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ABSTRACT. — In order to find useful information to complete the classification of Enriques—
Fano threefolds, we will computationally study the singularities of some known Enriques—Fano
threefolds of genus 6, 7, 8, 9, 10, 13, and 17. We will also deduce the projective normality of
these threefolds.
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1. INTRODUCTION

An Enriques—Fano threefold is a normal threefold W endowed with a complete linear
system &£ of ample Cartier divisors such that the general element S € £ is an Enriques
surface and such that W is not a generalized cone over S;i.e., W is not obtained by
contraction of the negative section on the P!-bundle P(Os & Os(S)) over S. The
linear system &£ defines a rational map ¢g : W -—> P?, where p := 573 + 11is called
the genus of W and 2 < p < 17 (see [16,20]). If the elements of &£ are very ample
divisors, then W is embedded in P? via ¢ as a non-degenerate threefold whose
general hyperplane section is an Enriques surface. It is known that any Enriques—Fano
threefold is singular with isolated canonical singularities (see [7, Lemma 3.2] and [3]).
We will say that two distinct singular points of an Enriques—Fano threefold W are
associated if the line joining them is contained in W. The way in which the singular
points of an Enriques—Fano threefold are associated is called configuration and can
be represented graphically: if two singular points are associated, one draws a segment
joining them, otherwise not. In particular, if there is an m such that each singular point
is associated with exactly m other singular points, we say that the configuration is
regular. In Appendix B, we will graphically describe the configurations that we will
find in this paper.

DerintTION 1.1. The singular points of an Enriques—Fano threefold W are said to be
similar if they have the same multiplicity, they have biregular tangent cone, and their
configuration is regular.
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The first examples of Enriques—Fano threefolds were discovered by Fano (see [12]),
under the assumption that their singularities were similar and that the blow-up at the
singular points was sufficient to resolve them. It must be said that Fano’s arguments
contain many gaps, some of which have been solved by Conte and Murre (see [7],
where the authors also re-proved a result of the paper [14] of Godeaux, useful for the
arguments of Fano). By using a sort of inverse of [7, Theorem 7.2], Fano constructed
four rational Enriques—Fano threefolds having eight similar singular points whose
configurations are the ones in Table | of Appendix B (see also [18]). They are as
follows:

(i)  the Enriques—Fano threefold W£ C PP® of genus 6 given by the image of the
rational map defined by the linear system of the septic surfaces with double points
along three twisted cubics having five points in common (see [12, Section 3]);

(i)  the Enriques—Fano threefold W;. C P7 of genus 7 given by the image of the
rational map defined by the linear system of the sextic surfaces having double
points along the six edges of a tetrahedron and containing a plane cubic curve
intersecting each edge at one point (see [12, Section 4]);

(iii) the Enriques—Fano threefold W2 C P? of genus 9 given by the image of the
rational map defined by the linear system of the septic surfaces having double
points along the six edges of two trihedra (see [12, Section 7]);

(iv) the Enriques—Fano threefold WIP C '3 of genus 13 given by the image of the
rational map defined by the linear system of the sextic surfaces having double
points along the six edges of a tetrahedron (see [12, Section 8]).

Fano also found an “exceptional” example of genus 4, which is a sextic hypersurface
Wlﬁ of P# whose general hyperplane section is a sextic surface of P having double
points along the six edges of a tetrahedron (see [12, Section 10]). The threefold Wz
has been proved to be non-rational (see [2]). Furthermore, as noted by Conte in
[5, p. 225], there is also another exceptional example of genus 3, which is the threefold
W,? given by a quadruple P3 (see [12, Section 2]). We will refer to the above threefolds
Wlf =3.4.67.9.13 oS F-EF 3-folds. However, Fano’s classification is incomplete: indeed,
it fails to include some other Enriques—Fano threefolds which have been discovered.
Under the assumption that the singularities are terminal cyclic quotients, Enriques—Fano
threefolds were classified by Bayle (see [1]) and, in a similar and independent way,
by Sano (see [22]). We will refer to such Enriques—Fano threefolds as BS-EF 3-folds:
they are fourteen and they have genus 2 < p < 10 or p = 13. Six of them are endowed
with a linear system of very ample divisors (see [1, Theorem A]): they have genus
p = 6,7,8,9,10, 13 and we will denote them, respectively, by Wi, Wy, Wi, Wy,
Wad, Was. We recall that a fixed BS-EF 3-fold W is the quotient of a smooth Fano
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threefold X via an involution o having 8 fixed points, and that W has 8 quadruple points
whose tangent cone is a cone over a Veronese surface. More generally, an Enriques—
Fano threefold with only terminal singularities is a limit of some BS-EF 3-fold (see
[19, Main Theorem 2]). Instead, only a few examples of Enriques—Fano threefolds with
non-terminal canonical singularities are known: two of genus p = 13, 17 found by
Prokhorov (see [20, Proposition 3.2 and Remark 3.3]) and one of genus p = 9 found
by Knutsen, Lopez, and Muifioz (see [16, Section 13]). The Enriques—Fano threefolds
of genus 13 and 17 found by Prokhorov (shortly, P-EF 3-folds) are obtained as the
quotient of singular Fano threefolds V' via an involution 7 having five fixed points: we
will denote them by W1}3 and WI}7, respectively. The Enriques—Fano threefold found
by Knutsen—-Lopez—Muiioz (shortly, KLM-EF 3-fold) is a threefold WI? m C P given
by the projection of the F-EF 3-fold W2* C P!3 from the P3 spanned by a certain
elliptic quartic curve E3 C W23,

In order to find useful information to complete the classification of Enriques—Fano
threefolds, we will study the threefolds Wify o7521013 =137 o We will
do this from a computational point of view, with the help of the software Macaulay?2.
In Appendix A, we will collect the input codes used in Macaulay?2.

