Rend. Lincei Mat. Appl. 34 (2023), 89–99 DOI 10.4171/RLM/998

© 2023 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Mathematics. – *Pseudo-uniformities*, by TULLIO VALENT, communicated on 17 June 2022.

ABSTRACT. – The notions of pseudo-uniformity for a set X and of pseudo-metric presented in this paper are somehow connected. Unlike the uniformity, the elements of a pseudo-uniformity do not necessarily contain the diagonal Δ of $X \times X$ but only some points (at least one point) of it. Likewise, the pseudo-metrics considered and utilized here do not vanish on the whole of Δ , but only in some points of it. It will be showed how any family of pseudo-metrics defines a pseudo-uniformity. The main result achieved is the proof that every pseudo-uniformity is defined by a family of "pseudo-uniformly continuous" pseudo-metrics. In the final part of the paper, we prove that every topology is defined by a family of pseudo-metrics and, consequently, that every topology is pseudo-uniformizable: nay every topology defines a pseudo-uniformity which induces just the starting topology.

KEYWORDS. – General structure theory, uniform structures and generalizations.

2020 Mathematics Subject Classification. – Primary 54E15; Secondary 54A05.

1. Introduction

With a view of making a systematic study of structures on a set X defined by a family of maps $d: X \times X \mapsto \mathbb{R}^+$, in this paper we will consider symmetric maps d that satisfy the "triangle inequality" $d(x_1, x_2) \leq d(x_1, x) + d(x, x_2) \forall x, x_1, x_2 \in X$, and vanish at least in a point of the diagonal Δ of $X \times X$. These maps will be called *pseudo-metrics*, although in the usual terminology a pseudo-metric is requested to vanish on the whole of Δ .

Recall that the elements of a uniformity for a set X contain Δ , and that the most important result of the classical theory of the uniformities is the fact that each uniformity is generated by a family of pseudo-metrics (the family of all pseudo-metrics which are uniformly continuous), where the pseudo-metrics have the usual meaning (they vanish on the whole of Δ).

In this paper, a theory of pseudo-uniformity is presented and developed. A pseudouniformity for X is defined as a particular Δ -local filter on $X \times X$, and its elements contain at least a point of Δ , but not necessarily the whole Δ . Each family $\mathscr P$ of pseudo-metrics with the property that for every $x \in X$ there is a $d \in \mathscr{P}$ vanishing at (x, x) defines a pseudo-uniformity.

In Section [4,](#page-6-0) it is shown that every pseudo-uniformity is defined by a family of "pseudo-uniformly continuous" pseudo-metrics. This result is somehow analogous to those above recalled in the context of the theory of uniformities, but in our case the treatment offers greater difficulties. In Section [5,](#page-8-0) after showing how every topology is defined by a family of pseudo-metrics, we can prove that every topology is pseudouniformizable, in the sense that every topology τ defines a pseudo-uniformity, whose induced topology is just τ .

$2. \Delta$ -LOCAL FILTERS AND PSEUDO-UNIFORMITIES. PRELIMINARY DEFINITIONS AND PROPERTIES

Throughout, X will denote any set. The diagonal of $X \times X$ shall be denoted by Δ . For any subset V of $X \times X$, the composition $V \circ V$ is defined by

$$
V \circ V := \{(x_1, x_2) \in X \times X : (x_1, \xi), (\xi, x_2) \in V \text{ for some } \xi \in X\}.
$$

DEFINITION 2.1. If, for every $x \in X$, \mathcal{U}_x is a filter on $X \times X$ generated by a family of symmetric subsets of $X \times X$ which contain the point (x, x) of Δ , then the union

$$
\mathscr{U} \coloneqq \bigcup_{x \in X} \mathscr{U}_x
$$

will be called a \triangle -*local filter* on $X \times X$.

Evidently, $\mathcal{U}_x = \{U \in \mathcal{U} : (x, x) \in U\}$. Of course, \mathcal{U} is a union of filters, but (in general) is not a filter.

DEFINITION 2.2. A Δ -local filter $\mathcal U$ on $X \times X$ will be said a *pseudo-uniformity* for X if for every $x \in X$ and $U_x \in \mathcal{U}_x$ there is $V_x \in \mathcal{U}_x$ such that $V_x \circ V_x \subseteq U_x$.

