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ABSTRACT. — We prove the existence of a stationary solution for the system describing the
interaction between an electron coupled with a massless scalar field (a photon). We find a solution,
with fixed L2-norm, by variational methods, as a critical point of an energy functional.
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1. INTRODUCTION

We study the interaction electron-photon analyzing the Euler-Lagrange equations for a
system consisting of a spinor field coupled with a massless scalar field. More precisely,
our system consists of the Dirac equation coupled with a massless Klein—Gordon
equation, and looks for normalized and stationary solutions of the system

(1 1) (_ll’MaM"l—m—«/E(p)w =0 inRXR3,
' D00 = dm /5, BY)  InR xRS,

where ¥: R x R3 — C*, ¢:R x R3 — R, m > 0 is the mass of the electron, \/s > 0
is the coupling constant, y* are the 4 x 4 Dirac matrices

1 0 0 o
0 k I 3
)/ = B = ) = - 1 e

(O [) ) ( k O ) ) ) ]

ok are the 2 x 2 Pauli matrices

0 1 0 —i 10
1 _ 2 _ 3 _

and (z,w) = Z?zl Z;w;, the scalar product between z, w € C*.
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This problem is closely related to the one studied in [6], and we will prove the
existence of a solution of (1.1) with essentially the same methods developed in that
article (see also [2]).

More precisely, we prove the existence of stationary, normalized solutions of this
system, that is solutions (@, ¥) of the problem

(—ie-V +mp— JspB)Y =0y inR3,
(12) —Ag = 4r /54, BY) in R3,
W2 = fes [W(, 0| dx = 1,

where a; = By;,i = 1,...,3. From —A¢ = 4 \/s(y¥, BY), we deduce that

o = 50 BY) *

|x|

and hence our problem reduces to

(—ia-V—l—m,B—s(w,ﬂw)*ﬁﬂ)w =y inR3,

(1.3)
W= fes [w(. 0 dx = 1.

Our result is the following theorem.

THEOREM 1.4. For all s € (0, %), there exists w € (0, m) and ¥ € HY2(R3,C*)
solutions of problem (1.3).

In the article [3], the authors prove using critical point theory the existence of one
stationary solution of equation (1.1) but do not prescribe its Z2-norm.
We will find such a solution as a critical point of the functional

1 s W BV BY)()
’(‘”)‘E/H@(H‘”"“‘Z/st o

restricted on the manifold ||3 = 1. Here

H=—ia-V+mp.

The functional [ is strongly indefinite, and, following the method introduced in [2, 6],
the solution will be found via a min-max procedure consisting in minimizing the
supremum of I over subspaces of dimension 1 in the positive energy subspace of
the linear operator H ; see Proposition 2.13. Let us remark here that we know very
few results on the existence of normalized solutions for Dirac’s equation (and more
generally for strongly indefinite problems — one of these is [1]).
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1.1. Notation and background results

We let [ulh = [palu(x)|?, (u | v) = [gs u(x)v(x).

Let us recall some well-known facts on the Dirac operator H (see [7] for more
details): H is a first order, self-adjoint operator on H!(R3, C#) with purely absolutely
continuous spectrum given by

o(H) = (—oo,—m] U [m, +00).
The orthogonal projectors A + on the positive and negative energies subspaces are such

that
HAy = ALH = ++vV—-A+m2AL = £ALV/—A + m?

and hence
/ (W (), HY () dx = [(=A +m?) ALy ) = |[(=A +m?) Ay 5.

We will denote X = HY/2(R3, C%), X+ = A+ X, X ={y € X | |[¥|» = 1}, and

Yir={yeXyi||Y|p=1}
‘We have also that

H=FHF '=a-p+mp,
UHU™' = A(p)B.

A~ g a—1 __ -1 ﬂ l
A =FALF " =U ( 2 )U_ ( /\(p)ﬂ )L(P) )

1 .
Fy(p) = w(m( m/ e '"PX y(x) dx forall v € S(R3)),
A(p) = VIpl* + m?,

= us (P +u_(p)pL

where

U™ =ui(p)l—u_ (p)ﬁ

u(p) = 10*)&?))

Let, for ¢ and € H'Y/2(R3,C*),

@) = / VPP + m2(B(p). ¥ (p) dp

P

| |
P
Pl
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and
vl = (v | v).
We have that
(Asg | A_y) = (As | A_yr) =0,
Let us recall that, since 37& = %W forall f € L'(R3) N L32(R3)
15) fOf0 _ (@l
Ix =y e

and that for all p € L'(R?), v € H'/2(R3,C*)

2
(o f p(Tx)_lﬁ |y|(y)' < kloli|(=8) 4y [; < clph Iy 1?
(k = %) and also that
(1.7 /|fn (©)lgn| ) |an|DIVIG)
|x =yl

when f, gn. hp, and v € HY2, f,, g, bounded, h, — 0.

