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critical point. As a consequence, we obtain strict concavity results for suitable transformations of
these solutions.

Keywords. – Quasilinear problems, convexity of solutions, maximum principles.

2020 Mathematics Subject Classification. – Primary 35J92; Secondary 35B50, 26B25.

1. Introduction

1.1. Overview

The goal of the present paper is to prove uniqueness of the critical point for solutions
of the quasi-linear problem

(1.1)

8̂̂<̂
:̂
��pu D f .u/ in �;
u > 0 in �;
u D 0 on @�;

where p > 1, � � R2 is a bounded and convex open set, and f is a suitable reaction,
ensuring that u is actually quasi-concave, meaning that its super-level sets are convex.

In order to fix ideas and present the problem, let us suppose for the moment that
f � 1, so that we are actually looking at the so-called p-torsion function, and � is
smooth and strongly convex, but without any symmetry (otherwise other approaches
based on [11] are fruitful).

For p D 2 and in the plane, the quasi-concavity of the torsion function u goes back
to Makar-Limanov [26], after which many other reactions f have been considered in
[2, 6, 11, 19–22]. The uniqueness of the critical point for the torsion function of convex
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domains was first proved via complex functions methods in [16] and then reproved in
[15, 26]; in [1] the result is obtained via an estimate on the curvature of the level sets.
A more fruitful approach was developed by Caffarelli and Friedman in [10], where
they proved that the Hessian of

p
u is of constant (and thus, full) rank in �. All the

previous results have been obtained in the plane.
Caffarelli and Friedman’s approach, which is nowadays called constant rank theorem

or microscopic convexity principle, has then been generalised to arbitrary dimensions
in [3,24]. It leads to the uniqueness of the critical point for solutions u of quite general
elliptic nonlinear problems of the type

(1.2)

8<:G.D2u;Du; u/ D 0 in �;

u D 0 on @�

for a strongly convex � � RN , via the following route.

(1) Under suitable convexity-type assumptions on G (see e.g. [2]), there exists an
increasing ' such that v D ' ı u satisfies a structurally similar elliptic equation
and is concave. The critical points for v and u coincide, and are therefore their
maximum points.

(2) By the constant rank principle of [3] (which applies to concave solutions of (1.2)),
the Hessian of v has constant rank; the boundary behaviour and the strong convexity
of � force D2v to have full rank near @�, thus everywhere. It follows that v is
strictly concave and has a unique maximum point, and so does u.

As a byproduct of this argument, it turns out that the positive super-level sets of u are
strictly convex and that its maximum point is non-degenerate.

This line of proof unfortunately fails for problem (1.1), even in the model case
f � 1 and in the plane. The first step still goes through since, for the solution u of
the p-torsion problem, the function u1�1=p is known to be concave by [27]. Step two,
however, is problematic. The constant rank theorem requires ellipticity of F , which
lacks for (1.1) precisely at the maximum points of u1�1=p . With the available theory,
therefore, the best one can prove is that u1�1=p is strictly convex outside its maximum
points, which says nothing about their number.

Notice that the issue is not a merely technical one. In the unit ball, the p-torsion
function is of the form u.x/ D c.1 � jxjp=.p�1//, which is not twice differentiable at
the origin if p > 2. More substantially, for p < 2, u is actually C 2 and v D u1�1=p is
concave, butD2v.0/ D 0 whileD2v has full rank elsewhere, so that the constant rank
principle is actually false.

Let us finally mention that the p-torsion function of a convex domain� � RN has
strictly convex super-level sets thanks to [23], but only for levels strictly between 0
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and the maximum of u, and this again says nothing about the uniqueness of its critical
point.

1.2. Main result

Our approach is in some sense opposite to the one described above. We first prove
that the maximum point for solutions u of (1.1) is unique, and then derive the strict
concavity of suitable transformations v D ' ı u for an increasing ' depending on the
reaction f . Our main result, for convex bounded domains in the plane, is the following.

Theorem 1.1. Let f 2 Liploc.RC;RC/ be such that t 7! f .t/=tp�1 is non-increasing
on .0;C1/. If u 2 C 1.�/ is a quasi-concave solution of (1.1) in a convex bounded
� � R2, then Argmax.u/ is a single point.

Remark 1.2. Let us make some comments on the assumptions.
• Notice that we are assuming f .t/ > 0 for t > 0, which ensures that the set of

maximum points has zero measure, thanks to [25]. This condition will be assumed
in all the manuscript.

• The Lipschitz regularity of f is needed to apply some strong comparison principle
away from the critical set, proved in [12].

• The assumed monotonicity of t 7! f .t/=tp�1 ensures the validity of a local weak
comparison principle for positive solutions of (1.1); see Lemma 2.1.

• The convex body � can have flat parts and corners, i.e., no strict convexity or
regularity (beyond the natural Lipschitz one) is assumed.

A first application of the previous theorem is the following.

Corollary 1.3. Let u 2 W 1;p
0 .�/ solve (1.1) in a bounded convex domain � � R2

with C 2 boundary, where f 2 C 0.Œ0;C1/; Œ0;C1// \ C 1;˛loc .RC;RC/ for some
0 < ˛ < 1 satisfies the following:

(1) t 7! f .t/=tp�1 is non-increasing on RC,

(2) t 7! e.p�1/t=f .et / is convex on R.

Then logu is strictly concave in �.

Remark 1.4. • The two required conditions on f ensures that logu is concave by
the results of [5], allowing to apply Theorem 1.1 and deduce strict concavity via
additional arguments outlined below and based on the constant rank principle.

• It is worth underlining that no strict convexity assumed on �, hence the super-level
sets of u turn out to be strictly convex, even if @� has flat parts.
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• The regularity of @� is required only to ensure that (1.1) has a unique solution under
assumption (1). Indeed, if this uniqueness property holds true, the approximation
argument in [5, Section 4.1] runs through and all the results contained therein follow.
Uniqueness easily holds for the p-torsion function in any domain, thus the previous
corollary holds true in any bounded convex � � R2. For example, the p-torsion
function of a square has strictly convex positive super-level sets. More generally, in
[9, Theorem 4.1], uniqueness for problem (1.1) in any domain has been proved for
f .t/ D c tq�1 with c > 0 and 1 � q < p, ensuring that for this class of reactions
the previous and next corollary hold true without any further assumption on �
beyond convexity and boundedness.