EXAMPLE 2.3 (Of Δ -local filter). Consider a family $\mathscr F$ of symmetric subsets of $X \times X$ such that, for every $x \in X$, the set

$$
\mathcal{F}_x := \{ V \in \mathcal{F} : (x, x) \in V \}
$$

is non-empty, and so it generates a filter, say \mathscr{U}_x , on $X \times X$. The union of the filters \mathscr{U}_x , $x \in X$, is obviously a Δ -local filter and it will be called the Δ -local filter on $X \times X$ *generated by* F*.*

DEFINITION 2.4. Let $\mathscr P$ be any family of symmetric maps $d: X \times X \mapsto \mathbb{R}^+$ which has the property that for every $x \in X$ there is $d \in \mathcal{P}$ such that $d(x, x) = 0$. The Δ -local *filter defined by* \mathscr{P} is

$$
\widehat{U}(\mathscr{P}) \coloneqq \bigcup_{x \in X} \widehat{U}_x(\mathscr{P}),
$$

where $\hat{W}_x(\mathscr{P})$ is the filter on $X \times X$ generated by the family of the subsets $d^{\leftarrow}([0, \varepsilon])$ of $X \times X$, with $d \in \mathscr{P}$ such that $d(x, x) = 0$, ε is any number > 0, and $d^{\leftarrow}([0, \varepsilon]) \coloneqq$ $\{(x_1, x_2) \in X \times X : d(x_1, x_2) < \varepsilon\}.$

As precised in the introduction (Section [1\)](#page-0-0), in this paper a *pseudo-metric* on X is a symmetric map $d: X \times X \mapsto \mathbb{R}^+$ that satisfies the inequality $d(x_1, x_2) \leq d(x_1, \xi) + d(x_2, \xi)$ $d(\xi, x_2)$ for all $x_1, x_2, \xi \in X$, and vanishes in some points of the diagonal of $X \times X$, but not necessarily on the whole of Δ .

THEOREM 2.5. Any Δ -local filter on $X \times X$ defined by a family $\mathscr P$ of pseudo-metrics, *with the property that for every* $x \in X$ *there is* $d \in \mathcal{P}$ *such that* $d(x, x) = 0$ *, is a pseudo-uniformity for* X*.*

Proof. We must prove that if $\mathscr P$ is a family of pseudo-metrics on $X \times X$ such that for every $x \in X$ there is $d \in \mathcal{P}$ that vanishes at (x, x) , and $\hat{\mathcal{U}}(\mathcal{P})$ is the Δ -local filter on $X \times X$ defined by \mathscr{P} (see Remark [2.4\)](#page-1-0), then for every $x \in X$ and every $U_x \in \hat{\mathscr{U}}_x(\mathscr{P})$ there is $V_x \in \hat{\mathcal{U}}_x(\mathcal{P})$ such that $V_x \circ V_x \subseteq U_x$. From the definition of $\hat{\hat{\mathcal{U}}}_x(\mathcal{P})$ it follows that there are a finite subset $\{d_i : i \in I\}$ of \mathcal{P} , with $d_i(x, x) = 0$, and a positive number ε such that

$$
U_x \supseteq \big\{ (x_1, x_2) \in X \times X : d_i(x_1, x_2) < \varepsilon \ \forall i \in I \big\}.
$$

Consider, for every $x \in X$, the element V_x of $\hat{\mathscr{U}}_x(\mathscr{P})$ defined by

$$
V_x := \left\{ (x_1, x_2) \in X \times X : d_i(x_1, x_2) < \frac{\varepsilon}{2} \,\forall i \in I \right\}.
$$

Since d_i is a pseudo-metric, we have

$$
d_i(x_1, x_2) \le d_i(x_1, \xi) + d_i(\xi, x_2) \quad \forall x_1, x_2, \xi \in X.
$$

Therefore,

$$
V_x \circ V_x = \{(x_1, x_2) \in X \times X : (x_1, \xi), (\xi, x_2) \in V_x \exists \xi \in X\}
$$

=
$$
\{(x_1, x_2) \in X \times X : d_i(x_1, \xi) < \frac{\varepsilon}{2}, d_i(\xi, x_2) < \frac{\varepsilon}{2} \forall i \in I \exists \xi \in X\}
$$

$$
\subseteq \{(x_1, x_2) \in X \times X : d_i(x_1, x_2) < \varepsilon \forall i \in I\} \subseteq U_x.
$$

Obviously, if the pseudo-metrics were thought in the usual meaning, the property required to $\mathscr P$ in Theorem [2.5](#page-2-0) would be unnecessary (because it would be satisfied by every family $\mathscr P$ of pseudo-metrics). The most important result of Section [4](#page-6-0) will be the proof that every pseudo-uniformity can be defined by a family of pseudo-metrics.