2. MAXIMIZATION

Let I: H'/2(R3,C% — R

W. AW Y)()

I(y) = —||/\+1/f||2 - —IIA v|? -
lx — vl

Letus fix w € 34 and let
Bi={neX_|Inl<1}.
We will look, given w, for a maximizer of the functional J,, defined on By,

Jw(m) = I(a(mw + n)

(W, BY) () (¥, BY)(y)
|x — yl

’

1
= Slatmw)” = S Il -

where a(n) = /1 —|n3and ¥ = a(n)w +n € .
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We have that da(n)[§] = —a(n)~'(n | €) and hence the derivative of J,, is given,
forall £ € X_, by

1) dha(E] = d1 {atw + n)[da()lEhw + €] = A1)
~ (atw | datfelu) - (n] §) -5 [ LVCNLD)
B )
|x =l

=~ Olwl*>—(n] &) —s

(here h = da(n)[E]w + &) and we have, in particular,

s/ (W, BY) () (W, B(da(m)nlw + 1)) (»)
|x =yl '

dJw(mnl = —[nl3lwl? > -
LemMmA 2.2. Forallw € £ and n € By, we have

(2.3) Inl*> < a(m?||wll*> — 2Jw (n).

and for all n € By such that |n|3 > % and Jy, (n) = 0, we have that

(2.4) dTw(li] < —5 (1~ 45m <0,

Proor. We have, thanks to (1.5), that for n € By and ¢ = a(n)w + 1,

1
y ] Sla@uw]” = 7w

1, 1
_ < _
Sl = 3

and (2.3) follows.
From (2.3) it follows that ||| < a(n)||w|| if Ji () > 0; hence we have, if |n|3 > %,

W, BY) () (W, BY) ()
lx — vl

dJw(mn = —ni3lIwl? = Il s

s W, BY) (x) (w, Bw)(y) + sa(n)-! (W, BY)(x)(n, Bw)(y)
n
lx — y] [x =y
< —[nillwl* = 7> + sk ([wl* + a@m) " nlw])

+

1 1

< —Ellwll2 — [Inll* + 2sic|w|? < —( — dsi0)[lw]|?
1 s 1

< —5(1 —4sk)m|w|; = —5(1 —4sK)m,

where we have used (1.5) and (1.6). ]

RemaRrk 2.5. It follows from Lemma 2.2 that if 7, is a Palais—Smale sequence for Jy,
such that Jy, (1,) > 0, then |7, |3 < % for all n € N large enough.
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LEmMA 2.6. Let n, € By be a Palais—Smale sequence for J,, that is
Jw(Mn) > ¢ >0, dJy(n,) — 0.
Then ny, converges, up to a subsequence, to a critical point 1 of Jy,.

Proor. It follows from Lemma 2.2 and Remark 2.5 that |7, |3 < % and that || n,|| is
bounded; hence n, — 7 (up to a subsequence).
From

o(1) =dJy()[nn —nl = = | N0 — 77)||w||2 (M | M0 —m)

—S/ (Wnaﬂwn)(x)(l/fn’ﬂ(_a(nn) l(nnlﬂn_ﬂ)w‘l"?n_n))()’)
|x =yl

we deduce that

0 = 13 1wl® + ll7s = nl?
=~ | nu = mlwl? = (n | 12 —n)

+sa(Mn) " | M — TI)/ (Wn,ﬂlﬂn)lj(cxyf'n,ﬁw)(y)

/ (W, BYR) () (Y, B — M) (¥) o),
lx — yl
We have that
/(Wn ﬂ‘ﬁn)(x) V. B(Mn —ﬂ))(y)
|x =y
/(an B —m)X) (Y B — M) () /(wn BN (Y B — 1) (»)
|x — vl lx — vl
+ a(’?n)/ (an’ ,Bw)(x)(l/fn» :3(7771 - 77))()’)
|x — vl
_ / (V. B — n))|()-CX)_(xi;|z,ﬂ(nn —n)») +ol)

an

‘/ (V. BYn) () (V. Ba(nn)w) (y)
lx — vl
< i ¥nll|amnw] < k2]a@aw]? + [121?) < 3cama)?|w]>.

Since |7 |3 < %, we have

a(nn)_z(nn | —m) = a(ﬂn)_2|77n - 77|§ +o(1)
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and we deduce that

1 — n3llwl® + 7, — 0l
(V. B — ) (X) (Y, B(w — 1) ()

< 3wl —nlwl =5 [ +o()
|x =yl
< 3sk|na = nl3llwl? + o(1)
and n, — n, with 7 critical point of Jy,. |

We now show that all the critical points of Jy, at positive levels are strict local
maxima. This lemma follows as in [2, 6].

LemMma 2.7. Let n € X_ a critical point of Jy, such that J,(n) > 0.
Then there exists § > 0 such that

d?Ju(E.§] < —8|E1*  forall§ € X_.

