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1. Introduction

An Enriques–Fano threefold is a normal threefold W endowed with a complete linear
system L of ample Cartier divisors such that the general element S 2 L is an Enriques
surface and such that W is not a generalized cone over S ; i.e., W is not obtained by
contraction of the negative section on the P1-bundle P .OS ˚ OS .S// over S . The
linear system L defines a rational map �L W W Ü Pp , where p WD S3

2
C 1 is called

the genus of W and 2 � p � 17 (see [16, 20]). If the elements of L are very ample
divisors, then W is embedded in Pp via �L as a non-degenerate threefold whose
general hyperplane section is an Enriques surface. It is known that any Enriques–Fano
threefold is singular with isolated canonical singularities (see [7, Lemma 3.2] and [3]).
We will say that two distinct singular points of an Enriques–Fano threefold W are
associated if the line joining them is contained in W . The way in which the singular
points of an Enriques–Fano threefold are associated is called configuration and can
be represented graphically: if two singular points are associated, one draws a segment
joining them, otherwise not. In particular, if there is an m such that each singular point
is associated with exactly m other singular points, we say that the configuration is
regular. In Appendix B, we will graphically describe the configurations that we will
find in this paper.

Definition 1.1. The singular points of an Enriques–Fano threefold W are said to be
similar if they have the same multiplicity, they have biregular tangent cone, and their
configuration is regular.

https://creativecommons.org/licenses/by/4.0/
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The first examples of Enriques–Fano threefolds were discovered by Fano (see [12]),
under the assumption that their singularities were similar and that the blow-up at the
singular points was sufficient to resolve them. It must be said that Fano’s arguments
contain many gaps, some of which have been solved by Conte and Murre (see [7],
where the authors also re-proved a result of the paper [14] of Godeaux, useful for the
arguments of Fano). By using a sort of inverse of [7, Theorem 7.2], Fano constructed
four rational Enriques–Fano threefolds having eight similar singular points whose
configurations are the ones in Table 1 of Appendix B (see also [18]). They are as
follows:

(i) the Enriques–Fano threefold W 6
F � P6 of genus 6 given by the image of the

rational map defined by the linear system of the septic surfaces with double points
along three twisted cubics having five points in common (see [12, Section 3]);

(ii) the Enriques–Fano threefold W 7
F � P7 of genus 7 given by the image of the

rational map defined by the linear system of the sextic surfaces having double
points along the six edges of a tetrahedron and containing a plane cubic curve
intersecting each edge at one point (see [12, Section 4]);

(iii) the Enriques–Fano threefold W 9
F � P9 of genus 9 given by the image of the

rational map defined by the linear system of the septic surfaces having double
points along the six edges of two trihedra (see [12, Section 7]);

(iv) the Enriques–Fano threefold W 13
F � P13 of genus 13 given by the image of the

rational map defined by the linear system of the sextic surfaces having double
points along the six edges of a tetrahedron (see [12, Section 8]).

Fano also found an “exceptional” example of genus 4, which is a sextic hypersurface
W 4
F of P4 whose general hyperplane section is a sextic surface of P3 having double

points along the six edges of a tetrahedron (see [12, Section 10]). The threefold W 4
F

has been proved to be non-rational (see [2]). Furthermore, as noted by Conte in
[5, p. 225], there is also another exceptional example of genus 3, which is the threefold
W 3
F given by a quadruple P3 (see [12, Section 2]). We will refer to the above threefolds

W
pD3;4;6;7;9;13
F as F-EF 3-folds. However, Fano’s classification is incomplete: indeed,

it fails to include some other Enriques–Fano threefolds which have been discovered.
Under the assumption that the singularities are terminal cyclic quotients, Enriques–Fano
threefolds were classified by Bayle (see [1]) and, in a similar and independent way,
by Sano (see [22]). We will refer to such Enriques–Fano threefolds as BS-EF 3-folds:
they are fourteen and they have genus 2 � p � 10 or p D 13. Six of them are endowed
with a linear system of very ample divisors (see [1, Theorem A]): they have genus
p D 6; 7; 8; 9; 10; 13 and we will denote them, respectively, by W 6

BS, W 7
BS, W 8

BS, W 9
BS,

W 10
BS , W 13

BS . We recall that a fixed BS-EF 3-fold W is the quotient of a smooth Fano
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threefoldX via an involution � having 8 fixed points, and thatW has 8 quadruple points
whose tangent cone is a cone over a Veronese surface. More generally, an Enriques–
Fano threefold with only terminal singularities is a limit of some BS-EF 3-fold (see
[19, Main Theorem 2]). Instead, only a few examples of Enriques–Fano threefolds with
non-terminal canonical singularities are known: two of genus p D 13; 17 found by
Prokhorov (see [20, Proposition 3.2 and Remark 3.3]) and one of genus p D 9 found
by Knutsen, Lopez, and Muñoz (see [16, Section 13]). The Enriques–Fano threefolds
of genus 13 and 17 found by Prokhorov (shortly, P-EF 3-folds) are obtained as the
quotient of singular Fano threefolds V via an involution � having five fixed points: we
will denote them by W 13

P and W 17
P , respectively. The Enriques–Fano threefold found

by Knutsen–Lopez–Muñoz (shortly, KLM-EF 3-fold) is a threefoldW 9
KLM � P9 given

by the projection of the F-EF 3-fold W 13
F � P13 from the P3 spanned by a certain

elliptic quartic curve E3 � W 13
F .

In order to find useful information to complete the classification of Enriques–Fano
threefolds, we will study the threefolds W pD6;7;8;9;10;13

BS , W pD13;17
P , W 9

KLM . We will
do this from a computational point of view, with the help of the software Macaulay2.
In Appendix A, we will collect the input codes used in Macaulay2.

Since the F-EF 3-folds W pD6;7;9;13
F have eight quadruple points whose tangent

cone is a cone over a Veronese surface (see [12, p. 44]), then they only have terminal
singularities (see [21, Example 1.3]) and therefore they are limits of the BS-EF 3-folds
W
pD6;7;9;13

BS (see [19, Main Theorem 2]). We can say something more about this link
between F-EF 3-folds and BS-EF 3-folds. Indeed, in Sections 2, 3, 4, and 5 we will
prove the following results.

Theorem 1.2. Let p 2 ¹7; 13º. Then the eight quadruple points of the BS-EF 3-fold
W
p

BS ,! Pp are similar and they have the same configuration as the ones of the F-EF
3-fold W p

F � Pp . Furthermore, we have the following facts:

(i) the ideal of W 6
BS � P6 is generated by cubics;

(ii) the ideal of W 7
BS � P7 is generated by quadrics and cubics;

(iii) the ideal of W 9
BS � P9 is generated by quadrics;

(iv) the ideal of W 13
BS � P13 is generated by quadrics.

In Sections 2 and 4, we will see that the eight quadruple points of particular examples
of BS-EF 3-folds of genus 6 (respectively, genus 9) are also similar and they have the
same configuration as the ones of the F-EF 3-fold of genus 6 (respectively, genus 9). It
would be interesting to show it for general W 6

BS and W 9
BS.

Theorem 1.3. The embedding of the BS-EF 3-fold of genus 13 in P13 is a F-EF 3-fold
of genus 13.
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In Section 4, we will also prove that particular BS-EF 3-folds of genus 9 are
isomorphic to F-EF 3-folds of genus 9. It would be interesting to show it for general
W 9

BS.
We have other links between F-EF 3-folds and BS-EF 3-folds. The BS-EF 3-fold of

genus 4 described in [1, Section 6.33] (see also [22, Theorem 1.1 No. 5]) is endowed
with a linear system defining a birational map onto the image, which is the F-EF
3-fold W 4

F � P4. The BS-EF 3-fold of genus 3 described in [1, Section 6.1.5] (see
also [22, Theorem 1.1 No. 2]) is endowed with a linear system defining a quadruple
cover over P3, so it looks like the F-EF 3-fold W 3

F . This suggests that one could
obtain the BS-EF 3-folds with ample (but not very ample) hyperplane sections by
resuming the Fano–Conte–Murre techniques and by undermining some assumptions.
Thus, reviewing the brilliant ideas of Fano with the techniques of Conte and Murre,
would be very interesting, since new Enriques–Fano threefolds could be found, even
if this problem seems not to have been studied yet. However, one must be careful of
mistakes in resuming Fano’s paper. For example, the BS-EF 3-folds W 8

BS and W 10
BS

do not appear in the description of Fano, although they behave like the other BS-EF
3-folds with very ample hyperplane sections. It is a situation that should be understood
better. The problem could be the fact that Fano stated that if the genus is greater than 7,
then there are no three mutually associated singular points (see [12, Section 5]). Indeed,
we will see that the singularities of both threefolds W 8

BS and W 10
BS have configurations

which are in contradiction with this assertion. In Sections 6 and 7, we will prove the
following result.

Theorem 1.4. Let p 2 ¹8; 10º. The ideal of W p
BS � Pp is generated by quadrics and

cubics. Furthermore, the eight singular points of W 10
BS are similar and they have the

configuration in Table 2 of Appendix 2.

In Section 6, we will show that the eight singular points of particular examples of
B-EF 3-folds of genus 8 are also similar and they have the configuration in Table 2 of
Appendix 2. It would be interesting to show it for a general W 8

BS.
Furthermore, we will identify W 8

BS and W 10
BS as images of rational maps defined

by linear systems of surfaces of P3, as happens for the rational F-EF 3-folds (see
Theorems 6.1 and 7.1). We will also study the singularities of the P-EF 3-folds and
the KLM-EF 3-fold. It is known that these threefolds have canonical non-terminal
singularities, but so far there was no information about their multiplicities and tangent
cones. This analysis is very interesting because it provides some clues about the link
between the non-terminality of the singularities, the non-similarity of the singularities,
and the fact that the blow-up at the singularities is not sufficient to resolve them. In
Sections 8 and 9, we will prove the following result.
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Theorem 1.5. Let p 2 ¹13; 17º. Then the P-EF 3-fold of genus p can be embedded
in Pp and its ideal is generated by quadrics. Furthermore, W p

P has five non-similar
singular points whose configuration is the one in Table 3 of Appendix B. Moreover,
four of these five points are quadruple points, whose tangent cone is a cone over a
Veronese surface. If p D 13, the last point is a quintuple point, whose tangent cone is
a cone over the union of five planes; if p D 17, it is a sextuple point, whose tangent
cone is a cone over the union of four planes and a quadric surface.

For further details, see also Propositions 8.1, 9.1 and Theorems 8.2, 9.2. As for the
KLM-EF 3-fold, we refer to Section 10. We will find that the ideal of W 9

KLM in P9 is
generated by quadrics and cubics. We will see that the images of the eight quadruple
points ofW 13

F , via the projection map, are five singular points ofW 9
KLM such that four

of them are quadruple points, whose tangent cone is a cone over a Veronese surface
(see Proposition 10.2), and one is a sextuple point, whose tangent cone is a cone over
the union of four planes and a quadric surface (see Theorem 10.3).

Finally, in Section 11, we will study the projective normality of all the above
Enriques–Fano threefolds, obtaining the following result.

Theorem 1.6. The following Enriques–Fano threefolds are projectively normal:

W 9
KLM � P9; W

pD7;9;13
F � Pp; W

pD6;7;8;9;10;13
BS

�L
,�! Pp; W

pD13;17
P � Pp:

We will work over the field C of the complex numbers. For the computational
analysis we will work over a finite field (we will choose Fn WD Z=nZ with n D
10000019).

2. The BS-EF 3-fold of genus 6

Let us study the Enriques–Fano threefold described in [1, Section 6.2.4] (see also
[22, Theorem 1.1 No. 9]). We refer to Section A.1 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefoldX given by the intersection
of three divisors of bidegree .1; 1/ of P3

Œx0W���Wx3�
� P3

Œy0W���Wy3�
with equations

3X
iD0

3X
jD0

aijxiyj D 0;

3X
iD0

3X
jD0

bijxiyj D 0;

3X
iD0

3X
jD0

cijxiyj D 0;

where aij D aj i , bij D bj i , cij D cj i , for i; j 2 ¹0; 1; 2; 3º. Let � W X ! X be the
involution of X defined by the restriction on X of the following map:

� 0 W P3 � P3 ! P3 � P3;

Œx0 W � � � W x3� � Œy0 W � � � W y3� 7! Œy0 W � � � W y3� � Œx0 W � � � W x3�:
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We have that � has eight fixed pointsp1,p2,p3,p4,p5,p6,p7, andp8 with coordinates
Œx0 W x1 W x2 W x3� � Œx0 W x1 W x2 W x3� such that8̂̂̂<̂

ˆ̂:
P3
iD0

P3
jD0 aijxixj D 0;P3

iD0

P3
jD0 bijxixj D 0;P3

iD0

P3
jD0 cijxixj D 0:

The quotient map� WX!X=� DWW 6
BS is given by the restriction onX of the morphism

' W P3 � P3 ! P9 defined by the � 0-invariant multihomogeneous polynomials of
multidegree .1;1/. Thus ' W Œx0 W � � � W x3�� Œy0 W � � � W y3� 7! ŒZ0 W � � � WZ9�, whereZ0D
x0y0,Z1 D x1y1,Z2 D x2y2,Z3 D x3y3,Z4 D x0y1 C x1y0,Z5 D x0y2 C x2y0,
Z6 D x0y3 C x3y0, Z7 D x1y2 C x2y1, Z8 D x1y3 C x3y1, Z9 D x2y3 C x3y2.
By using Macaulay2, one can find that the image of P3 � P3 via ' is a 6-dimensional
algebraic variety F 106 of degree 10, whose ideal is generated by the 10 polynomials

� 2Z1Z5Z6 CZ4Z6Z7 CZ4Z5Z8 � 2Z0Z7Z8 C 4Z0Z1Z9 �Z
2
4Z9;

� 2Z2Z4Z6 CZ5Z6Z7 C 4Z0Z2Z8 �Z
2
5Z8 CZ4Z5Z9 � 2Z0Z7Z9;

� 4Z1Z2Z6 CZ6Z
2
7 C 2Z2Z4Z8 �Z5Z7Z8 C 2Z1Z5Z9 �Z4Z7Z9;

� 2Z3Z4Z5 C 4Z0Z3Z7 �Z
2
6Z7 CZ5Z6Z8 CZ4Z6Z9 � 2Z0Z8Z9;

� 4Z1Z3Z5 C 2Z3Z4Z7 �Z6Z7Z8 CZ5Z
2
8 C 2Z1Z6Z9 �Z4Z8Z9;

� 4Z2Z3Z4 C 2Z3Z5Z7 C 2Z2Z6Z8 �Z6Z7Z9 �Z5Z8Z9 CZ4Z
2
9 ;

� 4Z1Z2Z3 CZ3Z
2
7 CZ2Z

2
8 �Z7Z8Z9 CZ1Z

2
9 ;

� 4Z0Z2Z3 CZ3Z
2
5 CZ2Z

2
6 �Z5Z6Z9 CZ0Z

2
9 ;

� 4Z0Z1Z3 CZ3Z
2
4 CZ1Z

2
6 �Z4Z6Z8 CZ0Z

2
8 ;

� 4Z0Z1Z2 CZ2Z
2
4 CZ1Z

2
5 �Z4Z5Z7 CZ0Z

2
7 :

Let us observe thatW 6
BSD '.X/DF

10
6 \H6, whereH6 is the 6-dimensional projective

subspace of P9 given by the zero locus of the three polynomials

a00Z0 C a11Z1 C a22Z2 C a33Z3 C 2a01Z4 C 2a02Z5 C 2a03Z6

C 2a12Z7 C 2a13Z8 C 2a23Z9;

b00Z0 C b11Z1 C b22Z2 C b33Z3 C 2b01Z4 C 2b02Z5 C 2b03Z6

C 2b12Z7 C 2b13Z8 C 2b23Z9;

c00Z0 C c11Z1 C c22Z2 C c33Z3 C 2c01Z4 C 2c02Z5

C 2c03Z6 C 2c12Z7 C 2c13Z8 C 2c23Z9:
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Therefore, we have � D 'jX W X !W 6
BS D '.X/ �H6 Š P6. What follows has been

proved for fixed values of aij , bij , and cij , in order to simplify the computational
analysis.

2.1. Example

Let us take

.aij / D

0BBB@
1 0 0 0

0 �7 0 0

0 0 4 0

0 0 0 2

1CCCA ;

.bij / D

0BBB@
1 0 0 0

0 �6 0 0

0 0 2 0

0 0 0 3

1CCCA ;

.cij / D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �7 0

0 0 0 7

1CCCA :
Then the eight fixed points of � W X ! X are

p1 D Œ1 W 1 W 1 W 1� � Œ1 W 1 W 1 W 1�;

p2 D Œ�1 W 1 W 1 W 1� � Œ�1 W 1 W 1 W 1�;

p3 D Œ1 W �1 W 1 W 1� � Œ1 W �1 W 1 W 1�;

p4 D Œ�1 W �1 W 1 W 1� � Œ�1 W �1 W 1 W 1�;

p5 D Œ1 W 1 W �1 W 1� � Œ1 W 1 W �1 W 1�;

p6 D Œ�1 W 1 W �1 W 1� � Œ�1 W 1 W �1 W 1�;

p7 D Œ1 W �1 W �1 W 1� � Œ1 W �1 W �1 W 1�;

p8 D Œ�1 W �1 W �1 W 1� � Œ�1 W �1 W �1 W 1�:

Furthermore, we have

H6 D ¹Z0 � 7Z1 C 4Z2 C 2Z3 D 0; Z0 � 6Z1 C 2Z2 C 3Z3 D 0;

Z0 �Z1 � 7Z2 C 7Z3 D 0º

D ¹Z2 �Z3 D 0; Z1 �Z3 D 0; Z0 �Z3 D 0º;
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which is the P6
Œw0W���Ww6�

embedded in P9
ŒZ0W���WZ9�

via the morphism such that

Zi D w0; i D 0; 1; 2; 3; Zj D wj�3; j D 4; : : : ; 9:

By using Macaulay2, we find that the quotient map � W X !W 6
BS �H6 Š P6 is given

by the restriction on X of the morphism '0 W P3 � P3 ! P6 defined by Œx0 W x1 W x2 W
y3 W y4 W y5� 7! Œw0 W � � � W w6�, where

w0 D x3y3; w1 D x0y1 C x1y0; w2 D x0y2 C x2y0;

w3 D x0y3 C x3y0; w4 D x1y2 C x2y1; w5 D x1y3 C x3y1;

w6 D x2y3 C x3y2:

Thanks to Macaulay2, we obtain that this BS-EF 3-fold W 6
BS � P6 has ideal generated

by the 10 polynomials

� 2w0w2w3 C w1w3w4 C w1w2w5 � 2w0w4w5 C 4w
2
0w6 � w

2
1w6;

� 2w0w1w3 C w2w3w4 C 4w
2
0w5 � w

2
2w5 C w1w2w6 � 2w0w4w6;

� 4w20w3 C w3w
2
4 C 2w0w1w5 � w2w4w5 C 2w0w2w6 � w1w4w6;

� 2w0w1w2 C 4w
2
0w4 � w

2
3w4 C w2w3w5 C w1w3w6 � 2w0w5w6;

� 4w20w2 C 2w0w1w4 � w3w4w5 C w2w
2
5 C 2w0w3w6 � w1w5w6;

� 4w20w1 C 2w0w2w4 C 2w0w3w5 � w3w4w6 � w2w5w6 C w1w
2
6 ;

� 4w30 C w0w
2
4 C w0w

2
5 � w4w5w6 C w0w

2
6 ;

� 4w30 C w0w
2
2 C w0w

2
3 � w2w3w6 C w0w

2
6 ;

� 4w30 C w0w
2
1 C w0w

2
3 � w1w3w5 C w0w

2
5 ;

� 4w30 C w0w
2
1 C w0w

2
2 � w1w2w4 C w0w

2
4 :

Furthermore, W 6
BS has eight singular points Pi WD �.pi /, for 1 � i � 8; they are

P1 D Œ1 W 2 W 2 W 2 W 2 W 2 W 2�; P2 D Œ1 W �2 W �2 W �2 W 2 W 2 W 2�;

P3 D Œ1 W �2 W 2 W 2 W �2 W �2 W 2�; P4 D Œ1 W 2 W �2 W �2 W �2 W �2 W 2�;

P5 D Œ1 W 2 W �2 W 2 W �2 W 2 W �2�; P6 D Œ1 W �2 W 2 W �2 W �2 W 2 W �2�;

P7 D Œ1 W �2 W �2 W 2 W 2 W �2 W �2�; P8 D Œ1 W 2 W 2 W �2 W 2 W �2 W �2�:

One can verify that all the lines joining the points Pi and Pj , for 1 � i < j � 8, are
contained in W 6

BS. So we can say that each one of the eight singular points of W 6
BS is

associated with all the other m D 7 points, as in Table 1 of Appendix B. Thus, the
singularities of the BS-EF 3-fold W 6

BS have the same configuration as the ones of the
F-EF 3-fold W 6

F .
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3. The BS-EF 3-fold of genus 7

Let us study the Enriques–Fano threefold described in [1, Section 6.4.1] (see also
[22, Theorem 1.1 No. 11]). We refer to Section A.2 of Appendix A for the computational
techniques we will use. Let X be the smooth Fano threefold given by a divisor of