Since the F-EF 3-folds Wlf =6.79:13 have eight quadruple points whose tangent
cone is a cone over a Veronese surface (see [12, p. 44]), then they only have terminal
singularities (see [21, Example 1.3]) and therefore they are limits of the BS-EF 3-folds
WB‘DS=6’7’9’13 (see [19, Main Theorem 2]). We can say something more about this link
between F-EF 3-folds and BS-EF 3-folds. Indeed, in Sections 2, 3, 4, and 5 we will
prove the following results.

THeoOREM 1.2. Let p € {7, 13}. Then the eight quadruple points of the BS-EF 3-fold
WB% — P? are similar and they have the same configuration as the ones of the F-EF
3-fold Wlf C PP, Furthermore, we have the following facts:

(1)  theideal of WB6S C PS is generated by cubics;
(ii)  the ideal of WB7$ C P7 is generated by quadrics and cubics;
(iii) the ideal of WBgS C PP? is generated by quadrics;
(iv) the ideal of WBlS3 C P13 is generated by quadrics.
In Sections 2 and 4, we will see that the eight quadruple points of particular examples
of BS-EF 3-folds of genus 6 (respectively, genus 9) are also similar and they have the

same configuration as the ones of the F-EF 3-fold of genus 6 (respectively, genus 9). It
would be interesting to show it for general W, and Wyy.

TuEOREM 1.3. The embedding of the BS-EF 3-fold of genus 13 in P'3 is a F-EF 3-fold
of genus 13.
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In Section 4, we will also prove that particular BS-EF 3-folds of genus 9 are
isomorphic to F-EF 3-folds of genus 9. It would be interesting to show it for general
W

We have other links between F-EF 3-folds and BS-EF 3-folds. The BS-EF 3-fold of
genus 4 described in [1, Section 6.33] (see also [22, Theorem 1.1 No. 5]) is endowed
with a linear system defining a birational map onto the image, which is the F-EF
3-fold Wlff C P#. The BS-EF 3-fold of genus 3 described in [1, Section 6.1.5] (see
also [22, Theorem 1.1 No. 2]) is endowed with a linear system defining a quadruple
cover over IP3, so it looks like the F-EF 3-fold ng This suggests that one could
obtain the BS-EF 3-folds with ample (but not very ample) hyperplane sections by
resuming the Fano—Conte—Murre techniques and by undermining some assumptions.
Thus, reviewing the brilliant ideas of Fano with the techniques of Conte and Murre,
would be very interesting, since new Enriques—Fano threefolds could be found, even
if this problem seems not to have been studied yet. However, one must be careful of
mistakes in resuming Fano’s paper. For example, the BS-EF 3-folds W and W32
do not appear in the description of Fano, although they behave like the other BS-EF
3-folds with very ample hyperplane sections. It is a situation that should be understood
better. The problem could be the fact that Fano stated that if the genus is greater than 7,
then there are no three mutually associated singular points (see [12, Section 5]). Indeed,
we will see that the singularities of both threefolds WBSS and WBlSO have configurations
which are in contradiction with this assertion. In Sections 6 and 7, we will prove the
following result.

TueOREM 1.4. Let p € {8, 10}. The ideal of Wiy C P? is generated by quadrics and
cubics. Furthermore, the eight singular points of WBlso are similar and they have the
configuration in Table 2 of Appendix 2.

In Section 6, we will show that the eight singular points of particular examples of
B-EF 3-folds of genus 8 are also similar and they have the configuration in Table 2 of
Appendix 2. It would be interesting to show it for a general W.

Furthermore, we will identify W and W3Q as images of rational maps defined
by linear systems of surfaces of P2, as happens for the rational F-EF 3-folds (see
Theorems 6.1 and 7.1). We will also study the singularities of the P-EF 3-folds and
the KLM-EF 3-fold. It is known that these threefolds have canonical non-terminal
singularities, but so far there was no information about their multiplicities and tangent
cones. This analysis is very interesting because it provides some clues about the link
between the non-terminality of the singularities, the non-similarity of the singularities,
and the fact that the blow-up at the singularities is not sufficient to resolve them. In
Sections 8 and 9, we will prove the following result.
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THEOREM 1.5. Let p € {13,17}. Then the P-EF 3-fold of genus p can be embedded
in PP and its ideal is generated by quadrics. Furthermore, Wlf has five non-similar
singular points whose configuration is the one in Table 3 of Appendix B. Moreover,
four of these five points are quadruple points, whose tangent cone is a cone over a
Veronese surface. If p = 13, the last point is a quintuple point, whose tangent cone is
a cone over the union of five planes; if p = 17, it is a sextuple point, whose tangent
cone is a cone over the union of four planes and a quadric surface.

For further details, see also Propositions 8.1, 9.1 and Theorems 8.2, 9.2. As for the
KILM-EF 3-fold, we refer to Section 10. We will find that the ideal of WI? Ly i P? is
generated by quadrics and cubics. We will see that the images of the eight quadruple
points of W},13, via the projection map, are five singular points of WI? 1. Such that four
of them are quadruple points, whose tangent cone is a cone over a Veronese surface
(see Proposition 10.2), and one is a sextuple point, whose tangent cone is a cone over
the union of four planes and a quadric surface (see Theorem 10.3).

Finally, in Section 11, we will study the projective normality of all the above
Enriques—Fano threefolds, obtaining the following result.

THEOREM 1.6. The following Enriques—Fano threefolds are projectively normal:
= = ) =
W]?LM c PP, WI{“) 79,13 - pp, W 6.7.8,9,10,13 $L PP, Wlf 13,17 — pp

We will work over the field C of the complex numbers. For the computational
analysis we will work over a finite field (we will choose F,, := Z/nZ with n =
10000019).

2. THE BS-EF 3-FoLD OF GENUS 6

Let us study the Enriques—Fano threefold described in [1, Section 6.2.4] (see also
[22, Theorem 1.1 No. 9]). We refer to Section A.1 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefold X given by the intersection

.. . 3 3
of three divisors of bidegree (1, 1) of P[xo:---:x3] X IP’[yO:_.