Prookr. In order to compute the second derivative we denote ¥ = a(n)w + 1 and
h = da(n)[é]w + & and observe that

d*a(n)§,¢] = —a(n)—l((g 1 &) + W—(’?Q)

1—nf3
Then

d? T (€. €]
= d?1(y)[h. h] + dI1(y)[d?a(n)[&, Elw]

= (da()[Elw | da(mlElw) - (& | &) — s
o [ BB

(V. BY)(x)(h, Bh)(y)
lx — yl

+a(md?a(m)§, ) (w | w)

[x =yl
s [ O Bl )0
[x =yl
Rl s [ EEDD@ DO
= —leBlul? + ol [ LA el
L [BDOEHD L, Gl

|x =yl 1—nl3

oy [WED@@ ) (B ]9
Ix —y| L=z (1—n3)

z)a(n)l“(n),
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where we have set

WY w. FOH»)
[x =yl
Since 7 is a critical point for J,, we have that

ro =
1,00 € = d T le g1+ 2,
2

+( |§|§2Jr3 (n.6)*
1—1nl3 (1—1n3)

dJw()[§]

2)dfw(n>[n1.

We have that
nl3 (¥, BY) (x)(w, Bw)(y)

0= dJumn = —In3lwl?— Inl* +

1—1n2 |x =yl
W BV (1. B () _S(l —2|"|%)ar(n)
|x — y| 1—1nl3

1 —2|n|?
< (1= ol = (1 =l = (T Jar

which implies that I'(1) < 0. After some simplification, we get

1§13
I —=1n

(1 - s )||n||2—(1—s:c)( €] - 2||n||2)

d*Jw()[E. 6] < =0 (1 —s) w]|* —

1§13
1—| 3

|2(1 s) 112 = (1 = sw) & + Rn])?

< __ D2

=< —3(1 —si)lIE]%,

where
_ @9
1= nl3
_ g2 2 163 2
= €15+ 2R(n.§) — Inl3 > TR
1—1nl3
Remark that, since [7]3 < 5, we have
1§12 2 2
0>(+—T5+R|(1-2n3) >
1 —nl3
and

B 1 (l©> _ KBe-3mB) B

> > 0. ]
=B 2(—pm2)? = 20-1mR)?® ~ 40 -1n2)°
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We let, forallw € X4,

€(w) = sup Jy(n).
neBy

LemMA 2.8. Forall w € ¥4, we have
1 1 1
0<-2—-sk)m < —(2—SK)||w||2 <&(w) < —||w||2.
4 4 2
Proor. We have that

E(w) = Jyu(0) = %”w”z _%/ (w, Bw)(x)(w, Bw)(y)

[x =y

1 1 1
= C=s0lw]? = Q= smlwl; = 22— sim

and, for all n € B, we have

s [ WAD@W AN _ 1
4 Ix — y| -2

T = 3 |atw]® = Sl - ol .

ProrosITION 2.9. For every w € X4, there is a unique n(w) € By such that
Jw (n(w)) = max Jy, (n) = &(w).
neB
n(w) is a critical point of Jy, on By such that |n(w)|, < % and

(2.10) Inw) | +m < Ja(pw|

% n)] = Selwl
Moreover, the map

w € X1\ {0} = y(w) = n(lwl;'w) € B,
is smooth.

Proor. We can find, by Lemma 2.8 and using Ekeland’s variational principle, a maxi-
mizing Palais—Smale sequence 7, at a positive level.
Then, by Lemma 2.6, n, — n (up to a subsequence), with

dJy(n) =0, Ju(n) = &w).

From

s f W, BY) ()W, BY) ()
4

1 1
gw) = sa(n? P - 3l - .

2

1”w”2_5 (w, Bw)(x)(w, Bw)(y)
2 4 |x — ¥l

%

9
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we deduce, using Lemma A.1 in the appendix, that

a(m?[lwl* = lInll* = m
> [Jwll* = s«lnl3lwll* = Tsa(m)*«k (|wl* — mlw[3) = 9s«|nl* — m|w|3

> sk (a(mwll® = InlI* —mlw[3) + (1 = 16s1) (lw > —ml|w]3) + 8skc|n 3wl

and we immediately deduce that

1—16sk

a(?w]2 = n]> = mlw3 = === (w|> = mlwl3) > 0.

We also have that

Bl + g < 5 [ (P 0
|x — |

-2
s —1/4,12 _ % 2
=) uf} < efwl

A

from which we deduce that
Il < Ziellwl.
2
To prove the uniqueness of the maxima for Jy, (1), we assume, by contradiction, the
existence of 1, 7 € By such that

Jw(m) = Ju(n2) = &(w).