P1Œx0Wx1� � P1Œy0Wy1� � P1Œz0Wz1� � P1Œt0Wt1�

of type X
iCjCkCl odd

aijklxiyj zktl D 0:

Let � W X ! X be the involution of X defined by the restriction on X of the map

� 0 W P1 � P1 � P1 � P1 ! P1 � P1 � P1 � P1

given by

Œx0 W x1� � Œy0 W y1� � Œz0 W z1� � Œt0 W t1�

7! Œx0 W �x1� � Œy0 W �y1� � Œz0 W �z1� � Œt0 W �t1�:

Then � W X ! X has the eight fixed points

p1 D Œ0 W 1� � Œ0 W 1� � Œ0 W 1� � Œ0 W 1�; p01 D Œ1 W 0� � Œ1 W 0� � Œ1 W 0� � Œ1 W 0�;

p2 D Œ0 W 1� � Œ1 W 0� � Œ1 W 0� � Œ0 W 1�; p02 D Œ1 W 0� � Œ0 W 1� � Œ0 W 1� � Œ1 W 0�;

p3 D Œ1 W 0� � Œ1 W 0� � Œ0 W 1� � Œ0 W 1�; p03 D Œ0 W 1� � Œ0 W 1� � Œ1 W 0� � Œ1 W 0�;

p4 D Œ1 W 0� � Œ0 W 1� � Œ1 W 0� � Œ0 W 1�; p04 D Œ0 W 1� � Œ1 W 0� � Œ0 W 1� � Œ1 W 0�:

The quotient map � W X ! X=� DW W 7
BS is given by the restriction on X of the mor-

phism ' W P1 � P1 � P1 � P1 ! P7, defined by the � 0-invariant multihomogeneous
polynomials of multidegree .1; 1; 1; 1/. In particular, we have

' W Œx0 W x1� � Œy0 W y1� � Œz0 W z1� � Œt0 W t1�

7! Œw0 W w1 W w2 W w3 W w4 W w5 W w6 W w7�;

where

w0 D x1y1z1t1; w1 D x1y0z0t1; w2 D x0y0z1t1; w3 D x1y0z1t0;

w4 D x0y0z0t0; w5 D x0y1z1t0; w6 D x1y1z0t0; w7 D x0y1z0t1:

By fixing (random) values for a0001, a0010, a0100, a1000, a1110, a1101, a1011, and
a0111, one can verify, with Macaulay2, that the ideal of the BS-EF 3-fold W 7

BS is
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generated by the following 11 polynomials of degree 2 or 3:

w2w6 � w3w7; w1w5 � w3w7; w0w4 � w3w7;

a1110w0w5w6 C a1011w0w3w7 C a0111w0w5w7 C a0010w3w5w7

C a1101w0w6w7 C a1000w3w6w7 C a0100w5w6w7 C a0001w3w
2
7 ;

a1000w1w4w6 C a1011w1w3w7 C a0001w1w4w7 C a0010w3w4w7

C a1101w1w6w7 C a1110w3w6w7 C a0100w4w6w7 C a0111w3w
2
7 ;

a0010w3w4w5 C a1000w3w4w6 C a1110w3w5w6 C a0100w4w5w6

C a1011w
2
3w7 C a0001w3w4w7 C a0111w3w5w7 C a1101w3w6w7;

a0010w2w4w5 C a1011w2w3w7 C a0001w2w4w7 C a1000w3w4w7

C a0111w2w5w7 C a1110w3w5w7 C a0100w4w5w7 C a1101w3w
2
7 ;

a1011w1w2w3 C a0001w1w2w4 C a1000w1w3w4 C a0010w2w3w4

C a1101w1w3w7 C a0111w2w3w7 C a1110w
2
3w7 C a0100w3w4w7;

a1011w0w2w3 C a0111w0w2w5 C a1110w0w3w5 C a0010w2w3w5

C a1101w0w3w7 C a0001w2w3w7 C a1000w
2
3w7 C a0100w3w5w7;

a1011w0w1w3 C a1101w0w1w6 C a1110w0w3w6 C a1000w1w3w6

C a0111w0w3w7 C a0001w1w3w7 C a0010w
2
3w7 C a0100w3w6w7;

a1011w0w1w2 C a1101w0w1w7 C a0111w0w2w7 C a0001w1w2w7

C a1110w0w3w7 C a1000w1w3w7 C a0010w2w3w7 C a0100w3w
2
7 :

The eight singular points ofW 7
BS are Pi WD �.pi / D ¹wk D 0 j k ¤ i � 1º and P 0i WD

�.p0i / D ¹wk D 0 j k ¤ 3C iº, for 1 � i � 4. Let li;j be the line joining Pi and Pj
with i; j 2 ¹1; 2; 3; 4; 10; 20; 30; 40º and i ¤ j . We have that W 7

BS does not contain the
lines l1;10 , l2;20 , l3;30 , and l4;40 , while it contains the others. So each one of the eight
singular points of W 7

BS is associated with m D 6 of the other singular points, as in
Table 1 of Appendix B. Thus, the singularities of the BS-EF 3-fold W 7

BS have the same
configuration as the ones of the F-EF 3-fold W 7

F .

4. The BS-EF 3-fold of genus 9

Let us study the Enriques–Fano threefold described in [1, Section 6.1.4] (see also
[22, Theorem 1.1 No. 12]). We refer to Section A.3 of Appendix A for the computational
techniques we will use. Let us take two quadric hypersurfaces of P5

Œx0Wx1Wx2Wy3Wy4Wy5�
,

Q1 WD
®
s1.x0; x1; x2/C r1.y3; y4; y5/ D 0

¯
;

Q2 WD
®
s2.x0; x1; x2/C r2.y3; y4; y5/ D 0

¯
;
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where s1, s2, r1, r2 are the quadratic homogeneous forms

s1.x0; x1; x2/ WD
X

i;j2¹0;1;2º

ai;jxixj ; s2.x0; x1; x2/ WD
X

i;j2¹0;1;2º

a0i;jxixj ;

r1.y3; y4; y5/ WD
X

i;j2¹3;4;5º

bi;jyiyj ; r2.y3; y4; y5/ WD
X

i;j2¹3;4;5º

b0i;jyiyj :

Let us consider the smooth Fano threefold X WD Q1 \Q2 and the involution � of X
defined by the restriction on X of the morphism

� 0 W P5 ! P5; Œx0 W x1 W x2 W y3 W y4 W y5� 7! Œx0 W x1 W x2 W �y3 W �y4 W �y5�:

Then � W X ! X has eight fixed points p1, p2, p3, p4, p01, p
0
2, p

0
3, p

0
4 such that

¹p1; p2; p3; p4º D X \ ¹y3 D y4 D y5 D 0º;

¹p01; p
0
2; p
0
3; p
0
4º D X \ ¹x0 D x1 D x2 D 0º:

The quotient map � W X ! X=� DW W 9
BS is given by the restriction on X of the

morphism defined by the linear system of the � -invariant quadric hypersurfaces of P5,
that is the morphism ' W P5 ! P11

ŒZ0W���WZ11�
such that�

x0 W x1 W x2 W y3 W y4 W y5
�

�
x20 W x

2
1 W x

2
2 W x0x1 W x0x2 W x1x2 W y

2
3 W y

2
4 W y

2
5 W y3y4 W y3y5 W y4y5

�
:

By using Macaulay2, one can find that the image of P5 via ' is a 5-dimensional
algebraic variety F 165 of degree 16, whose ideal is generated by the 12 polynomials

Z9Z10 �Z6Z11; Z7Z10 �Z9Z11; Z8Z9 �Z10Z11; Z7Z8 �Z
2
11;

Z6Z8 �Z
2
10; Z6Z7 �Z

2
9 ; Z3Z4 �Z0Z5; Z1Z4 �Z3Z5;

Z2Z3 �Z4Z5; Z1Z2 �Z
2
5 ; Z0Z2 �Z

2
4 ; Z0Z1 �Z

2
3 :

We observe thatW 9
BS D '.X/ D F

16
5 \H9, whereH9 is the following 9-dimensional

projective subspace of P11:

H9 WD
®
a00Z0 C a11Z1 C a22Z2 C .a01 C a10/Z3 C .a02 C a20/Z4

C .a12 C a21/Z5 C b33Z6 C b44Z7 C b55Z8 C .b34 C b43/Z9

C .b35 C b53/Z10 C .b45 C b54/Z11 D 0;

a000Z0 C a
0
11Z1 C a

0
22Z2 C .a

0
01 C a

0
10/Z3 C .a

0
02 C a

0
20/Z4

C .a012 C a
0
21/Z5 C b

0
33Z6 C b

0
44Z7 C b

0
55Z8 C .b

0
34 C b

0
43/Z9

C .a035 C b
0
53/Z10 C .b

0
45 C b

0
54/Z11 D 0

¯
:
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Therefore, we have � D 'jX W X !W 9
BS D '.X/ �H9 Š P9. What follows has been

proved for fixed values of aij , bij , a0ij , and b0ij , in order to simplify the computational
analysis.

4.1. Example

If .aij / D
�
1 0 0
0 �3 0
0 0 2

�
D .b0ij / and .bij / D

�
3 0 0
0 �8 0
0 0 5

�
D .a0ij /, then we obtain

p1 D Œ1 W 1 W 1 W 0 W 0 W 0�; p01 D Œ0 W 0 W 0 W 1 W 1 W 1�;

p2 D Œ�1 W 1 W 1 W 0 W 0 W 0�; p02 D Œ0 W 0 W 0 W �1 W 1 W 1�;

p3 D Œ1 W �1 W 1 W 0 W 0 W 0�; p03 D Œ0 W 0 W 0 W 1 W �1 W 1�;

p4 D Œ1 W 1 W �1 W 0 W 0 W 0�; p04 D Œ0 W 0 W 0 W 1 W 1 W �1�:

Furthermore, we have

H9 D ¹Z0 � 3Z1 C 2Z2 C 3Z6 � 8Z7 C 5Z8 D 0;

3Z0 � 8Z1 C 5Z2 CZ6 � 3Z7 C 2Z8 D 0º

D ¹Z1 �Z2 � 8Z6 C 21Z7 � 13Z8 D 0;

Z0 �Z2 � 21Z6 C 55Z7 � 34Z8 D 0º;

which is the P9
Œw0W���Ww9�

embedded in P11
ŒZ0W���WZ11�

via the morphism such that

Z0 D w0 C 21w4 � 55w5 C 34w6;

Z1 D w0 C 8w4 � 21w5 C 13w6;

ZiC2 D wi ; i D 0; : : : ; 9:

By using Macaulay2, we find that the quotient map � W X !W 9
BS �H9 Š P9 is given

by the restriction on X of the morphism '0 W P5 ! P9 such that�
x0 W x1 W x2 W y3 W y4 W y5

�
�
x22 W x0x1 W x0x2 W x1x2 W y

2
3 W y

2
4 W y

2
5 W y3y4 W y3y5 W y4y5

�
:

In particular, we obtain a BS-EF 3-fold W 9
BS � P9 whose ideal is generated by the 12

quadratic polynomials

w7w8 � w4w9; w5w8 � w7w9; w6w7 � w8w9;

w5w6 � w
2
9 ; w4w6 � w

2
8 ; w4w5 � w

2
7 ;

w22 � w
2
3 � 13w0w4 C 34w0w5 � 21w0w6;

w1w2 � w0w3 � 21w3w4 C 55w3w5 � 34w3w6;
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w0w2 � w1w3 C 8w2w4 � 21w2w5 C 13w2w6;

w21 � w
2
3 � 21w0w4 � 168w

2
4 C 55w0w5 � 1155w

2
5 � 34w0w6

� 442w26 C 881w
2
7 � 545w

2
8 C 1429w

2
9 ; w0w1 � w2w3;

w20 � w
2
3 C 8w0w4 � 21w0w5 C 13w0w6:

This threefoldW 9
BS has singular points at Pi WD �.pi / and P 0i WD �.p

0
i /, for 1 � i � 4,

that is

P1 D Œ1 W 1 W 1 W 1 W 0 W 0 W 0 W 0 W 0 W 0�;

P 01 D Œ0 W 0 W 0 W 0 W 1 W 1 W 1 W 1 W 1 W 1�;

P2 D Œ1 W �1 W �1 W 1 W 0 W 0 W 0 W 0 W 0 W 0�;

P 02 D Œ0 W 0 W 0 W 0 W 1 W 1 W 1 W �1 W �1 W 1�;

P3 D Œ1 W �1 W 1 W �1 W 0 W 0 W 0 W 0 W 0 W 0�;

P 03 D Œ0 W 0 W 0 W 0 W 1 W 1 W 1 W �1 W 1 W �1�;

P4 D Œ1 W 1 W �1 W �1 W 0 W 0 W 0 W 0 W 0 W 0�;

P 04 D Œ0 W 0 W 0 W 0 W 1 W 1 W 1 W 1 W �1 W �1�:

Let li;j be the line joining Pi and Pj for i; j 2 ¹1; 2; 3; 4; 10; 20; 30; 40º and i ¤ j . It
follows that W 9

BS contains the lines l1;10 , l1;20 , l1;30 , l1;40 , l2;10 , l2;30 , l2;30 , l2;40 , l3;10 ,
l3;20 , l3;30 , l3;40 , l4;10 , l4;30 , l4;30 , l4;40 , but it does not contain the others. So each one of
the eight singular points of W 9

BS is associated with m D 4 of the other singular points,
as in Table 1 of Appendix B. Thus, the singularities of the BS-EF 3-fold W 9

BS have the
same configuration as the ones of the F-EF 3-fold W 9

F . We can say something more,
namely that W 9

BS D W
9
F . Let us see how. Let us project P9 from the P5 spanned by

the singular points P2, P3, P4, P 02, P
0
3, P

0
4 of W 9

BS. By using Macaulay2, we obtain
the rational map � W P9 Ü P3

Œz0W���Wz3�
such that

Œw0 W � � � W w9�

7! Œw0 C w1 C w2 C w3 W �w4 C w5 W �w4 C w6 W w4 C w7 C w8 C w9�:

The restriction �jW 9
BS
W W 9

BS Ü P3 is a birational map (it can be verified through
Macaulay2), whose inverse map is the rational map � W P3 Ü W 9

BS � P9 defined by
the linear system of the septic surfaces of P3 double along the six edges of the two
trihedra

T WD
®
.z0 � 21z1 C 13z2/z0.z0 � 55z1 C 34z2/ D 0

¯
;

T 0 WD
®
.z2 C z3/.z1 C z3/z3 D 0

¯
;

and containing the lines given by the intersection of a face of T and one of T 0.
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5. The BS-EF 3-fold of genus 13

Let us study the Enriques–Fano threefold described in [1, Section 6.3.2] (see also
[22, Theorem 1.1 No. 14]). We refer to Section A.4 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefold X WD P1 � P1 � P1

and the map � W X ! X defined by

Œx0 W x1� � Œy0 W y1� � Œz0 W z1� 7! Œx0 W �x1� � Œy0 W �y1� � Œz0 W �z1�:

Then � is an involution of X having the eight fixed points

p01 D Œ0 W 1� � Œ1 W 0� � Œ1 W 0�; p1 D Œ1 W 0� � Œ0 W 1� � Œ0 W 1�;

p02 D Œ0 W 1� � Œ0 W 1� � Œ0 W 1�; p2 D Œ1 W 0� � Œ1 W 0� � Œ1 W 0�;

p3 D Œ0 W 1� � Œ1 W 0� � Œ0 W 1�; p03 D Œ1 W 0� � Œ0 W 1� � Œ1 W 0�;

p4 D Œ0 W 1� � Œ0 W 1� � Œ1 W 0�; p04 D Œ1 W 0� � Œ1 W 0� � Œ0 W 1�:

The �-invariant multihomogeneous polynomials of multidegree .2; 2; 2/ define the
coordinates of the quotient map � W X ! X=� DW W 13

BS � P13; i.e.,

� W Œx0 W x1� � Œy0 W y1� � Œz0 W z1� 7! Œw0 W � � � W w13�;

where

w0 D x
2
0y

2
0z
2
0 ; w1 D x

2
0y

2
0z
2
1 ; w2 D x

2
0y0y1z0z1;

w3 D x
2
0y

2
1z
2
0 ; w4 D x

2
0y

2
1z
2
1 ; w5 D x0x1y

2
0z0z1;

w6 D x0x1y0y1z
2
0 ; w7 D x0x1y0y1z

2
1 ; w8 D x0x1y

2
1z0z1;

w9 D x
2
1y

2
0z
2
0 ; w10 D x

2
1y

2
0z
2
1 ; w11 D x

2
1y0y1z0z1;

w12 D x
2
1y

2
1z
2
0 ; w13 D x

2
1y

2
1z
2
1 :

The use of Macaulay2 enables us to find that the BS-EF 3-foldW 13
BS has ideal generated

by the 42 quadratic polynomials

w10w12 � w9w13; w7w12 � w6w13; w4w12 � w3w13; w1w12 � w0w13;

w211 � w9w13; w8w11 � w6w13; w7w11 � w5w13; w6w11 � w5w12;

w4w11 � w2w13; w3w11 � w2w12; w2w11 � w0w13; w8w10 � w5w13;

w6w10 � w5w11; w4w10 � w1w13; w3w10 � w0w13; w2w10 � w1w11;

w8w9 � w5w12; w7w9 � w5w11; w4w9 � w0w13; w3w9 � w0w12;

w2w9 � w0w11; w1w9 � w0w10; w28 � w3w13; w7w8 � w2w13;

w6w8 � w2w12; w5w8 � w0w13; w27 � w1w13; w6w7 � w0w13;

w5w7 � w1w11; w3w7 � w2w8; w2w7 � w1w8; w26 � w0w12;
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w5w6 � w0w11; w4w6 � w2w8; w2w6 � w0w8; w1w6 � w0w7;

w25 � w0w10; w4w5 � w1w8; w3w5 � w0w8; w2w5 � w0w7;

w1w3 � w0w4; w22 � w0w4:

The above threefold W 13
BS has the eight singular points

P1 WD �.p1/ D ¹wi D 0 j i ¤ 4º; P 01 WD �.p
0
1/ D ¹wi D 0 j i ¤ 9º;

P2 WD �.p2/ D ¹wi D 0 j i ¤ 0º; P 02 WD �.p
0
2/ D ¹wi D 0 j i ¤ 13º;

P3 WD �.p3/ D ¹wi D 0 j i ¤ 10º; P 03 WD �.p
0
3/ D ¹wi D 0 j i ¤ 3º;

P4 WD �.p4/ D ¹wi D 0 j i ¤ 12º; P 04 WD �.p
0
4/ D ¹wi D 0 j i ¤ 1º:

Let li;j be the line joining Pi and Pj with i; j 2 ¹1; 2; 3; 4; 10; 20; 30; 40º and i ¤ j . We
see that W 13

BS contains the lines l1;20 , l1;30 , l1;40 , l2;10 , l2;30 , l2;40 , l3;10 , l3;20 , l3;40 , l4;10 ,
l4;20 , l4;30 , while it does not contain the others. So each one of the eight singular points of
W 13

BS is associated withmD 3 of the other singular points, as in Table 1 of Appendix B.
Thus, the singularities of the BS-EF 3-fold W 13

BS have the same configuration as the
ones of the F-EF 3-fold W 13

F . We can say something more, namely that W 13
BS D W

13
F .

Let us see how. Let � be the linear system of the sextic surfaces of P3 having double
points along the six edges of a fixed tetrahedron T � P3. Up to a change of coordinates,
we can take the tetrahedron T WD ¹t0t1t2t3 D 0º � P3

Œt0W���Wt3�
. Then � defines a rational

map �� W P3 Ü P13 given by Œt0 W t1 W t2 W t3� 7! Œw0 W � � � W w13�, where

w0 D t0t
3
1 t2t3; w1 D t

2
0 t
2
1 t
2
2 ; w2 D t

2
0 t
2
1 t2t3;

w3 D t
2
0 t
2
1 t
2
3 ; w4 D t

3
0 t1t2t3; w5 D t0t

2
1 t
2
2 t3;

w6 D t0t
2
1 t2t

2
3 ; w7 D t

2
0 t1t

2
2 t3; w8 D t

2
0 t1t2t

2
3 ;

w9 D t
2
1 t
2
2 t
2
3 ; w10 D t0t1t

3
2 t3; w11 D t0t1t

2
2 t
2
3 ;

w12 D t0t1t2t
3
3 ; w13 D t

2
0 t
2
2 t
2
3

(see [15, p. 635]). The above map is birational onto the image, which is the F-EF 3-fold
W 13
F � P13 of genus 13 (see [12, Section 8]). Thanks to Macaulay2, we see that the

threefold W 13
F � P13 coincides with the threefold W 13

BS � P13. Thus, we have the
assertion of Theorem 1.3 for p D 13.