THEOREM 2.6. Any Δ -local filter on $X \times X$ induces a topology on X.

Proof. Let U be a Δ -local filter on $X \times X$. Recall that $\mathcal{U} = \bigcup_{x \in X} \mathcal{U}_x$, where $\mathscr{U}_x = \{U \in \mathscr{U} : (x, x) \in U\}$, and that each $U \in \mathscr{U}_x$ contains a symmetric element of \mathscr{U}_x . Set, for every $x \in X$ and every symmetric $U \in \mathscr{U}_x$,

$$
U[x] = \{\xi \in X : (\xi, x) \in U\}.
$$

Of course $x \in U[x]$. Now, put

$$
\mathcal{U}[x] := \{ U[x] : U \in \mathcal{U}_x \},\
$$

$$
\hat{\tau}(\mathcal{U}) := \{ A \subseteq X : A \in \mathcal{U}[a], \ \forall a \in A \},\
$$

and observe that $\hat{\tau}(\mathcal{U})$ *is closed under finite intersections*, namely, that if

$$
(2.1) \t A_1 \in \mathcal{U}[a_1] \ \forall a_1 \in A_1, \quad A_2 \in \mathcal{U}[a_2] \ \forall a_2 \in A_2,
$$

then

$$
(2.2) \t A_1 \cap A_2 \in \mathscr{U}[a] \quad \forall a \in A_1 \cap A_2.
$$

Indeed, from [\(2.1\)](#page-3-0) it follows that there are $U_1, U_2 \in \mathcal{U}$ such that

$$
A_1 \in U_1[a_1] \,\forall a_1 \in A_1, \quad A_2 \in U_2[a_2] \,\forall a_2 \in A_2
$$

which implies that $A_1 \cap A_2 \in U_1[a_1] \cap U_2[a_2]$ for all $(a_1, a_2) \in A_1 \times A_2$, and so, putting, $U = U_1 \cap U_2$, it is easily seen that [\(2.2\)](#page-3-1) is true. Of course, U may be empty; in this case $A_1 \cap A_2 = \emptyset$ and hence [\(2.2\)](#page-3-1) holds trivially. Since, obviously, $\hat{\tau}(\mathcal{U})$ *is closed under each union*, we can conclude that $\hat{\tau}(\mathcal{U})$ is a topology on X. It will be said that *the topology is induced by* $\mathcal U$. \blacksquare

Let $\mathscr{U} = \bigcup_{x \in X} \mathscr{U}_x$ be a Δ -local filter on $X \times X$ (or, in particular, a pseudouniformity for X).

DEFINITION 2.7. A subset $\mathcal V$ of $\mathcal U$ is a *pre-base (resp. a base) of* $\mathcal U$ if, for each $x \in X$, the intersection $\mathscr{V} \cap \mathscr{U}_x$ is a pre-base (resp. a base) of the filter \mathscr{U}_x .

DEFINITION 2.8. A family $\mathscr V$ of symmetric subsets of $X \times X$ is a *pre-base (resp. a base) for a* Δ -*local filter* if, for each $x \in X$, the family

$$
\mathscr{V}_x := \{ V \in \mathscr{V} : (x, x) \in V \}
$$

is a pre-base (resp. a base) for a filter on $X \times X$.

In the case of the pseudo-uniformities, Definition [2.8](#page-3-2) becomes the following.

DEFINITION 2.9. A family $\mathscr V$ of symmetric subsets of $X \times X$ is a *pre-base (resp. a base) for a pseudo-uniformity* if, for each $x \in X$, the family \mathcal{V}_x is a pre-base (resp. a base) for a filter \mathcal{U}_x on $X \times X$ having the property that for every $U_x \in \mathcal{U}_x$ there is $V_x \in \mathscr{U}_x$ such that $V_x \circ V_x \subseteq U_x$.