3 3 3 3 3 3
ZZaijxiyj =0, ZZbijxiyj =0, chijxiyj =0,

i=0j=0 i=0;=0 i=0;=0

ya] with equations

where aij = aji, bij = bji, Cij = Cji, for i,j € {0, 1,2,3}. Leto : X — X be the
involution of X defined by the restriction on X of the following map:

o' :P?xP? - P? x P,

[xo :-=-:x3] x[yo:-+:ys]l > [yo:--:ys] x[xo:--:x3]
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We have that ¢ has eight fixed points p1, p2, p3, pa, Ps, P, P7,and pg with coordinates
[x0 : X1 :x2:x3] X [x0:x1: X x3] such that

3 3
D im0 2 j=oaijXixj =0,
3 3
Di=o 2j=o bijxixj =0,
3 3
2o Zj:o cijxixj = 0.
The quotientmap : X — X /o =: WBGS is given by the restriction on X of the morphism
¢ : P3 x P3 — P? defined by the ¢’-invariant multihomogeneous polynomials of
multidegree (1,1). Thus @ : [xg :---:x3] X [yo :-+-: ¥3]+>[Zo:---: Zg],where Zog =
X0Yo, Z1 = X1Y1, L2 = X2Y2, Z3 = X3y3, L4 = XoY1 + X1Y0, Z5 = X0Y2 + X2)0,
Ze = xoy3 + X3Y0, Z7 = X1y2 + X2y1, L3 = X1y3 + X3)1, Zo = X2)3 + X3)2.
By using Macaulay2, one can find that the image of P3 x P> via ¢ is a 6-dimensional
algebraic variety F61° of degree 10, whose ideal is generated by the 10 polynomials
—2Z1Z5Z6 + Z4Z6Z7 + Z4ZsZs —220Z7Zs +4Z0Z1Zo — Z§ Zo,
—2Z2Z4Z6 + ZsZ6Z7 + 4Z0Z2Zs — Z2Zg + Z4Z5Zo —2Z0Z7Zo,
— 4717276 + Z6Z3 + 2227475 — Z5Z77Z8 + 2712529 — Z4Z1 79,
— 2737475 + 420723727 — Z}tZ7 + ZsZ6Zs + Z4Z6Zo —2Z0Z3 7o,
— 427172375+ 27372427 — Z6Z7Zs + Z5sZ5 +2Z1Z6Z9 — Z4Z5Zo,
— 427272374 + 27237527+ 2222673 — Z6Z1Z9 — Z5ZsZo + Z4Z3,
—4Z1ZyZ3 + 2325 + Z2Z§ — Z7Z8Z0 + 21 Z3,
— 4707273 + Z3Z2 + Z2Z% — Z5Z6Zo + ZoZ3,
—4Z0Z1\Z3 + Z3Z5 + Z1Z} — Z4Z6Zs + ZoZ3,
—4Z0Z1Zy + Z2Z5 + Z1Z2 — Z4Z5Z7 + ZoZ3.
Letus observe that W = ¢(X) = F{% N Hg, where Hg is the 6-dimensional projective
subspace of P2 given by the zero locus of the three polynomials
aopoZo +anZi +axnZs +aszxzZs+2a0124 + 2a022Zs + 2a03Zs
+2a12Z7 + 2a13Zg + 2a23 2,
booZo + b11Z1 + by Zs + b33 Z3 + 2bo1 Zs + 2bo2Zs + 2bo3 Zs
+2b12Z7 + 2b13Z38 + 2b23 Z9,
c00Zo + 1121 + ¢22Z3 + 3323 + 2c01Z4 + 2¢02Z5
+ 2Co3Z6 + 26’12Z7 + 2613Z8 + 2623Z9.
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Therefore, we have 7 = ¢lx : X — W& = ¢(X) C Hg =~ PS. What follows has been
proved for fixed values of a;;, b;;, and ¢;;, in order to simplify the computational
analysis.

2.1. Example

Let us take

(aij) =

S O O =
)

(bij) =

o
(=R S e -] S &~ O O
w o O O N O O O

(= e
S

(cij) =

oo o -
o |
—_

[

L °

- o oo

Then the eight fixed points of 0 : X — X are

pr=[1:1:1:1]x[1:1:1:1],
pr=[-1:1:1:1]x[-1:1:1:1],
p3=[l:=1:1:1]x[l:=1:1:1],
pa=[-1:—1:1:1]x[-1:=1:1:1],
ps=[1:1:=1:1]x[1:1:-=1:1],
pe=[-1:1:—=1:1]x[-1:1:=1:1],
pr=[1:—1:=1:1]x[1:=1:-1:1],
ps=[-1l:—-1:—-1:1]x[-1:=1:-1:1].

Furthermore, we have

H6={ZO—721+4Z2+223=0, Zo—6Z1+27Z,+37Z5=0,
Zo—7Z1—17 4775 =0}
={Z,—7Z3=0,2Z,—27Z3=0, Zy— Z3 =0},
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which is the P[6w0:--~: wg] embedded in P[QZO:-- Zo] via the morphism such that

Zi=we i =0,1,23, Zj=wjs j=4...09.

By using Macaulay?2, we find that the quotient map 7 : X — WB6S C Hg = P is given
by the restriction on X of the morphism ¢’ : P3 x P3 — P6 defined by [x¢ : x1 : X2 :
V31 ya:ys| > [wo - we), where

Wo = X3y3, W1 = Xg)1 + X1Yo, W2 = XoY2 + X2)0,
w3 = XoY3 + X3)Y0, W4 = X1Y2 + X2Y1, W5 = X1Y3 + X3)1,

We = X2¥3 + X3)2.