6. The BS-EF 3-fold of genus 8

Let us study the Enriques–Fano threefold described in [1, Section 6.4.2]. Sano erro-
neously omits it (see [22, p. 378]). We refer to Section A.5 of Appendix A for the
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computational techniques we will use. Let us take the hyperplane

¹x4 D 0º � P4Œx0Wx1Wx2Wx3Wx4�

and two quadric surfaces

Q;R � ¹x4 D 0º Š P3Œx0Wx1Wx2Wx3�;

respectively with equations

Q.x0; x1; x2; x3/ WD q00x
2
0 C q11x

2
1 C q22x

2
2 C q33x

2
3 C q01x0x1 C q23x2x3 D 0;

R.x0; x1; x2; x3/ WD r00x
2
0 C r11x

2
1 C r22x

2
2 C r33x

2
3 C r01x0x1 C r23x2x3 D 0:

Let C WD Q \ R be the elliptic quartic curve given by the complete intersection
of the above quadrics, and let Y � P4 be the cone over Q with vertex at the point
v WD Œ0 W 0 W 0 W 0 W 1�. Let bl W X ! Y be the blow-up of Y at the point v and along
the curve C . We have that X is a smooth Fano threefold. Let us explain this. Let us
consider the blow-up of P4 at v and alongC , that is the map bl 0 W Blv[C P4! P4 with
exceptional divisorsEv WD bl 0�1.v/ andEC WD bl 0�1.C /. By definition, we have thatX
is the strict transform of Y on Blv[C P4 and that bl D bl 0jX . IfH denotes the pullback
of the hyperplane class h of P4, we have thatX � 2H � 2Ev �EC . By the adjunction
formula, we have that �KX D �.KBlv[C P4 CX/jX � .3H �Ev �EC /jX . We want
to show that �KX is ample. Let C be the linear system of the cubic hypersurfaces of
P4 containing the curve C and passing through the point v, and let us fix a general
hyperplane hv � P4 passing through v. Thus, C contains a sublinear system xC � C

whose fixed part is given by hv [ ¹x4 D 0º. Since the movable part of xC is given by
the hyperplanes of P4, then we obtain the ampleness of C at least outside v [ C . So
we have the ampleness of �KX at least outside Ev \X and EC \X , since j �KX j
coincides with the restriction onX of the strict transform of C . Furthermore, the movable
part of xC also contains the hyperplanes of P4 through v, whose strict transforms are
very ample on Ev: indeed, we have jOEv .H �Ev/j D jOEv .�E2v /j Š jOP3.1/j (see
[15, Chapter 4, Section 6]). Therefore, the ampleness of �KX along Ev \X follows
by the fact that Ev \X is a smooth quadric surface in Ev Š P3. It remains to show
the ampleness of �KX along S 0 WD EC \X , which is a P1-bundle over C , identified
with the projectification P .NC jY / of the normal bundle of C in Y (see [15, Chapter
4, Section 6]). Since C is the complete intersection of a hyperplane section and of a
quadric section of Y , then S 0 D P .NC jY / Š P .OC .h/˚OC .2h// (see [4, Example
10.2]). In particular, we have that the class S 0jS 0 is the class of the tautological bundle
on S 0 (see [15, Chapter 4, Section 6]). Thus, �EC jS 0 D �S 0jS 0 is ample on S 0, and so
.�KX /jS 0 D .3H �EC /jS 0 is ample too.
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Let � W X ! X be now the morphism defined by the birational map � 0 W Y Ü Y

given by Œx0 W x1 W x2 W x3 W x4� 7! Œx4x0 W x4x1 W �x4x2 W �x4x3 W R.x0; x1; x2; x3/�.
The map � is an involution of X with eight fixed points, which are the preimages via
bl W X ! Y of the eight points p1; p2; p3; p4; p01; p

0
2; p
0
3; p
0
4 2 Y such that

¹p1; p
0
1; p2; p

0
2º D Y \

®
x2 D 0; x3 D 0; x

2
4 �R.x0; x1; x2; x3/ D 0

¯
;

¹p3; p
0
3; p4; p

0
4º D Y \

®
x0 D 0; x1 D 0; x

2
4 CR.x0; x1; x2; x3/ D 0

¯
:

The � 0-invariant elements of C define the rational map ' W Y Ü P9 given by Œx0 W
� � � W x4� 7! ŒZ0 W � � � W Z9�, where

Z0 D x
2
4x0 C x0R.x0; x1; x2; x3/; Z1 D x

2
4x1 C x1R.x0; x1; x2; x3/;

Z2 D x
2
4x2 � x2R.x0; x1; x2; x3/; Z3 D x

2
4x3 � x3R.x0; x1; x2; x3/;

Z4 D x4x
2
0 ; Z5 D x4x

2
1 ; Z6 D x4x

2
2 ; Z7 D x4x

2
3 ;

Z8 D x4x0x1; Z9 D x4x2x3:

Let us observe that '.Y / is contained in the hyperplane

H8 WD ¹q00Z4 C q11Z5 C q22Z6 C q33Z7 C q01Z8 C q23Z9 D 0º Š P8 � P9:

Therefore, the rational map ' defines the quotient map � W X ! X=� DW W 8
BS, thanks

to the commutative diagram

X

Y '.Y / D �.X/ D W 8
BS � H8 Š P8:

bl
�

'

What follows has been proved for fixed values of qij and rij , in order to simplify the
computational analysis.

6.1. Example

Let us take
Q.x0; x1; x2; x3/ D x

2
0 � x

2
1 � x

2
2 C x

2
3

and
R.x0; x1; x2; x3/ D 2x

2
0 � x

2
1 � 3x

2
2 C 2x

2
3 :

Then '.Y / is contained in the hyperplane H8 D ¹Z4 � Z5 � Z6 C Z7º, which we
can see as the image of the morphism i W P8 ,! P9 such that

Œw0 W � � � W w8�
i
7�! Œw0 W w1 W w2 W w3 W w4 C w5 � w6 W w4 W w5 W w6 W w7 W w8�:
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Thanks to Macaulay2, one can verify that we obtain a BS-EF 3-fold W 8
BS � H8 Š P8

whose ideal is generated by the following 11 polynomials of degree 2 or 3:

w5w6 � w
2
8 ; w2w6 � w3w8; w3w5 � w2w8; w24 C w4w5 � w4w6 � w

2
7 ;

w1w4 C w1w5 � w1w6 � w0w7; w0w4 � w1w7;

w20 � w
2
1 � w

2
2 C w

2
3 � 4w4w5 C 4w

2
5 C 4w4w6 � 4w

2
8 ;

w2w3w7 � w0w1w8 C 4w4w7w8 � 4w5w7w8;

w0w1w6 � w
2
3w7 � 4w4w6w7 C 4w7w

2
8 ;

w23w4 � w
2
1w6 C 4w4w

2
6 C 4w6w

2
7 � 8w4w

2
8 ;

w2w3w4 � w
2
1w8 � 8w4w5w8 C 4w4w6w8 C 4w

2
7w8:

This threefold W 8
BS has the eight singular points

P1 WD i
�1
�
'.p1/

�
D '

�
Œ1 W 1 W 0 W 0 W 1�

�
D Œ2 W 2 W 0 W 0 W 1 W 0 W 0 W 1 W 0�;

P2 WD i
�1
�
'.p2/

�
D '

�
Œ�1 W �1 W 0 W 0 W 1�

�
D Œ�2 W �2 W 0 W 0 W 1 W 0 W 0 W 1 W 0�;

P3 WD i
�1
�
'.p3/

�
D '

�
Œ0 W 0 W 1 W 1 W 1�

�
D Œ0 W 0 W 2 W 2 W 0 W 1 W 1 W 0 W 1�;

P4 WD i
�1
�
'.p4/

�
D '

�
Œ0 W 0 W �1 W 1 W 1�

�
D Œ0 W 0 W �2 W �2 W 0 W 1 W 1 W 0 W 1�;

P 01 WD i
�1
�
'.p01/

�
D '

�
Œ�1 W 1 W 0 W 0 W 1�

�
D Œ2 W �2 W 0 W 0 W �1 W 0 W 0 W 1 W 0�;

P 02 WD i
�1
�
'.p02/

�
D '

�
Œ1 W �1 W 0 W 0 W 1�

�
D Œ�2 W 2 W 0 W 0 W �1 W 0 W 0 W 1 W 0�;

P 03 WD i
�1
�
'.p03/

�
D '

�
Œ0 W 0 W �1 W �1 W 1�

�
D Œ0 W 0 W 2 W �2 W 0 W �1 W �1 W 0 W 1�;

P 04 WD i
�1
�
'.p04/

�
D '

�
Œ0 W 0 W 1 W �1 W 1�

�
D Œ0 W 0 W �2 W 2 W 0 W �1 W �1 W 0 W 1�:

Let li;j be the line joining Pi and Pj for i; j 2 ¹1; 2; 3; 4; 10; 20; 30; 40º and i ¤ j . We
have that W 8

BS does not contain the lines l1;10 , l1;20 , l2;10 , l2;20 , l3;30 , l3;40 , l4;30 , l4;40 ,
while it contains the others. So each one of the eight singular points ofW 8

BS is associated
withm D 5 of the other singular points, as in Table 2 of Appendix B. Hence there exist
three mutually associated points (for example P1, P2, and P3). This case had been
excluded by Fano for p > 7 (see [12, Section 5]). So this suggests that in Fano’s paper
there are other gaps to be discovered.

Theorem 6.1. Let T be a trihedron with edges l0, l1, l2 and vertex v as in Figure 1.
Let us choose a general point q1 2 l1, a general point q2 2 l2, three distinct points
ar ; as; at 2 l0, a general point b1 2 r1 WD hq1; ari, and a general point b2 2 r2 WD
hq2; ari. Let us take a general conic C through the points q1, q2, b1, b2, in the plane
spanned by the three points ar , q1, q2. Finally, let us consider the lines s1 WD hq1; asi,
s2 WD hq2; asi, t1 WD hb1; at i, t2 WD hb2; at i and the lines l 01 WD hq

0
1; q2i and l 02 WD

hq02; q1i, where q01 is a general point on t1 and q02 a general point on t2. Then the BS-EF
3-fold W 8

BS can be obtained as the image of P3 via the rational map �N W P3 Ü P8
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Figure 1. Base locus of the linear system N .

defined by the linear system N of the septic surfaces of P3 which are quadruple at
the points q1 and q2, triple at the vertex v, and double along the lines l0, l1, l2, l 01, l

0
2,

along the conic C and at the points c1 WD t1 \ s1 and c2 WD t2 \ s2. Furthermore, a
general element of N contains the lines t1, t2, r1, r2, s1, s2 and e0 WD hq1; q2i.

Proof. Let us project P8 from the P4 spanned by the singular points P1, P 01, P2, P3,
and P 03 of the BS-EF 3-fold W 8

BS of Example 6.1. By using Macaulay2, we obtain the
rational map � W P8 Ü P3

Œz0W���Wz3�
such that

Œw0 W � � � W w13� 7! Œw2 � 2w8 W w5 � w6 W w3 � 2w6 W w0 � w1 C 2w4 � 2w7�:

One can verify, via Macaulay2, that the restriction �jW 8
BS
W W 8

BS Ü P3 is birational
and that its inverse map is given by the rational map �N W P3 Ü W 8

BS � P8 defined
by the linear system N of the septic surfaces

(i) quadruple at q1 D Œ1 W 0 W �2 W 0� and q2 D Œ1 W 0 W 2 W 0�;

(ii) triple at the vertex v D Œ0 W 0 W 0 W 1� of the trihedron

T D
®
z1.2z0 C z2/.2z0 � z2/ D 0

¯
I

(iii) double at the points c1 D Œ1 W �2 W �2 W 0� and c2 D Œ1 W 2 W 2 W 0�; double along
the line l 01 D ¹z3 D 2z0 C 2z1 � z2 D 0º 3 q

0
1 D Œ1 W �2 W �2 W 0� and along the

line l 02 D ¹z3 D 2z0 � 2z1 C z2 D 0º 3 q
0
2 D Œ1 W 2 W 2 W 0�; double along the

edges l0 D ¹z0 D z2 D 0º, l1 D ¹z1 D 2z0C z2 D 0º, l2 D ¹z1 D 2z0 � z2 D 0º
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of the trihedron T ; double along the conic

C D ¹2z1 C z3 D 4z
2
0 � z

2
2 � 2z2z3 � 2z

2
3 D 0º

passing through q1, q2, b1 D Œ1 W �1 W �2 W 2� and b2 D Œ1 W 1 W 2 W �2�;

(iv) containing the lines

r1 D ¹2z1 C z3 D 2z0 C z2 D 0º; r2 D ¹2z1 C z3 D 2z0 � z2 D 0º;

s1 D ¹z3 D 2z0 C z2 D 0º; s2 D ¹z3 D 2z0 � z2 D 0º;

t1 D ¹2z1 � 2z2 � z3 D 2z0 C z2 D 0º;

t2 D ¹2z1 � 2z2 � z3 D 2z0 � z2 D 0º:

7. The BS-EF 3-fold of genus 10

Let us study the Enriques–Fano threefold described in [1, Section 6.5.1] (see also
[22, Theorem 1.1 No. 13]). We refer to Section A.6 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefold X WD P1 � S6, where
S6 is a smooth sextic del Pezzo surface. We recall that S6 is the image of P2 via the
rational map � W P2 Ü P6 defined by the linear system of the plane cubic curves
passing through three fixed points a1, a2, a3 in general position. Up to a change of
coordinates, we may assume that a1 D Œ1 W 0 W 0�, a2 D Œ0 W 1 W 0�, a3 D Œ0 W 0 W 1�, and

� W Œu0 W u1 W u2� 7! Œu21u2 W u1u
2
2 W u

2
0u2 W u0u

2
2 W u

2
0u1 W u0u

2
1 W u0u1u2�:

Thanks to Macaulay2, we can say that S6 D �.P2/ � P6
Œx0Wx1Wx2Wx3Wx4Wx5Wx6�

has ideal
generated by the polynomials

x3x5 � x
2
6 ; x2x5 � x4x6; x1x5 � x0x6; x3x4 � x2x6; x1x4 � x

2
6 ;

x0x4 � x5x6; x0x3 � x1x6; x0x2 � x3x6; x0x2 � x
2
6 :

The quadratic transformation qa1;a2;a3 W P2 Ü P2, given by the linear system of the
conics passing through a1, a2, and a3, defines an involution of the above sextic del
Pezzo surface. Indeed, we have�

u0 W u1 W u2
� �

1
u0
W
1
u1
W
1
u2

�
�
u21u2 W u1u

2
2 W u

2
0u2 W u0u

2
2 W u

2
0u1 W u0u

2
1 W u0u1u2

�
�
u20u2 W u1u

2
0 W u

2
1u2 W u0u

2
1 W u1u

2
2 W u0u

2
2 W u0u1u2

�
;

qa1;a2;a3

�

�
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and then we obtain the involution t 0 of P6 given by

Œx0 W x1 W x2 W x3 W x4 W x5 W x6�
t 0

7�! Œx2 W x4 W x0 W x5 W x1 W x3 W x6�:

The locus of t 0-fixed points of P6 consists of two projective subspaces

F1 WD ¹x0 C x2 D x1 C x4 D x3 C x5 D x6 D 0º Š P2;

F2 WD ¹x0 � x2 D x1 � x4 D x3 � x5 D 0º Š P3:

In particular, we have F1 \ S6 D ; and F2 \ S6 D ¹d1; d2; d3; d4º, where

d1 WD Œ1 W 1 W 1 W 1 W 1 W 1 W 1�; d2 WD Œ1 W �1 W 1 W �1 W �1 W �1 W 1�;

d3 WD Œ�1 W 1 W �1 W �1 W 1 W �1 W 1�; d4 WD Œ�1 W �1 W �1 W 1 W �1 W 1 W 1�:

Thus, �2 WD t 0jS6 is an involution of S6 with four fixed points. We also consider the
involution of P1 with two fixed points Œ0 W 1� and Œ1 W 0�, that is the map �1 W P1! P1

given by Œy0 W y1� 7! Œy0 W �y1�. Therefore, the map � WD .�1 � �2/ W X ! X is an
involution of X having eight fixed points p1, p2, p3, p4, p01, p

0
2, p

0
3, p

0
4, where

pi WD Œ0 W 1� � di ; p0i D Œ1 W 0� � di ; i D 1; 2; 3; 4:

The quotient map � W X ! X=� DW W 10
BS is given by the restriction on X of the mor-

phism ' W P1 �P6! P10
Œw0W���Ww10�

defined by the .�1 � t 0/-invariant multihomogeneous
polynomials of multidegree .2; 1/; i.e., ' W Œy0 W y1� � Œx0 W � � � W x6� 7! Œw0 W � � � W w10�

where

w0 D y
2
0x6; w1 D y

2
0.x0 C x2/; w2 D y

2
0.x1 C x4/; w3 D y

2
0.x3 C x5/;

w4 D y
2
1x6; w5 D y

2
1.x0 C x2/; w6 D y

2
1.x1 C x4/; w7 D y

2
1.x3 C x5/;

w8 D y0y1.x0 � x2/; w9 D y0y1.x1 � x4/; w10 D y0y1.x3 � x5/:

Thanks to Macaulay2, one can find that the BS-EF 3-fold W 10
BS has ideal generated by

the following 20 polynomials of degree 2 or 3:

w7w8 � 2w4w9 C w5w10; w6w8 � w5w9 C 2w4w10;

2w4w8 � w7w9 C w6w10; w3w8 � 2w0w9 C w1w10;

w2w8 � w1w9 C 2w0w10; 2w0w8 � w3w9 C w2w10;

w3w6 � w2w7; w2w6 � w3w7 � w
2
9 C w

2
10; w1w6 � 2w0w7 � w8w9;

2w0w6 � w1w7 � w8w10; w3w5 � w1w7; w2w5 � 2w0w7 � w8w9;

w1w5 � w3w7 � w
2
8 C w

2
10; 2w0w5 � w2w7 C w9w10; w3w4 � w0w7;

2w2w4 � w1w7 � w8w10; 2w1w4 � w2w7 C w9w10; 4w0w4 � w3w7 C w
2
10;

4w34�w4w
2
5�w4w

2
6Cw5w6w7�w4w

2
7 ; 4w30�w0w

2
1�w0w

2
2Cw1w2w3�w0w

2
3 :
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Figure 2. Base locus of the linear system M.

The eight singular points of W 10
BS are Pi WD �.pi / and P 0i WD �.p

0
i /, for 1 � i � 4,

that is

P1 D Œ0 W 0 W 0 W 0 W 1 W 2 W 2 W 2 W 0 W 0 W 0�; P 01 D Œ1 W 2 W 2 W 2 W 0 W � � � W 0�;

P2 D Œ0 W 0 W 0 W 0 W 1 W 2 W �2 W �2 W 0 W 0 W 0�; P 02 D Œ1 W 2 W �2 W �2 W 0 W � � � W 0�;

P3 D Œ0 W 0 W 0 W 0 W 1 W �2 W 2 W �2 W 0 W 0 W 0�; P 03 D Œ1 W �2 W 2 W �2 W 0 W � � � W 0�;

P4 D Œ0 W 0 W 0 W 0 W 1 W �2 W �2 W 2 W 0 W 0 W 0�; P 04 D Œ1 W �2 W �2 W 2 W 0 W � � � W 0�:

Let li;j be the line joining Pi and Pj for i; j 2 ¹1; 2; 3; 4; 10; 20; 30; 40º and i ¤ j . We
have thatW 10

BS contains the lines l1;2, l1;3, l1;4, l1;10 , l2;3, l2;4, l2;20 , l3;4, l3;30 , l4;40 , l10;20 ,
l10;30 , l10;40 , l20;30 , l20;40 , l30;40 , while it does not contain the others. So each one of the
eight singular points ofW 10

BS is associated withmD 4 of the other singular points, as in
Table 2 of Appendix B. Hence there exist three mutually associated points (for example
P1, P2, and P3). This case had been excluded by Fano for p > 7 (see [12, Section 5]).
So this suggests that in Fano’s paper there are other gaps to be discovered.

Theorem 7.1. Let T � P3 be a tetrahedron with faces fi and edges lij WD fi \ fj for
0 � i < j � 3. Let vi be the vertex opposite to the face fi , for 0 � i � 3. Let � be a
plane through the vertex v0, which intersects the face fi along a line ri , for 1 � i � 3,
and let us define the point qi WD ri \ l0i (see Figure 2). Then W 10

BS can be obtained as
the image of P3 via the rational map �M W P3 Ü P10 defined by the linear system M
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of the sextic surfaces of P3 which are quadruple at the vertex v0, triple at the other
three vertices v1, v2, v3, and double along the three lines r1, r2, r3. Furthermore, a
general element of M also contains the six edges of T .