PROPOSITION 2.10. A family $\mathscr V$ of symmetric subsets of $X \times X$ is a pre-base for a *pseudo-uniformity for* X *if and only if, for each* $x \in X$ *,* \mathcal{V}_x *is a non-empty family of non-empty sets which is closed under finite intersections and has the property that for every* $U_x \in \mathcal{V}_x$ *there is* $V_x \in \mathcal{V}_x$ *such that* $V_x \circ V_x \subseteq U_x$ *.*

Proof. It is easy to check that any finite intersection of elements of \mathcal{V}_x with the property that for every $U_x \in \mathcal{V}_x$ there is $V_x \in \mathcal{V}_x$ such that $V_x \circ V_x \subseteq U_x$ has the same property. Proposition [2.10](#page-4-0) follows readily from this fact.

PROPOSITION 2.11. A family $\mathscr V$ of symmetric subsets of $X \times X$ is a base for a pseudo*uniformity for* X *if and only if, for each* $x \in X$ *,* \mathcal{V}_x *is a non-empty family of non-empty sets with the properties that the intersection of two elements of* \mathcal{V}_x *contains an element of* \mathcal{V}_x *, and that for every* $U_x \in \mathcal{V}_x$ *there is* $V_x \in \mathcal{V}_x$ *such that* $V_x \circ V_x \subseteq U_x$ *.*

The proof of this proposition is omitted, because it shall be like the proof of the previous proposition.

3. UNIFORM CONTINUITY WITH RESPECT TO Δ -LOCAL FILTERS. PRODUCT OF Δ -LOCAL FILTERS

Let X, Y be any sets, and let $\mathcal{U} := \bigcup_{x \in X} \mathcal{U}_x$ and $\mathcal{V} := \bigcup_{y \in Y} \mathcal{V}_y$ be Δ -local filters on X and Y , respectively.

DEFINITION 3.1. A map $f: X \mapsto Y$ will be said *uniformly continuous with respect to* \mathscr{U}_x *and* \mathscr{V}_y if for every $V_y \in \mathscr{V}_y$ the set $\{(x_1, x_2) \in X \times X : (f(x_1), f(x_2)) \in V_y\}$ is an element of \mathcal{U}_x . Moreover, f will be said *uniformly continuous with respect to* \mathcal{U} *and* $\mathcal V$ when for every $V \in \mathcal V$ the set $\{(x_1, x_2) \in X \times X : (f(x_1), f(x_2)) \in V\}$ is an element of $\mathscr U$.

DEFINITION 3.2. The *product of the* Δ -local filters \mathcal{U}_x on $X \times X$ and \mathcal{U}_y on $Y \times Y$ is the smallest Δ -local filter on $(X \times Y) \times (X \times Y)$ such that the projections of $X \times Y$ into X and into Y are uniformly continuous.

One can prove the following.

Proposition 3.3. *The product of the* Δ -local filters \mathscr{U}_x on $X \times X$ and \mathscr{U}_y on $Y \times Y$ is the Δ -local filter on $(X \times Y) \times (X \times Y)$ whose pre-base is the union of the two *family of sets*

$$
\{((x_1, y_1), (x_2, y_2)) \in (X \times Y) \times (X \times Y) : (x_1, x_2) \in U_x \text{ for some } U_x \in \mathcal{U}_x\}
$$

and

$$
\{((x_1, y_1), (x_2, y_2)) \in (X \times Y) \times (X \times Y) : (y_1, y_2) \in U_y \text{ for some } U_y \in \mathscr{U}_y\}.
$$

In the case $X = Y$ from Proposition [3.3,](#page-5-0) the following corollary holds.