It follows from Lemma 2.2 that || < 1 and |n2|3 < 1. We will use the mountain
pass lemma in order to reach a contradiction. Let

» 1
r={ecc(on.5) 120 =m. g = le0f; < 5]
and define the min-max level

¢ =sup min_ Jy,(g(1)).
gGF ZE[O,I]

Let g(1) = tm1 + (1 — 1)75. We have that |g(1)[> < 1 and a(g(t))? > 4 for all
t €0, 1], so that we have, letting v, = a(g(¢))w + g(¢),

BY)(xX)(We, BYe)(y)
[x — vl

1 1
=5 (15 Jateho - 5 (145 Lol

! ! ts
Lu(g0) = (O 1wl - 5 |s0]* - § [ W
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1 1
=5 (15 Jratn ol + 5 (1= % )1 = a2 l?
(0 5 el = 5 (145 ) a = ol
B B m 5 ) n2
1 1 1
= (15 = (14 5 ) el = 30 = 200l

where we have used the second inequality in (2.10) and s« < 2. We deduce that ¢ > 0.
Since the set I is invariant for the gradient flow (see Lemma 2.2) and the Palais—Smale
condition holds (see Lemma 2.6), we deduce from the mountain pass theorem that
there exists a critical point at level ¢, which cannot be a strict local maximum. The
contradiction then follows from Lemma 2.7.

To prove that the map w > y(w) = n(lw|;'w) is smooth, we consider, since
the map w > P(w) = |w|;'w is smooth, that (wo, 7(we)) € X+ X By and we let
V C X+ \{0}and U C B; be neighborhoods of wg and (wy), respectively. Then we
define the map F:V x U — L(X_) as

F(w,n[§] = dJpw)m§] §e X-.

Clearly, P(wo) = wo and F(wo, n(we)) = 0. We have that

dy F (wo, 1(wo))[E][S] = d*Juy (1(wo))[£. 8], &.¢ € X—.

It follows from Lemma 2.7 that

—dy F (wo. n(wo))[E]E] = —d*Ju, (n(wo))[§. €] = 8§ forall § € X—

and hence we have from Lax—Milgram that for all linear functionals L on X_ there is
aunique { € X_ such that

—dy F (wo, n(wo))[¢][§] = L[E], forall§ € X_,

thatis, L = —d, F(wo, n(wo))[{]. By the implicit function theorem, there exist Vo C V
and Uy C U, neighborhoods of wq and n(wg) and a smooth map y: Vo — Uy such that
F(w,y(w)) = 0 for all w € Vj; that is, y(w) is a critical point of Jp(,) on By ata
positive level. Then, by Proposition 2.7, y(w) is a strict local maximum of Jp () on Bj.
Again using the mountain pass theorem, we deduce that actually y(w) = n(P(w)) is
the unique (up to a phase factor) maximum of Jp ().

Finally, we have that

dy()[v] = —dy F(w, y(w)) " [dw F(w, yw))[v]] forallve X;. m
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It follows from Proposition 2.9 that we can consider the smooth functional &: X \
{0} — R defined as

E(w) = Jpu)(y(w)) = Sug Jpw)().
neby

Since
Jp)(y(w)) = I(a(y(w)) P(w) + y(w))

and recalling that
dJp ) (y(w))[E] = d1(Yw)[da(y(w))[E]P(w) +§] =0 forall§ € X_

(where ¥, = a(y(w))P(w) + y(w)), we have that for all v € X

d€w)[v] = dw Jpw)(y(w))Iv]
= d1(w)[da(yw))[dy(w)[L]]P(w)+a(yw))dPw)v]+dy(w)|v]]
= dyJp ) (v (W) [dyW)[V]] + dI(Yw)[a(y(w))dPw)[v]]
= d1(Yw)[a(y(w))dP(w)[v]]
= dI(w)[a(y)v] = dIYw)[a(yw))(w | v)w]

(we have used that P (w)[v] = v — (w | v)w) and
@.11) d&(w)[v] = a(y(w))dI(Yw)[v] —a(yw))*o(w)w|v) forallve Xy,
where

(2.12) o) = a(yw))” dI(w)w].

ProposiTION 2.13. Let wg € X4 be a critical point of & restricted on the manifold
Y 4+. Then wy is a critical point for & on X+ and the function

Yo = a(n(wo))wo + n(wo) € =
is a critical point for I on the manifold ¥ and satisfies
(2.14) dI(Yo)h] = w(o | h) forallh € X,
where w = w(Y¥y) € R,
(2.15) (1= 3s6)||wol|* < @(Yo) = 21(Yu,) = 26 (wo)-

Moreover, if Wo € X satisfies (o) > 0 and (2.14) for some v € R, then w =
|A+¥0l5 ' Ao is a critical point for & (w).
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Proor. Let wg € ¥4 be a critical point for & on X4, no = n(wp) = y(wo), and
Yo = a(no)wo + no. Then

d&(wo)[h] =0 forallh € Ty,S4 = {h € X4 | (wo | h) = 0}.
Since d P (wg)[wp] = 0, we immediately deduce that
d&(wo)[v] =0 forallv e X;.