In a similar manner, one can proceed studying strict concavity of more general
function v arising as composition of u via suitable transformations. In particular, given
a reaction f in (1.1), we define

F.t/ D

Z t

0

f .�/ d�

and

(1.3) '.t/ D

Z t

1

1

F 1=p.�/
d�:

In [5], we studied the concavity of '.u/ when u solves (1.1) and the results proved
there, together with Theorem 1.1, provide the following.

Corollary 1.5. Let u 2 W 1;p
0 .�/ solve (1.1) in a bounded convex domain � � R2

with C 2 boundary, where f 2 C 0.Œ0;C1/; Œ0;C1// \ C 1;˛loc .RC;RC/ for some
0 < ˛ < 1 satisfies the following:

(1) F 1=p is concave,

(2) F=f is convex.

Then '.u/ is strictly concave in �, where ' is defined in (1.3).

For a discussion on the relations between the two sets of assumption in the previous
corollaries, we refer to [5], where also some examples of nonlinearities fulfilling them
are given. Remark 1.4 holds for this last statement as well.

1.3. Sketch of proof

The proof of Theorem 1.1 relies on Aleksandrov’s reflection method. The set Argmax.u/
is a closed convex set with empty interior since f is strictly positive, therefore we must
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exclude that it is a segment. Arguing by contradiction, we suppose that Argmax.u/ is
a segment and consider the super-level sets

K" D
®
u > max

�
u � "

¯
:

Our aim is to find a straight cut of one of the K"’s such that one of the resulting parts
of K" (called caps in the following)

(a) can be reflected around the cut, staying in K",

(b) intersects Argmax.u/ in a segment of positive length.

As long as these two properties are met, the contradiction is found via the strong
comparison principle applied to u and its reflection around the cut. The idea to find
caps obeying (a) above is by now classical and permits the localisation of various
important points related to semilinear problems, (see [8] and the literature therein ). It
is the simultaneous requirement of (a) and (b) above that is quite tricky to be fulfilled.

Let’s agree to call the caps fulfilling (a) above foldable, with their width being the
maximum distance of the cap from the cut. Cutting out from a convex set all its foldable
caps, one obtains the so-called heart of the convex (see [7] for some of its properties).

Back to the proof of (a) and (b), we first observe that, since K" ! Argmax.u/
in Hausdorff distance, (b) is fulfilled as long as K" has a foldable cap having width
uniformly bounded from below by a positive constant, as " # 0. Since K" converges to
a segment, whose heart is its midpoint, it is reasonable to expect that the heart of K",
as " # 0, will be small compared to its diameter, ensuring the existence of foldable
cap of large width for sufficiently small ". Unfortunately, the heart operator is far from
being continuous and this argument fails. However, in two dimensions, any convex
set possesses cuts on which the convex set projects itself. We use one of these cuts to
construct a foldable cap of K" with width comparable to 1=4 of K"’s diameter (see
Lemma 2.3 for a precise statement). This provides us with the cap obeying (a) and (b)
above, for small ".

Then, we face an additional difficulty. The strong comparison principle (needed to
apply Aleksandrov reflection method) for the p-Laplacian operator is a delicate matter
when the two involved functions have vanishing gradients at the contact points. Indeed,
at those points the equation loses ellipticity and the proof of the strong comparison
principle relies on quite involved techniques. At present, see [13], it is known to hold
for the p-Laplacian in R2 (under additional conditions met in our framework) only
for p > 3=2. To deal with the full range p > 1, we rely of somewhat softer methods,
namely

(c) the weak comparison principle, ensuring that u is less than or equal to its reflection
around the cut;
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(d) the strong comparison principle of [12], under the assumption that the contact
point between the compared functions is not critical for both.

The weak comparison principle will do the trick as long as the cut obtained above is
not orthogonal to Argmax.u/, since in this case u and its reflection attain the same
maximum on different points. Unfortunately, it can actually happen that all foldable
caps of K" intersecting Argmax.u/ arise from cuts orthogonal to the latter. But, if this
happens for all K", the solution turns out be one dimensional locally near the cut. In
this case, u and its reflection coincide on an open set and (d) above allows to conclude.

Let us make one final remark regarding the limits of our proof of Theorem 1.1.
Regardless of the issues related to the strong comparison principle, the main point
where the two dimensions play a rôle is in finding the cap obeying (a) and (b) above.
In the appendix of this manuscript, we will construct a sequence of tetrahedra in R3

converging in the Hausdorff sense to a segment, such that all their foldable caps are
disjoint from the limit segment; see Example A.3. Therefore, different arguments are
likely needed to deal with the corresponding higher dimensional result.

The proof of the corollaries follows as already mentioned in the first point of
Remark 1.4 when the domain� is strongly convex. A more refined argument is needed
to treat general convex domains and we also want to avoid any argument relying on the
regularity of @�. In this way, whenever uniqueness for problem (1.1) holds true, the
statements of the corollaries still stand, as noted in the last point in Remark 1.4.

By the results in [5], a suitable transformation v D ' ı u (with ' increasing) is
concave, thus u is quasi-concave and Theorem 1.1 applies, giving uniqueness of the
critical point xmax 2 �. The constant rank principle applies in � n ¹xmaxº, where the
equation is smooth and elliptic, ensuring that D2v has constant rank there. If @� is
smooth and strongly convex, one readily concludes, since v has full rank near @�
thanks to [22, Lemma 2.4]. In the general case (which covers arbitrary convex bodies),
we proceed by contradiction, assuming that detD2v � 0 in� n ¹xmaxº. This means that
the graph of v is developable there and, by a classical result of Hartman and Nirenberg
[17], any point in � n ¹xmaxº has a segment going through it on which Dv is constant.
In particular, points of arbitrary small gradient can be joined to @� through such a
segment, leading to a contradiction since @� and xmax are at most diam.�/ distance
apart. It follows that D2v is of full rank everywhere in � n ¹xmaxº, implying strict
concavity by elementary means.