COROLLARY 3.4. *The product of the* Δ -local filter $\mathcal U$ on $X \times X$ by itself is the Δ -local filter on $(X \times X) \times (X \times X)$ whose pre-base is the union of the two family of sets

$$
\{((x_1, y_1), (x_2, y_2)) \in (X \times X) \times (X \times X) : (x_1, x_2) \in U \text{ for some } U \in \mathcal{U}\}
$$

and

$$
\{((x_1, y_1), (x_2, y_2)) \in (X \times X) \times (X \times X) : (y_1, y_2) \in U \text{ for some } U \in \mathcal{U}\}.
$$

THEOREM 3.5. Let $\mathscr U$ be a Δ -local filter on $X \times X$ (in particular, a pseudo-uniformity for X). A pseudo-metric $d: X \times X \mapsto \mathbb{R}^+$ is uniformly continuous with respect to the *product of* U *by itself if and only if for every* $\varepsilon > 0$ *there is* $U \in \mathcal{U}$ *such that*

(3.1)
$$
\left| d(x_1, x_2) - d(x_2, x_2) \right| \le \varepsilon \quad \forall (x_1, x_2) \in U,
$$

or, equivalently, for every $x \in X$ *and every* $\varepsilon > 0$ *there is* $U_x \in \mathcal{U}_x$ *such that*

(3.2)
$$
\left| d(x_1, x_2) - d(x_2, x_2) \right| \le \varepsilon \quad \forall (x_1, x_2) \in U_x.
$$

Proof. We first observe that the equivalence of the two conditions appearing in the statement of this theorem follows from the fact that $\mathscr{U} = \bigcup_{x \in X} \mathscr{U}_x$. In view of Corollary [3.4,](#page-5-1) d is uniformly continuous with respect to the product of $\mathcal U$ by itself if and only if for each $\varepsilon > 0$ there is $U \in \mathcal{U}$ such that

$$
\left| d(x_1, y_1) - d(x_2, y_2) \right| \le \varepsilon \quad \text{whenever } (x_1, x_2) \in U \text{ or } (y_1, y_2) \in U.
$$

Observe that this condition is equivalent to each of the following (equivalent) conditions, where ξ is any element of X:

$$
\left| d(x_1, \xi) - d(x_2, \xi) \right| \le \varepsilon \quad \text{when } (x_1, x_2) \in U,
$$

$$
\left| d(\xi, y_1) - d(\xi, y_2) \right| \le \varepsilon \quad \text{when } (y_1, y_2) \in U.
$$

These equivalences follow from the symmetry of d . Then the proof is concluded taking $\xi = x_2$ in the first equality, or $\xi = y_1$ in the second one. П It will be useful, in the sequel, to consider the following corollary of Theorem [3.5.](#page-5-2)

COROLLARY 3.6. Let $\mathscr{U} := \bigcup_{x \in X} \mathscr{U}_x$ be a Δ -local filter on $X \times X$. A pseudo-metric $d: X \times X \mapsto \mathbb{R}^+$ is uniformly continuous with respect to the product of \mathscr{U}_x by itself *if for every* $\varepsilon > 0$ *there is* $U_x \in \mathcal{U}_x$ *such that*

(3.3)
$$
\left|d(x_1,x_2)-d(x,x)\right|\leq \varepsilon \quad \forall (x_1,x_2)\in U_x.
$$

Moreover, d *is uniformly continuous with respect to the product of* U *by itself if for every* $x \in X$ *it is uniformly continuous with respect to the product of* \mathcal{U}_x *by itself, namely, if for every* $x \in X$ *and every* $\varepsilon > 0$ *there is* $U_x \in \mathcal{U}_x$ *such that* [\(3.3\)](#page-6-1) *is true.*

PROOF. It suffices to observe that (3.3) implies that

$$
\left|d(x,x_2)-d(x,x)\right|\leq \varepsilon \quad \forall (x,x_2)\in U_x,
$$

and this can be also obtained by making in [\(3.1\)](#page-5-3) the choice $x_2 = x$.

COROLLARY 3.7. *If* $d(x, x) = 0$ *, then the pseudo-metric d is uniformly continuous with respect to the product of the filter* \mathcal{U}_x *by itself if for every* $\varepsilon > 0$ *there is* $U_x \in \mathcal{U}_x$ *such that*

$$
|d(x_1, x_2)| \leq \varepsilon \quad \forall (x_1, x_2) \in U_x.
$$

DEFINITION 3.8. A pseudo-metric $d: X \times X \mapsto \mathbb{R}^+$ will be said *pseudo–uniformly continuous* if it is uniformly continuous with respect to the product of \mathcal{U}_x by itself for some $x \in X$.

4. Family of pseudo-metrics defining a pseudo-uniformity

This section is devoted to prove that every pseudo-uniformity is defined by a family of pseudo-metrics (where the word pseudo-metric has the meaning, weaker than the usual, precised in the introduction), which are pseudo-uniformly continuous. This is the main result of this paper.

