx1b� � �bdxN�1bdy, then its image in H 0ðX ; detðW1
XjX ÞÞ is �rc dx1b� � �b

dxN�1bdt. Tensoring by OX ð2NÞ gives our thesis. r

Now we construct totally decomposable twisted volume forms. Consider N

global sections h1; . . . ; hN a H 0ðX ;W1
X ð2ÞÞ which, by Lemma 5.1.1 part (7), have

unique liftings ~ss1; . . . ; ~ssN a H 0ðX ;W1
GjX ð2ÞÞ. Call ~WW a H 0ðX ;WN�1

X ð�aþ 2NÞÞ
the generalized adjoint form corresponding to ~ss1b� � �b~ssN . If we take s1 :¼
fð~ss1Þ; . . . ; sN :¼ fð~ssNÞ a H 0ðX ;W1

XjX ð2ÞÞ, we have that the generalized adjoint

W a H 0ðX ; detðW1
XjX ð2ÞÞÞ ¼ H 0ðX ;WN�1

X ð2NÞÞ

corresponding to s1b� � �bsN is W ¼ ~WW � R. We point out that ~WW does not depend
on the deformation x, while W obviously does.

Theorem 5.2.2. Assume that W ¼ 3h1 . . . ; hN4 is a generic subspace in
H 0ðX ;W1

X ð2ÞÞ with lNW A 0. Then R is in the pseudo-Jacobi ideal JOGð2Þ; s if

and only if the adjoint form W is in the image of H 0ðX ;OX ð2ÞÞn lNW !
H 0ðX ;WN�1

X ð2NÞÞ.

Proof. By Lemma 5.1.1 (8) it follows that W1
X ð2Þ is generated by its global sec-

tions and that DW1
X ð2Þ ¼ 0. By [PZ, Proposition 3.1.6] it follows that DW ¼ 0 since

W is generic. Hence Theorem 2.1.4 gives an equivalence. Thus if W a ImH 0ðX ;
OX ð2Þn lNW ! H 0ðX ;WN�1

X ð2NÞÞÞ, then x a kerðH 1ðX ;YX Þ ! H 1ðX ;YX n
OX ðDW ÞÞÞ, that is x ¼ 0 since DW ¼ 0. Conversely if R is in the pseudo-Jacobi
ideal, then the deformation x is zero. In particular x a kerðH 1ðX ;YX Þ ! H 1ðX ;
YX nOX ðDW ÞÞÞ and since DW ¼ 0 by the converse of Theorem 2.1.4 it follows
W a ImH 0ðX ;OX ð2Þn lNW ! H 0ðX ;WN�1

X ð2NÞÞÞ. r

5.3. The Generalized Macaulay’s theorem

We will prove a generalization of Macaulay’s theorem which makes explicit in
the Grassmannian case the results of [Green1, Theorem 2.15] and of [Green2,
Theorem page 47]. The proof follows closely the one of the classical Macaulay’s
theorem; see [Vo2, Theorem 6.19], we recall it here for the reader’s convenience.
A more general duality result can be found in [K, Theorem 6.3.2].

We start with the following lemma which depends on various results con-
tained in [Sn].

Lemma 5.3.1. Call S the sheaf of di¤erential operators introduced in Section 3.
The cohomology groups

H i
�
G;5

k

Sð�ðk � cÞaÞ
�

iA 0;N

vanish for ab l þ cþ 2; cb 0.
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Proof. Take the exact sequence

0! OG ! S! YG ! 0ð5:6Þ

and its wedge product

0! 5
k�1

YG !5
k

S!5
k

YG ! 0:ð5:7Þ

We proceed by steps.
Case k ¼ c. We have to prove that HiðG;5k

SÞ ¼ 0 for iA 0;N. Using

sequence (5.7) it is enough to prove that HiðG;5k�1
YGÞ ¼ HiðG;5k

YGÞ ¼ 0.
Note that HiðG;5k�1

YGÞGHiðG;WN�kþ1
G ðl þ 1ÞÞ and HiðG;5k

YGÞGHiðG;
WN�k

G ðl þ 1ÞÞ hence the claim follows by [Sn, Page 171].
Case k < c. By sequence (5.7) twisted by �ðk � cÞa, it is enough to prove

that

Hi
�
G; 5

k�1
YGð�ðk � cÞaÞ

�
¼ Hi

�
G;5

k

YGð�ðk � cÞaÞ
�
¼ 0:

We have the isomorphisms

Hi
�
G; 5

k�1
YGð�ðk � cÞaÞ

�
GHiðG;WN�kþ1

G ð�ðk � cÞaþ l þ 1ÞÞ

and

Hi
�
G;5

k

YGð�ðk � cÞaÞ
�
GHiðG;WN�k

G ð�ðk � cÞaþ l þ 1ÞÞ:

Since �ðk � cÞaþ l þ 1 > l we conclude again by [Sn, Page 171].
Case k > c. Working as it the previous cases we have to prove that

Hi
�
G; 5

k�1
YGð�ðk � cÞaÞ

�
¼ Hi

�
G;5

k

YGð�ðk � cÞaÞ
�
¼ 0:

By Serre duality we will work with the duals HN�iðG;Wk�1
G ððk � cÞa� l � 1ÞÞ

and HN�iðG;Wk
Gððk � cÞa� l � 1ÞÞ. If k � cb 2, it immediately follows that

ðk � cÞa� l � 1 > l and we conclude as in the previous cases. If k � c ¼ 1, the
vanishing of HN�iðG;Wk�1

G ða� l � 1ÞÞ and HN�iðG;Wk
Gða� l � 1ÞÞ follows

from [Sn, Theorem page 171 (4)] and the condition ab l þ cþ 2. r

Remark 5.3.2. Note that the condition ab l þ cþ 2 is really needed only for
k � c ¼ 1. In all the other cases a > l is enough.

Theorem 5.3.3 (Generalized Macaulay’s theorem for Grassmannians). Let G
and ðs ¼ 0Þ ¼ X a jaHj as above. Then
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(1) RK 2
G
ððNþ1ÞaÞ;sGC;

(2) the standard multiplication map

ROGðcaÞ;s nRK 2
G
ððNþ1�cÞaÞ;s ! RK 2

G
ððNþ1ÞaÞ;s GC:ð5:8Þ

is a perfect pairing provided that ab l þ cþ 2.

Proof. Using the section fdsds a H 0ðG;S4ðaÞÞ as in equation (3.2), we have the
Koszul complex:

0! 5
Nþ1

Sð�ðN þ 1ÞaÞ !5
N

Sð�NaÞ ! � � � ! Sð�aÞ ! OG ! 0:ð5:9Þ

We tensor (5.9) by OGðcaÞ:

0! 5
Nþ1

Sð�ðN þ 1� cÞaÞ !5
N

Sð�ðN � cÞaÞ ! � � �ð5:10Þ
! Sð�ð1� cÞaÞ ! OGðcaÞ ! 0:

Now look at the corresponding hypercohomology spectral sequence. The E
p;q
1

terms of this spectral sequence are

E
p;q
1 ¼ Hq

�
G; 5

Nþ1�p
Sð�ðN þ 1� p� cÞaÞ

�
:ð5:11Þ

By Lemma 5.3.1, E p;q
1 ¼ 0 for qA 0;N. Hence it is a spherical spectral sequence

with page E1 as follows:

Figure 1. The page E1 of the hypercohomology spectral sequence.
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Since the di¤erential is d1 : E
p;q
1 ! E

pþ1;q
1 , it follows that

E0;N
2 ¼ KerðE0;N

1 ! E1;N
1 Þð5:12Þ

¼ Ker
�
HN

�
G; 5

Nþ1
Sð�ðN þ 1� cÞaÞ

�

! HN
�
G;5

N

Sð�ðN � cÞaÞ
��

;

that is, using Serre duality and the isomorphism 5Nþ1
SG5N

Y

E
0;N
2 ¼ ðH 0ðG;K 2

GððN þ 1� cÞaÞÞ=ImH 0ðG;SnK 2
GððN � cÞaÞÞÞ4ð5:13Þ

¼ R4
K 2

G
ððNþ1�cÞaÞ;s:

Furthermore

E
Nþ1;0
2 ¼ E

Nþ1;0
1 =ImE

N;0
1 ¼ H 0ðG;OGðcaÞÞ=ImH 0ðG;Sð�ð1� cÞaÞÞð5:14Þ

¼ ROGðcaÞ;s:

The fact that the spectral sequence is spherical gives that E0;N
2 ¼ E

0;N
3 ¼ � � � ¼

E
0;N
Nþ1 and E

Nþ1;0
2 ¼ E

Nþ1;0
3 ¼ � � � ¼ E

Nþ1;0
Nþ1 . Moreover this spectral sequence

abuts to the hypercohomology of (5.10) which is zero because (5.10) is exact.