1.4. Outline of the paper

In Section 2, we collect some preliminary results, stating two comparison principles
for solutions to (1.1) and proving some results about convex sets in the plane. In
Section 3, we prove Theorem 1.1 and Corollary 1.5, while we omit the proof of
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Corollary 1.3 since it follows along the same lines. We conclude with the appendix where,
as already mentioned, we construct a counterexample showing that the applicability of
the previously discussed method is limited to the two-dimensional case.

Notations: In the following, K will always denote a bounded closed convex subset of
RN and ! 2 SN�1 a unit vector in RN . By �C we denote the cone of positive definite
2 � 2 matrices. By hx; yi we denote the scalar product of the vectors x; y 2 RN . The
symbol Œx; y� stands for the convex envelope of ¹x; yº, i.e., the segment having x and
y as extrema. We will write Œx; y� k ! if the line through x and y has direction !. If
v D .v1; v2/ is a vector in the plane, v? will denote any of the vectors .v2;�v1/ or
.�v2; v1/ orthogonal to v and having same length.

2. Preliminaries

2.1. Comparison principles

The following comparison principle is essentially contained in [14]. If both compared
functions are positive on x� (which suffices for our purposes), its proof is particularly
simple and we provide it for completeness.

Lemma 2.1. Let f 2 C 0.RC/ and suppose that u1; u2 2 C 1.�/\C 0.x�/ are positive
in x� and solve (1.1) in � such that u1 � u2 > 0 on @�. If t 7! f .t/=tp�1 is non-
increasing on RC, then u1 � u2 in �.

Proof. Suppose by contradiction that there exists a nonempty connected component
�0 of ¹x 2 � W u2.x/ > u1.x/º. By the continuity of the ui in x� and the assumption
u1 � u2 on @�, it holds that u1 D u2 on @�0.

Recall that the Picone inequality

(2.1) jrvjp�2rv � r
wp

vp�1
� jrwjp;

valid for any positive v;w 2 C 1, becomes an equality in a connected set if and only if
v D kw, with k > 0. Using (2.1) for v D ui and w D uj for i ¤ j , we get

(2.2) jrui j
p�2
rui � r

u
p
j

u
p�1
i

� jruj j
p
D jruj j

p�2
ruj � r

u
p
j

u
p�1
j

:

We sum the previous two inequalities and rearrange to get

(2.3) jru1j
p�2
ru1 � r

'

u
p�1
1

� jru2j
p�2
ru2 � r

'

u
p�1
2

;
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where ' D .up2 � u
p
1 /C. We integrate over �0 and notice that '=up�1i 2 W

1;p
0 .�0/,

thanks to the positivity and regularity of the ui ’s. Using equation (1.1), we getZ
�0

f .u1/

u
p�1
1

�
u
p
2 � u

p
1

�
dx D

Z
�0

jru1j
p�2
ru1 � r

'

u
p�1
1

dx

�

Z
�0

jru2j
p�2
ru2 � r

'

u
p�1
2

dx

D

Z
�0

f .u2/

u
p�1
2

�
u
p
2 � u

p
1

�
dx

so that

(2.4)
Z
�0

�
f .u1/

u
p�1
1

�
f .u2/

u
p�1
2

��
u
p
2 � u

p
1

�
dx � 0:

The monotonicity assumption on f ensures that the integrand is non-negative, hence it
vanishes identically in �0. It follows that none of the inequalities in (2.2) can be strict
on an open subset of �0, for otherwise the inequality in (2.3) would be strict there
and the left-hand side of (2.4) would be negative. Thus equality is attained in (2.2),
forcing u2 D ku1 in�0. Since u2 > u1 > 0 in�0, we have k > 1, and since the ui are
positive in x�, it follows that u2 > u1 on @�0. This contradiction implies that�0 D ;,
proving the claim.

The following strong comparison principle is taken from [12, Theorem 1.4 and
Remark 1.4].

Proposition 2.2. Suppose that u1; u2 2 C 1.�/ solve (1.1) with f being Lipschitz on
the image of u1 and u2. Suppose that u1 � u2 in � and u1.x0/ D u2.x0/ for some
x0 2 � nZ, where

Z D
®
x 2 � W ru1.x/ D ru2.x/ D 0

¯
:

Then u1 D u2 in the connected component of � nZ containing x0.

2.2. Convex geometry

Given a convex K � RN , its support function HK W SN�1 ! R is

HK.!/ D sup
®
hx; !i W x 2K

¯
:

If K is bounded, HK turns out to be continuous. The breadth BK W SN�1! R of K

is (see Figure 1 for a visual representation of the breadth and related quantities)

BK.!/ D HK.!/CHK.�!/I
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��;!

K

!

FK.!/

BK.!/

K�;!T�;!.K�;!/

Figure 1. Some quantities defined for a convex set.

i.e., it is the minimal distance between two parallel supporting hyperplanes of K

having normal vector !. For any ! 2 SN�1, both K 7! HK.!/ and K 7! BK.!/

are continuous with respect to Hausdorff convergence in the class of convex subsets of
a bounded set. The width of K is its minimal breadth; i.e.,

width.K/ D inf
®
BK.!/ W ! 2 SN�1

¯
:

A section of K is its intersection with a hyperplane; a shadow of K in direction ! is
the image of K under an orthogonal projection on a hyperplane having normal vector
! 2 SN�1. Given a hyperplane with equation

��;! D
®
x 2 RN W hx; !i D �

¯
;

we denote by T�;! the reflection on ��;! , i.e.,

(2.5) T�;!.x/ D x � 2!
�
h!; xi � �

�
;

and we define the corresponding cap of K as

K�;! D
®
x 2K W hx; !i � �

¯
;

i.e., K�;! is the part of K above ��;! (in the direction !). The maximal folding cap
of K in direction ! is defined as

K! D

[®
K�;! W T�;!.K�;!/ �K

¯
:
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Finally, the maximal folding height FK W SN�1 ! Œ0;C1/ of K is

FK.!/ D BK!
.!/:

By [7, Lemma 2.1] and the representation

FK.!/ D HK.!/ �min
®
� 2 R W T�;!.K�;!/ �K

¯
;

the maximal folding height is upper semicontinuous.