Proof. Let us project P10 from the P6 spanned by the singular points P1, P2, P3,
P4, P 01, P

0
2, and P 03 of W 10

BS . By using Macaulay2, we obtain the rational map

� W P10 Ü P3Œz0W���Wz3�; Œw0 W � � � W w13� 7! Œ�2w0Cw1Cw2 �w3 W w8 W w9 W w10�:

Thanks to Macaulay2, we see that the restriction �jW 10
BS
W W 10

BS Ü P3 is birational.
We also compute its inverse map, which is the rational map �M W P3 Ü W 10

BS � P10

defined by the linear system M of the sextic surfaces

(i) containing the six edges l23 D ¹z1 D z2 � z3 D 0º, l13 D ¹z3 D z1 C z2 D 0º,
l12 D ¹z2 D z1 C z3 D 0º, l01 D ¹z0 D z1 C z2 C z3 D 0º, l03 D ¹z0 D z1 �
z2 C z3 D 0º, and l02 D ¹z0 D z1 C z2 � z3 D 0º of the tetrahedron T with
faces f0 D ¹z0 D 0º, f1 D ¹z1 C z2 C z3 D 0º, f2 D ¹z1 � z2 C z3 D 0º, and
f3 D ¹z1 C z2 � z3 D 0º;

(ii) double along the lines r1 D ¹z1 D z2 C z3 D 0º, r2 D ¹z3 D z1 � z2 D 0º and
r3 D ¹z2 D z1 � z3 D 0º contained in the plane � D ¹z1 � z2 � z3 D 0º, and
obviously double at the points q1 D Œ0 W 0 W �1 W 1�, q2 D Œ0 W 1 W 1 W 0�, and
q3 D Œ0 W 1 W 0 W 1�I

(iii) triple at the following vertices of T :

v1 D Œ0 W 0 W 1 W 1�; v2 D Œ0 W 1 W �1 W 0�; v3 D Œ0 W 1 W 0 W �1�I

(iv) and quadruple at the vertex v0 D Œ1 W 0 W 0 W 0�.

8. The P-EF 3-fold of genus 17

Let us study the Enriques–Fano threefold described in [20, Section 3]. We refer to
Section A.7 of Appendix A for the computational techniques we will use. Let P be the
octic del Pezzo surface given by the image of the anticanonical embedding of P1 � P1

in P8, which is defined by the linear system of the divisors of bidegree .2; 2/, i.e.,

Œu0 W u1� � Œv0 W v1� 7! Œy0;0 W y0;1 W y0;2; y1;0 W y1;1 W y1;2 W y2;0 W y2;1 W y2;2�;

where yi;j WD ui0u
2�i
1 v

j
0v
2�j
1 . Let us consider P8 as the hyperplane ¹x D 0º in

P9
Œy0;0Wy0;1Wy0;2Wy1;0Wy1;1Wy1;2Wy2;0Wy2;1Wy2;2Wx�

. Let V be the cone over P with vertex at
the point

v WD Œ0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 1�I
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then V is a singular Fano threefold (see [20, Lemma 3.1]). By using Macaulay2, we
see that the ideal of V is generated by the polynomials

y22;1 � y2;0y2;2; y1;2y2;1 � y1;1y2;2; y1;1y2;1 � y1;0y2;2;

y0;2y2;1 � y0;1y2;2; y0;1y2;1 � y0;0y2;2; y1;2y2;0 � y1;0y2;2;

y1;1y2;0 � y1;0y2;1; y0;2y2;0 � y0;0y2;2; y0;1y2;0 � y0;0y2;1;

y21;2 � y0;2y2;2; y1;1y1;2 � y0;1y2;2; y1;0y1;2 � y0;0y2;2;

y21;1 � y0;0y2;2; y1;0y1;1 � y0;0y2;1; y0;2y1;1 � y0;1y1;2;

y0;1y1;1 � y0;0y1;2; y21;0 � y0;0y2;0; y0;2y1;0 � y0;0y1;2;

y0;1y1;0 � y0;0y1;1; y20;1 � y0;0y0;2:

Let us consider the involution t of P9 given by t .x/ D �x and t .yi;j / D .�1/iCjyi;j .
Let vi;j WD ¹x D 0; yk;l D 0 j .k; l/ ¤ .i; j /º. The locus of t-fixed points in P9

consists of two projective subspaces

F1 D ¹y0;0 D y0;2 D y1;1 D y2;0 D y2;2 D 0º Š P4

and
F2 D ¹y0;1 D y1;0 D y1;2 D y2;1 D x D 0º Š P4

such that F1 \ V D ¹vº and F2 \ V D ¹v0;0; v0;2; v2;0; v2;2º. Thus, t defines an
involution � WD t jV W V ! V of V with five fixed points. The quotient of V via the
involution � is an Enriques–Fano threefold of genus 17 (see [20, Proposition 3.2]). In
particular, the quotient map � W V ! V=� DW W 17

P is defined by the restriction on V
of the linear system Q of the quadric hypersurfaces of P9 of type

q1.y0;0; y0;2; y1;1; y2;0; y2;2/C q2.y0;1; y1;0; y1;2; y2;1; x/ D 0;

where q1 and q2 are quadratic homogeneous forms. Let us observe that the linear
system Q defines a morphism ' W P9! P29, Œy0;0 W � � � W y2;2 W x� 7! ŒZ0 W � � � W Z29�,
where

Z0 D y
2
1;1; Z1 D y

2
0;0; Z2 D y

2
0;2; Z3 D y

2
2;0;

Z4 D y
2
2;2; Z5 D x

2; Z6 D y
2
0;1; Z7 D y

2
1;0;

Z8 D y
2
1;2; Z9 D y

2
2;1; Z10 D y0;1x; Z11 D y1;0x;

Z12 D y1;2x; Z13 D y2;1x; Z14 D y0;0y1;1; Z15 D y0;2y1;1;

Z16 D y2;0y1;1; Z17 D y2;2y1;1; Z18 D y0;1y1;0; Z19 D y0;1y1;2;

Z20 D y1;0y2;1; Z21 D y1;2y2;1; Z22 D y0;0y0;2; Z23 D y0;0y2;0;

Z24 D y0;2y2;2; Z25 D y2;0y2;2; Z26 D y0;1y2;1; Z27 D y0;0y2;2;

Z28 D y0;2y2;0; Z29 D y1;0y1;2:
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By looking at the ideal ofV �P9, we deduce that'.V / is contained in a 17-dimensional
projective subspace of P29 given by

H17 WD ¹Z18 D Z14; Z19 D Z15; Z20 D Z16; Z21DZ17; Z22DZ6; Z23DZ7;

Z24 D Z8; Z25 D Z9; Z26 D Z0; Z27 D Z0; Z28 D Z0; Z29 D Z0º:

Hence we obtain the morphism � W V ! W 17
P D '.V / � H17 Š P17 defined by

Œy0;0 W y0;1 W y0;2 W y1;0 W y1;1 W y1;2 W y2;0 W y2;1 W y2;2 W x� 7! Œz0 W z1 W � � � W z16 W z17�;

where

z0 D y
2
1;1; z1 D y

2
0;0; z2 D y

2
0;2; z3 D y

2
2;0;

z4 D y
2
2;2; z5 D x

2; z6 D y
2
0;1; z7 D y

2
1;0;

z8 D y
2
1;2; z9 D y

2
2;1; z10 D y0;1x; z11 D y1;0x;

z12 D y1;2x; z13 D y2;1x; z14 D y0;0y1;1; z15 D y0;2y1;1;

z16 D y2;0y1;1; z17 D y2;2y1;1:

Thanks to Macaulay2, we find that the threefold W 17
P has ideal generated by the 88

quadratic polynomials

z15z16 � z14z17; z12z16 � z11z17; z9z16 � z3z17; z8z16 � z0z17;

z6z16 � z1z17; z4z16 � z9z17; z2z16 � z6z17; z0z16 � z7z17;

z13z15 � z10z17; z9z15 � z0z17; z8z15 � z2z17; z7z15 � z1z17;

z4z15 � z8z17; z3z15 � z7z17; z0z15 � z6z17; z13z14 � z10z16;

z12z14 � z11z15; z9z14 � z7z17; z8z14 � z6z17; z7z14 � z1z16;

z6z14 � z1z15; z4z14 � z0z17; z3z14 � z7z16; z2z14 � z6z15;

z0z14 � z1z17; z12z13 � z5z17; z11z13 � z5z16; z8z13 � z12z17;

z7z13 � z11z16; z6z13 � z11z15; z2z13 � z12z15; z1z13 � z11z14;

z0z13 � z11z17; z11z12 � z10z13; z10z12 � z5z15; z9z12 � z13z17;

z7z12 � z10z16; z6z12 � z10z15; z3z12 � z13z16; z1z12 � z10z14;

z0z12 � z10z17; z10z11 � z5z14; z9z11 � z13z16; z8z11 � z10z17;

z6z11 � z10z14; z4z11 � z13z17; z2z11 � z10z15; z0z11 � z10z16;

z9z10 � z11z17; z8z10 � z12z15; z7z10 � z11z14; z4z10 � z12z17;

z3z10 � z11z16; z0z10 � z11z15; z8z9 � z
2
17; z7z9 � z

2
16;

z6z9 � z14z17; z5z9 � z
2
13; z2z9 � z15z17; z1z9 � z14z16;

z0z9 � z16z17; z7z8 � z14z17; z6z8 � z
2
15; z5z8 � z

2
12;

z3z8 � z16z17; z1z8 � z14z15; z0z8 � z15z17; z6z7 � z
2
14;
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z5z7 � z
2
11; z4z7 � z16z17; z2z7 � z14z15; z0z7 � z14z16;

z5z6 � z
2
10; z4z6 � z15z17; z3z6 � z14z16; z0z6 � z14z15;

z0z5 � z10z13; z3z4 � z
2
9 ; z2z4 � z

2
8 ; z1z4 � z14z17;

z0z4 � z
2
17; z2z3 � z14z17; z1z3 � z

2
7 ; z0z3 � z

2
16;

z1z2 � z
2
6 ; z0z2 � z

2
15; z0z1 � z

2
14; z20 � z14z17:

Furthermore, W 17
P has the five singular points

P1 WD �.v0;0/; P2 WD �.v0;2/; P3 WD �.v2;0/; P4 WD �.v2;2/; P5 WD �.v/;

that is Pi D ¹zk D 0 j k ¤ iº for 1 � i � 5.

Proposition 8.1. If i D 1; 2; 3; 4, the tangent cone TCPiW
17
P toW 17

P at the point Pi
is a cone over a Veronese surface.

Proof. Each point Pi , i D 1; 2; 3; 4, can be viewed as the origin of the open affine set
Ui WD ¹zi ¤ 0º. The ideal of the tangent cone TCPi .W

17
P \ Ui / is generated by the

minimal degree homogeneous parts of all the polynomials in the ideal of W 17
P \ Ui .

By using Macaulay2, we obtain the following tangent cones.
TCP1.W

17
P \U1/ has ideal generated by z17, z16, z15, z13, z12, z9, z8, z4, z3, z2, z0,

z10z11 � z5z14, z6z11 � z10z14, z7z10 � z11z14, z6z7 � z214, z5z7 � z
2
11, z5z6 � z

2
10.

Hence TCP1W 17
P is a cone with vertex P1 over a Veronese surface in the P5 defined

by ¹zi D 0 j i D 0; 1; 2; 3; 4; 8; 9; 12; 13; 15; 16; 17º.
TCP2.W

17
P \U2/ has ideal generated by z17, z16, z14, z13, z11, z9, z7, z4, z3, z1, z0,

z10z12 � z5z15, z6z12 � z10z15, z8z10 � z12z15, z6z8 � z215, z5z8 � z
2
12, z5z6 � z

2
10.

Hence TCP2W 17
P is a cone with vertex P2 over a Veronese surface in the P5 defined

by ¹zi D 0 j i D 0; 1; 2; 3; 4; 7; 9; 11; 13; 14; 16; 17º.
TCP3.W

17
P \U3/ has ideal generated by z17, z15, z14, z12, z10, z8, z6, z4, z2, z1, z0,

z11z13 � z5z16, z7z13 � z11z16, z9z11 � z13z16, z7z9 � z216, z5z9 � z
2
13, z5z7 � z

2
11.

Hence TCP3W 17
P is a cone with vertex P3 over a Veronese surface in the P5 defined

by ¹zi D 0 j i D 0; 1; 2; 3; 4; 6; 8; 10; 12; 14; 15; 17º.
TCP4.W

17
P \U4/ has ideal generated by z16, z15, z14, z11, z10, z7, z6, z3, z2, z1, z0,

z12z13 � z5z17, z8z13 � z12z17, z9z12 � z13z17, z8z9 � z217, z5z9 � z
2
13, z5z8 � z

2
12.

Hence TCP4W 17
P is a cone with vertex P4 over a Veronese surface in the P5 defined

by ¹zi D 0 j i D 0; 1; 2; 3; 4; 6; 7; 10; 11; 14; 15; 16º.

Theorem 8.2. The tangent cone TCP5W 17
P to W 17

P at the point P5 is a cone over a
reducible sextic surface M6 � P7 � P17, which is given by the union of four planes
�1, �2, � 01, �

0
2 and a quadric surface Q � P3 � P7. In particular, each one of the

planes �1, �2, � 01, �
0
2 intersects the quadric Q respectively along a line l1, l2, l 01, l

0
2,
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Figure 3. The reducible sextic surface M6 � P7 given by the union of four planes �1, �2, � 0
1
,

� 0
2

and a quadric surface Q � P3 � P7, which intersect as in the statement of Theorems 8.2
and 10.3.

where li is disjoint from l 0i , for i D 1; 2. In the other cases, the intersections of two of
these lines identify four points, i.e., q1;2 WD l1 \ l2, q1;20 WD l1 \ l 02, q10;2 WD l

0
1 \ l2,

and q10;20 WD l 01 \ l
0
2.

Proof. The point P5 can be viewed as the origin of the open affine set given by
U5 WD ¹z5 ¤ 0º. The ideal of the tangent cone TCP5.W 17

P \ U5/ is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal ofW 17

P \U5. By
using Macaulay2, we find thatTCP5.W 17

P \U5/ has ideal generated by the polynomials

z17; z16; z15; z14; z9; z8; z7; z6; z0; z11z12 � z10z13;

z2z13; z1z13; z3z12; z1z12; z4z11; z2z11; z4z10; z3z10;

z3z4; z2z4; z1z4; z2z3; z1z3; z1z2:

Hence TCP5W 17
P is a cone with vertex P5 over a surface M6 contained in the P7

defined by ¹zi D 0 j i D 0; 5; 6; 7; 8; 9; 14; 15; 16; 17º. This surface M6 is the union
of four planes �1, �2, � 01, �

0
2 and a quadric surface Q, where

�1 WD ¹zi D 0 j i D 0; 1; 3; 4; 5; 6; 7; 8; 9; 11; 13; 14; 15; 16; 17º;

�2 WD ¹zi D 0 j i D 0; 2; 3; 4; 5; 6; 7; 8; 9; 12; 13; 14; 15; 16; 17º;

� 01 WD ¹zi D 0 j i D 0; 1; 2; 4; 5; 6; 7; 8; 9; 10; 12; 14; 15; 16; 17º;

� 02 WD ¹zi D 0 j i D 0; 1; 2; 3; 5; 6; 7; 8; 9; 10; 11; 14; 15; 16; 17º;

Q WD ¹zi D 0 j i D 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 14; 15; 16; 17º\¹z11z12�z10z13D0º:

We give an idea of M6 in Figure 3.
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By Proposition 8.1 and Theorem 8.2, we have that W 17
P has five non-similar points.

For completeness, let us find their configuration. Let li;j WD ¹zk D 0 j k ¤ i; j º be the
line joining the singular points Pi and Pj with 1 � i < j � 5. By looking at the ideal
of W 17

P , we deduce that the lines l1;5, l2;5, l3;5, l4;5 are contained in W 17
P , while the

lines l1;2, l1;3, l1;4, l2;3, l2;4, l3;4 are not. Hence the five singular points P1, P2, P3,
P4, P5 of W 17

P are associated as in Table 3 of Appendix B.

Remark 8.3. Let bl W BlPiD1;:::5P17! P17 be the blow-up of P17 at the five singular
points of W 17

P and let zW be the strict transform of W 17
P . Then zW intersects the

exceptional divisor bl�1.P5/ along a surface which is isomorphic toM6 and which has
four singular points locally given by the intersection of three planes of P4, such that two
of them intersect the third along two lines and intersect each other at a point which is
the intersection of these two lines. Consequently, zW is not a desingularization of W 17

P ,
since there are four singular points infinitely near to P5. Therefore, it is not enough
to blow-up W 17

P at P1, P2, P3, P4, P5 to solve the singularities of W 17
P , as instead

implicitly assumed by Fano and explicitly by Conte–Murre (see [7, Section 3.10]).

9. The P-EF 3-fold of genus 13

Let us study the Enriques–Fano threefold mentioned in [20, Remark 3]. We refer to
Section A.8 of Appendix A for the computational techniques we will use. Let us take
the smooth sextic del Pezzo surface S6 � P6

Œx0Wx1Wx2Wx3Wx4Wx5Wx6�
defined in Section 7.

Let us consider P6 as the hyperplane ¹y0 D 0º � P7
Œx0Wx1Wx2Wx3Wx4Wx5Wx6Wy�

and let V be
the cone over S6 with vertex v WD Œ0 W 0 W 0 W 0 W 0 W 0 W 0 W 1�. With a similar proof as the
one of [20, Lemma 3.1], one can see that V is a singular Fano threefold. Let t be the
involution of P7 defined by Œx0 W � � � W x6 W y� 7! Œx2 W x4 W x0 W x5 W x1 W x3 W x6 W �y�.
The locus of t -fixed points in P7 consists of two projective subspaces:

F1 D ¹x0 C x2 D x1 C x4 D x3 C x5 D x6 D 0º Š P3;

F2 D ¹x0 � x2 D x1 � x4 D x3 � x5 D y D 0º Š P3:

In particular, we have that F1 \ V D ¹vº and F2 \ V D ¹v1; v2; v3; v4º, where

v1 WD Œ1 W 1 W 1 W 1 W 1 W 1 W 1 W 0�; v2 WD Œ1 W �1 W 1 W �1 W �1 W �1 W 1 W 0�;

v3 WD Œ�1 W 1 W �1 W �1 W 1 W �1 W 1 W 0�; v4 WD Œ�1 W �1 W �1 W 1 W �1 W 1 W 1 W 0�:

Thus, t induces an involution � WD t jV of V with five fixed points. The quotient of V
via the involution � is an Enriques–Fano threefold of genus 13, which we will denote by
W 13
P : one can deduce this by using a similar proof as the one of [20, Proposition 3.2].

In this case, the quotient map � W V ! V=� D W 13
P is defined by the restriction on V
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of the linear system Q of the quadric hypersurfaces of P9 of type

q1.x0 C x2; x1 C x4; x3 C x5; x6/C q2.x0 � x2; x1 � x4; x3 � x5; y/ D 0;

where q1 and q2 are quadratic homogeneous forms. The linear system Q defines a
morphism ' W P7 ! P19 such that Œx0 W � � � W x6 W y� 7! ŒZ0 W � � � W Z19�, where

Z0 D x
2
6 ; Z1 D x

2
0 C x

2
2 ; Z2 D x

2
1 C x

2
4 ;

Z3 D x
2
3 C x

2
5 ; Z4 D .x0 C x2/x6; Z5 D .x1 C x4/x6;

Z6 D .x3 C x5/x6; Z7 D x0x1 C x2x4; Z8 D x2x3 C x0x5;

Z9 D x1x3 C x4x5; Z10 D .x0 � x2/y; Z11 D .x1 � x4/y;

Z12 D .x3 � x5/y; Z13 D y
2; Z14 D 2x0x2;

Z15 D 2x1x4; Z16 D 2x3x5; Z17 D x4x3 C x1x5;

Z18 D x0x3 C x2x5; Z19 D x1x2 C x0x4:

By looking at the ideal of V � P7, we observe that the threefold '.V / is contained in
a 13-dimensional projective subspace of P19 given by

H13 WD ¹Z14 D 2Z0; Z15 D 2Z0; Z16 D 2Z0; Z17 DZ4; Z18 DZ5; Z19 DZ6º:

Thus, we obtain the morphism � W V ! W 13
P D '.V / � H13 Š P13 defined by

Œx0 W � � � W x6 W y� 7! Œz0 W � � � W z13�, where

z0 D x
2
6 ; z1 D x

2
0 C x

2
2 ; z2 D x

2
1 C x

2
4 ;

z3 D x
2
3 C x

2
5 ; z4 D .x0 C x2/x6; z5 D .x1 C x4/x6;

z6 D .x3 C x5/x6; z7 D x0x1 C x2x4; z8 D x2x3 C x0x5;

z9 D x1x3 C x4x5; z10 D .x0 � x2/y; z11 D .x1 � x4/y;

z12 D .x3 � x5/y; z13 D y
2:

By using Macaulay2, we find that the threefold W 13
P has ideal generated by the 42

quadratic polynomials

z4z5 � 2z0z6 � z2z6 C z5z9; z25 � z
2
6 � z6z7 C z5z8;

2z0z5 C z3z5 � z4z6 � z6z9; z24 � z
2
6 � z6z7 C z4z9;

z4z5 � 2z0z6 � z1z6 C z4z8; �2z0z5 � z1z5 C z4z6 C z4z7;

2z0z4 C z3z4 � z5z6 � z6z8; 2z0z4 C z2z4 � z5z6 � z5z7;

4z20 � z
2
4 � z

2
5 C z6z7; z5z10 � z4z11 C 2z0z12;

� z6z10 C 2z0z11 � z4z12; 2z0z10 � z6z11 C z5z12;

2z0z4 � 2z5z6 C 2z0z9; 2z0z5 � 2z4z6 C 2z0z8;

� 2z4z5 C 2z0z6 C 2z0z7; 2z0z3 C z
2
4 C z

2
5 � 2z

2
6 � z6z7;
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2z0z2 C z
2
4 � z

2
5 � z6z7; 2z0z1 � z

2
4 C z

2
5 � z6z7;

z212 C 2z0z13 � z3z13; z11z12 C z4z13 � z9z13;

z10z12 � z5z13 C z8z13; z4z10 � z5z11 C z7z12;

z211 C 2z0z13 � z2z13; z10z11 C z6z13 � z7z13;

� z5z10 C z9z11 � z2z12; �z4z10 C z8z11 � z6z12;

� z6z10 C z3z11 � z9z12; z210 C 2z0z13 � z1z13;

z9z10 � z5z11 C z6z12; z8z10 � z4z11 C z1z12;

z7z10 � z1z11 C z4z12; z3z10 � z6z11 C z8z12;

z2z10 � z7z11 C z5z12; �z4z5 C 2z0z6 � z3z6 C z8z9;

2z0z5 � z2z5 � z4z6 C z7z9; 2z0z4 � z5z7 � z6z8 C z1z9;

2z0z4 � z1z4 � z5z6 C z7z8; �z1z5 C z4z6 C z2z8 � z6z9;

2z4z5 � 2z0z6 � z1z6 � z2z6 C z3z7; z2z3 C z
2
5 � z6z7 � z

2
9 ;

z1z3 C z
2
4 � z6z7 � z

2
8 ; z1z2 C z

2
4 C z

2
5 � z

2
6 � z6z7 � z

2
7 :

Furthermore, W 13
P has the five singular points

P1 WD �.v1/ D Œ1 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 0 W 0 W 0 W 0�;

P2 WD �.v2/ D Œ1 W 2 W 2 W 2 W 2 W �2 W �2 W �2 W �2 W 2 W 0 W 0 W 0 W 0�;

P3 WD �.v3/ D Œ1 W 2 W 2 W 2 W �2 W 2 W �2 W �2 W 2 W �2 W 0 W 0 W 0 W 0�;

P4 WD �.v4/ D Œ1 W 2 W 2 W 2 W �2 W �2 W 2 W 2 W �2 W �2 W 0 W 0 W 0 W 0�;

P5 WD �.v/ D Œ0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 1�:

Proposition 9.1. If i D 1; 2; 3; 4, the tangent cone TCPiW
13
P toW 13

P at the point Pi
is a cone over a Veronese surface.