Hence dNþ1 is an isomorphism dNþ1 : E
0;N
Nþ1 ! E

Nþ1;0
Nþ1 , that is

ROGðcaÞ;sGR4
K 2

G
ððNþ1�cÞaÞ;s:ð5:15Þ

Choosing c ¼ 0 gives part (1) of our thesis. Furthermore since the multiplica-
tion with H 0ðG;K 2

GððN þ 1� cÞaÞÞ gives a map of the entire spectral sequence,
we deduce that (5.15) is compatible with the multiplication in the sense that given
n a H 0ðG;K 2

GððN þ 1� cÞaÞÞ we have a commutative diagram

ROGðcaÞ;s ðRK 2
G
ððNþ1�cÞaÞ;sÞ

4???yn

???yn4

RK 2
G
ððNþ1ÞaÞ;s ðROG;sÞ

4

ð5:16Þ �����!G

������!G

given by the n and its dual. It follows that the pairing induced by (5.15) is given
by multiplication. r

Remark 5.3.4. We can give a better lower bound for a in the Generalized
Macaulay’s theorem 5.3.3 assuming c ¼ 1. In this case we have to consider a
non-spherical spectral sequence. In order to do that, we leave apart only the clas-
sically well-known case where G is the standard projective space P l .

Theorem 5.3.5 (Macaulay’s theorem for Grassmannians). Let G ¼
Grassðs; l þ 1Þ with sA 1 and X as above. Then
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(1) RK 2
G
ððNþ1ÞaÞ;sGC

(2) the multiplication map

ROGðaÞ;s nRK 2
G
ðNaÞ;s ! RK 2

G
ððNþ1ÞaÞ;sGC:ð5:17Þ

is a perfect pairing provided that a > l.

Proof. If ab l þ cþ 2 ¼ l þ 3, we can apply Theorem 5.3.3. Hence we will as-
sume l < a < l þ 3. The E1 terms of the hypercohomology spectral sequence are

E
p;q
1 ¼ Hq

�
G; 5

Nþ1�p
Sð�ðN � pÞaÞ

�
:

Note that the hypothesis ab l þ 3 of Lemma 5.3.1 is really needed only in
the case of k � c ¼ 1, that is N � p ¼ 1, hence E

p;q
1 ¼ 0 for qA 0;N and pA

N � 1. The E1 page is then

To make sure that E
0;N
2 ¼ E

0;N
3 ¼ � � � ¼ E

0;N
Nþ1 and E

Nþ1;0
2 ¼ E

Nþ1;0
3 ¼ � � � ¼

E
Nþ1;0
Nþ1 as in the proof of Theorem 5.3.3, it is enough to prove that EN�1;1

1 ¼
EN�1;2
1 ¼ 0. Now we have that EN�1;1

1 ¼ H 1ðG;52
Sð�aÞÞ and EN�1;2

1 ¼
H 2ðG;52

Sð�aÞÞ. Using the exact sequence

0! Yð�aÞ !5
2

Sð�aÞ !5
2

Yð�aÞ ! 0

it is enough to show the vanishing of H 1ðG;Yð�aÞÞ, H 2ðG;Yð�aÞÞ,
H 1ðG;52

Yð�aÞÞ and H 2ðG;52
Yð�aÞÞ.

If a ¼ l þ 1, then OGð�aÞ ¼ KG and these vanishing are classically known.
If a ¼ l þ 2, we take the Serre dual and obtain HN�1ðG;W1ð1ÞÞ,

HN�2ðG;W1ð1ÞÞ, HN�1ðG;W2ð1ÞÞ and HN�2ðG;W2ð1ÞÞ. The vanishing of these
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groups come from [Sn, Theorem page 171 part (1)] using the fact that under our
hypotheses Nb 4 and s� 1 > 0.

Hence dNþ1 : E
0;N
2 ! ENþ1;0

2 gives an isomorphism and the proof proceeds
like in Theorem 5.3.3. r

5.4. Twisted one forms and twisted decomposable volume forms

Twisted forms on Grassmannian varieties provide a natural setting to apply the
Generalized Adjoint Theory. Indeed by [BW], H 0ðG; detðW1

GðmÞÞÞ is an irreduc-
ible representation and since, for every mb 2, W1ðmÞ is globally generated, we
have easily that any element of H 0ðG; detðW1

GðmÞÞÞ is actually obtainable as a
C-linear combination of totally decomposable forms. More precisely we have, in
the case m ¼ 2:

Proposition 5.4.1. The natural map induced by the wedge product

5
N

H 0ðX ;W1
GjX ð2ÞÞ ! H 0ðX ; detðW1

GjX ð2ÞÞÞð5:18Þ

is surjective.