Lemma 2.3. Let K � RN be convex and such that ��;! \K is a shadow of K . Then

(2.6) max
®
FK.!/;FK.�!/

¯
�
1

4
BK.!/:

In particular, if

(2.7) � �
HK.!/ �HK.�!/

2
;

then

T�;!.K�;!/ �K for � WD HK.!/ �
1

4
BK.!/ � �C

1

4
BK.!/:

Proof. Let…�;! be the orthogonal projection onto ��;! , so that…�;!.K/D ��;! \

K . It must hold that
HK.!/ � � � �HK.�!/

and we define
�1 D

HK.!/C �

2
; �2 D

HK.�!/ � �

2
:

For the caps K�1;! and K��2;�! , we claim that

(2.8) T�1;!.K�1;!/ �K; T��2;�!.K��2;�!/ �K:

By convexity, given any point x 2K , the segment Œx;…�;!.x/� is contained in K . If
x 2K�1;! , by (2.5)˝

!; T�1;!.x/
˛
D 2�1 � h!; xi � 2�1 �HK.!/ D �;

and we infer that T�1;!.x/ lies on the segment Œx;…�;!.x/� and, a fortiori, in K . A
symmetric argument shows that for any x 2K��2;�! , the point T��2;�!.x/ lies on
the segment Œx;…�;!.x/�, thus proving (2.8). It is readily checked that

BK�1;!
.!/ D

HK.!/ � �

2
; BK��2;�!

.!/ D
HK.�!/C �

2
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!

Figure 2. A convex domain K � R2 for which (2.6) is sharp.

so that

max
®
FK.!/;FK.�!/

¯
� max

®
BK�1;!

.!/;BK��2;�!
.!/

¯
D
1

2
max

®
HK.!/ � �;HK.�!/C �

¯
�

HK.!/CHK.�!/

4

as claimed. The second assertion follows from (2.8) and the fact that, under assump-
tion (2.7), it holds that

�1 � HK.!/ �
HK.!/CHK.�!/

4
D HK.!/ �

1

4
BK.!/:

The factor 1=4 in (2.6) is optimal, as one can check considering a parallelogram
constructed joining a pair of congruent right isoscele triangles through a short side;
see Figure 2.

Lemma 2.4. Any convex body K � R2 has a section which is a shadow in direction
!?, where ! is a direction of minimal breadth.

Proof. This follows from a well-known characterisation of the width of a convex body
in RN . By [4, Section 33], it holds that

width.K/ D min
!2SN�1

max
®
jx1 � x2j W x1; x2 2K; Œx1; x2� k !

¯
:

and the right-hand side is attained at some N! and x1; x2 2 @K such that there are
two parallel supporting hyperplanes of K through x1 and x2. If ! is the normal to
these hyperplanes such that h!; x1 � x2i � 0, it holds that by construction BK.!/ D

h!; x1 � x2i and, by Schwartz inequality and the definition of width,

width.K/ � BK.!/ � jx1 � x2j D width.K/:

Therefore, h!; x1 � x2i D jx1 � x2j, implying that ! and x1 � x2 are proportional
and thus, being Œx1 � x2� k N!, that ! D ˙ N!. In particular, N! is a direction of minimal
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breadth and K lies between two hyperplanes orthogonal to Œx1; x2� � K , passing
through x1 and x2. In two dimensions, this is equivalent to say that the section Œx1; x2�
is a shadow in direction N!?.

As already pointed out, the maximal folding height is only upper semicontinuous.
The failure of continuity is due to flat parts of the boundary of K , but the maximal
folding height is too much nonlocal to determine where the flat parts are located when
lower semicontinuity fails. A way to localise the maximal folding height is to consider
the function ! 7! FK N�; N!

.!/ for suitable fixed caps K N�; N! of K and study its behaviour
as ! ! N!. Notice that FK. N!/ � FK N�; N!

. N!/ for any N� 2 R, N! 2 S1.

Lemma 2.5. Let K � R2 be a convex body and let � N�; N! \K be a shadow of K . If

(2.9) lim inf
!! N!

FK N�; N!
.!/ < FK N�; N!

. N!/;

then

K \

²
x 2 R2 W N� � hx; N!i �

N�CHK. N!/

2

³
is a rectangle with sides parallel to N! and N!?.

Proof. We will use the standard Euclidean geometry notation and the slope of a
segment or a line is henceforth defined by measuring the angle formed by the latter with
respect to horizontal lines in a fixed orthogonal coordinate system. We can suppose
that K DK N�; N! and, after a rotation and translation, that N! D .1; 0/ and N� D 0, so that
K is contained in a minimal rectangle ABCD with sides parallel to the coordinate
axes, with the segment AB being a shadow of K . In other terms,

AB �K � ABCD;

where, here and henceforth, by a sequence of points we understand their convex envelope.
Let M be the midpoint of BC and N the midpoint of AD, so that we have to prove
that K \ABMN D ABMN . By convexity, it suffices to prove thatM and N belong
to K . Let PQ DK \MN , with P nearest to N andQ nearest toM and assume, by
contradiction and without loss of generality, thatQ ¤M . Let r be a support line for K

atQ. Since ABCD is the smallest rectangle containing K and K is closed, K \ CD

is not empty. We deduce by convexity that r has positive slope (since it cannot intersect
AB), and must intersect CD at a point E ¤ C . Pick the horizontal line through P and
let F , G be its intersections with AB and CD, respectively. The slope of a support
line for K at P must be non-positive, so that we deduce (see Figure 3)

(2.10) K \MNDC � PQEG:
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A

B C

D

M

N

Q

E

P
GF

Figure 3. The minimal rectangle ABCD containing K .