Proof. Let us consider the following change of coordinates of P13:

z0 D w0; zi D wi C 2w0; zj D wj ; i D 1; : : : ; 9; j D 10; : : : ; 13:

With respect to the new system of coordinates Œw0 W � � � W w13� of P13, the point P1
has coordinates Œ1 W 0 W � � � W 0� and can be viewed as the origin of the open affine set
U0 WD ¹w0 ¤ 0º. The ideal of the tangent cone TCP1.W 13

P \ U0/ is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of W 13

P \ U0.
Via Macaulay, TCP1.W 13

P \ U0/ is found to have ideal generated by

� 9w1 C 8w7 C 8w8 � 4w9; �9w2 C 8w7 � 4w8 C 8w9;

� 9w3 � 4w7 C 8w8 C 8w9; �9w4 C 2w7 C 2w8 � w9;

� 9w5 C 2w7 � w8 C 2w9; �9w6 � w7 C 2w8 C 2w9;
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w10 � w11 C w12; 9w11w12 C 2w7w13 C 2w8w13 � 10w9w13;

2w7w11 � 10w8w11 C 2w9w11 � 10w7w12 C 2w8w12 C 2w9w12;

6w7w11 � 6w8w11 � 18w9w11 C 6w7w12 � 6w8w12 C 18w9w12;

9w212 C 4w7w13 � 8w8w13 � 8w9w13; 9w211 � 8w7w13 C 4w8w13 � 8w9w13;

w27 � 2w7w8 C w
2
8 � 2w7w9 � 2w8w9 C w

2
9 :

Hence TCP1W 13
P is a cone with vertex at P1 over a Veronese surface in

¹w0 D 0; �9w1 C 8w7 C 8w8 � 4w9 D 0; �9w2 C 8w7 � 4w8 C 8w9 D 0;

� 9w3 � 4w7 C 8w8 C 8w9 D 0; �9w4 C 2w7 C 2w8 � w9 D 0;

� 9w5 C 2w7 � w8 C 2w9 D 0; �9w6 � w7 C 2w8 C 2w9 D 0;

w10 � w11 C w12 D 0º Š P5:

Similar analysis holds for the points P2, P3, and P4.

Theorem 9.2. The tangent cone TCP5W 13
P to W 13

P at the point P5 is a cone over a
reducible quintic surfaceM5, which is given by the union of five planes �0, �1, �2, �3,
�4, such that the four planes �1, �2, �3, �4 intersect the plane �0 along the four edges
of a quadrilateral.

Proof. The point P5 can be viewed as the origin of the open affine set given by
U13 WD ¹z13 ¤ 0º. The ideal of the tangent cone TCP5.W 13

P \ U13/ is generated
by the minimal degree homogeneous parts of all the polynomials in the ideal of
W 13
P \ U13. By using Macaulay2, we find that TCP5.W 13

P \ U13/ has ideal generated
by the polynomials

z6 � z7; z5 � z8; z4 � z9; z2 � z3; z1 � z3; 2z0 � z3;

z9z10 � z8z11 C z7z12; z8z10 � z9z11 C z3z12; z7z10 � z3z11 C z9z12;

z3z10 � z7z11 C z8z12; z28 � z
2
9 ; z27 � z

2
9 ; z23 � z

2
9 ; z7z8 � z3z9;

z3z8 � z7z9; z3z7 � z8z9:

Hence TCP5W 13
P is a cone with vertex at P5 over a surface M5 contained in the P6

defined by ¹z13 D 0; z6 D z7; z5 D z8; z4 D z9; z2 D z3; z1 D z3; 2z0 D z3º. This
surface M5, an idea of which is given in Figure 4, is the union of the five planes

�0 WD ¹zi D 0 j i ¤ 10; 11º;

�1 WD ¹2z0 D z1 D z2 D z3 D z4 D z5 D z6 D z7 D z8 D z9;

z10 D z11 � z12; z13 D 0º;

�2 WD ¹2z0 D z1 D z2 D z3 D z4 D �z5 D �z6 D �z7 D �z8 D z9;

z10 D z12 � z11; z13 D 0º;
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Figure 4. The reducible quintic surface M5 � P6 given by the union of five planes �0, �1, �2,
�3, �4, which intersect as in the statement of Theorem 9.2.

�3 WD ¹2z0 D z1 D z2 D z3 D �z4 D z5 D �z6 D �z7 D z8 D �z9;

z10 D �z11 � z12; z13 D 0º;

�4 WD ¹2z0 D z1 D z2 D z3 D �z4 D �z5 D z6 D z7 D �z8 D �z9;

z10 D z11 C z12; z13 D 0º:

By Proposition 9.1 and Theorem 9.2, we have that W 13
P has five non-similar points.

For completeness, let us find their configuration. Let li;j be the line joining the singular
points Pi and Pj for 1 � i < j � 5. Thanks to Macaulay2, we find that the lines l1;5,
l2;5, l3;5, l4;5 are contained inW 13

P , while the lines l1;2, l1;3, l1;4, l2;3, l2;4, l3;4 are not.
Hence the five singular points P1, P2, P3, P4, P5 of W 13

P are associated as in Table 3
of Appendix B.

Remark 9.3. Let bl W BlPiD1;:::5P13! P13 be the blow-up of P13 at the five singular
points of W 13

P and let zW be the strict transform of W 13
P . Then zW intersects the

exceptional divisor bl�1.P5/ along a surface isomorphic toM5, which has six singular
points locally given by the intersection of three planes of P4, such that two of them
intersect the third along two lines and intersect each other at a point which is intersection
of these two lines. Therefore, zW is not a desingularization of W 13

P , since there are six
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singular points infinitely near to P5. Therefore, it is not enough to blow-up W 13
P at

P1, P2, P3, P4, P5 to solve the singularities of W 13
P , as instead implicitly assumed by

Fano and explicitly by Conte–Murre (see [7, Section 3.10]).

10. The KLM-EF 3-fold of genus 9

Let us study the Enriques–Fano threefold described in [16, Section 13]. We refer to
Section A.9 of Appendix A for the computational techniques we will use. Let � be the
linear system of the sextic surfaces of P3

Œt0W���Wt3�
having double points along the six edges

lij WD ¹ti D tj D 0º of a fixed tetrahedron T WD ¹t0t1t2t3 D 0º, for 0 � i < j � 3. Let
us denote the vertices of T by vi WD ¹tk D 0 j k ¤ iº, for 0 � i � 3. Then � defines
a rational map �� W P3 Ü P13

Œw0;:::;w13�
whose image is the Enriques–Fano threefold

W 13
F D W

13
BS studied in Section 5 (see Theorem 1.3).

Let us fix a general element† 2 � and let us take its image S WD �� .†/. Then there
exists a hyperplane H12 Š P12 � P13 such that S D W 13

F \H12. By the generality
of †, we may assume that H12 does not pass through the singular points P1, P2, P3,
P4, P 01, P

0
2, P

0
3, P

0
4, and so that H12 D ¹

P13
iD0 aiwi D 0º, where a0, a1, a3, a4, a9,

a10, a12, a13 are not equal to zero. In particular, we may suppose that a0 D 1. Let
us blow-up P3 at the vertices of T : we obtain a smooth threefold Y 0 and a birational
morphism bl 0 W Y 0 ! P3 with exceptional divisors Ei WD .bl 0/�1.vi /, for 0 � i � 3.
If H denotes the pullback on Y 0 of the hyperplane class on P3, the strict transform of
† on Y 0 is linearly equivalent to 6H � 3

P3
iD0Ei . Let us blow-up Y 0 along the strict

transforms Qlij of the edges of T , for 0� i < j � 3: we obtain a smooth threefold Y 00 and
a birational morphism bl 00 W Y 00 ! Y 0 with exceptional divisors Fij WD .bl 00/�1. Qlij /,
for 0 � i < j � 3. Let †00 be the strict transform on Y 00 of †. Then

†00 � 6H � 3

3X
iD0

zEi � 2
X

0�i<j�3

Fij ;

where zEi denotes the strict transform of Ei , for 0 � i � 3, andH denotes the pullback
bl 00�H , by abuse of notation. Let �00 W Y 00ÜW 13

F � P13 be the birational map defined
by the linear system jOY 00.†00/j and let us take E3 WD �00.F23 \†00/. The hyperplane
sections of W 13

F � P13 containing �00.F23/ correspond to the divisors on Y 00 linearly
equivalent to

6H � 3

3X
iD0

zEi � 3F23 �
X

0�i<j�3
.i;j /¤.2;3/

2Fij :

Since˝
�00.F23/

˛
D ¹w5 D w6 D w7 D w8 D w9 D w10 D w11 D w12 D w13 D 0º Š P4;



v. martello 34

then we have that hE3i D H12 \ h�00.F23/i Š P3, and so that E3 D S \ hE3i, which
is defined by the equations

w0 C a1w1 C a2w2 C a3w3 C a4w4 D 0;

w5 D w6 D w7 D w8 D w9 D w10 D w11 D w12 D w13 D 0;

w1w3 C a1w1w4 C a2w2w4 C a3w3w4 C a4w
2
4 D 0;

w22 C a1w1w4 C a2w2w4 C a3w3w4 C a4w
2
4 D 0:

Thus, E3 is a quartic elliptic curve, since it is the complete intersection of two quadric
surfaces of hE3i Š P3. If �hE3i W P

13 Ü P9 denotes the projection of P13 from
hE3i Š P3, then W 9

KLM WD �hE3i.W
13
F / � P9 is the KLM-EF 3-fold of genus 9.

Remark 10.1. For the construction of W 9
KLM , we have fixed a general sextic † 2 � .

The hyperplane sections of W 9
KLM � P9 correspond to the hyperplane sections of

W 13
F � P13 containing E3, which are images via �� of the sextic surfaces R of �

which are tangent to † along the two branches of † intersecting at l23. ThenW 9
KLM is

the image of P3 via the rational map defined by the sublinear system R � � of these
sextic surfaces R.

By using Macaulay2, we find that the projection map is given by�
w0 W w1 W w2 W w3 W w4 W w5 W w6 W w7 W w8 W w9 W w10 W w11 W w12 W w13

�
�
w0 C a1w1 C a2w2 C a3w3 C a4w4 W w5 W w6 W w7 W w8 W w9 W w10 W w11 W w12 W w13

��hE3i

and that the ideal ofW 9
KLM �P9

Œz0Wz1Wz2Wz3Wz4Wz5Wz6Wz7Wz8Wz9�
is generated by the following

16 polynomials of degree 2 or 3:

z6z8 � z5z9; z3z8 � z2z9; z27 � z5z9; z4z7 � z2z9;

z3z7 � z1z9; z2z7 � z1z8; z4z6 � z1z9; z2z6 � z1z7;

z4z5 � z1z8; z3z5 � z1z7; z2z3 � z1z4;

z1z2 C a1z1z3 C a2z1z4 C a3z2z4 C a4z3z4 � z0z7;

z22z9 C a1z1z4z9 C a2z2z4z9 C a3z
2
4z8 C a4z

2
4z9 � z0z8z9;

z21z9 C a1z
2
3z6 C a2z1z3z9 C a3z1z4z9 C a4z

2
3z9 � z0z6z9;

z22z5 C a3z
2
2z8 � a2a3z2z4z8 � z0z5z8 C a2z0z7z8 � a

2
1z
2
1z9

C .a4 � a
2
2 � a1a3/z

2
2z9 CC2a

2
1a2z1z3z9 C a1.2a

2
2 � a4/z1z4z9

C .2a1a2a3 � a2a4/z2z4z9 C 2a1a2a4z3z4z9 CCa1z0z5z9 � a1a2z0z7z9;

z21z5 C a1z
2
1z6 � z0z5z6 C a2z

2
1z7 C .a4 � a1a2/z

2
1z9 � a

2
3z
2
2z9 C a1a2a3z1z3z9

� a3.a4 � a
2
2/z1z4z9 C a2a

2
3z2z4z9 C a2a3a4z3z4z9 C a3z0z5z9 � a2a3z0z7z9:
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Let us take the images of the eight quadruple points of W 13
F , by denoting them, by

abuse of notation, in the following way:

P1 WD �hE3i.P
0
1/ D ¹zk D 0 j k ¤ 5º; P2 WD �hE3i.P

0
2/ D ¹zk D 0 j k ¤ 9º

P3 WD �hE3i.P3/ D ¹zk D 0 j k ¤ 6º; P4 WD �hE3i.P4/ D ¹zk D 0 j k ¤ 8º;

P5 WD �hE3i.P1/ D �hE3i.P2/ D �hE3i.P
0
3/ D �hE3i.P

0
4/ D ¹zk D 0 j k ¤ 0º:

Proposition 10.2. If i D 1; 2; 3; 4, the tangent cone TCPiW
9
KLM to W 9

KLM at the
point Pi is a cone over a Veronese surface.

Proof. Each point Pi , for i D 1; 2; 3; 4, can be viewed as the origin of the open affine
setUj.i/ WD ¹zj.i/ ¤ 0º, where j.1/D 5, j.2/D 9, j.3/D 6, j.4/D 8. The ideal of the
tangent cone TCPi .W

9
KLM \ Uj.i// is generated by the minimal degree homogeneous

parts of all the polynomials in the ideal of W 9
KLM \ Uj.i/. Thanks to Macaulay2, we

obtain the following tangent cones.
TCP1.W

9
KLM \ U5/ has ideal generated by z9, z4, z3, z27 � z6z8, z2z7 � z1z8,

z2z6 � z1z7, z22 � z0z8, z1z2 � z0z7, z
2
1 � z0z6. Hence TCP1W 9

KLM is a cone with
vertex P1 over a Veronese surface in ¹zi D 0 j i D 3; 4; 5; 9º Š P5.
TCP2.W

9
KLM \ U9/ has ideal generated by z5, z2, z1, z27 � z6z8, z4z7 � z3z8,

z4z6 � z3z7, a4z24 � z0z8, a4z3z4 � z0z7, a4z
2
3 � z0z6. Hence TCP2W 9

KLM is a cone
with vertex P2 over a Veronese surface in ¹zi D 0 j i D 1; 2; 5; 9º Š P5.
TCP3.W

9
KLM \ U6/ has ideal generated by z8, z4, z2, z27 � z5z9, z3z7 � z1z9,

z3z5 � z1z7, a1z23 � z0z9, a1z1z3 � z0z7, a1z
2
1 � z0z5. Hence TCP3W 9

KLM is a cone
with vertex P3 over a Veronese surface in ¹zi D 0 j i D 2; 4; 6; 8º Š P5.
TCP4.W

9
KLM \ U8/ has ideal generated by z6, z3, z1, z27 � z5z9, z4z7 � z2z9,

z4z5 � z2z7, a3z24 � z0z9, a3z2z4 � z0z7, a3z
2
2 � z0z5. Hence TCP4W 9

KLM is a cone
with vertex P4 over a Veronese surface in ¹zi D 0 j i D 1; 3; 6; 8º Š P5.

Theorem 10.3. The tangent cone TCP5W 9
KLM to W 9

KLM at the point P5 is a cone
over a reducible sextic surface M6 � P7 � P9, which is given by the union of four
planes �1, �2, � 01, �

0
2 and a quadric surfaceQ � P3 � P7. In particular, each one of

the planes �1, �2, � 01, �
0
2 intersects the quadric surface Q respectively along a line l1,

l2, l 01, l
0
2, where li is disjoint from l 0i , for i D 1; 2. In the other cases, the intersections

of two of these lines identify four points, which are q1;2 WD l1 \ l2, q1;20 WD l1 \ l 02,
q10;2 WD l

0
1 \ l2, and q10;20 WD l 01 \ l

0
2.

Proof. The point P5 can be viewed as the origin of the open affine set given by
U0 WD ¹z0 ¤ 0º. The ideal of the tangent cone TCP5.W 9

KLM \U0/ is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal ofW 9

KLM \ U0.
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By using Macaulay2, one finds that TCP5.W 9
KLM \ U0/ has ideal generated by the

polynomials

z7; z8z9; z6z9; z5z9; z2z9; z1z9; z6z8; z5z8; z3z8;

z1z8; z5z6; z4z6; z2z6; z4z5; z3z5; z2z3 � z1z4:

Hence TCP5W 9
KLM is a cone with vertex P5 over a surface M6 contained in the P7

given by ¹zi D 0 j i D 0; 7º. The surface M6 is the union of four planes �1, �2, � 01,
� 02 and a quadric surface Q, where

�1 WD ¹zi D 0 j i D 0; 1; 2; 5; 6; 7; 8º; �2 WD ¹zi D 0 j i D 0; 1; 3; 5; 6; 7; 9º;

� 01 WD ¹zi D 0 j i D 0; 3; 4; 6; 7; 8; 9º; � 02 WD ¹zi D 0 j i D 0; 2; 4; 5; 7; 8; 9º;

Q WD ¹zi D 0 j i D 0; 5; 6; 7; 8; 9º \ ¹z2z3 � z1z4 D 0º:

We obtain the same situation as the one described in Theorem 8.2, and so a sextic
surface M6 as in Figure 3.

By Proposition 10.2 and Theorem 10.3, we have that P1, P2, P3, P4, P5 are non-
similar singular points ofW 9

KLM . For completeness, let us find their configuration. Let
li;j be the line joining the singular points Pi and Pj for 1 � i < j � 5. Then we have
l1;2 D ¹zk D 0 j k ¤ 5; 9º, l1;3 D ¹zk D 0 j k ¤ 5; 6º, l1;4 D ¹zk D 0 j k ¤ 5; 8º,
l1;5 D ¹zk D 0 j k ¤ 0; 5º, l2;3 D ¹zk D 0 j k ¤ 6; 9º, l2;4 D ¹zk D 0 j k ¤ 8; 9º,
l2;5 D ¹zk D 0 j k ¤ 0; 9º, l3;4 D ¹zk D 0 j k ¤ 6; 8º, l3;5 D ¹zk D 0 j k ¤ 0; 6º,
l4;5 D ¹zk D 0 j k ¤ 0; 8º. By looking at the ideal of W 9

KLM � P9, we deduce that
the lines l1;3, l1;4, l1;5, l2;3, l2;4, l2;5, l3;5, l4;5 are contained inW 9

KLM , while l1;4 and
l2;3 are not. So the five singular points P1, P2, P3, P4, P5 ofW 9

KLM are associated as
in Table 3 of Appendix B.

11. Projective normality

Some authors define an Enriques–Fano threefold just as a threefold satisfying the
following assumption (see for example [16, Definition 1.3]).

Assumption (�). Let W � PN be a non-degenerate threefold whose general hyper-
plane section S is an Enriques surface and such that W is not a cone over S .

If the pair .W;L WD jOW .S/j/ satisfies Assumption (�), it is enough to take its
normalization � W W � ! W to obtain an Enriques–Fano threefold in the general
sense, that is .W � ; ��L/. Indeed, an element of ��L is ample, since it is the pullback
of a very ample divisor of L via the finite birational morphism � W W � ! W (see
[17, Theorem 1.2.13]). Moreover, if .W � ; ��L/ were a (polarized) generalized cone,
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W � would contain a 3-dimensional family of curves of degree 1 with respect to the
given polarization such that they all pass through a point; thus,W � PN would be the
union of lines through a point, contradicting Assumption (�).