Thanks to Macaulay2, we obtain that this BS-EF 3-fold W;% C P° has ideal generated
by the 10 polynomials

—2WoWaW3 + W W3W4 + Wi WaW5 — 2WoW4aW5 + 4w§w6 — wfws,
— 2U)0U)1U)3 + wrwswy + 4w§w5 — w%ws + wiwawe — 2w0w4w6,
— 4w(2,w3 + w3wi + 2WowWi W5 — WaWaWs + 2WoWaWe — W1 W4We,
— 2wowiwy + 4w§w4 — w§w4 + wawszws + WiwzwWeg — 2WoW5We,
- 4w§w2 + 2w0w1w4 — W3W4aWs5 + w2w§ + 2w0w3w6 — W1 W5We,
— 4w(2,w1 + 2WoWaW4 + 2WoW3W5 — W3W4aWe — WrW5We + wlwé,
— 4w3 + wowﬁ + wowg — WaWsWe + wowé,
— 4w(3, + w0w§ + wowg — WaW3We + wowg,
— 4w8 + wowf + w0w§ —wiw3ws + wowg,

— 4w5’ + wowf + wowg — W WaWy4 + wowi.
Furthermore, WB6S has eight singular points P; := w(p;), for 1 <i < 8§; they are

Pr=01:2:2:2:2:2:2], P=[1:-2:-2:-2:2:2:2],
Py=01:-2:2:2:-2:-2:2], Pg=[1:2:-2:-2:-2:-2:2],
Ps=[1:2:-2:2:-2:2:-2], Ps=[1:-2:2:-2:-2:2:-2],
P;=01:-2:-2:2:2:-2:=-2], Pg=[1:2:2:-2:2:-2:-2].
One can verify that all the lines joining the points P; and P, for 1 <i < j <8, are
contained in W§. So we can say that each one of the eight singular points of W is
associated with all the other m = 7 points, as in Table 1 of Appendix B. Thus, the

singularities of the BS-EF 3-fold WBGS have the same configuration as the ones of the
F-EF 3-fold W§.
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3. Tue BS-EF 3-rFoLD OF GENUS 7

Let us study the Enriques—Fano threefold described in [1, Section 6.4.1] (see also
[22, Theorem 1.1 No. 11]). We refer to Section A.2 of Appendix A for the computational
techniques we will use. Let X be the smooth Fano threefold given by a divisor of

1 1 1 1
IP)[7605)«71] X IP>[yolyl] X IED[20121] X ]P)[toitl]

of type

> ajuxiyizt = 0.
i+j+k+1 odd

Let o : X — X be the involution of X defined by the restriction on X of the map
o P! x P! x P! x P! - P! x P! x P! x P!
given by
[xo : x1] X [yo : ¥1] X [z0 : z1] X [to : t1]
> [xo : —=x1] x [yo : =y1] x [z0 : —z1] x [t : —11].
Then o : X — X has the eight fixed points

pr=[0:1]x[0:1]x[0:1]x[0:1], py=[1:0]x[1:0]x[1:0]x][l:0],
p2=[0:1]x[1:0]x[1:0]x[0:1], py=[1:0]x[0:1]x[0:1]x[1:0],
p3=[1:0]x[1:0]x[0:1]x[0:1], py=1[0:1]x[0:1]x[1:0]x[1:0],
pa=[1:0]x[0:1]x[1:0]x[0:1], p,=[0:1]x[1:0]x[0:1]x[I:0].

—_
=

—
(=]

The quotient map 7 : X — X /o =: WB7S is given by the restriction on X of the mor-
phism ¢ : P! x P! x P! x P! — PP7, defined by the o’-invariant multihomogeneous
polynomials of multidegree (1, 1, 1, 1). In particular, we have

@ [xo 1 x1] X [yo : y1] X [zo : z1] X [to : 11]

|—>[w0:w1:w2:w3:w4:w5:w6:w7],
where

Wo = X1Y121f1, W1 = X1)Yo0Zof1, W2 = XoYoZil1, W3 = X1Y0Z1lo,

Wq = XoYoZolo, W5 = XoY1Z1lo, We = X1Y1Zolo, W7 = XoY1Z0l1-

By fixing (random) values for agoo01, @010, @0100> @1000> @1110, d1101, d1011, and
ap111, one can verify, with Macaulay?2, that the ideal of the BS-EF 3-fold WB7S is
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generated by the following 11 polynomials of degree 2 or 3:

WaWe — W3W7, W1W5 — W3W7, WoW4 — W3W7,
a1110WoWsWe + A1011 WoW3W7 + Ap111WoW5W7 + doo1oW3WsW7
+ a1101WoWeW7 + A1000W3WeW7 + dAo100W5WeWT + a0001w3w§,
a1000W1W4We + A1011 W1 W3 W7 + doo01 W1W4W7 + Aoo10W3W4W7
+ a1101W1WeW7 + A1110W3WeW7 + Qo100 W4 WeW7 + a0111w3w§,
0010 W3W4Ws5 + A1000W3W4We + d1110W3W5We + o100 W4W5We
+ a1011w§w7 + Apoo1W3W4W7 + do111W3W5W7 + d1101 W3 We W7,
apo10W2W4Ws5 + A1011W2W3W7 + dooo1 W2W4W7 + dA1000 W3 W4 W7
+ o111 W2WsW7 + d1110W3W5W7 + do100W4W5W7 + a1101w3w§,
a1011W1W2W3 + Aol W1W2W4 + d1000W1W3W4 + dAoo10 W2 W3 W4
+ a1101W1W3W7 + do111 W2 W3 W7 + a1110w§w7 + ao100W3W4 W7,
a1011WoW2W3 + Ap111 WoW2W5 + d1110WoW3Ws5 + dooloW2W3Ws5
+ aj101WowW3W7 + dpoo1 W2W3W7 + a1000w§w7 + aproowzwswsy,
a1011WoW1W3 + a1101 WoW1We + A1110WoW3We + d1000W1W3We
+ ap111Wow3 w7 + dooo1 W1W3W7 + a0010w§w7 + aprooW3weWs,
a1011WoW1W2 + a1101 WoW1W7 + Ao111WoW2W7 + dooo1 W1 W2 W7
+ ar110WowW3wWy + di1oooW1W3W7 + doo1oW2W3W7 + a01oow3w%-
The eight singular points of W are P; := 7(p;) = {wx =0 |k #i — 1} and P/ :=
w(p;) ={wx =0k #34i},forl <i <4 Letl;; be the line joining P; and P;
withi, j € {1,2,3,4,1',2",3,4}and i # j. We have that W does not contain the
lines /1,17, l2,27, 13,3/, and l4 4/, while it contains the others. So each one of the eight
singular points of WB7S is associated with m = 6 of the other singular points, as in

Table 1 of Appendix B. Thus, the singularities of the BS-EF 3-fold Wy have the same
configuration as the ones of the F-EF 3-fold W/.