Moreover, the segments BQ and PF lie in K by convexity, hence

(2.11) PQBF �K:

Let C be the circle of center P and radius jPEj and consider the arc @C \ PQBF :
it is non-empty since, being P the midpoint of FG, one of its extrema is the symmetric
of E under a reflection over the line through P and Q. Let R be such a point. The
arc @C \ PQBF has positive length, otherwise @C would be externally tangent to
PQBF , forcing R D B , thus C D E and finallyQ DM , contrary to the assumption.
Hence @C \ PQBF D R̂S for some point S ¤ R.

We have jPEj � jPGj sincePGE is right inG and from jPGj D jPF j, we deduce
thatPF n ¹Rº is interior to C . In particular,S …PF . SinceR 2BF , the pointS cannot
belong toBF either, thus S 2 BQ [PQ. If S 2 BQ, since slope.QE/ � slope.BQ/,
it holds that

(2.12) slope.SE/ � slope.QE/:

The same is trivially verified if S 2 PQ, so the previous display always holds.
The axis of SE goes through P , forming an angle ˛0 with PQ. Notice that S ¤ R

implies that ˛0 > 0. Let s be a line through P and a point Hs 2 QE such that

(2.13) 0 < Q yPHs < ˛0

and let Ts be the reflection around s.
If x is a point of K on the right of s, let s?x be the perpendicular to s passing

through x. Thus s?x intersects the convex polygon

P D FGEQB
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Ts.G/

B C
Q

E

P GF

S

R

s

Ts.E/

Hs

Figure 4. Construction of the reflected polygon around s.

in two points. From (2.13) and (2.12), we infer that

0 < slope.s?x / < slope.SE/ � slope.QE/;

hence the leftmost intersection of s?x with P , denoted by xs , belongs to FB [ BQ,
which is contained in K by (2.11). Therefore, Œx; xs� is contained in K .

We claim (refer to Figure 4 for the following constructions) that

(2.14) Ts.PGEHs/ � P :

To prove it, recall that P;Hs 2 P so that it suffices by convexity to check that Ts.E/
and Ts.G/ belong to P . This is clear for Ts.E/ since, asQ yPHs varies between 0 and
˛0, Ts.E/ runs over the arc R̂S � P . On the other hand, Ts.G/ lies below the line
through FG and to the left of s by construction. Moreover, it lies on the circle with
center P and radius jPGj, which is tangent to AB in F , therefore it lies on the right of
the line through FB . Finally, Ts.G/G is parallel to Ts.E/E and thus Ts.G/ lies above
the line through Ts.E/E. It follows that Ts.G/ 2 P , concluding the proof of (2.14).

We can now show that the reflection Ts around s of the cap Ks of K on the right
of s lies in K . Indeed, (2.10) implies that Ks � PGEHs and, given x 2Ks , (2.14)
forces Ts.x/ to belong to Œx; xs� �K . In particular, if !s 2 SN�1 is the normal to s
in the positive x-direction,

(2.15) FK.!s/ � dist.s \ ABCD;CD/

since CD contains at least a point of K . On the other hand, FK. N!/ D jABj=2 and it
is readily verified that, as s converges to the line through PQ, the right-hand side of
(2.15) converges to jABj=2, contradicting (2.9).
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A

!t

Kt

�HKt
.�!?t / �t N�t

�t HKt
.!?t /

Figure 5. The convex body Kt and some related objects.

3. Proof of the main theorem and its consequences

Proof of Theorem 1.1. Let A D Argmax.u/ which, by [25], must have Lebesgue
measure zero thanks to the positivity of f . By the quasi-concavity assumption on u,
A is convex, so that it can be either a point or a segment. Hence, in order to prove the
theorem, we show that the latter case cannot occur, arguing by contradiction. To this
aim, suppose that A is a segment of length ` and with midpoint x0, and denote by
!A 2 S1 a unit vector parallel to A.

For any level t <M WDmaxu.�/, consider the convex body KtD¹x2� W u.x/� tº

and let !t be the direction of minimal breadth of Kt ; see Figure 5 for the latter and
related geometric quantities. By Lemma 2.4, there exists �t such that

(3.1) ��t ;!?t
\Kt is a shadow of Kt

and we can fix the orientation of !?t in such a way that

(3.2) �t � N�t WD
HKt

.!?t / �HKt
.�!?t /

2
:

Let

(3.3) �t WD HKt
.!?t / �

1

4
BKt

.!?t / � �t C
1

4
BKt

.!?t /

and
Kt;�t ;!

?
t
D
®
x 2Kt W hx; !

?
t i � �t

¯
;

so that Lemma 2.3 ensures that

(3.4) T�t ;!?t
.Kt;�t ;!

?
t
/ �Kt :
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As t "M , Kt converges to A with respect to the Hausdorff distance, therefore

lim
t"M

BKt
.!t / D 0; lim

t"M
BKt

.!?t / D `;

where ` > 0 is the length of A. Hence there exists Nt such that if M > t > Nt , it holds
that

(3.5) BKt
.!t / � ˛` BKt

.!?t / � ˇ`:

with ˛ > 0, ˇ > 1 fixed such that

(3.6) ˛2 C .3ˇ=4/2 < 1:

By construction, it holds that

BK
t;�t ;!

?
t

.!?t / D
1

4
BKt

.!?t /;

hence, by (3.5), Kt nKt;�t ;!
?
t

is contained in a rectangle having edges of length at
most

BKt
.!t / � ˛` and

3

4
BKt

.!?t / �
3

4
ˇ`:

Condition (3.6) ensures that diam.Kt nKt;�t ;!
?
t
/ < `, hence

(3.7) A \Kt;�t ;!
?
t

is a segment of positive length for all t 2 .Nt ;M/:

We will reach a contradiction in each of the following three cases:

(1) for some t 2 .Nt ;M/, !?t ¤ ˙!A, the direction of A;

(2) for all t 2 .Nt ;M/, !?t k !A, but for some t 2 .Nt ;M/ it holds that

(3.8) lim inf
!!!?t

FK
t;�t ;!