From (2.1), we have that for all £ € X_

0 = dJu,(10)[E] = d1(Yo)[E] + d1(¥o)[ (da(no)[§])wo]
while for all v € X4 we have

0 = d&(wo)[v] = a(no)dI(¥o)[v] — a(no)*w(Wo)(wo | v)
and hence, forallh = v+ £,v e Xy, 6 € X_,

d1(Yo)[h] = a(no)w(Wo)(wo | v) — dI(o)[da(no)[Elwo]
= a(no)w(Yo)(wo | v) + w(Yo)(no | §)
= o(Yo)(WYo | h).

that is
dI(Yo)[h] = o(Yo)(Wo | k) forall h € X,

which shows that 1 is a critical point for /() under the constraint ||, = 1. The
Lagrange multiplier w (o) = a(no)~'d I(¥o)[wo] is such that

o) = a(n(wo) " d1(Wo)lwol = lwol?® = sica(n(wo) ™ ol lwol
> ol = 5 (a(n(wo) Vol + o)

SK -2
> woll* — ?(Hwo”2 + a(n(wo)) Inoll* + ||w0||2)

2 2
> [lwoll” — T||w0||

and

w(Yo) = dI(Yo)[Vo] < 21(o).

Suppose now that Yo € ¥ satisfies (2.14) for some @. Let wg = |A1¥0l5 ' A+
and 79 = A_¥g. Then we deduce from (2.1) that for all £ € X_

dJuw, (n0)[E] = d1(Yo)[da(no)[Elwo + §] = &(vo | da(no)[§lwo + &) = 0.
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and 7y is a critical point of Jy,,. From Lemma 2.8, we know that 7 is a local maximum
and, arguing as in the proof of Proposition 2.9, we deduce that no = n(wg) and
& (wo) = Juy(n0). We also have that

@ = dI1(Yo)[Yo]l = w(¥o).
We then deduce from (2.11) that
d & (wo) = a(y(wo))dI(Yo)v] — a()’(wo))zw(%)(wo [ v)

a(y(wo))dWo | v) — a(y(wo))* (W) (wo | v)
= a(y(wo)) (o) (a(y(wo))wo + & | v) —a(y(wo)) (o) (wo, v) = 0.

From now on, we will make explicit the dependence of 7, J, and & on s > 0 writing
I, Js, and &y, introduce the following minimization problem:

e(s) = inf &s(w)
weE+

. 1 1
oL {ga(ns(w))zllwll2 - lns)I*

_f/ (1//w7ﬂWw)(x)(1//w7ﬂWw)(y)}
4 lx =] ’

and let E(s) = se(s).
The next lemma allows us to recover enough compactness (via the concentration-
compactness lemma [4,5]) in order to prove our main result; see also [6, Lemma 4.2].

Lemma 2.16. Forall s € (0, %] we have that 0 < e(s) < 7.

Proor. From Lemma 2.8, we have that e(s) > i(2 —SK)m > %(2 —K)m > 0.
Using Lemma A.1, we deduce that

8s(w) = Is(\”w)

m 1
5 + 51+ 850wl = mlwl3) -

s [ (W pw)@)w. fu)(y)
4 lx — | '

IA

Fix wy € H'(R3,C?) such that |wi|> = 1, w = (') ) and let wy(x) = £3/2w(ex).
We have that
|wel3 = w]3 = 1,
and ]
. _ -1
We(g) = mw(s p).
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so that

el — mlwe 2 =/(\/|q|2+_m2—m)
2
- [ e+ =@ = 5 [laPlin@)f

and ||wg||? < m 4+ C&%. We then observe that

e (9)]?

lwe = A wel|> = | A—we]?
B R 1 [ LY
2L VP +m? JepP+m2l\ 0

w

:l/(\/m—m)

2
: i) = ¢ [1pPlin ()]

and also

|1 - |A+ws|2‘ = ||wa|2— |A+ws|2| < Jwe — Apwgl2

1/2
e . 2
= |A_welz < m(/|P|2|w1(p)| ) :

We deduce from this that for ¢ > 0 small enough |A y we|, > %
Let

@e(x) = |A+wa|;1A+ws(x)'

We have that
lpell < 1A wel3 well < v/m + Ce

and
lwe — @ell < lwe — Agwel| + (1 — AL wel2)ee |
e - ) 1/2
<5 =+ le( [1oPloof)
and also

1 e ) 1/2
—w = —— W —A w < — 2 ‘l,’l\)
|(P5 £|2 |A+w8|2| € + 8|2 = ﬁ(/|p| \ l(p)| )
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and we can estimate

/ (@e, Bpe) (X) (e, ﬂ(ps)(y)

Es(pe) < E"‘ (1+8SK)(||(pg||2—m|(p€ x— |

We have that

2 2
I pell” = mlgelz

=[(¢|q|2+m2—m)|¢s<q>|2
< 2/ (VP +m2 = m)|¢:(@) — (@] + 2/ (VIaP +m2 — m)| (@)

= 2(llge — we > — m|@e — we3) + 2(|lwe|? — m|we|?)
2

&
2—(3 + ||<Pe||) [Vw [3.