Proof. By Borel–Weil theorem, see also cf: [Bo, Proposition 10.2], we know
that H 0ðG; detðW1

Gð2ÞÞÞ is an irreducible representation. By Lemma 5.1.1 (8) we
have that W1

Gð2Þ is globally generated by its global sections. Now the natural
homomorphism

5
N

H 0ðG;W1
Gð2ÞÞ ! H 0ðG; detðW1

Gð2ÞÞÞð5:19Þ

is surjective by Schur’s Lemma. By Lemma 5.1.1 we know that

H 0ðG;W1
Gð2ÞÞGH 0ðX ;W1

GjX ð2ÞÞ:

Hence the claim follows if we show that

H 0ðG; detðW1
Gð2ÞÞÞ ! H 0ðX ; detðW1

GjX ð2ÞÞÞ

is surjective. Indeed this follows by the exact sequence

0! WN
G ð2N � aÞ ! WN

G ð2NÞ ! WN
G ð2NÞjX ! 0ð5:20Þ

and the Kodaira vanishing applied to H 1ðG;WN
G ð2N � aÞÞ. r

5.5. Volume forms and the infinitesimal Torelli theorem

We link the global forms of WN
G ð2NÞ, which are objects coming from the ambient

variety G, to the infinitesimal deformations of X � G contained in pseudo-Jacobi
ideal JOGðXÞ;s.
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Lemma 5.5.1. Let G ¼ Grassðs; l þ 1Þ with sA 1 and X as above. Then the infin-

itesimal deformation R is in the pseudo-Jacobi ideal JOGðXÞ;s if and only if R~WW a
JWN

G ð2NþaÞ;s for every global section ~WW of H 0ðG;WN
G ð2NÞÞ which restricts to a gen-

eralized adjoint relative to the vertical exact sequence of diagram (5.3).

Proof. Note that a generalized Massey product of the vertical sequence of dia-
gram (5.3) is in fact an element of

H 0ðX ; ðWN
G ð2NÞÞjX Þ ¼ H 0ðX ;WN�1

X ð2N � aÞÞ:

We want to apply the generalized version of Macaulay’s theorem 5.3.5. We only

know that R~WW a JWN
G ð2NþaÞ;s

for ~WW a H 0ðG;WN
G ð2NÞÞ which restricts to a gener-

alized adjoint. So now we prove that this is enough to have that

R �H 0ðG;WN
G ð2NÞÞ � JWN

G ð2NþaÞ;s
:

Consider the restriction sequence

0! WN
G ð2N � aÞ ! WN

G ð2NÞ ! WN
G ð2NÞjX ! 0:

As we have seen in the proof of Proposition 5.4.1,

0! H 0ðG;WN
G ð2N � aÞÞ ! H 0ðG;WN

G ð2NÞÞ ! H 0ðX ;WN
G ð2NÞjX Þ ! 0

is exact. By Proposition 5.4.1 we can also assume that all the global sections of
H 0ðX ;WN

G ð2NÞjX Þ are in fact linear combinations of generalized adjoints. Hence
our hypothesis that R~WW a JWN

G ð2N�aÞ;s for every section ~WW a H 0ðG;WN
G ð2NÞÞ

which restricts to a generalized adjoint in H 0ðX ;WN
G ð2NÞjX Þ, together with the

fact that the map

H 0ðG;WN
G ð2N � aÞÞ ! H 0ðG;WN

G ð2NÞÞÞ

is given by the multiplication by s, which is an element of the pseudo-Jacobi ideal,
implies that

R �H 0ðG;WN
G ð2NÞÞ � JWN

G ð2NþaÞ;s
:

Now we apply Macaulay’s theorem 5.3.5 to deduce that R is in the pseudo-
Jacobi ideal. It is enough to show that

RWN
G ðNa�2NÞ;snRWN

G ð2NÞ;s ! RðW2N
G ÞðNaÞ;s

is surjective. This follows from the surjectivity at the level of the H 0:

H 0ðG;WN
G ðNa� 2NÞÞnH 0ðG;WN

G ð2NÞÞ ! H 0ðG; ðW2N
G ÞðNaÞÞ

which holds by projective normality. r
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5.6. Proof of the Main Theorem

In this proof we denote as always by x a H 1ðX ;YX Þ the infinitesimal deforma-
tion and by ½R� a ROGðaÞ;s the corresponding element given by Proposition 4.0.6.
We will use also Remark 2.1.5.

i), ii). If dPðxÞ ¼ 0 then, by Theorem 4.0.6, x ¼ 0. By Proposition 4.0.6
this means ½R� ¼ 0, that is R a JOGðaÞ;s. The converse is trivial by Proposition
4.0.6.

ii), iii) This is Theorem 5.2.2.
ii), iv) This is the content of Lemma 5.5.1.
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