?
t

.!/ � FK
t;�t ;!

?
t

.!?t /I

(3) for all t 2 .Nt ;M/, !?t k !A and

(3.9) lim inf
!!!?t

FK
t;�t ;!

?
t

.!/ < FK
t;�t ;!

?
t

.!?t /:

In case (1), we consider, for the corresponding t , the solution ut of (1.1) given by

ut .x/ D u
�
T�t ;!?t

.x/
�
;

which, by (3.4), is well defined and positive in Kt;�t ;!
?
t

and fulfils

ut � u > 0 on @Kt;�t ;!
?
t
:
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The weak comparison principle of Lemma 2.1 implies thatut � u on Kt;�t ;!
?
t

, which is
impossible since uDM on the segment A\Kt;�t ;!

?
t

, while ¹x2Kt;�t ;!
?
t
W utDM º

is a segment having direction !?t ¤ ˙!A.
Consider case (2). Relations (3.3) and (3.4) imply that Kt;�t ;!

?
t

is a cap of Kt;�t ;!
?
t

in direction !?t such that

T�t ;!?t
.Kt;�t ;!

?
t
/ �Kt;�t ;!

?
t
;

therefore
FK

t;�t ;!
?
t

.!?t / �
1

4
BKt

.!?t /:

Thus (3.8) forces, for some t 2 .Nt ;M/,

lim inf
!!!?t

FKt
.!/ � lim inf

!!!?t

FK
t;�t ;!

?
t

.!/ �
1

4
BKt

.!?t /;

which allows to select a direction Q!t ¤ ˙!A such that (3.4) and (3.7) continue to hold
with Q!t instead of !t . These are the only conditions needed to run the argument of
case (1), giving again a contradiction.

It remains to consider case (3), where, in particular, !?t k !A for all t 2 .Nt ;M/.
Condition (3.9) allows to apply Lemma 2.5, hence for all t 2 .Nt ; M/ the sections
��;!A

\Kt are shadows of Kt in direction !A for any � obeying

�t � � �
�t CHKt

.!A/

2
:

Since
�t CHKt

.!A/

2
� N�t D

HKt
.!A/ �HKt

.�!A/

2
;

we can suppose from the beginning that the �t found in (3.1) coincides with N�t . In
particular, (3.2) holds in both directions !t and �!t . Clearly case (1) does not hold
and, by the previous argument, we can rule out case (2) in both directions ˙!t . So
case (3) must hold, with (3.9) being fulfilled in both directions˙!t .

Applying again Lemma 2.5, we infer that the set Kt \ St is a rectangle with sides
parallel to !A and !?

A
, where

St D

²
x 2 R2 W N�t �

1

4
BKt

.!A/ � hx; !Ai �
N�t C

1

4
BKt

.!A/

³
:

Since Kt ! A in Hausdorff distance, recalling that x0 is the midpoint of A and ` its
length, we have

N�t ˙
1

4
BKt

.!A/! hx0; !Ai ˙
`

4
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as t !M . Therefore, for a sufficiently small ı > 0, the strip

S D
\

M�ı�t�M

St

has positive width (almost `=2) and the level sets of ¹x 2 S \� W u.x/ D tº are all
parallel to !A for all t 2 .M � ı;M/. Thus

u.x/ D h
�
hx; !?Ai

�
in S \KM�ı

for some h 2 C 1.R;RC/.
The function h solves the one-dimensional version of equation (1.1) and it is readily

checked that h is even, positive and h0 vanishes only at the maximum point. Since
ruD 0 on A, it follows that KM�ı \ � N�t ;!?A

is a segment of length width.KM�ı=2/

with midpoint at x0. Such a segment is also a shadow of KM�ı , hence

KM�ı�
®
x2R2 W �width.KM�ı/=2�hx�x0; !

?
Ai�width.KM�ı/=2

¯
D
®
x 2 R2 W h

�
hx; !?Ai

�
� t � ı

¯
:

(3.10)

We conclude by the strong comparison principle of Proposition 2.2: the function

v.x/ D h
�
hx; !?Ai

�
is a positive solution of (1.1) in KM�ı , its gradient vanishes only on the line through
A and v D u in an open subset of KM�ı . Moreover, (3.10) implies that v � u > 0
on @KM�ı , thus the weak comparison principle of Lemma 2.1 implies that v � u.
Since A D ¹x 2KM�ı W rv.x/ D ru.x/ D 0º and KM�ı nA is connected, u and
v must coincide. Thus u is one-dimensional in the whole KM�ı , contradicting its
boundedness and concluding the proof.

We now turn to the proofs of Corollary 1.5, while the proof of Corollary 1.3 follows
similarly and is omitted. As remarked in the introduction (Section 1), the following
proof holds in all cases where f obeys the assumptions of Corollary 1.5 (or, with the
same proof, Corollary 1.3), whenever� is a bounded convex domain such that problem
(1.1) has a unique solution.

Proof of Corollary 1.5. By [5, Theorem 1.1], we know that if u 2W 1;p
0 .�/ solves

(1.1), then v WD ' ı u is concave, and thus u is quasi-concave. Moreover, well-known
regularity arguments ensure that u and v are of class C 1.�/. By Theorem 1.1, u (and
thus v) attains its maximum at a single point Nx 2 �. By the concavity of v, its gradient
vanishes only at the maximum points, thus Nx is actually the only critical point of v.
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As computed in [5], the equation solved by v in � is

(3.11) ��pv D
 00.v/

 0.v/

�
p C .p � 1/jrvjp

�
;

where  D '�1 and
 00

 0
D F 1=p ı  2 C 2;˛:

Standard regularity theory applies in � n ¹ Nxº ensuring that v 2 C 3;˛.� n ¹ Nxº/.
In terms of the convex functionw WD �v, equation (3.11) in� n ¹ Nxº can be written

as
G.D2w;Dw;w/ D 0;

where G 2 C 3.�C � .R2 n ¹0º/ � �'.RC// (recall that �C is the cone of positive
definite 2 � 2 matrices) is of the form