‘We have that

O(ge) — O(we) = Q((ps — we) + we) — O(we)
= Q(ps — w;) + 4/ (s — We, Bwe)(x)(we, Bwe)(x)
|x =yl
+ 3/ (e — We, Bwe) (X) (@ — We, Bwe)(x)

Ix =yl
n 3/ (‘pa — We, Blge — wa))(x)(wav Bwe)(x)
[x =yl
n 4/ (‘/’s — We, Blgs — ws))(x)((Ps — We, Bwe)(x)
|x =yl
> —4ic|ge — wel2| (=) /4 wg |3 — 3xlpe — wel 2| (—A) 4wl 3

— 4K | — wel2 |l — ws”2-

Since

2 ~
| A) 4|2 = /|p||w8|2 - e/|p||w1|2,
we have
0(¢e) = O(we) — ce? >eQ(w) —6‘82;

we therefore deduce that
(w, Bw)(x)(w, ﬁw)(y) 22
[x — ¥

2 2
Es(we) = T + =—(1 + 8510 Vul} -
m
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Since Q(w) > 0, we deduce that

m
Es(we) < 5

for £ small enough and for all s € (0, L), and hence e(s) < 2 5 forall s € (0, é). [

» 8w

ProrosrTioN 2.17. Forall 8 > 1 and s € (0, %) such that 9s € (0, 2=), we have that

> 87
e(fs) < e(s).
Proor. Let > 1 and s € (0, Lﬂ) such that 0s € (0, Lﬂ) Take w € X4 and let

ns(w) € By the function whose existence follows from Proposition 2.9. Since it follows
from (2.10) that

la(ngs w))w]* = [nos )| = m >0,

we have that

o€t -7 )

_ e(lnames(w))wuz—1||nes<w>||2—ﬂ—Q—S/ PO )

lx =yl
= 02t - 5 sty |~ 5 - [P0 PUO)
oy (_” (15 (w))w 2 __”,]s(w)H /(vfz ﬂwz>|§c)_<x/yle,ﬂwz><y>)

—o(&:0 -5

(here Y1 = a(ngs(w))w + nos(w)) and ¥ = a(ns(w))w + ns(w). We know that
e(s) < % and hence

0(e(9s) - %) < 02(e(s) — %) < e(e(s) — %)

from which we deduce that e(0s) < e(s). [

Proor or THeEOREM 1.4. By Ekeland’s variational principle, there exists a sequence
wy, € X4 such that
Es(wy) — e(s), sup |d8 (wn)[v] | — 0.

v€+

;e(;z + o(1) so that

the sequence w, is bounded. It follows from Proposition 2.9 that also 1, = n(w,) and

From &s(wy,) — e(s), we deduce from Lemma 2.8 that ||w,|| <
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Yy = a(p)wy + ny are bounded in X . Letting w, = a(n,)~'dI(¥n)[wn], we have
that
dIs(Yn)[h] — wp(Yn | h) =0 forallh € X.

We can assume that (up to a subsequence) ¥, — ¥ in X and that w,, — . Then
we have that forall h € X

dIs(Yn)lh] — on(Yn | h)
= (Vn | Agh) = (Yn | Ah) —

— 0,

/ (Yns BYn) (X)(Wrn, BR) ()

—@n(Yn | h)
lx — yl

since, by (1.7), we have that

/ Vns BYn) () (Y — ¥, BR)(¥)
lx — vl

— 0.

As a consequence, we have that
dis(W)h)—ow(y | h) =0 forallh € X.

The weak convergence does not, however, preserve the L? norm, so we only know that
V]2 < |¥m|2 = 1 (it could even be that ¢ = 0).

To conclude, we will now apply the concentration-compactness principle; see [4,5].
First of all, let us show that no vanishing occurs. By contradiction, assume that

limsup sup / [V |? =
B(y.1)

n—+00 yeR3

Then we know, see [4] or [8, Lemma 1.21], that ¥, — 0in L?(R3) for2 < p < 3.
Since

lx =yl
we deduce, using (2.10), (2.15), and Lemma 2.16, that

<C|Wn|‘%2 — 0,

0=dI;(Yn)[¥n] — wn|¢n|§
= a@m)wa|* = l1nall> = wnl¥al3 —S/ L Ron M o)
lx — ¥

= ||a(77n)wn ”2 - ||7]n||2 _m|Wn|% + (m —wp) +0(1) = (m —wy,) +0(1) >0

for n large enough, a contradiction which shows that vanishing does not occur.
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Then we know from the concentration-compactness principle, that there exist p > 1
functions ¢1, ..., ¢, € X, critical points for /; under the constraint |1ﬁ|§ = u; (hence
satisfying (2.14) with w = lim, w, > 0), and p sequences of points x; , € R3,i =
1,..., psuchthat |x; , — xj,| = +ooforalli # j asn — 400 and

p
‘ Y — Z¢z( - xi,n)

i=i
From this it follows also that [{,[3 =1 = Y"7_ ;.
We then observe that

—0 asn — +oo.