We will follow the outline used, in the theory of uniform spaces, in order to prove that each uniformity for X is generated by the family of all pseudo-metrics (in the usual meaning) which are uniformly continuous on $X \times X$. In our case, the situation presents some further difficulties with respect to that of the uniform structures. They are mostly due to the fact that the elements of a pseudo-uniformity do not necessarily contain the diagonal Δ of $X \times X$.

We need a few preliminary lemmas. Let $\mathcal{U} := \bigcup_{x \in X} \mathcal{U}_x$ be a pseudo-uniformity for X .

 \blacksquare

LEMMA 4.1. *For each* $x \in X$ *and* $U \in \mathcal{U}_x$ *, there is* $W \in \mathcal{U}_x$ *such that*

$$
W\mathrel{\circ} W\mathrel{\circ} W\subseteq U.
$$

Proof. Let $U \in \mathscr{U}_x$. From the definition of pseudo-uniformity given in Section [2](#page-1-1) it follows that there is $V \in \mathcal{U}_x$ such that $V \circ V \subseteq U$ and there is $W' \in \mathcal{U}_x$ such that $W' \circ W' \subseteq V$. The set $W := W' \cap V$ is an element of \mathcal{U}_x , because \mathcal{U}_x is closed under finite intersections. Besides, $W \circ W \subseteq W' \circ W' \subseteq V$, and so $W \circ W \circ W \subseteq V \circ W \subseteq V$ $V \circ V \subset U$. \blacksquare

Since each element of \mathcal{U}_x contains a symmetric element of \mathcal{U}_x (see Definitions [2.1](#page-1-2)) and [2.2\)](#page-1-3), from Lemma [4.1,](#page-7-0) the following hold.

LEMMA 4.2. *For* $x \in X$ *and each symmetric element* U *of* \mathcal{U}_x *, there is a sequence* $(U_n)_{n\in\mathbb{N}}$ *of symmetric elements of* \mathcal{U}_x *such that*

$$
(4.1) \tU_{n+1} \circ U_{n+1} \circ U_{n+1} \subseteq U_n \quad \text{for all } n \ge 1,
$$

with $U_0 = X \times X, U_1 = U$.

LEMMA 4.3. Let $x \in X$, $U \in \mathcal{U}_x$. Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of symmetric elements of \mathscr{U}_x which satisfies [\(4.1\)](#page-7-1). Then there is a symmetric map $d: X \times X \mapsto \mathbb{R}^+$ which satisfies *the "triangle inequality"* $d(x_1, x_2) \leq d(x_1, x_3) + d(x_3, x_2)$ *for all* $x_1, x_2, x_3 \in X$ *, and vanishes at the point* (x, x) *, such that*

$$
(4.2) \tU_n \subseteq \left\{ (x_1, x_2) \in X \times X : d(x_1, x_2) \le \frac{1}{2^n} \right\} \subseteq U_{n-1} \text{ for all } n \ge 1.
$$

The map d is a pseudo-metric according to the definition of pseudo-metric adopted in this paper (see the introduction (Section [1\)](#page-0-0)). The proof of Lemma [4.3](#page-7-2) is omitted because it would be essentially analogous to the proof of the "Metrization Lemma" in [\[2,](#page-10-0) Ch. 6, n. 12], which provides a fundamental result in the theory of uniform structures (see also [\[1,](#page-10-1) Th. 8.1.10]). However, in the cited lemma there is the hypothesis (that we cannot use in this paper) that each U_n contains the diagonal of $X \times X$, and this allows in that case to find a map d which vanishes in all points of the diagonal, i.e., a pseudo-metric in the usual sense.

Corollary 4.4. *The pseudo metric* d *is uniformly continuous with respect to the product of* \mathcal{U}_x *by itself.*

Proof. Since $d(x, x) = 0$, it suffices to prove (see Corollary [3.7\)](#page-6-2) that for each $\varepsilon > 0$ there is $U \in \mathcal{U}_x$ such that $|d(x_1, x_2)| \leq \varepsilon$ for all $(x_1, x_2) \in U$. In view of [\(4.2\)](#page-7-3), this is true with $U = U_n$ and n such that $\frac{1}{2^n} \leq \varepsilon$. \blacksquare

In Lemma [4.3,](#page-7-2) the pseudo-metric d depends on x and on a symmetric element $U \in \mathcal{U}_x$; hence it may be denoted by $d_{x,U}$. Then an obvious consequence of Lemma [4.3](#page-7-2) can be expressed in the following.