G.X; �; t/ D �
1

tr
�
A.�/X

� C  0.�t /

 00.�t /
b.�/

with
A.�/ WD I C .p � 2/

�

j�j
˝

�

j�j
;

which is positive definite for all � ¤ 0, p > 1, and

b.�/ WD
1

j�j2�p
�
p C .p � 1/j�jp

� ;
which is non-negative. We thus apply the microscopic convexity principle [3, Theorem
1.1], later improved in [28]. It is readily checked that, in � n ¹ Nxº, it holds that

�.x/jzj2 �
˝
DXG

�
D2w.x/;Dw.x/; w.x/

�
z; z

˛
� ƒ.x/jzj2 8z 2 R2;

for some �;ƒ 2 C 0.� n ¹ Nxº;RC/. As proved in [5], the assumptions on F imply that
the function t 7!  0.�t /= 00.�t / is convex. Finally, the Appendix of [2] shows that

X 7! �
1

tr.AX�1/

is convex on �C, for each fixed � ¤ 0 and A positive definite, so that the map

.X; t/ 7! G.X�1; �; t/

is convex on �C � �'.RC/ for any fixed � ¤ 0. Thus, by [28, Theorem 1.1], we
conclude that the Hessian of w has constant rank in � n ¹ Nxº.
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We claim that D2w, or equivalently D2v, has full rank on � n ¹ Nxº. Arguing by
contradiction, suppose that detD2v � 0 in � n ¹ Nxº. This implies (see [17] or [18,
Theorem 2] for a more modern statement) that the graph of v over� n ¹ Nxº is developable:
for any point x 2 � n ¹ Nxº, either Dv is locally constant near x, or there is a line lx
through x such that Dv is constant on the connected component of lx \ .� n ¹ Nxº/
containing x. The first alternative cannot hold, since otherwise the left-hand side
of (3.11) would vanish on an open set, while its right-hand side is strictly positive. So,
we are left with the second alternative.

Let M D sup� v and fix
m 2

�
inf
�
v;M

�
:

Given " > 0, we choose a point x0 2 � n ¹ Nxº such that

(3.12)
ˇ̌
Dv.x0/

ˇ̌
< "; v.x0/ >

M Cm

2
:

The connected component of lx0 \ .� n ¹ Nxº/ containing x0, provided by the second
alternative of the developability of v, must intersect @¹x 2 � W v.x/ > mº at some
point x1, where v.x1/ D m. Moreover, it holds that

Dv
�
tx0 C .1 � t /x1

�
� Dv.x0/ for all t 2 Œ0; 1�:

But then from (3.12) we obtain

M �m

2
< v.x0/ � v.x1/ D

Z 1

0

d

dt
v
�
tx0 C .1 � t /x1

�
dt

�
ˇ̌
Dv.x0/

ˇ̌
jx0 � x1j < " diam�;

and taking " sufficiently small gives a contradiction. Therefore, D2v has full rank in
� n ¹ Nxº and is positive definite there.

It remains to prove that v is strictly concave in�, a property that can be characterised
by strict concavity on each segment Œx; y� � �. For any such segment Œx; y�, consider
the function g.t/ D v.tx C .1 � t /y/: it is readily checked that g 2 C 1 with strictly
decreasing derivative, whether or not Nx 2 Œx; y�. Thus g is strictly concave and so
is v.

A. An example in three dimensions

The next lemma shows that (2.6) cannot hold for arbitrary convex bodies in dimension 3.

Lemma A.1. For ˛ > 0, let K˛ � R3 be defined as

K˛
D
®
.x1; x2; x3/ 2 R3 W jx3j � ˛x1; jx2j � ˛.1 � x1/

¯
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x3

x2

z2

z1
z3

z4

x1

˛

Figure 6. The convex body K˛ and, inside it, its heart.

(see Figure 6). Then for any ! 2 S2, it holds that

FK˛ .!/ � 2˛:

Proof. It is readily checked that

K˛
D co

�
¹z1; z2; z3; z3º

�
;

where

z1 D .0; ˛; 0/; z2 D .0;�˛; 0/; z3 D .1; 0; ˛/; z4 D .1; 0;�˛/;

and co denotes the convex hull of a set.
In particular, K˛ has two trivial symmetries with respect to the planes x3 D 0 and

x2 D 0, and a third symmetry given by

.x1; x2; x3/ 7! .1 � x1; x3; x2/:

The first two symmetries exchange z3 with z4 and z1 with z2, respectively, while the
third one exchanges z1 with z3 and z2 with z4. In particular, the symmetries of K˛

induce the full permutation group on its extremal points.
Given ! D .!1; !2; !3/ 2 S2, let ��;! be a plane intersecting K˛ such that

T�;!.K
˛
�;!
/ �K˛ and

FK˛ .!/ D BK˛
�;!
.!/:
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We can suppose, without loss of generality due to the symmetries of K˛ , that z1 2K˛
�;!

,
i.e.,

(A.1) hz1; !i > �;

while, recalling (2.5), T�;!.z1/ 2K˛ if and only if

(A.2)

8<: j!3j � �˛!1;ˇ̌
˛ � 2!2

�
hz1; !i � �

�ˇ̌
� ˛

�
1C 2!1

�
hz1; !i � �

��
:

These conditions imply that

(A.3) j!3j � �˛!1 � !2

and, in particular, !1 � 0. Suppose that

hz2; !i > �:

From T�;!.z2/ 2K˛ , with a similar computation as before, we get, in particular, that
!2 � ˛!1. Recalling (A.3), we thus have

j!3j � �˛!1 � !2 � ˛!1

which forces ! D .0; 0; 0/, giving a contradiction and proving that hz2; !i � �, which
is equivalent to

(A.4) �� � hz1; !i:

Next we claim that

(A.5) sup
®
hz; !i W z 2K˛

¯
D hz1; !i:

Indeed, the supremum is attained at an extremal point for K˛, so it suffices to eval-
uate hzi ; !i for i D 1; : : : ; 4. Clearly (A.1) and (A.4) ensure that hz2; !i � hz1; !i,
while (A.3) implies, in addition to !1 � 0, that

hz3; !i D !1 C ˛!3 � ˛j!3j � ˛!2 D hz1; !i

and similarly
hz4; !i D !1 � ˛!3 � ˛j!3j � hz1; !i:

Thus (A.5) is proved, showing that the plane with normal vector ! passing through z1
is a support plane for K˛ . It follows that

BK˛
�;!
.!/ D hz1; !i � �
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and we can finally take advantage of (A.4) to get

BK˛
�;!
.!/ � 2hz1; !i D 2˛!2 � 2˛;

where we have used the fact that !2 � 0, by (A.3).