||A+Wn||2 - ||A—Wn||2
= (‘/’n | Ay — A—‘/fn)

p
= <\”n - Z¢t C—=xin) | Apn — A_l//n>

AS]

+ Y (i = xin) | Apvin — M)

i=i

p
Z A+¢l( — X n) | ‘ﬁn) (A—¢i ( - xi,n) | 1pl’l)) + 0(1)

S|

=Y (146112 = A= ]1?) + o(1)

i=i

and also
(Vs BYn () (s BYn (1) <~ [ (12 Bi (%)) (¢ Bdi (1))
/ -] - [T e
Finally, we have that
p
(2.18) e(s) = I(Yn) + 0o(1) = Y Is(¢s) + o(1).

i=1

Let, fori = 1,....n, i = |¢ily ¢ = ;'

I(i) = L(JRiVi) = pilsu; (i)

¢; € 2. We have that

and

0 = dIs(@)[h] — (¢i | h) = /i (d s, (Fi)[h] — 0P | ) forallh e X.
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It follows from Proposition 2.13 that W; = |A |;1A+1ﬁ,~ € X is acritical point
for Ey; and &gy, (i) = Lsp, (¥i).
Since
Esp; (i) > e(spi),
we deduce from Proposition 2.17 that
p P y p P 1 p

e() =D Is(pi) =) pilyy, (%)ZZMN(W;‘)>Zﬂi€(zsm) =e(s) ) i,

i=1 i=1 i=1 i=1 ! i=1

a contradiction if p > 1.
Since there is no vanishing or dichotomy, our sequence ¥/, converges strongly in X
to a critical point ¥ € X of (2.14) such that ||, = 1 and the theorem follows. u

A. A USEFUL LEMMA

This lemma is similar to [6, Lemma 2.9]. We give here a slightly different proof.

Lemma A.l. Forally = (/1 —|w3w +n, w e T4, n € X_, we have

W B O BY) [ W, fw) () (w, Bw)(y)
lx — yl B |x — yl
— L4a(m)k(llw])* — mw|3) — 18«||n|>.

= 2¢[nl3 ]|

Proor. We have

W, BYYX) W, BY) ()

Ix =yl
— a(n)® (w, Bw)(x)(w, Bw)(y)
Ix =yl
+ 4a(n)® f (w, fw) (). FN) | 5,0 / (w. fw)(x)(n. A1) ()
b= | =yl
+3a(n)2/ (w. B () (w. Bn)(y) +4a(n)[ (n, Bn) () (w, Bn)(»)
|x_y| |x-y|
+ (n, Bn) (x)(n. B ()
Ix =yl
> a(n)* (w,ﬂw)(x)_(w,ﬂw)(J’) + da(y)? (w,ﬁw)(x)_(w”gn)(y)
|)C y| |x y|

(n, Bn) (x)(w, ﬂn)(y)_

—3a()c|nl* + 4a(n) )
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We have

' (w, Bw)(x)(w, Bn)(y)
lx — vl

[(w, Bw)]F [(w, ﬂn)] ‘
3/2
e \ﬂ/ Pl @
(2”)3/2[“ (- $)]l '/| sl '
|7 [w. ]| \/’

| |2 | |2
\f / |p|2((2n)3/2 [ 1@~ pi)] o)

‘ (., Bn)(x)(w, Bn)(y)
lx — yl

1 . .
By 2 [ (s [ 10— pita)] aa)

sa(n)? (w, ﬂw)(x)(w Bm(») +4a(n)/ (n, B (x)(w, B (y)
)l |x — y]

o 2 - i)

(W (p — q). Bi(q)) = (A+(p — @)0(p — q), BA—_(9)71(q))
= (0(p — ). A+ (p — 9)BA_(9)1(q)).

dx dt

|7 [w. ]| J

B

dx dt

so that

Since

we compute
4A+(p— ) BA_(q)

_ mp “'@—q))(_ﬁ_u)
('U(p—qﬁ -9 )P\ 0 " 20

e
- M)A (p —q) Mg) Ap—q)
(4 p—q \ ma-(g+(p—q)
Pe (l(q)+k(p—q)) DA —a)
B
EPrETL

a-(p—qle-q)
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(i) Gl o)
B Ma)M(p —q) Mq)  Ap—q)

_ﬁa.(q L P4 )_ ma-p  BE-(p-9)T-q
Mg) Ap—q)) MpPA(p—q) M)A (p —q)

Oj 0
Y = .
! (0 (Ii)

We now estimate the different terms. First of all, from

where

m(lp—ql +1q]) < AM@A(p—q) < lqllp —ql + m(lq| + |p — q]) + m?