4. Tue BS-EF 3-FoLD OF GENUS 9

Let us study the Enriques—Fano threefold described in [1, Section 6.1.4] (see also

[22, Theorem 1.1 No. 12]). We refer to Section A.3 of Appendix A for the computational
5

techniques we will use. Let us take two quadric hypersurfaces of IP’[ O X2t y31yaiys]

Ql = {SI(X(),XI,xz) +7'1()73,y4’y5) = 0}’
0, := {sZ(xo,xl,xz) + r2(y3, y4, ys) = 0}’
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where 51, 53, 11, > are the quadratic homogeneous forms

- . /
s1(x0.X1.%2) i= Y aijxixj.  Sa(Xo.Xp1.X2) = Y a) %X,
i,j€{0,1,2} i,j€{0,1,2}
I —— /
r1(y3, Y4, ys5) = E bi,jyiyj, 1r2(y3,ya,y5) = E bi jyiyj-
i,j€{3,4,5) i,j€{3,4,5)

Let us consider the smooth Fano threefold X := @; N Q, and the involution ¢ of X
defined by the restriction on X of the morphism
o' P> > P, [Xo:X1:iX2:y3:iyaiys)b>[Xo X1 iX2:—y3i—Y4:—Ys].

Then o : X — X has eight fixed points pi1, p2, p3, pa, P}, D5. P3» P4 such that

{P1. P2, p3. pa} = X N{y3 = ys = y5 = 0},
{P1. 2. P3P} = X N{xo = x1 = x2 = 0}
The quotient map 7 : X — X/o =: Wy is given by the restriction on X of the

morphism defined by the linear system of the o -invariant quadric hypersurfaces of P>,

that is the morphism ¢ : P> — P[lzlor--:zn] such that

[X0:X1:x2:y3:ya:ys]

[Xg : X% . X% S XpX1 - XoX2 1 X1X2 . y% . yi . yg 2 Y3Ya i y3ys: y4y5].
By using Macaulay2, one can find that the image of P> via ¢ is a 5-dimensional
algebraic variety F516 of degree 16, whose ideal is generated by the 12 polynomials
Z9Z10—Z6Z11, Z1Z10— ZoZ11, ZsZo— Z10Z11, Z1Zg— 73,
ZeZy — 73y, Z¢Z7—23, Z3Zys—ZoZs, Z1Z4— Z3Zs,
ZyZ3—Z4Zs, Z1Zo—Z% ZoZ2—Zi, ZoZi—Z3.
We observe that WBgs =¢(X) = F516 N Hg, where Hy is the following 9-dimensional
projective subspace of P11:
Ho = {agoZo + a11Z1 + az2Z> + (ao1 + a10)Z3 + (o2 + a20)Z4
+ (a12 + a21)Zs + b33Zes + baaZ7 + bss Zg + (bza + baz) Zo
+ (b35 + bs3) Z10 + (bas + bsa)Z11 = 0,
agoZo +ay1Z1 + aynZs + (ag; + ajg)Zs + (agy + az) Zs
+ (a/lz + aIZI)ZS + b/3326 + b£|,4Z7 + b;SZS + (bj/;4 + b:|.3)Z9
+ (a5 + bs3) Z10 + (bys + bsg) Z11 = 0}-
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Therefore, we have 7 = ¢y : X — W = ¢(X) C Ho = P°. What follows has been

proved for fixed values of a;;, b;;, a;;, and b!, in order to simplify the computational

ij ij
analysis.
4.1. Example
L _(1o00\ _ ., L _(300Y\ )
If (a;;) = (3 e g) = (bj;) and (b;j) = (8 s g) = (a;;), then we obtain
pr=[1:1:1:0:0:0], pi=[0:0:0:1:1:1],
p2=[-1:1:1:0:0:0], p5=[0:0:0:—-1:1:1],
p3=[1:-1:1:0:0:0], p5=[0:0:0:1:-1:1],
pa=[1:1:-1:0:0:0], p;=[0:0:0:1:1:-1].

Furthermore, we have

Ho ={Zo—3Z1+2Z5 +3Z¢—8Z7+ 5Z5 = 0,
3Z0—8Zy +5Z5 + Zg —3Z7 + 275 = 0}
={Z1—Zr—8Z¢ +21Z7—13Z5 = 0,
Zo—Zr—21Z¢ + 55Z7 — 34Zg = 0},

which is the Pﬁuo:,,,:wg] embedded in P[lzloz...: Zi1 via the morphism such that

ZO = wo + 2111)4 — 5511)5 + 3411)6,
Z1 = wo + 8wy — 21ws + 13wg,
Zi+2=wl~, i=0,...,9.

By using Macaulay2, we find that the quotient map 7 : X — Wys C Ho = P? is given
by the restriction on X of the morphism ¢’ : P> — P? such that

[X0:X1:x2:y3:ya:ys]

!

[X3 @ xoX1 1 XoX2 i X1X2 1 Y3 1y 1 21 V3Ya:Y3Vs: Yays).

In particular, we obtain a BS-EF 3-fold Wy C P? whose ideal is generated by the 12
quadratic polynomials

W7Wg — W4W9, Ws5Wg — W7W9, WeW7 — WgW9,

WsWe — wg, W4aWe — wg, WaWs5 — w%,

w% — u)§ — 13wowyg + 34wows — 21wows,

wWiWy — WoW3 — 21w3w4 + 551[)31[)5 — 34w3w6,
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WoWs — Wiw3 + 8wawyg — 21wows + 13w, ws,

wi — w3 — 2lwowg — 168w; + 55wews — 1155w2 — 3dwows
— 44202 + 881w3 — 545w3 + 1429w3,  wow; — wows,

wg — w§ + 8wows — 21wows + 13wows.