Furthermore, we observe that if a pair .X;L/ is an Enriques–Fano threefold such
that the elements of L are very ample divisors on X , then L defines an embedding
�L W X ,! Pp and �L.X/ � Pp is a threefold satisfying Assumption (�).

An example of “Enriques–Fano threefold” in the sense of Assumption (�) is the
KLM-EF 3-fold W 9

KLM � P9: instead of proving the normality of this threefold,
Knutsen–Lopez–Muñoz study properties of its normalization (see [16, Proposition
13.1]). We will see below that the KLM-EF 3-fold actually is (projectively) normal.

Also the rational F-EF 3-foldsW pD6;7;9;13
F � Pp are “Enriques–Fano threefold” in

the sense of Assumption (�): indeed, their normality is unproved, even if Fano assumed
normality at the beginning of his work. The normality of the non-rational F-EF 3-fold
W 4
F is unproved too; however, it does not exactly satisfy Assumption (�), since its

hyperplane sections are not Enriques surfaces, but their minimal desingularizations
are (see [9, p. 275]). We will see below that the rational F-EF 3-folds of genus 7, 9,
and 13 actually are (projectively) normal.

Instead, the BS-EF 3-folds and the P-EF 3-folds are normal by construction, since
they are quotient of normal threefolds under the action of a finite group defined by a
certain involution with a finite number of fixed points (see [10, Proposition 2.15]). In
particular, the BS-EF 3-folds with very ample hyperplane sections satisfy Assumption
(�) in the projective space in which they are embedded, while the other eight BS-
EF 3-folds are Enriques–Fano threefolds satisfying exactly the abstract definition.
Furthermore, as we saw in Sections 8 and 9 the P-EF 3-foldsW pD13;17

P can be embedded
in Pp and they also satisfy Assumption (�).

Definition 11.1. Let R be a 3-dimensional linear system of quadric surfaces of P3.
Let us suppose that R is sufficiently general, i.e., R is base point free and, if l is
a double line for Q 2 R, then Q is the unique quadric in R containing l . A Reye
congruence is a surface obtained as the set®

l 2 G.1; 3/ j l is contained in a pencil contained in R
¯
;

where G.1; 3/ denotes the Grassmannian variety of lines in P3.

Theorem 11.2. Let W � PN be a threefold satisfying Assumption (�). If S � PN�1

is linearly normal and if either N � 7 or N D 6 and S is not a Reye congruence, then
h1.OW / D 0 and W � PN is projectively normal.

Proof. Since the case where N D 6 and S is a Reye congruence is excluded, we have
that S � PN�1 is projectively normal (see [13, Theorem 1.1]). Thus, by using the
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arguments of [8, Lemmas 1.5, 1.6, and 1.7] (which are inspired by the ones of [11, pp. 10–
11]), we obtain that h1.OW / D 0 and that W � PN is projectively normal.

Proposition 11.3. LetW � PN be a threefold satisfying Assumption (�). IfW � PN

is linearly normal and h1.OW / D 0, then S � PN�1 is linearly normal.

Proof. We have to show that h0.OS .1// D h0.OPN�1.1// D N . This follows by the
exact sequence

0! OW ! OW .1/! OS .1/! 0;

since h0.OW /D 1, h1.OW /D 0 and h0.OW .1//D h0.OPN .1//DN C 1 by hypoth-
esis.

Corollary 11.4. LetW � PN be a threefold satisfying Assumption (�). IfW � PN

is linearly normal and h1.OW / D 0, then W � PN is projectively normal (except
when N D 6 and S is a Reye congruence).

Proof. See Theorem 11.2 and Proposition 11.3.

Proposition 11.5. Let W � Pp be a threefold satisfying Assumption (�) such that
p is the genus of a curve section of W . Then W � Pp and S � Pp�1 are linearly
normal.

Proof. By Riemann–Roch on S we obtain h0.OS .1// D p. From W � Pp , we have
that h0.OW .1// � p C 1. On the other hand, from the exact sequence

0! OW ! OW .1/! OS .1/! 0

one gets h0.OW .1// � p C 1 and hence equality holds.

Corollary 11.6. The following Enriques–Fano threefolds are projectively normal:

W 9
KLM � P9; W

pD7;9;13
F � Pp; W

pD7;8;9;10;13
BS

�L
,�! Pp; W

pD13;17
P � Pp:

Proof. See Theorem 11.2 and Proposition 11.5.

We cannot say the same for the F-EF 3-foldW 6
F � P6, since its hyperplane sections

are Reye congruences (see [6, Proposition 3] and [12, Section 3]). As for the BS-EF

3-fold W 6
BS

�L
,�! P6, Macaulay2 enables us to find that its hyperplane section S � P5

is not contained in quadric hypersurfaces of P5 (see Code A.1 of Appendix A): this
is equivalent to saying that S � P5 is projectively normal (use Riemann–Roch and
see [13, Theorem 1.1]), and so we have that W 6

BS � P6 is projectively normal too (see
Theorem 11.2). Thus, we obtain Theorem 1.6.
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A. Macaulay2 codes

In the following, we will collect the input codes used in Macaulay2 for the computational
analysis of this paper. We will essentially use the package Cremona of Staglianò (see
[23]) 1.

A.1. Computational analysis of the BS-EF 3-fold of genus 6
Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3xPP3 = ZZ/10000019[x_0,x_1,x_2,x_3]**ZZ/10000019[y_0,y_1,y_2,y_3];

i3 : X = ideal{ x_0*y_0-7*x_1*y_1+4*x_2*y_2+2*x_3*y_3,

x_0*y_0-6*x_1*y_1+2*x_2*y_2+3*x_3*y_3, x_0*y_0-x_1*y_1-7*x_2*y_2+7*x_3*y_3};

i4 : PP9 = ZZ/10000019[Z_0..Z_9];

i5 : phi = rationalMap map(PP3xPP3,PP9,matrix{{x_0*y_0,x_1*y_1,x_2*y_2,x_3*y_3,

x_0*y_1+x_1*y_0,x_0*y_2+x_2*y_0,x_0*y_3+x_3*y_0,x_1*y_2+x_2*y_1,x_1*y_3+x_3*y_1,

x_2*y_3+x_3*y_2}});

i6 : (dim(image phi) -1, degree(image phi)) == (6,10)

i7 : image phi ==

ideal{-2*Z_1*Z_5*Z_6+Z_4*Z_6*Z_7+Z_4*Z_5*Z_8-2*Z_0*Z_7*Z_8+4*Z_0*Z_1*Z_9-Z_4^2*Z_9,

-2*Z_2*Z_4*Z_6+Z_5*Z_6*Z_7+4*Z_0*Z_2*Z_8-Z_5^2*Z_8+Z_4*Z_5*Z_9-2*Z_0*Z_7*Z_9,

-4*Z_1*Z_2*Z_6+Z_6*Z_7^2+2*Z_2*Z_4*Z_8-Z_5*Z_7*Z_8+2*Z_1*Z_5*Z_9-Z_4*Z_7*Z_9,

-2*Z_3*Z_4*Z_5+4*Z_0*Z_3*Z_7-Z_6^2*Z_7+Z_5*Z_6*Z_8+Z_4*Z_6*Z_9-2*Z_0*Z_8*Z_9,

-4*Z_1*Z_3*Z_5+2*Z_3*Z_4*Z_7-Z_6*Z_7*Z_8+Z_5*Z_8^2+2*Z_1*Z_6*Z_9-Z_4*Z_8*Z_9,

-4*Z_2*Z_3*Z_4+2*Z_3*Z_5*Z_7+2*Z_2*Z_6*Z_8-Z_6*Z_7*Z_9-Z_5*Z_8*Z_9+Z_4*Z_9^2,

-4*Z_1*Z_2*Z_3+Z_3*Z_7^2+Z_2*Z_8^2-Z_7*Z_8*Z_9+Z_1*Z_9^2,

-4*Z_0*Z_2*Z_3+Z_3*Z_5^2+Z_2*Z_6^2-Z_5*Z_6*Z_9+Z_0*Z_9^2,

-4*Z_0*Z_1*Z_3+Z_3*Z_4^2+Z_1*Z_6^2-Z_4*Z_6*Z_8+Z_0*Z_8^2,

-4*Z_0*Z_1*Z_2+Z_2*Z_4^2+Z_1*Z_5^2-Z_4*Z_5*Z_7+Z_0*Z_7^2}

i8 : phiX = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3,

-2*Z_1*Z_5*Z_6+Z_4*Z_6*Z_7+Z_4*Z_5*Z_8-2*Z_0*Z_7*Z_8+4*Z_0*Z_1*Z_9-Z_4^2*Z_9,

-2*Z_2*Z_4*Z_6+Z_5*Z_6*Z_7+4*Z_0*Z_2*Z_8-Z_5^2*Z_8+Z_4*Z_5*Z_9-2*Z_0*Z_7*Z_9,

-4*Z_1*Z_2*Z_6+Z_6*Z_7^2+2*Z_2*Z_4*Z_8-Z_5*Z_7*Z_8+2*Z_1*Z_5*Z_9-Z_4*Z_7*Z_9,

-2*Z_3*Z_4*Z_5+4*Z_0*Z_3*Z_7-Z_6^2*Z_7+Z_5*Z_6*Z_8+Z_4*Z_6*Z_9-2*Z_0*Z_8*Z_9,

-4*Z_1*Z_3*Z_5+2*Z_3*Z_4*Z_7-Z_6*Z_7*Z_8+Z_5*Z_8^2+2*Z_1*Z_6*Z_9-Z_4*Z_8*Z_9,

-4*Z_2*Z_3*Z_4+2*Z_3*Z_5*Z_7+2*Z_2*Z_6*Z_8-Z_6*Z_7*Z_9-Z_5*Z_8*Z_9+Z_4*Z_9^2,

-4*Z_1*Z_2*Z_3+Z_3*Z_7^2+Z_2*Z_8^2-Z_7*Z_8*Z_9+Z_1*Z_9^2,

-4*Z_0*Z_2*Z_3+Z_3*Z_5^2+Z_2*Z_6^2-Z_5*Z_6*Z_9+Z_0*Z_9^2,

-4*Z_0*Z_1*Z_3+Z_3*Z_4^2+Z_1*Z_6^2-Z_4*Z_6*Z_8+Z_0*Z_8^2,

-4*Z_0*Z_1*Z_2+Z_2*Z_4^2+Z_1*Z_5^2-Z_4*Z_5*Z_7+Z_0*Z_7^2};

i9 : (dim oo -1, degree oo, oo == phi(X) ) == (3, 10, true)

i10 : H6 = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3};

i11 : PP6 = ZZ/10000019[w_0..w_6];

i12 : inclusion = rationalMap map(PP6,PP9,matrix{{w_0,w_0,w_0,w_0,w_1,w_2,w_3,

w_4,w_5,w_6}});

i13 : image oo == H6

i14 : pigreca = phi*(rationalMap map(PP9,PP6, sub(matrix inverseMap(inclusion||H6), PP9) ))

(1) For more information, visit the website http://www2.macaulay2.com/Macaulay2/doc/
Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html.

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html
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i15 : pigreca(X) == inclusion^*(phiX)

i16 : WB6 = ideal{

-2*w_0*w_2*w_3+w_1*w_3*w_4+w_1*w_2*w_5-2*w_0*w_4*w_5+4*w_0^2*w_6-w_1^2*w_6,

-2*w_0*w_1*w_3+w_2*w_3*w_4+4*w_0^2*w_5-w_2^2*w_5+w_1*w_2*w_6-2*w_0*w_4*w_6,

-4*w_0^2*w_3+w_3*w_4^2+2*w_0*w_1*w_5-w_2*w_4*w_5+2*w_0*w_2*w_6-w_1*w_4*w_6,

-2*w_0*w_1*w_2+4*w_0^2*w_4-w_3^2*w_4+w_2*w_3*w_5+w_1*w_3*w_6-2*w_0*w_5*w_6,

-4*w_0^2*w_2+2*w_0*w_1*w_4-w_3*w_4*w_5+w_2*w_5^2+2*w_0*w_3*w_6-w_1*w_5*w_6,

-4*w_0^2*w_1+2*w_0*w_2*w_4+2*w_0*w_3*w_5-w_3*w_4*w_6-w_2*w_5*w_6+w_1*w_6^2,

-4*w_0^3+w_0*w_4^2+w_0*w_5^2-w_4*w_5*w_6+w_0*w_6^2,

-4*w_0^3+w_0*w_2^2+w_0*w_3^2-w_2*w_3*w_6+w_0*w_6^2,

-4*w_0^3+w_0*w_1^2+w_0*w_3^2-w_1*w_3*w_5+w_0*w_5^2,

-4*w_0^3+w_0*w_1^2+w_0*w_2^2-w_1*w_2*w_4+w_0*w_4^2};

i17 : WB6 == pigreca(X)

i18 : (dim ooo -1, degree ooo) == (3, 10)

i19 : P1 = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};

i20 : P2 = ideal{w_1+2*w_0,w_2+2*w_0,w_3+2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};

i21 : P3 = ideal{w_1+2*w_0,w_2-2*w_0,w_3-2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};

i22 : P4 = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};

i23 : P5 = ideal{w_1-2*w_0,w_2+2*w_0,w_3-2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};

i24 : P6 = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};

i25 : P7 = ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_0};

i26 : P8 = ideal{w_1-2*w_0,w_2-2*w_0,w_3+2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_0};

i27 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB6

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i28 : (l12 + WB6 == l12) == true

i29 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i30 : (l13 + WB6 == l13) == true

i31 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i32 : (l14 + WB6 == l14) == true

i33 : l15 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i34 : (l15 + WB6 == l15) == true

i35 : l16 = ideal{(toMap(saturate(P1*P6),1,1)).matrix};

i36 : (l16 + WB6 == l16) == true

i37 : l17 = ideal{(toMap(saturate(P1*P7),1,1)).matrix};

i38 : (l17 + WB6 == l17) == true

i39 : l18 = ideal{(toMap(saturate(P1*P8),1,1)).matrix};

i40 : (l18 + WB6 == l18) == true

i41 : -- etc...

-- let us now change the coordinates of PP6

-- in order to have P1 = [1:0...0]

PP6’=ZZ/10000019[z_0..z_6];

i42 : W’ = sub(WB6, {(gens PP6)_0 =>(gens PP6’)_0,

(gens PP6)_1 =>(gens PP6’)_1+2*(gens PP6’)_0,

(gens PP6)_2 =>(gens PP6’)_2+2*(gens PP6’)_0,

(gens PP6)_3 =>(gens PP6’)_3+2*(gens PP6’)_0,

(gens PP6)_4 =>(gens PP6’)_4+2*(gens PP6’)_0,

(gens PP6)_5 =>(gens PP6’)_5+2*(gens PP6’)_0,

(gens PP6)_6 =>(gens PP6’)_6+2*(gens PP6’)_0})

i43 : W’U0 = sub(oo, {(gens PP6’)_0 => 1})

i44 : ConeP1 = sub(tangentCone oo, {(gens PP6’)_0 => (gens PP6)_0,

(gens PP6’)_1 =>(gens PP6)_1-2*(gens PP6)_0,
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(gens PP6’)_2 =>(gens PP6)_2-2*(gens PP6)_0,

(gens PP6’)_3 =>(gens PP6)_3-2*(gens PP6)_0,

(gens PP6’)_4 =>(gens PP6)_4-2*(gens PP6)_0,

(gens PP6’)_5 =>(gens PP6)_5-2*(gens PP6)_0,

(gens PP6’)_6 =>(gens PP6)_6-2*(gens PP6)_0})

i45 : degree oo == 4

i46 : -- similarly for P2,P3,P4,P5,P6,P7,P8

-- we observe now that WB6 is not contained in a quadric hypersurface of PP6

rationalMap toMap(WB6,2,1)

i47 : -- let us also see that a general hyperplane section S is not

-- contained in a quadric hypersurface of PP5, where

-- S = ideal{random(1,PP6)}+WB6

-- for example:

S = ideal{w_0-w_1+72*w_2-13*w_3+4*w_4+8*w_5+35*w_6}+WB6

i48: PP5 = ZZ/10000019[t_0..t_5]

i49 : inc = rationalMap map(PP5,PP6,matrix{{t_0-72*t_1+13*t_2-4*t_3-8*t_4-35*t_5,

t_0,t_1,t_2,t_3,t_4,t_5}})

i50 : image oo == ideal{S_0}

i51 : inc^*S

i52 : (dim oo -1, degree oo) == (2, 10)

i53 : toMap(ooo,2,1)

A.2. Computational analysis of the BS-EF 3-fold of genus 7

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP1xPP1xPP1xPP1 =

ZZ/10000019[x_0,x_1]**ZZ/10000019[y_0,y_1]**ZZ/10000019[z_0,z_1]**ZZ/10000019[t_0,t_1];

i3 : a0001=1;

i4 : a0010=1;

i5 : a0100=1;

i6 : a1000=1;

i7 : a1110=1;

i8 : a1101=1;

i9 : a1011=1;

i10 : a0111=1;

i11 : X = ideal{a0001*x_0*y_0*z_0*t_1+a0010*x_0*y_0*z_1*t_0+a0100*x_0*y_1*z_0*t_0+

a1000*x_1*y_0*z_0*t_0+a1110*x_1*y_1*z_1*t_0+a1101*x_1*y_1*z_0*t_1+

a1011*x_1*y_0*z_1*t_1+a0111*x_0*y_1*z_1*t_1};

i12 : phi = rationalMap map(PP1xPP1xPP1xPP1, ZZ/10000019[w_0..w_7],

matrix(PP1xPP1xPP1xPP1,{{x_1*y_1*z_1*t_1, x_1*y_0*z_0*t_1, x_0*y_0*z_1*t_1,

x_1*y_0*z_1*t_0, x_0*y_0*z_0*t_0, x_0*y_1*z_1*t_0,

x_1*y_1*z_0*t_0, x_0*y_1*z_0*t_1}}));

i13 : WB7 = phi(X);

i14 : (dim oo -1, degree oo) == (3,12)

i15 : PP7 = ring WB7;

i16 : P1 = ideal{w_1, w_2, w_3, w_4, w_5, w_6, w_7};

i17 : P2 = ideal{w_0, w_2, w_3, w_4, w_5, w_6, w_7};

i18 : P3 = ideal{w_0, w_1, w_3, w_4, w_5, w_6, w_7};

i19 : P4 = ideal{w_0, w_1, w_2, w_4, w_5, w_6, w_7};
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i20 : P1’ = ideal{w_0, w_1, w_2, w_3, w_5, w_6, w_7};

i21 : P2’ = ideal{w_0, w_1, w_2, w_3, w_4, w_6, w_7};

i22 : P3’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_7};

i23 : P4’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_6};

i24 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB7

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i25 : (l12 + WB7 == l12) == true

i26 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i27 : (l13 + WB7 == l13) == true

i28 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i29 : (l14 + WB7 == l14) == true

i30 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i31 : (l11’ + WB7 == l11’) == false

i32 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i33 : (l12’ + WB7 == l12’) == true

i34 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i35 : (l13’ + WB7 == l13’) == true

i36 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i37 : (l14’ + WB7 == l14’) == true

i38 : -- etc...

sub(WB7, {(gens PP7)_0=>1});

i39 : ConeP1 = tangentCone oo

i40 : degree oo == 4

i41 : sub(WB7, {(gens PP7)_1=>1});

i42 : ConeP2 = tangentCone oo

i43 : degree oo == 4

i44 : -- etc.. similarly for P3,P4,P5,P1’,P2’,P3’,P4’

A.3. Computational analysis of the BS-EF 3-fold of genus 9
Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP5 = ZZ/10000019[x_0, x_1, x_2, y_3, y_4, y_5];

i3 : s1 = x_0^2-3*x_1^2+2*x_2^2;

i4 : s2 = 3*x_0^2-8*x_1^2+5*x_2^2;

i5 : r1 = 3*y_3^2-8*y_4^2+5*y_5^2;

i6 : r2 = y_3^2-3*y_4^2+2*y_5^2;

i7 : X = ideal{s1+r1, s2+r2};

i8 : (dim oo -1, degree oo) == (3,4)

i9 : PP11 = ZZ/10000019[Z_0..Z_11];

i10 : phi = rationalMap map(PP5, PP11, matrix(PP5,{{x_0^2, x_1^2, x_2^2, x_0*x_1,

x_0*x_2, x_1*x_2, y_3^2, y_4^2, y_5^2, y_3*y_4, y_3*y_5, y_4*y_5}}));

i11 : phi(X)

i12 : (dim oo -1, degree oo) == (3,16)

i13 : H9 = ideal{ooo_0, ooo_1}

i14 : phi(X) + H9 == phi(X)

i15 : PP9 = ZZ/10000019[w_0..w_9];

i16 : inclusion = rationalMap map(PP9,PP11, matrix(PP9,{{w_0+21*w_4-55*w_5+34*w_6,

w_0+8*w_4-21*w_5+13*w_6, w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9 }}));

i17 : image oo == H9
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i18 : WB9 = inclusion^* (phi(X));

i19 : (dim oo -1, degree oo) == (3, 16)

i20 : rationalMap map(PP11,PP9, sub(matrix inverseMap(inclusion||H9), PP11))

i21 : pigreca = phi* oo

i23 : fixedPlanex = associatedPrimes (X+ideal{x_0,x_1,x_2});

i24 : fixedPlaney = associatedPrimes (X+ideal{y_3,y_4,y_5});

i25 : P1 = inclusion^* phi(fixedPlaney#0);

i26 : P4 = inclusion^* phi(fixedPlaney#1);

i27 : P2 = inclusion^* phi(fixedPlaney#2);

i28 : P3 = inclusion^* phi(fixedPlaney#3);

i29 : P1’ = inclusion^* phi(fixedPlanex#0);

i30 : P4’ = inclusion^* phi(fixedPlanex#1);

i31 : P2’ = inclusion^* phi(fixedPlanex#2);

i32 : P3’ = inclusion^* phi(fixedPlanex#3);

i33 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB9

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i34 : (l12 + WB9 == l12) == false

i35 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i36 : (l13 + WB9 == l13) == false

i37 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i38 : (l14 + WB9 == l14) == false

i39 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i40 : (l11’ + WB9 == l11’) == true

i41 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i42 : (l12’ + WB9 == l12’) == true

i43 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i44 : (l13’ + WB9 == l13’) == true

i45 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i46 : (l14’ + WB9 == l14’) == true

i47 : -- etc..