and
llg1A(p —q) — |p — qlA(q)| < m|pl,

we deduce that

gl _ Ip—gql | _|ldlAp—9)—Ip—qlMg)| _  mlp|
AMg) Ap—q) AM@A(p—q) T AMPA(p—q)
and
m_om :m|k(p—q)—l(q)|:m |m? + |p —q* —m? — |q/?|
AMg) Ap—q) M)A (p —q) M@A(p —q)(Mq) + A(p —q))
_ llp—al—lal] _ |pl
T My +Ap—q) T Mg +Ap—9q)
- bd .
T (M) +m) P(Ap—q)+m)'
Then
MO Mp—q)—m?| _lqllp —ql+m(ql+1p —4)
AM@A(p —q) AM@A(p —q)
lql1p —q| m|p| m|p —q|
= Tr - T @A - T T@Ap -0
and
‘q L pa | _|ldl _ p=al |, Ip—dl
Mg) Ap—q)| " Mg Ap-—q) Alp—9q)

c_mpel L, Pl
T MPAp—-q9)  Ap—q)
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Since

B -(p -9 -q‘ _ _ldllp -4l
MPAMp—q) |~ M@A(p—q)’
we finally have

4|(d(p — ). Bi(@)]
- (3lqllp—q|+3MIp|+2m|p—q| L 2Ap— ql
Ma)A(p —q) Alp

)|w<p o|li@)

. Pl
(A(@) +m) > (A(p—q) + m)

Let us analyze the different terms:

\/7/ ( 1 Ip—q||u3(p—q)|Iql|ﬁ(q)|dq)
PP\ 2n)32 A(p—q) Aq)
o |p||w(p)l} _1[|p||ﬁ(p)|ﬂ
\F/W [ [ i 17w 1Y

o Ipllw(p)|}f~ 1[|pl|n(p)|]
- [ N [ i 17 L am -

_ lﬁ_l[lpr(p)q lﬁ_l[lplm(p)q
|x|1/2 A(p) |x|1/2 Ap) 12

o |p||w(p)|} o [Ipl|n(p)|]
1/4 g1 1/4 & —1
=4) [ OR )

< 2/ [w]2 = mfw[3\/n]2 — mlnl3

70— D[],

<K

2 2

since

I 2 3.4 2
A 1/4~_1[|pllw(p)|} _ [ 1Pl
'( S LT e

sz/(¢|p|2+m2—m);w(p>|2dp = 2(lwl? — mlw]2)

\/Z/ dp( 1 Ip—qlltﬁ(p—q)|m|1f)(q)|dq)
7 J |pl2\(@2n)3/>? Ap—q) A(q)

. [lpl|w (p)l] o [m|ﬁ(p)|}
1ag—1 0771 _ An1/4 1| TIRE) |
&) [ o LTV T

< Vmk|nlzy/lw]? —mlw|3

and

<k

2
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since

(_A)1/437—1|:m|ﬁ(p)|j|

A 2
) Z/m2|p||n(p)| dp <™ np2
Ap) s -2

A(p)?

We also have that

2 dp( 1 [(p—q)| |7(9)| d)
\/:/“’lz (2”)3/2/|p|()t(1v—q)+'")1/2 (A(g) +m)"? !
Y S 00 }3,_1[ pl[a(p)] Hd
\/>/|P| [ |:)L(p)+m)1/2 (A(p)+m)1/2 g

_2 _56_1[ l(p)| }fm_l[ 14(p)| ]d
n/|x|2 (/\(117)-1-171)1/2 ()&(p)—l—m)l/2 *

<%L$-1[ ()] ] ! ?_1[ [i(p)| }
I Ly 4 m) 2RI L) 4 m) 2 1l
_ 8| _lrllo) 1p1]i(p)|

= (A(p)—l—m) 2l (A(p )+m)1/2

< 2/ [w]2 = mfw[3\/lIn]2 — mlnl3

\/7/ ( m ||u3(p—61)||ﬁ(q)|d)

TR )3/2 P -a @

8| vmlpl|w(p)|| | vmlpl|i(p)|
A(p) 2 A(p)

< sKannz —m|w|§\/||n||2 — minl3

and

T 2

(we have used the fact that —32-5 < %(\/p + m? —m)).
Finally, we have

2 [ dp 1 lp —ql|b(p - q)||w(q)| )
\/;/|p|2((271)3/2/ Ap—q) da

o |p||u3(p)|]
_ 1/4 1
s [ O

< V2|l w2 = m|w3.

<k

w1l
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‘We now collect the terms:

1 N A
a2 [ & (ks [ oo —.pia)] aq)

< 23ca(n)/I1wll? = mlwlZy/I1nll? - mInl3

+ 2d/mra)lnlay/ w2 = mlw]3 + 2v/2ca(mnlly/ |w]? = m|w[3

< 1dam?k(lw]? — mlwl3) + 15¢(7]?

to deduce that

(11

(2]

(3]

(4]

(5]

(6]

(71

W Y)W BY)() [ (w, fw)(xX)(w, fw)(y)
[x — vl lx —

> =2k|nl3lw)* = 3a(m)c|n|?
—4 d
a(n)[/|p|2((2n)3/2/| ((p —9). Bi(@)| q)
> —l4a()*k (] — mlw(3) — 2«|nl3llwl* — 18k[n]1>. =
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