This threefold WB9S has singular points at P; := 7 (p;) and Pi/ =( pl’. ), forl <i <4,
that is

Pr=[1:1:1:1:0:0:0:0:0:0],

P[=[0:0:0:0:1:1:1:1:1:1],

P,=[1:—-1:—-1:1:0:0:0:0:0:0],
Py,=[0:0:0:0:1:1:1:— 1],
P3=[1:—1:1:—1:0:0:0 0:0:0],
P;=[0:0:0:0:1:1:1 —1],
Py=[1:1:-1:-1:0:0:0:0:0:0],
P,=00:0:0:0:1:1:1:1: —1].

Let /; ; be the line joining P; and P; fori, j € {1,2,3,4,1',2",3' 4} andi # j. It
follows that WBQS contains the lines 11,1/, 11,2/, 11,3/, 11,4/, 12,1/, 12’3/, 12’3/, 12,4/, 13,1/,
I3, 133, 13,47, 14,17, la,3, 14,3, 14 4, but it does not contain the others. So each one of
the eight singular points of WBQS is associated with m = 4 of the other singular points,
as in Table 1 of Appendix B. Thus, the singularities of the BS-EF 3-fold WBgS have the
same configuration as the ones of the F-EF 3-fold W9 We can say something more,
namely that WBgS W9 Let us see how. Let us project P° from the P> spanned by
the singular points P,, P3, P4, P,, P}, P, of WBgS. By using Macaulay?2, we obtain
the rational map p : P° --» IP’[3ZO:".:Z3] such that

[wo Dol UJQ]
= [wo + w1 + Wz + w3 1 —ws + W5 1 —W4 + We : W4 + W7 + W + Wol.
The restriction plWBgS : WBgS -—> P3 is a birational map (it can be verified through
Macaulay2), whose inverse map is the rational map v : P? --> Wy C P? defined by

the linear system of the septic surfaces of P3 double along the six edges of the two
trihedra

T := {(zo0 — 2121 + 1322)z0(z0 — 5521 + 34z3) = 0},
"= {(z2 + z3) (21 + 23)z3 = 0},

and containing the lines given by the intersection of a face of 7" and one of 7.
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5. Tue BS-EF 3-roLD OF GENUS 13

Let us study the Enriques—Fano threefold described in [1, Section 6.3.2] (see also
[22, Theorem 1.1 No. 14]). We refer to Section A.4 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefold X := P! x P! x P!
and the map o : X — X defined by

[xo : x1] X [yo : y1] X [z0 : z1] = [x0 : —x1] X [yo : =y1] X [z0 : —21].

Then o is an involution of X having the eight fixed points

py=1[0:1]x[1:0]x[1:0], py=[1:0]x[0:1]x][0:1],
py=[0:1]x[0:1]x[0:1], pa=[1:0]x[1:0]x][l:0],
p3=[0:1]x[1:0]x[0:1], p5=[1:0]x[0:1]x[l:0],
pa=[0:1]x[0:1]x[1:0], py=[1:0]x[1:0]x[0:1].

The o-invariant multihomogeneous polynomials of multidegree (2, 2, 2) define the
coordinates of the quotient map 7 : X — X/o =: WBlS3 cP3ie,

7 [xo i x1] X [yo : y1]l X [zo : z1] = [wo @ -+ s wasl,
where

2.2,.2 2.,2,.2 2
Wo = XgYoZg, W1 = XgYoZi, W2 = XyYoY1Z0Z1,

2.2.2 2.2.2 2
W3 = XgV1Zp, Wa = XoYV1Zy, Ws = XoX1)pZ0Z1,

2 2
W7 = XoX1)Y0Y1Z7, W8 = X0X1Y1Z0Z1,

2
W11 = Xy)YoY1ZoZ1,

2
= X0X1Y0)Y1Zg,

2.2.2 2.2.2
W9 = X1YgZp, W10 = X1)VoZ1,

2,22

2.2.2
W12 = X7Y1{Zg, W13 = X7Y7127-

The use of Macaulay?2 enables us to find that the BS-EF 3-fold WBIS3 has ideal generated
by the 42 quadratic polynomials

WioWi2 — Woly3,
wfl — WoW13,
WaWi1 — W2W13,
WeW10 — W5W11,
WgWg — W5W12,
WaW9 — WoW11,
WeWg — W2W12,

WswW7 — wW1Wi1,

W7W12 — WeW13,
WgWi1 — WeW13,
W3wip — wWaWi2,
W4W10 —W1W13,
W7wg9 — WsW11,
Wi1Wg9 — WoW1o0,
Wswg — WoW13,

Ww3w7 — waws,

WaWi12 — W3W13,
w7Wi1 — WswWq3,
WaWi1 — WoW13,
Ww3Wio — WoWi3,
WaW9 — WoW13,
2
Wg — W3Wq3,
2
W7 —wWiwi3,

WaW7 — W1 Ws,

Wiwi2 — WoWi3,
WeW11 — W5W12,
Wgwip — W5W13,
WaWi0 —W1W11,
W3Wg — WoW1i2,
Ww7wg — W2W13,
WeW7 — WoW13,

2
Wg — WoW12,
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Ws5We — WoW11, W4We — Wa W3, WrWe — WoWsg, Wi1We — WoW7,
2
W5 — WoW1o0, W4Ws — W1 Wg, W3Ws — WoWs, Wa2Ws — wWoWwy,
2
wiws — wWoWy, Wy — WoW4.