proj1 = rationalMap toMap(P2,1,1);

i48 : proj2 = rationalMap toMap(proj1(P3),1,1);

i49 : proj3 = rationalMap toMap(proj2(proj1(P4)),1,1);

i50 : proj4 = rationalMap toMap(proj3(proj2(proj1(P2’))),1,1);

i51 : proj5 = rationalMap toMap(proj4(proj3(proj2(proj1(P3’)))),1,1);

i52 : proj6 = rationalMap toMap(proj5(proj4(proj3(proj2(proj1(P4’))))),1,1);

i53 : proj = proj1*proj2*proj3*proj4*proj5*proj6;

i54 : proj(WB9)

i55 : PP3 = ring oo;

i56 : isBirational( proj|WB9 )

i57 : septics = rationalMap map( PP3, PP9, matrix(inverseMap( proj|WB9 )));

i58 : time image oo == WB9

i59 : comp = associatedPrimes(ideal septics)

i60 : l3’ = comp#0;

i61 : l2’ = comp#1;

i62 : r21 = comp#2;

i63 : r11 = comp#3;

i64 : r31 = comp#4;

i65 : l1’ = comp#5;

i66 : r23 = comp#6;

i67 : r13 = comp#7;
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i68 : r33 = comp#8;

i69 : r22 = comp#9;

i70 : r12 = comp#10;

i71 : r32 = comp#11;

i72 : l1 = comp#12;

i73 : l2 = comp#13;

i74 : l3 = comp#14;

i75 : -- trihedron T’ :

f1’ = ideal{(gens PP3)_3};

i76 : f2’ = ideal{(gens PP3)_1+(gens PP3)_3};

i77 : f3’ = ideal{(gens PP3)_2+(gens PP3)_3};

i78 : f1’+f2’ == l3’

i79 : f1’+f3’ == l2’

i80 : f2’+f3’ == l1’

i81 : v’= saturate(f1’+f2’+f3’)

i82 : -- trihedron T :

f1 = ideal{(gens PP3)_0-55*(gens PP3)_1+34*(gens PP3)_2};

i83 : f2 = ideal{(gens PP3)_0 - 21*(gens PP3)_1 +13*(gens PP3)_2};

i84 : f3 = ideal{(gens PP3)_0};

i85 : f1+f2 == l3

i86 : f1+f3 == l2

i87 : f2+f3 == l1

i88 : v = saturate(l1+l2+l3)

i89 : r11 == f1+f1’

i90 : r12 == f1+f2’

i91 : r13 == f1+f3’

i92 : r21 == f2+f1’

i93 : r22 == f2+f2’

i94 : r23 == f2+f3’

i95 : r31 == f3+f1’

i96 : r32 == f3+f2’

i97 : r33 == f3+f3’

i98 : -- general septic surface of the linear system :

K = septics^* ideal{random(1,PP9)};

i99 : (dim oo -1, degree oo) == (2,7)

i100 : -- K has double point along l1,l2,l3,l1’,l2’,l3’ :

(minors(1,jacobian(K))+l1 == l1) == true

i101 : (minors(1,jacobian(K))+l2 == l2) == true

i102 : (minors(1,jacobian(K))+l3 == l3) == true

i103 : (minors(1,jacobian(K))+l1’ == l1’) == true

i104 : (minors(1,jacobian(K))+l2’ == l2’) == true

i105 : (minors(1,jacobian(K))+l3’ == l3’) == true

i106 : -- K has triple point at v and v’ :

(minors(1,jacobian(jacobian(K)))+minors(1,jacobian(K))+v == v) == true

i107 : (minors(1,jacobian(jacobian(K)))+minors(1,jacobian(K))+v’ == v’) == true

i108 : -- remark

septics(f1) == P2

i109 : septics(f1’) == P2’

i110 : septics(f2) == P3

i111 : septics(f2’) == P3’

i112 : septics(f3) == P4

i113 : septics(f3’) == P4’
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A.4. Computational analysis of the BS-EF 3-fold of genus 13

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP1x = ZZ/10000019[x_0,x_1];

i3 : PP1y = ZZ/10000019[y_0,y_1];

i4 : PP1z = ZZ/10000019[z_0,z_1];

i5 : X = PP1x ** PP1y ** PP1z;

i6 : use X;

i7 : pigreca = rationalMap map(X, ZZ/10000019[w_0..w_13], matrix{{x_0^2*y_0^2*z_0^2,

x_0^2*y_0^2*z_1^2, x_0^2*y_0*y_1*z_0*z_1, x_0^2*y_1^2*z_0^2, x_0^2*y_1^2*z_1^2,

x_0*x_1*y_0^2*z_0*z_1, x_0*x_1*y_0*y_1*z_0^2, x_0*x_1*y_0*y_1*z_1^2,

x_0*x_1*y_1^2*z_0*z_1, x_1^2*y_0^2*z_0^2, x_1^2*y_0^2*z_1^2, x_1^2*y_0*y_1*z_0*z_1,

x_1^2*y_1^2*z_0^2, x_1^2*y_1^2*z_1^2}});

i8 : WB13 = image pigreca;

i9 : (dim oo -1, degree oo) == (3, 24)

i10 : PP13 = ring WB13;

i11 : P1 = pigreca(ideal{x_1,y_0,z_0});

i12 : P2 = pigreca(ideal{x_1,y_1,z_1});

i13 : P3 = pigreca(ideal{x_0,y_1,z_0});

i14 : P4 = pigreca(ideal{x_0,y_0,z_1});

i15 : P1’ = pigreca(ideal{x_0,y_1,z_1});

i16 : P2’ = pigreca(ideal{x_0,y_0,z_0});

i17 : P3’ = pigreca(ideal{x_1,y_0,z_1});

i18 : P4’ = pigreca(ideal{x_1,y_1,z_0});

i19 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB13

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i20 : (l12 + WB13 == l12) == false

i21 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i22 : (l13 + WB13 == l13) == false

i23 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i24 : (l14 + WB13 == l14) == false

i25 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i26 : (l11’ + WB13 == l11’) == false

i27 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i28 : (l12’ + WB13 == l12’) == true

i29 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i30 : (l13’ + WB13 == l13’) == true

i31 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i32 : (l14’ + WB13 == l14’) == true

i33 : -- etc..

PP3 = ZZ/10000019[t_0..t_3];

i34 : sexties = rationalMap map(PP3,PP13, matrix{{t_0*t_1^3*t_2*t_3, t_0^2*t_1^2*t_2^2,

t_0^2*t_1^2*t_2*t_3, t_0^2*t_1^2*t_3^2, t_0^3*t_1*t_2*t_3, t_0*t_1^2*t_2^2*t_3,

t_0*t_1^2*t_2*t_3^2, t_0^2*t_1*t_2^2*t_3, t_0^2*t_1*t_2*t_3^2, t_1^2*t_2^2*t_3^2,

t_0*t_1*t_2^3*t_3, t_0*t_1*t_2^2*t_3^2, t_0*t_1*t_2*t_3^3, t_0^2*t_2^2*t_3^2}});

i35 : WF13 = image oo

i36 : (WF13 == WB13) == true
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A.5. Computational analysis of the BS-EF 3-fold of genus 8

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP4 = ZZ/10000019[x_0..x_4];

i3 : Q = ideal{x_0^2-x_1^2 -x_2^2+x_3^2};

i4 : R = ideal{2*x_0^2-x_1^2-3*x_2^2+2*x_3^2};

i5 : fixedconic1 = ideal{x_2,x_3,x_4^2-R_0};

i6 : fixedconic2 = ideal{x_0,x_1,x_4^2+R_0};

i7 : four = associatedPrimes (fixedconic1+Q)

i8 : p1 = four#0;

i9 : p2 = four#1;

i10 : p1’ = four#2;

i11 : p2’ = four#3;

i12 : four’ = associatedPrimes (fixedconic2+Q)

i13 : p3 = four’#0;

i14 : p4 = four’#1;

i15 : p3’ = four’#2;

i16 : p4’ = four’#3;

i17 : PP9 = ZZ/10000019[z_0..z_9];

i18 : phi = rationalMap map(PP4,PP9,matrix{{x_4^2*x_0+x_0*R_0,x_4^2*x_1+x_1*R_0,

x_4^2*x_2-x_2*R_0,x_4^2*x_3-x_3*R_0,x_4*x_0^2,x_4*x_1^2,

x_4*x_2^2,x_4*x_3^2,x_4*x_0*x_1,x_4*x_2*x_3}});

i19 : phiY = phi(Q);

i20 : H8 = ideal{phiY_0}

i21 : PP8 = ZZ/10000019[w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8];

i22 : inclusion = rationalMap map(PP8,PP9,

matrix(PP8,{{w_0,w_1,w_2,w_3,w_4+w_5-w_6,w_4,w_5,w_6,w_7,w_8}}));

i23 : H8 == image inclusion

i24 : WB8 = inclusion^* phiY;

i25 : (dim oo -1, degree oo) == (3,14)

i26 : P1 = inclusion^* phi(p1)

i27 : P2 = inclusion^* phi(p2)

i28 : P3 = inclusion^* phi(p3)

i29 : P4 = inclusion^* phi(p4)

i30 : P1’ = inclusion^* phi(p1’)

i31 : P2’ = inclusion^* phi(p2’)

i32 : P3’ = inclusion^* phi(p3’)

i33 : P4’ = inclusion^* phi(p4’)

i34 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB8

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i35 : (l12 + WB8 == l12) == true

i36 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i37 : (l13 + WB8 == l13) == true

i38 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i39 : (l14 + WB8 == l14) == true

i40 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i41 : (l11’ + WB8 == l11’) == false

i42 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};
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i43 : (l12’ + WB8 == l12’) == false

i44 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i45 : (l13’ + WB8 == l13’) == true

i46 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i47 : (l14’ + WB8 == l14’) == true

i48 : -- etc...

proj1 = rationalMap toMap(P1,1,1);

i49 : proj1’ = rationalMap toMap(proj1(P1’),1,1);

i50 : proj2 = rationalMap toMap(proj1’(proj1(P2)),1,1);

i51 : proj3 = rationalMap toMap(proj2(proj1’(proj1(P3))),1,1);

i52 : proj3’ = rationalMap toMap(proj3(proj2(proj1’(proj1(P3’)))),1,1);

i53 : proj = proj1*proj1’*proj2*proj3*proj3’

i54 : isBirational(proj | WB8)

i55 : PP3 = target proj;

i56 : septies = rationalMap map( PP3, PP8, matrix(inverseMap(proj|WB8)) )

i57 : image oo == WB8

i58 : baseL = associatedPrimes ideal septies

i59 : e0= baseL#0;

i60 : l1= baseL#1;

i61 : l2= baseL#2;

i62 : s1= baseL#3;

i63 : s2= baseL#4;

i64 : l2’= baseL#5;

i65 : l1’= baseL#6;

i66 : l0= baseL#7;

i67 : r1= baseL#8;

i68 : t1= baseL#9;

i69 : r2= baseL#10;

i70 : t2= baseL#11;

i71 : C= baseL#12;

i72 : v = saturate(l1+l2+l0);

i73 : q1 = saturate(l1+r1+s1+e0+l2’)

i74 : q2 = saturate(l2+r2+s2+e0+l1’)

i75 : ar = saturate(r1+r2+l0)

i76 : as = saturate(s1+s2+l0)

i77 : at = saturate(t1+t2+l0)

i78 : a1 = saturate(l1+t1)

i79 : a2 = saturate(l2+t2)

i80 : b1 = saturate(r1+t1+C)

i81 : b2 = saturate(r2+t2+C)

i82 : c1 = saturate(s1+t1)

i83 : c2 = saturate(s2+t2)

i84 : q1’ = saturate(l1’+t1)

i85 : q2’ = saturate(l2’+t2)

i86 : -- general septic surface of the linear system :

N = septies^* ideal{random(1,PP8)};

i87 : (dim oo -1, degree oo) == (2, 7)

i88 : -- N is double along l0,l1,l2,l1’,l2’,C

(minors(1,jacobian(N))+ l1 == l1) == true

i89 : (minors(1,jacobian(N))+ l2 == l2) == true

i90 : (minors(1,jacobian(N))+ l2’ == l2’) == true

i91 : (minors(1,jacobian(N))+ l1’ == l1’) == true
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i92 : (minors(1,jacobian(N))+ l0 == l0) == true

i93 : (minors(1,jacobian(N))+ C == C) == true

i94 : -- N is triple at v

(minors(1,jacobian(jacobian(N)))+minors(1,jacobian(N))+ v == v) == true

i95 : -- N is quadruple at q1 and q2

(minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+

minors(1,jacobian(N))+ q1 == q1) == true

i96 : (minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+

minors(1,jacobian(N))+ q2 == q2) == true

A.6. Computational analysis of the BS-EF 3-fold of genus 10

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP2=ZZ/10000019[u_0,u_1,u_2];

i3 : PP6 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6];

i4 : cubics3points = rationalMap map(PP2, PP6, matrix{{u_1^2*u_2,

u_1*u_2^2, u_0^2*u_2,u_0*u_2^2, u_0^2*u_1,u_0*u_1^2, u_0*u_1*u_2}});

i5 : S6 = image cubics3points

i6 : PP1 = ZZ/10000019[y_0,y_1];

i7 : PP1xPP6= PP1 ** PP6;

i8 : pr2 = rationalMap(PP1xPP6,PP6, matrix{{x_0,x_1,x_2,x_3,x_4,x_5,x_6}});

i9 : PP10 = ZZ/10000019[w_0..w_10];

i10 : phi = rationalMap map(PP1xPP6,PP10, matrix{{y_0^2*x_6,y_0^2*x_0+y_0^2*x_2,

y_0^2*x_1+y_0^2*x_4,y_0^2*x_3+y_0^2*x_5,y_1^2*x_6,y_1^2*x_0+y_1^2*x_2,

y_1^2*x_1+y_1^2*x_4,y_1^2*x_3+y_1^2*x_5,y_0*y_1*x_0-y_0*y_1*x_2,

y_1*y_0*x_1-y_1*y_0*x_4,y_1*y_0*x_3-y_1*y_0*x_5}});

i11 : PP1xS6 = pr2^* S6;

i12 : WB10 = phi(PP1xS6);

i13 : (dim WB10 -1, degree WB10) == (3,18)

i14 : ideal{WB10_0,WB10_1,2*WB10_2,WB10_3,WB10_4,2*WB10_5,WB10_6,WB10_7,WB10_8,

2*WB10_9,WB10_10,WB10_11,WB10_12,2*WB10_13,WB10_14,2*WB10_15,2*WB10_16,

4*WB10_17,4*WB10_18,4*WB10_19}

i15 : oo == WB10

i16 : P1 = ideal{w_0,w_1,w_2,w_3,w_5-2*w_4,w_6-2*w_4,w_7-2*w_4,w_8,w_9,w_10};

i17 : P2 = ideal{w_0,w_1,w_2,w_3,w_5-2*w_4,w_6+2*w_4,w_7+2*w_4,w_8,w_9,w_10};

i18 : P3 = ideal{w_0,w_1,w_2,w_3,w_5+2*w_4,w_6-2*w_4,w_7+2*w_4,w_8,w_9,w_10};

i19 : P4 = ideal{w_0,w_1,w_2,w_3,w_5+2*w_4,w_6+2*w_4,w_7-2*w_4,w_8,w_9,w_10};

i20 : P1’ = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i21 : P2’ = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i22 : P3’ = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i23 : P4’ = ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i24 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB10

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i25 : (l12 + WB10 == l12) == true

i26 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i27 : (l13 + WB10 == l13) == true

i28 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i29 : (l14 + WB10 == l14) == true
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i30 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i31 : (l11’ + WB10 == l11’) == true

i32 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i33 : (l12’ + WB10 == l12’) == false

i34 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i35 : (l13’ + WB10 == l13’) == false

i36 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i37 : (l14’ + WB10 == l14’) == false

i38 : -- etc...

proj1 = rationalMap toMap(P1,1,1);

i39 : proj2 = rationalMap toMap(proj1(P2),1,1);

i40 : proj3 = rationalMap toMap(proj2(proj1(P3)),1,1);

i41 : proj4 = rationalMap toMap(proj3(proj2(proj1(P4))),1,1);

i42 : proj1’ = rationalMap toMap(proj4(proj3(proj2(proj1(P1’)))),1,1);

i43 : proj2’ = rationalMap toMap(proj1’(proj4(proj3(proj2(proj1(P2’))))),1,1);

i44 : proj3’ = rationalMap toMap(proj2’(proj1’(proj4(proj3(proj2(proj1(P3’)))))),1,1);

i45 : proj = proj1*proj2*proj3*proj4*proj1’*proj2’*proj3’

i46 : isBirational(proj | WB10)

i47 : PP3 = target proj;

i48 : sexties = rationalMap map( PP3, PP10, matrix(inverseMap(proj|WB10)) )

i49 : image oo == WB10

i50 : baseL = associatedPrimes ideal sexties

i51 : l23 = baseL#0

i52 : r1 = baseL#1

i53 : l12 = baseL#2

i54 : r3 = baseL#3

i55 : l13 = baseL#4

i56 : r2 = baseL#5

i57 : l02 = baseL#6

i58 : l03 = baseL#7

i59 : l01 = baseL#8

i60 : v1 = baseL#9

i61 : v2 = baseL#10

i62 : v3 = baseL#11

i63 : f0 =ideal{(gens PP3)_0};

i64 : f1 =ideal{(gens PP3)_1+(gens PP3)_2+(gens PP3)_3};

i65 : f2=ideal{(gens PP3)_1-(gens PP3)_2+(gens PP3)_3};

i66 : f3 =ideal{(gens PP3)_1+(gens PP3)_2-(gens PP3)_3};

i67 : plane = ideal{(gens PP3)_1-(gens PP3)_2-(gens PP3)_3};

i68 : l12 == f1+f2

i69 : l13 == f1+f3

i70 : l23 == f2+f3

i71 : l01 == f0+f1

i72 : l02 == f0+f2

i73 : l03 == f0+f3

i74 : r1 == plane+f1

i75 : r2 == plane+f2

i76 : r3 == plane+f3

i77 : v0 = f1+f2+f3+plane

i78 : v1 == f0+f2+f3

i79 : v2 == f0+f1+f3

i80 : v3 == f0+f1+f2
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i81 : q1 = saturate(l01+r1)

i82 : q2 = saturate(l02+r2)

i83 : q3 = saturate(l03+r3)

i84 : -- general element of the linear system defining sexties :

M = sexties^* ideal{random(1,PP10)};

i85 : (dim oo -1, degree oo)

i86 : -- M has double points along r1,r2,r3 :

(minors(1,jacobian(M))+r1 == r1) == true

i87 : (minors(1,jacobian(M))+r2 == r2) == true

i88 : (minors(1,jacobian(M))+r3 == r3) == true

i89 : -- M has triple points at v1,v2,v3 :

(minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v1 == v1) == true

i90 : (minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v2 == v2) == true

i91 : (minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v3 == v3) == true

i92 : -- v0 is a quadruple point of M :