COROLLARY 4.5. *For* $x \in X$ *and each symmetric element* U *of* \mathcal{U}_x *, there is a pseudometric* $d_{x,U}$ *such that* $d_{x,U}(x, x) = 0$ *and*

(4.3)
$$
\left\{ (x_1, x_2) \in X \times X : d_{x,U}(x_1, x_2) \leq \frac{1}{4} \right\} \subseteq U,
$$

$$
U \subseteq \left\{ (x_1, x_2) \in X \times X : d_{x,U}(x_1, x_2) \leq \frac{1}{2} \right\}.
$$

The pseudo-metric $d_{x,U}$ *is uniformly continuous with respect to the product of* \mathcal{U}_x *by itself; namely* (by using Definition [3.8\)](#page-6-3), *it is pseudo-uniformly continuous*.

Theorem 4.6. *Every pseudo uniformity for* X *is defined by a family of pseudo-uniformly continuous pseudo-metrics on* $X \times X$.

PROOF. We will show how a pseudo-uniformity $\mathscr{U} := \bigcup_{x \in X} \mathscr{U}_x$ coincides with the Δ -local filter on $X \times X$ defined by the family $\mathscr{P} := \{d_{x,U} : x \in X, U \in \mathscr{U}_x\}$ of pseudo-metrics. Indeed, from Corollary [4.5](#page-8-1) it follows that, for each $x \in X$, every element U of \mathscr{U}_x belongs to $\widehat{\mathscr{U}}_x(\mathscr{P})$ (in concordance with the notation used in Remark [2.4\)](#page-1-0). Then every element of $\mathcal U$ belongs to the Δ -local filter $\hat{\mathcal U}(\mathcal P)$ defined by $\mathcal P$, which, by Theorem [2.5,](#page-2-0) is a pseudo-uniformity.

Conversely, again from Corollary [4.5](#page-8-1) (more precisely, from the second inclusion in [\(4.3\)](#page-8-2)), it comes that the pseudo-uniformity $\hat{\mathcal{U}}(\mathcal{P})$ defined by \mathcal{P} is contained in \mathscr{U} .

5. Topologies and pseudo-uniformities

If $\mathscr P$ is a family of maps $d: X \times X \mapsto \mathbb R^+$, *the topology defined by* $\mathscr P$ is the topology generated by the set $\{U_{d,\varepsilon}(x): d \in \mathcal{P}, x \in X, \varepsilon > 0\}$, where

$$
U_{d,\varepsilon}(x) := \{ \xi \in X : d(\xi, x) < \varepsilon, \ d(x, \xi) < \varepsilon \}.
$$

PROPOSITION 5.1. Let τ be a topology on X. For every $A \in \tau$, let d_A be the characteristic function of $C(A \times A)$, where $C(A \times A)$ is the complement of $A \times A$. Then the functions d_A are pseudo-metrics.

Proof. We must prove that the (symmetric) maps d_A (which vanish at any (x, x) with $x \in A$) have the property

$$
(5.1) \t dA(x1, x2) \le dA(x1, x) + dA(x, x2) \quad \forall x, x1, x2 \in X.
$$

Indeed, [\(5.1\)](#page-8-3) holds for all $x \in X$ if $x_1, x_2 \in A$ because $d_A(x_1, x_2) = 0$ when $x_1, x_2 \in A$. It also holds for all $x \in X$ if $x_1 \notin A$ or $x_2 \notin A$, because in this case $d_A(x_1, x_2) =$ $d_A(x_1, x) = d_A(x, x_2) = 1$, being $(x_1, x_2), (x_1, x), (x, x_2) \in \mathbb{C}(A \times A)$.

THEOREM 5.2. *Every topology* τ is defined by the family of the pseudo-metrics d_A , with $A \in \tau$.