The above threefold Ws' has the eight singular points

Py:=nm(p1) ={w;i=0]i #4}, P :=xr(p)) ={wi=0]i#9},
Py :=m(p2) ={w; =0]|i #0}, Py:=n(py) ={w; =0]|i # 13},
Py :=m(p3) ={w; =0]|i #10}, P;:=n(py) ={w; =0]i # 3},
Pai=m(pa) = (wi =01 i # 12}, Pl i=m(ph) = {wy =01 £ 1},

Let /; j be the line joining P; and P; withi, j € {1,2,3,4,1',2,3" 4’} andi # j. We
see that VVBIS3 contains the lines 11’2/, 11,3/, 11,4/, 12,11, 12,3/, 12’4/, 13,1/, 13,2/, 13,4/, 14,1/,
l4,27, 14 3, while it does not contain the others. So each one of the eight singular points of
WBIS3 is associated with m = 3 of the other singular points, as in Table 1 of Appendix B.
Thus, the singularities of the BS-EF 3-fold WBlS3 have the same configuration as the
ones of the F-EF 3-fold Wl,l3. We can say something more, namely that WBIS3 = WI}3.
Let us see how. Let § be the linear system of the sextic surfaces of 3 having double
points along the six edges of a fixed tetrahedron 7 C P3. Up to a change of coordinates,

we can take the tetrahedron T := {tot112t3 = 0} C IP’EO:,__ . Then § defines a rational

i3]

map vg : P3 ——> P13 givenby [t : t1 : 2 : t3] —> [wg : --- : wy3], where
Wo = l‘olflztg,, w; = l‘gl‘lzl‘zz, Wy = l‘gl‘lzl‘21‘3,
w3 = lgllzl:,?, Wyq = l3l1t2t3, W5 = 1011212213,

we = totitaty, wy = tghtits, wg = t3titat?,

wy = 13313, wig = totityts, Wiy = totitht3,

Wiy = totitat;, Wiz = 13135
(see [15, p. 635]). The above map is birational onto the image, which is the F-EF 3-fold
Wi3 C P'3 of genus 13 (see [12, Section 8]). Thanks to Macaulay2, we see that the
threefold W32* C P'3 coincides with the threefold Wgg C P'3. Thus, we have the
assertion of Theorem 1.3 for p = 13.

6. THE BS-EF 3-FoLD OF GENUS 8

Let us study the Enriques—Fano threefold described in [1, Section 6.4.2]. Sano erro-
neously omits it (see [22, p. 378]). We refer to Section A.5 of Appendix A for the
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computational techniques we will use. Let us take the hyperplane
_ 4
{X4 - 0} C P[x():xl:x21x3:x4]
and two quadric surfaces

Q. R C {xq =0} = P}

X0:X1:x2:x3]°

respectively with equations

O(x0,x1, X2, Xx3) 1= QOOXS + 611le + 612236% + Q33x§ + qo1XoXx1 + g23x2x3 = 0,

- 2 2 2 2 _
R()C(),xl,XZ,X:),) = To0Xg + 11Xy + I22X5 + r33X3 + ro1XoX1 + r23X2X3 = 0.

Let C := Q N R be the elliptic quartic curve given by the complete intersection
of the above quadrics, and let ¥ C P* be the cone over Q with vertex at the point
v:=[0:0:0:0:1].Letbl : X — Y be the blow-up of Y at the point v and along
the curve C. We have that X is a smooth Fano threefold. Let us explain this. Let us
consider the blow-up of P4 at v and along C, that is the map bl : Bl,yc P* — P* with
exceptional divisors E, := bl'~!(v) and E¢ := bl'~!(C). By definition, we have that X
is the strict transform of Y on Bl,yc P# and that bl = bl’|x. If H denotes the pullback
of the hyperplane class i of P4, we have that X ~ 2H —2E, — Ec. By the adjunction
formula, we have that —Ky = —(Kp,, . p+ + X)|lx ~(BH — E, — E¢)|x. We want
to show that — K is ample. Let € be the linear system of the cubic hypersurfaces of
P4 containing the curve C and passing through the point v, and let us fix a general
hyperplane h, C P* passing through v. Thus, € contains a sublinear system ece
whose fixed part is given by &, U {x4 = 0}. Since the movable part of € is given by
the hyperplanes of P#, then we obtain the ampleness of € at least outside v U C. So
we have the ampleness of — Ky at least outside £, N X and E¢ N X, since | — Kx|
coincides with the restriction on X of the strict transform of €. Furthermore, the movable
part of € also contains the hyperplanes of P# through v, whose strict transforms are
very ample on E,: indeed, we have |Og, (H — Ey)| = |Og, (—E2)| = |Op3(1)] (see
[15, Chapter 4, Section 6]). Therefore, the ampleness of —Ky along E, N X follows
by the fact that E, N X is a smooth quadric surface in E, = P3. It remains to show
the ampleness of —Ky along S’ := Ec N X, which is a P1-bundle over C, identified
with the projectification P (N¢|y) of the normal bundle of C in Y (see [15, Chapter
4, Section 6]). Since C is the complete intersection of a hyperplane section and of a
quadric section of Y, then 8’ = P(N¢y) = P(Oc (h) ® Oc (2h)) (see [4, Example
10.2]). In particular, we have that the class S’|s- is the class of the tautological bundle
on S’ (see [15, Chapter 4, Section 6]). Thus, —Ec|ss = —S’|s’ is ample on S’, and so
(—Kx)|s» = (3H — E¢)|s’ is ample too.
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Leto : X — X be now the morphism defined by the birational mapo’ : ¥ --> Y
given by [xo : X1 : X3 @ X3 : X4] > [XaX0 : X4X1 : —XaXx2 1 —X4X3 : R(x0, X1, X2, X3)].
The map o is an involution of X with eight fixed points, which are the preimages via
bl : X — Y of the eight points py, p2, p3. pa., Py, P5. P5. Py € Y such that

{p1.p1. p2. Py} =Y N{x2 =0, x3 =0, x; — R(x0,x1,X2,x3) =0},
{p3. P. pa. Py} =Y N{xo =0, x; =0, x7 + R(xg.x1,x2,x3) = 0}.
The o’-invariant elements of € define the rational map ¢ : Y --> P° given by [xo :

i X4] > [Zg i+ 1 Zog], where

Zo = x3x0 + xoR(x0,x1,%2,%3), Z1 = x2x1 + x1R(x0, X1, X2, X3),
Zy = x3x2 — x2R(x0. X1, X2.X3),  Z3 = x3x3 — x3R(x0. X1, X2, X3),
Z4s = x4xg, Zs5s = x;;xf, Ze = X4x§, Z7; = X4x§,
Zg = X4X0X1, Zg = X4X2X3.