The failure of (2.6) does not imply in itself that the plan outlined in the introduction
(Section 1) must fail in dimension 3. However, it does so, as the following refinement
of Lemma A.1 shows. Recall that the heart of a convex body is defined as

~.K/ DK n
[®

K�;! W T�;!.K�;!/ �K
¯
:

Lemma A.2. For ˛ > 0, let K˛ be as in the previous lemma. Then

(A.6) ~.K˛/ �
®
.t; 0; 0/ W 2˛ � t � 1 � 2˛

¯
for all sufficiently small ˛ > 0.

Proof. Define
K0
D
®
.t; 0; 0/ 2 R3 W 0 � t � 1

¯
:

By [7, Theorem 2.4] and the symmetries of K˛ , we already know that

(A.7) ~.K˛/ �K0:

Let ��;! be as in the previous proof, i.e., fulfilling

T�;!.K
˛
�;!/ �K˛; hz1; !i > �:

We claim that for sufficiently small ˛’s it holds that

(A.8) sup
®
t W .t; 0; 0/ 2K˛

�;!

¯
� 2˛:

Before proving the claim, let us show how (A.8) (under the assumption z1 2 K˛
�;!

)
implies (A.6). By the symmetries of K˛ discussed at the beginning of the proof of
Lemma A.1, we infer that (A.8) holds true if z2 2K˛

�;!
, while if z3 or z4 belong to

K˛
�;!

, we get
inf
®
t W .t; 0; 0/ 2K˛

�;!

¯
� 1 � 2˛:

These two inequalities show that in all cases whenT�;!.K˛
�;!
/�K˛ , the cap K˛

�;!
cuts

a segment of length at most 2˛ either on the left or on the right of K0. Recalling (A.7),
this shows (A.6).

We next focus on proving (A.8), assuming that

(A.9) sup
®
t W .t; 0; 0/ 2K˛

�;!

¯
> 0
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(otherwise there is nothing to prove). From the previous proof, we know that (A.2) is
fulfilled and is equivalent to

(A.10)

8<: j!3j � �˛!1 � !2;˛ � .!2 � ˛!1/
�
hz1; !i � �

�
;

meanwhile (A.4) holds true as well. Notice that it always holds !1 � 0 � !2 and that
!1 D 0 forces ! D .0; 1; 0/. In this case, K˛

�;!
does not intersect the x1-axis and the

supremum in (A.9) is �1, so we can suppose that !1 < 0.
The maximum in (A.8) is attained for some Nt such that Nz D .Nt ; 0; 0/ 2K0 and

Nz 2 @K˛
�;! � @K

˛
[ ��;! :

The only point in K0 \ @K˛ fulfilling (A.9) is Nz D .1; 0; 0/, which cannot lie in K˛
�;!

:
otherwise, from T�;!. Nz/ 2 K˛ we would infer that1 !2 � ˛!1, which implies that
!1 D !2 D 0 by the first condition in (A.10), but then we would have hNz; !i D 0,
against Nz 2K˛

�;!
. We therefore conclude that Nz 2 ��;! and thus (recall that !1 < 0

and (A.9) is assumed) we have

Nt D sup
®
t W .t; 0; 0/ 2K˛

�;!

¯
D �=!1 > 0;

and, in particular, � < 0. Now, on one hand (A.4) provides the bound

(A.11) Nt � ˛
!2

�!1
:

On the other hand, the second condition (A.10) reads

�� �
˛

!2 � ˛!1
� ˛!2

which, divided by �!1 > 0, is equivalent to

�

!1
� ˛

1 � !22 C ˛!1!2

˛!21 � !1!2
:

Using the first conditions in (A.10) and j!j D 1, we get

1 � !22 D !
2
1 C !

2
3 � .1C ˛

2/!21

which, inserted in the previous display, gives the second bound

(A.12) Nt D
�

!1
� ˛
�.1C ˛2/!1 � ˛!2

!2 � ˛!1
:

(1) From the condition jx2j � ˛.1� x1/ evaluated forT�;!. Nz/ and cancelling out the positive
factor .hNz; !i � �/.
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In terms of the auxiliary non-negative variable � D !2=.�!1/, the bounds (A.11)
and (A.12) yield

Nt � ˛max
��0

min
²
�;
1C ˛2 � ˛�

� C ˛

³
which is readily evaluated as

Nt � ˛
�p
2˛2 C 1 � ˛

�
;

proving (A.8) for sufficiently small ˛.

Thanks to the previous lemma, we can provide the example mentioned in the
introduction (Section 1).

Example A.3. We can rescale the convex body K˛ by a multiple l > 0, to obtain the
general form of (A.6) for sufficiently small ˛ > 0, i.e.,

(A.13) ~.lK˛/ �
®
.t; 0; 0/ W 2˛l � t � l.1 � 2˛/

¯
:

For ln D 1C 1=n, we choose ˛n > 0 sufficiently small such that

(A.14) ln.1 � 4˛nln/ � 1

and, in particular, ˛n! 0 as n!C1. Then we define the sequence of convex bodies

Kn D .�2˛nln; 0; 0/C lnK˛
n :

By (A.13) and (A.14), it holds that

~.Kn/ �K0
D
®
.t; 0; 0/ W 0 � t � 1

¯
;

while Kn !K0 in the Hausdorff metric. By the very definition of ~Kn, all foldable
caps of Kn are disjoint from K0.
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