(minors(1,jacobian(jacobian(jacobian(M))))+minors(1,jacobian(jacobian(M)))+

minors(1,jacobian(M))+ v0 == v0) == true

A.7. Computational analysis of the P-EF 3-fold of genus 17

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Points";

i2 : needsPackage "Cremona";

i3 : PP1 = ZZ/10000019[u_0,u_1];

i4 : PP1’= ZZ/10000019[v_0,v_1];

i5 : P1P1 = PP1 ** PP1’;

i6 : PP9 = ZZ/10000019[y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},

y_{1,2},y_{2,0},y_{2,1},y_{2,2},x];

i7 : antiCanonicalEmbeddingP = rationalMap map(P1P1,PP9, matrix{{u_1^2*v_1^2,

u_1^2*v_0*v_1, u_1^2*v_0^2,u_1*u_0*v_1^2,u_1*u_0*v_0*v_1,u_1*u_0*v_0^2,

u_0^2*v_1^2,u_0^2*v_0*v_1,u_0^2*v_0^2,0}});

i8 : P = image oo

i9 : (dim P -1, degree P) == (2,8)

i10 : numgens P

i11 : V = ideal{P_1,P_2,P_3,P_4,P_5,P_6,P_7,P_8,P_9,P_10,P_11,P_12,

P_13,P_14,P_15,P_16,P_17,P_18,P_19,P_20}

i12 : (dim V -1, degree V) == (3, 8)

i13 : PP29 = ZZ/10000019[Z_0..Z_29];

i14 : phi = rationalMap map(PP9, PP29, matrix(PP9, {{y_{1,1}^2, y_{0,0}^2, y_{0,2}^2,

y_{2,0}^2, y_{2,2}^2, x^2, y_{0,1}^2, y_{1,0}^2, y_{1,2}^2, y_{2,1}^2, y_{0,1}*x,

y_{1,0}*x, y_{1,2}*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0}*y_{1,1},

y_{2,2}*y_{1,1}, y_{0,1}*y_{1,0}, y_{0,1}*y_{1,2}, y_{1,0}*y_{2,1}, y_{1,2}*y_{2,1},

y_{0,0}*y_{0,2}, y_{0,0}*y_{2,0}, y_{0,2}*y_{2,2}, y_{2,0}*y_{2,2}, y_{0,1}*y_{2,1},

y_{0,0}*y_{2,2}, y_{0,2}*y_{2,0}, y_{1,0}*y_{1,2} }}));

i15 : phi(V)

i16 : H17 = ideal{Z_18-Z_14, Z_19-Z_15, Z_20-Z_16, Z_21-Z_17, Z_22-Z_6, Z_23-Z_7,

Z_24-Z_8, Z_25-Z_9, Z_26-Z_0, Z_27-Z_0, Z_28-Z_0, Z_29-Z_0};

i17 : phi(V) + H17 == phi(V)

i18 : PP17=ZZ/10000019[z_0..z_17];

i19 : inclusion = rationalMap map(PP17, PP29, matrix(PP17, {{z_0,z_1,z_2,z_3,z_4,z_5,z_6,
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z_7,z_8,z_9,z_10,z_11,z_12,z_13,z_14,z_15,z_16,z_17, z_14,z_15,z_16,z_17,z_6,z_7,z_8,

z_9,z_0,z_0,z_0,z_0 }}));

i20 : image oo == H17

i21 : WP17 = inclusion^* (phi(V))

i22 : (dim oo -1, degree oo) == (3, 32)

i23 : pigreca = rationalMap map(PP9,PP17, matrix(PP9, {{y_{1,1}^2, y_{0,0}^2, y_{0,2}^2,

y_{2,0}^2, y_{2,2}^2, x^2, y_{0,1}^2, y_{1,0}^2, y_{1,2}^2, y_{2,1}^2, y_{0,1}*x,

y_{1,0}*x, y_{1,2}*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1},

y_{2,0}*y_{1,1}, y_{2,2}*y_{1,1} }}));

i24 : pigreca(V) == WP17

i25 : sub(WP17, {(gens PP17)_1=>1});

i26 : ConeP1 = tangentCone oo

i27 : degree oo == 4

i28 : sub(WP17, {(gens PP17)_2=>1});

i29 : ConeP2 = tangentCone oo

i30 : degree oo == 4

i31 : sub(WP17, {(gens PP17)_3=>1});

i32 : ConeP3 = tangentCone oo

i33 : degree oo == 4

i34 : sub(WP17, {(gens PP17)_4=>1});

i35 : ConeP4 = tangentCone oo

i36 : degree oo == 4

i37 : sub(WP17, {(gens PP17)_5=>1});

i38 : ConeP5 = tangentCone oo

i39 : degree oo == 6

i40 : M6 = ConeP5+ideal{(gens PP17)_5}

i41 : time irredCompM6 = associatedPrimes M6;

i42 : plane1 = irredCompM6#0

i43 : plane2 = irredCompM6#1

i44 : plane1’ = irredCompM6#2

i45 : plane2’ = irredCompM6#3

i46 : Q = irredCompM6#4

i47 : line1 = Q+plane1;

i48 : line1’ = Q+plane1’;

i49 : line2 = Q+plane2;

i50 : line2’ = Q+plane2’;

i51 : (dim(line1+line1’)-1) == -1

i52 : (dim(line2+line2’)-1) == -1

i53 : q12 = saturate(line1+line2)

i54 : q12’ = saturate(line1+line2’)

i55 : q1’2 = saturate(line1’+line2)

i56 : q1’2’ = saturate(line1’+line2’)

A.8. Computational analysis of the P-EF 3-fold of genus 13

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP2=ZZ/10000019[u_0,u_1,u_2];

i3 : a1 = ideal{u_1,u_2};

i4 : a2 = ideal{u_0,u_2};
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i5 : a3 = ideal{u_0,u_1};

i6 : cubics3points = rationalMap toMap(saturate(a1*a2*a3),3,1);

i7 : DelPezzo6ic = image cubics3points

i8 : (dim DelPezzo6ic -1, degree DelPezzo6ic)

i9 : PP6 = ring DelPezzo6ic;

i10 : PP7 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6,y];

i11 : inclusion = rationalMap map(PP6,PP7, matrix{{(gens PP6)_0,(gens PP6)_1,

(gens PP6)_2,(gens PP6)_3,(gens PP6)_4,(gens PP6)_5,(gens PP6)_6,0}});

i12 : S6 = inclusion(DelPezzo6ic)

i13 : numgens S6 == 10

i14 : V = ideal{S6_1,S6_2,S6_3,S6_4,S6_5,S6_6,S6_7,S6_8,S6_9};

i15 : (dim V -1, degree V) == (3, 6)

i16 : F1 = ideal{(gens PP7)_0+(gens PP7)_2, (gens PP7)_1+(gens PP7)_4,

(gens PP7)_3+(gens PP7)_5, (gens PP7)_6};

i17 : v = (associatedPrimes (F1+V))#0

i18 : oo == ideal{x_0,x_1,x_2,x_3,x_4,x_5,x_6}

i19 : F2 = ideal{(gens PP7)_0-(gens PP7)_2, (gens PP7)_1-(gens PP7)_4,

(gens PP7)_3-(gens PP7)_5, y};

i20 : F2intV = associatedPrimes saturate(F2+V);

i21 : v1 = F2intV#0

i22 : v2 = F2intV#3

i23 : v3 = F2intV#2

i24 : v4 = F2intV#1

i25 : PP13 = ZZ/10000019[z_0..z_13];

i26 : pigreco = rationalMap map(PP7,PP13, matrix{{x_6^2, x_0^2+x_2^2, x_1^2+x_4^2,

x_3^2+x_5^2, (x_0+x_2)*x_6, (x_1+x_4)*x_6, (x_3+x_5)*x_6, x_0*x_1+x_2*x_4, x_2*x_3+x_0*x_5,

x_1*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y^2}});

i27 : PP19 = ZZ/10000019[Z_0..Z_19];

i28 : phi = rationalMap map(PP7,PP19,matrix{{x_6^2, x_0^2+x_2^2, x_1^2+x_4^2,

x_3^2+x_5^2, (x_0+x_2)*x_6, (x_1+x_4)*x_6, (x_3+x_5)*x_6, x_0*x_1+x_2*x_4,

x_2*x_3+x_0*x_5, x_1*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y^2,

2*x_0*x_2, 2*x_1*x_4, 2*x_3*x_5, x_4*x_3+x_1*x_5, x_0*x_3+x_2*x_5, x_1*x_2+x_0*x_4}});

i29 : phi(V)

i30 : phiV = sub(phi(V), {Z_14 => 2*Z_0,Z_15 => 2*Z_0,Z_16 => 2*Z_0, Z_19 => Z_6,

Z_18 => Z_5, Z_17 => Z_4})

i31 : PP13’ = ZZ/10000019[Z_0..Z_13];

i32 : ideal(submatrix(gens (sub(ooo, PP13’)), {6..47}))

i33 : WP13 = sub(oo, { (gens PP13’)_0=>(gens PP13)_0, (gens PP13’)_1=>(gens PP13)_1,

(gens PP13’)_2=>(gens PP13)_2, (gens PP13’)_3=>(gens PP13)_3,

(gens PP13’)_4=>(gens PP13)_4, (gens PP13’)_5=>(gens PP13)_5,

(gens PP13’)_6=>(gens PP13)_6, (gens PP13’)_7=>(gens PP13)_7,

(gens PP13’)_8=>(gens PP13)_8, (gens PP13’)_9=>(gens PP13)_9,

(gens PP13’)_10=>(gens PP13)_10, (gens PP13’)_11=>(gens PP13)_11,

(gens PP13’)_12=>(gens PP13)_12, (gens PP13’)_13=>(gens PP13)_13 })

i34 : (dim oo -1, degree oo) == (3, 24)

i35 : WP13 == pigreco(V)

i36 : P1 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 -2*z_0,z_5 -2*z_0,

z_6 -2*z_0,z_7 -2*z_0,z_8 -2*z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

i37 : P2 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 -2*z_0,z_5 +2*z_0,

z_6 +2*z_0,z_7 +2*z_0,z_8 +2*z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

i38 : P3 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 +2*z_0,z_5 -2*z_0,

z_6 +2*z_0,z_7 +2*z_0,z_8 -2*z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};
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i39 : P4 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 +2*z_0,z_5 +2*z_0,

z_6 -2*z_0,z_7 -2*z_0,z_8 +2*z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};

i40 : P5 = pigreco(v);

i41 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WP13

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i42 : (l12 + WP13 == l12 ) == false

i43 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i44 : (l13 + WP13 == l13) == false

i45 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i46 : (l14 + WP13 == l14 ) == false

i47 : l15 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i48 : (l15 + WP13 == l15) == true

i49 : l23 = ideal{(toMap(saturate(P2*P3),1,1)).matrix};

i50 : (l23 + WP13 == l23) == false

i51 : l24 = ideal{(toMap(saturate(P2*P4),1,1)).matrix};

i52 : (l24 + WP13 == l24) == false

i53 : l25 = ideal{(toMap(saturate(P2*P5),1,1)).matrix};

i54 : (l25 + WP13 == l25) == true

i55 : l34 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};

i56 : (l34 + WP13 == l34) == false

i57 : l35 = ideal{(toMap(saturate(P3*P5),1,1)).matrix};

i58 : (l35 + WP13 == l35) == true

i59 : l45 = ideal{(toMap(saturate(P4*P5),1,1)).matrix};

i60 : (l45 + WP13 == l45) == true

i61 : W’ = sub(WP13, {(gens PP13)_0=>(gens PP13’)_0,

(gens PP13)_1=>(gens PP13’)_1+2*(gens PP13’)_0,

(gens PP13)_2=>(gens PP13’)_2+2*(gens PP13’)_0,

(gens PP13)_3=>(gens PP13’)_3+2*(gens PP13’)_0,

(gens PP13)_4=>(gens PP13’)_4+2*(gens PP13’)_0,

(gens PP13)_5=>(gens PP13’)_5+2*(gens PP13’)_0,

(gens PP13)_6=>(gens PP13’)_6+2*(gens PP13’)_0,

(gens PP13)_7=>(gens PP13’)_7+2*(gens PP13’)_0,

(gens PP13)_8=>(gens PP13’)_8+2*(gens PP13’)_0,

(gens PP13)_9=>(gens PP13’)_9+2*(gens PP13’)_0,

(gens PP13)_10=>(gens PP13’)_10, (gens PP13)_11=>(gens PP13’)_11,

(gens PP13)_12=>(gens PP13’)_12, (gens PP13)_13=>(gens PP13’)_13});

i62 : W’U0 = sub(oo, {(gens PP13’)_0 => 1});

i63 : tangentCone W’U0 == ideal{-9*Z_1+8*Z_7+8*Z_8-4*Z_9, -9*Z_2+8*Z_7-4*Z_8+8*Z_9,

-9*Z_3-4*Z_7+8*Z_8+8*Z_9, -9*Z_4+2*Z_7+2*Z_8-Z_9, -9*Z_5+2*Z_7-Z_8+2*Z_9,

-9*Z_6-Z_7+2*Z_8+2*Z_9, Z_10-Z_11+Z_12, 9*Z_12^2-(-4*Z_7+8*Z_8+8*Z_9)*Z_13,

9*Z_11^2-(8*Z_7-4*Z_8+8*Z_9)*Z_13, 9*Z_11*Z_12+(2*Z_7+2*Z_8-10*Z_9)*Z_13,

(2*Z_7-10*Z_8+2*Z_9)*Z_11+(-10*Z_7+2*Z_8+2*Z_9)*Z_12,

(6*Z_7-6*Z_8-18*Z_9)*Z_11+(6*Z_7-6*Z_8+18*Z_9)*Z_12,

Z_7^2-2*Z_7*Z_8+Z_8^2-2*Z_7*Z_9-2*Z_8*Z_9+Z_9^2}

i64 : degree (tangentCone W’U0) == 4

i65 : sub(WP13, {(gens PP13)_13=>1});

i66 : ConeP5 = tangentCone oo

i67 : degree oo == 5

i68 : TC0W’U13 = ideal{ z_6-z_7, z_5-z_8, z_4-z_9, z_2-z_3, z_1-z_3, 2*z_0-z_3,

z_9*z_10-z_8*z_11+z_7*z_12, z_8*z_10-z_9*z_11+z_3*z_12,

z_7*z_10-z_3*z_11+z_9*z_12, z_3*z_10-z_7*z_11+z_8*z_12,
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z_8^2-z_9^2, z_7*z_8-z_3*z_9, z_3*z_8-z_7*z_9,

z_7^2-z_9^2, z_3*z_7-z_8*z_9, z_3^2-z_9^2 }

i69 : (ConeP5 == oo ) == true

i70 : M5 = ConeP5+ideal{(gens PP13)_13}

i71 : (dim oo -1, degree oo) == (2, 5)

i72 : irredCompM5 = associatedPrimes M5;

i73 : plane0=irredCompM5#0

i74 : plane1=irredCompM5#1

i75 : plane2=irredCompM5#2

i76 : plane3=irredCompM5#3

i77 : plane4=irredCompM5#4

i78 : (dim(plane0+plane1)-1, degree (plane0+plane1)) == (1,1)

i79 : (dim(plane0+plane2)-1, degree (plane0+plane2)) == (1,1)

i80 : (dim(plane0+plane3)-1, degree (plane0+plane3)) == (1,1)

i81 : (dim(plane0+plane4)-1, degree (plane0+plane4)) == (1,1)

i82 : (dim(plane1+plane2)-1, degree (plane1+plane2)) == (0,1)

i83 : (dim(plane1+plane3)-1, degree (plane1+plane3)) == (0,1)

i84 : (dim(plane1+plane4)-1, degree (plane1+plane4)) == (0,1)

i85 : (dim(plane2+plane3)-1, degree (plane2+plane3)) == (0,1)

i86 : (dim(plane2+plane4)-1, degree (plane2+plane4)) == (0,1)

i87 : (dim(plane3+plane4)-1, degree (plane3+plane4)) == (0,1)

A.9. Computational analysis of the KLM-EF 3-fold of genus 9

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3 = ZZ/10000019[t_0..t_3];

i3 : PP13 = ZZ/10000019[w_0..w_13];

i4 : sexties = rationalMap map(PP3,PP13, matrix{{t_0*t_1^3*t_2*t_3, t_0^2*t_1^2*t_2^2,

t_0^2*t_1^2*t_2*t_3, t_0^2*t_1^2*t_3^2, t_0^3*t_1*t_2*t_3, t_0*t_1^2*t_2^2*t_3,

t_0*t_1^2*t_2*t_3^2, t_0^2*t_1*t_2^2*t_3, t_0^2*t_1*t_2*t_3^2, t_1^2*t_2^2*t_3^2,

t_0*t_1*t_2^3*t_3, t_0*t_1*t_2^2*t_3^2, t_0*t_1*t_2*t_3^3, t_0^2*t_2^2*t_3^2}});

i5 : WF13 = image sexties

i6 : (dim WF13 -1, degree WF13) == (3, 24)

i7 : P1 = ideal{w_0,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i8 : tangentCone sub(WF13, {(gens PP13)_4=>1})

i9 : degree oo == 4

i10 : P2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i11 : tangentCone sub(WF13, {(gens PP13)_0=>1})

i12 : degree oo == 4

i13 : P3 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};

i14 : tangentCone sub(WF13, {(gens PP13)_10=>1})

i15 : degree oo == 4

i16 : P4 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};

i17 : tangentCone sub(WF13, {(gens PP13)_12=>1})

i18 : degree oo == 4

i19 : P1’ = ideal{w_0,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};

i20 : tangentCone sub(WF13, {(gens PP13)_9=>1})

i21 : degree oo == 4

i22 : P2’ = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};
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i23 : tangentCone sub(WF13, {(gens PP13)_13=>1})

i24 : degree oo == 4

i25 : P3’ = ideal{w_0,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i26 : tangentCone sub(WF13, {(gens PP13)_3=>1})

i27 : degree oo == 4

i28 : P4’ = ideal{w_0,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i29 : tangentCone sub(WF13, {(gens PP13)_1=>1})

i30 : degree oo == 4

i31 : J = jacobian((map sexties).matrix);

i32 : JJ = jacobian(J);

i33 : JJl23 = sub(JJ,{(gens PP3)_2=> 0, (gens PP3)_3 =>0})

i34 : SPANnuF23 = ideal{w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i35 : -- H12 = ideal{random(1,PP13)};

-- for example

H12 = ideal{w_0+11*w_1+2*w_2+3*w_3+5*w_4+4*w_5+6*w_6-7*w_7-8*w_8-9*w_9+

10*w_10-11*w_11+12*w_12+13*w_13};

i36 : S = H12+WF13;

i37 : E3 = saturate(S+SPANnuF23)

i38 : (dim oo -1, degree oo, genus oo) == (1, 4, 1)

i39 : SPANE3 = ideal{E3_0,E3_1,E3_2,E3_3,E3_4,E3_5,E3_6,E3_7,E3_8,E3_9};

i40 : PP9 = ZZ/10000019[z_0..z_9];

i41 : projE3 = rationalMap map(PP13,PP9, matrix{{SPANE3_9,SPANE3_8,SPANE3_7,SPANE3_6,

SPANE3_5,SPANE3_4,SPANE3_3,SPANE3_2,SPANE3_1,SPANE3_0}})

i42 : KLM = projE3(WF13)

i43 : (dim oo -1, degree oo) == (3, 16)

i44 : isBirational((projE3|WF13)||KLM) == true

i45 : sub(KLM, {(gens PP9)_5=>1});

i46 : Conep1 = tangentCone oo

i47 : degree oo

i48 : sub(KLM, {(gens PP9)_9=>1});

i49 : Conep2 = tangentCone oo

i50 : degree oo

i51 : sub(KLM, {(gens PP9)_6=>1});

i52 : Conep3 = tangentCone oo

i53 : degree oo

i54 : sub(KLM, {(gens PP9)_8=>1});

i55 : Conep4 = tangentCone oo

i56 : degree oo

i57 : sub(KLM, {(gens PP9)_0=>1});

i58 : Conep5 = tangentCone oo

i59 : degree oo

i60 : M6 = Conep5+ideal{(gens PP9)_0}

i61 : irredCompM6 = associatedPrimes M6;

i62 : plane1 = irredCompM6#0

i63 : plane2 = irredCompM6#1

i64 : plane2’ = irredCompM6#2

i65 : plane1’ = irredCompM6#3

i66 : Q = irredCompM6#4

i67 : line1 = Q+plane1;

i68 : line1’ = Q+plane1’;

i69 : line2 = Q+plane2;

i70 : line2’ = Q+plane2’;
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i71 : dim(line1+line1’)-1 == -1

i72 : dim(line2+line2’)-1 == -1

i73 : q12 = saturate(line1+line2)

i74 : q12’ = saturate(line1+line2’)

i75 : q1’2 = saturate(line1’+line2)

i76 : q1’2’ = saturate(line1’+line2’)

B. Configurations of the singularities of some Enriques–Fano threefolds
of genus 6, 7, 8, 9, 10, 13, 17

In this appendix, we graphically represent the configurations of the singular points of
the F-EF 3-folds W pD6;7;9;13

F , the BS-EF 3-folds W pD6;7;8;9;10;13
BS , the P-EF 3-folds

W
pD13;17
P , and the KLM-EF 3-fold W 9

KLM .

W 6
BS, W 6

F
W 7

BS, W 7
F

W 9
BS, W 9

F
W 13

BS , W 13
F

Table 1. Configurations of the eight quadruple points of the Enriques–Fano threefoldsW p

F
� Pp

and W p
BS

�L
,��! Pp , for p D 6; 7; 9; 13.
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W 8
BS W 10

BS

Table 2. Configurations of the eight quadruple points of the Enriques–Fano threefoldsW p
BS

�L
,��!

Pp , for p D 8; 10.

W 13
P

, W 17
P

, W 9
KLM

Table 3. Configurations of the five singular points of the Enriques–Fano threefolds W 13
P

, W 17
P

,
and W 9

KLM
.
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