PROOF. Clearly, $d_A(x_1, x_2) = 0$ if $x_1, x_2 \in A$, while $d_A(x_1, x_2) = 1$ if $x_1 \notin A$ or $x_2 \notin A$. The topology defined by $\{d_A : A \in \tau\}$ is the one generated by $\{U_{d_A,\varepsilon}(x) : A \in \tau, \varepsilon > 0\}$, where $U_{d_A,\varepsilon}(x) = \{\xi \in X : d_A(\xi, x) < \varepsilon\}.$

Then the proof is readily concluded after observing that

$$
U_{d_A,\varepsilon}(x) = \begin{cases} A & \text{if } x \in A \text{ and } \varepsilon \le 1, \\ X & \text{if } x \in A \text{ and } \varepsilon > 1, \end{cases}
$$

while

$$
U_{d_A,\varepsilon}(x) = \begin{cases} \emptyset & \text{if } x \notin A \text{ and } \varepsilon \le 1, \\ X & \text{if } x \notin A \text{ and } \varepsilon > 1. \end{cases}
$$

Theorem 5.3. *All topologies on* X *are pseudo-uniformizable. Nay, defines a pseudo-uniformity* $\hat{\mathcal{U}}(\tau)$ *for* X *such that*

$$
\hat{\tau}(\hat{\mathscr{U}}(\tau)) = \tau,
$$

where $\hat{\tau}(\hat{\mathcal{U}}(\tau))$ *denotes the topology induced by* $\hat{\mathcal{U}}(\tau)$ *(see Theorem [2.6](#page-2-1)).*

Proof. By Theorem [5.2,](#page-9-0) τ is defined by the family $\mathcal{P}_{\tau} := \{d_A : A \in \tau\}$ of the pseudometrics d_A , where d_A is the characteristic function of $C(A \times A)$. In view of Remark [2.4](#page-1-0) and Theorem [2.5,](#page-2-0) the family \mathcal{P}_{τ} defines a pseudo-uniformity, say $\hat{\mathcal{U}}(\tau)$, by setting

$$
\widehat{\mathscr{U}}(\tau)=\bigcup_{x\in X}\widehat{\mathscr{U}}_x(\tau),
$$

where $\widehat{\mathscr{U}}_x(\tau)$ denotes the filter on $X \times X$ generated by the family of the subsets $d_A^{\leftarrow}([0, \varepsilon])$, with $A \in \tau$ such that $x \in A$ and ε is any number > 0.

As
$$
d_A^{\leftarrow}([0, \varepsilon]) = A \times A
$$
 if $\varepsilon \le 1$, and $d_A^{\leftarrow}([0, \varepsilon]) = X \times X$ if $\varepsilon > 1$, we have

$$
(5.3) \quad \widehat{\mathscr{U}}_x(\tau) = \big\{ U \subseteq X \times X : U \supseteq A \times A, \ x \in A \in \tau \big\} \supseteq \{ A \times A : x \in A \in \tau \}.
$$

Now, in order to prove [\(5.2\)](#page-9-1), we start by observing that (with the notation used in the proof of Theorem [2.6\)](#page-2-1)

$$
(A \times A)[x] = \{ \xi \in X : (\xi, x) \in A \times A \} = A \quad \text{for all } x \in A.
$$

Hence, setting $\hat{\mathcal{U}}(\tau)[x] = \{U[x] : U \in \hat{\mathcal{U}}_x(\tau)\}\)$, and recalling [\(5.3\)](#page-9-2), we obtain $\hat{\mathscr{U}}(\tau)[x] \ni (A \times A)[x] = A$

if A is an element of τ which contains x. This means that every neighborhood of x for the topology induced by $\hat{\mathcal{U}}(\tau)$ is neighborhood of x also for the topology τ and vice-versa. Therefore, [\(5.2\)](#page-9-1) is true. \blacksquare

REFERENCES

- [1] R. Engelking, *General topology*. 2nd edn., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. Zbl [0684.54001](https://zbmath.org/?q=an:0684.54001) MR [1039321](https://mathscinet.ams.org/mathscinet-getitem?mr=1039321)
- [2] J. L. Kelley, *General topology*. D. Van Nostrand, New York, 1955. Zbl [0066.16604](https://zbmath.org/?q=an:0066.16604) MR [0070144](https://mathscinet.ams.org/mathscinet-getitem?mr=0070144)

Received 3 February 2022, and in revised form 6 June 2022

Tullio Valent Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Via Trieste 63, 35121 Padova, Italy tullio.valent@unipd.it