Let us observe that ¢(Y') is contained in the hyperplane

Hg :={qo0Z4 + q11Z5 + q22Z6 + 93327 + qo1Zs + q23Z9 = 0} = P8 C P°.

Therefore, the rational map ¢ defines the quotient map 7 : X — X /o =: WBSS, thanks
to the commutative diagram

X
T
Y -2 oY) = n(X) = W& C Hg = P8.

What follows has been proved for fixed values of g;; and r;;, in order to simplify the
computational analysis.

6.1. Example

Let us take

Q(xo, X1, X2, X3) = Xg — x7 — x3 + x3

and
2 _ 2 2 2
R(x0, x1,X2,x3) = 2x5 — x7 — 3x5 + 2x3.

Then ¢(Y) is contained in the hyperplane Hg = {Z4 — Z5s — Z¢ + Z7}, which we
can see as the image of the morphism i : P8 < P? such that

i
[wo -+ wg] = [wo : Wy : Wy : W3 : Wa + W5 — We : Wy © W5 : We : Wy & Ws].
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Thanks to Macaulay?2, one can verify that we obtain a BS-EF 3-fold WBgS C Hg = P8
whose ideal is generated by the following 11 polynomials of degree 2 or 3:

w5w6—w§, WarWe — W3WSG, w3wWs — WaWs, wf + waws —w4w6—w%,
WiWg + W1Ws5 — W1 We — WoW7, WoW4 — W1W7,

wi — w? — w? + w3 — dwaws + 4w? + dwaws — 4w3,

Wrw3W7 — Wowws + 4wawywsg — 4wswyws,

WoW1We — w§w7 —dwawewy + 4w7w§,

wiwg — wiwes + 4wawy + dwsw3I — Swawg,

WrW3Wy — wfwg — 8wawswg + dwawewg + 4w$wg.
This threefold W5 has the eight singular points

Pri=i"Ye(p1))=¢([1:1:0:0:1])=[2:2:0:0:1:0:0:1:0],

Pri=i"(p(p2)) =@([-1:-1:0:0:1]) =[-2:-2:0:0:1:0:0:1:0],
P3:=i_1(<p(p3))=<p([0 0:1:1:1])=[0:0:2:2:0:1:1:0:1],
Py:=i""(p(ps)) =@([0:0:=1:1:1])=[0:0:-2:-2:0:1:1:0:1],
Pl=i"o(p)))=¢(-1:1:0:0:1])=[2:-2:0:0:-1:0:0:1:0],
Pz/::i_l((p(pZ))zw([l :0:0:1]) =[-2:2:0:0:-1:0:0:1:0],
Pi=i"(p(p}) = ([0: 1:1])=[0:0:2:—2:0:—1:—1:0:1],
Pyi=i" (go(p4)):<p([0 0:1:-1:1])=[0:0:-2:2:0:—1:-1:0:1].

Let /;,; be the line joining P; and P fori, j € {1,2,3,4,1',2/,3", 4} andi # j. We
have that WBSS does not contain the lines Iy 1/, 12/, [2,17, 12,2, l3,3, I3 40, a3, l4 4,
while it contains the others. So each one of the eight singular points of W &8s 18 associated
with m = 5 of the other singular points, as in Table 2 of Appendix B. Hence there exist
three mutually associated points (for example P;, P,, and P3). This case had been
excluded by Fano for p > 7 (see [12, Section 5]). So this suggests that in Fano’s paper
there are other gaps to be discovered.

THEOREM 6.1. Let T be a trihedron with edges ly, 1, I, and vertex v as in Figure 1.
Let us choose a general point q1 € 11, a general point q, € [, three distinct points
ar, as, ay € ly, a general point by € r1 := (q1,a,), and a general point by € ry 1=
(q2,ay). Let us take a general conic C through the points q1, q2, b1, ba, in the plane
spanned by the three points ar, q1, q». Finally, let us consider the lines s1 := {(q1, as),
$2 1= (q2, as), t1 := (b1, a;), t> := (b2, a;) and the lines l| := (q}.q>) and I} :=
(g5.4q1), where q\ is a general point on t| and g’ a general point on t. Then the BS-EF
3-fold WBSS can be obtained as the image of P via the rational map vy : P3 ——> P8
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Ficure 1. Base locus of the linear system N .

defined by the linear system N of the septic surfaces of P> which are quadruple at
the points q1 and qa, triple at the vertex v, and double along the lines ly, l1, I, 1}, 1},
along the conic C and at the points ¢, := t1 N s1 and c3 := tp N 5,. Furthermore, a
general element of N contains the lines t1, t, r1, 12, $1, $2 and ep := (41, q2).

ProoF. Let us project P® from the P* spanned by the singular points Py, P{, P2, P3,
and Pj of the BS-EF 3-fold WBSS of Example 6.1. By using Macaulay?2, we obtain the
rational map p : P8 —-»> ]P’[3ZO:__,:Z3] such that

[w01-~-:w13]|—>[w2—2w8:w5—w6:w3—2w6:w0—w1+2w4—2w7].

One can verify, via Macaulay?2, that the restriction p|W§;S : WSS -—> IP3 is birational
and that its inverse map is given by the rational map vy : P3 --> W& C P? defined
by the linear system N of the septic surfaces

(i) quadrupleatq; =[1:0:—-2:0landg, =[1:0:2:0];

(i1)  triple at the vertex v = [0 : 0 : O : 1] of the trihedron

T = {z1(2z0 + 22)(2z0 — 22) = O}

(iii) double at the pointsc; = [1 : =2 : =2 :0]and ¢; = [1 : 2 : 2 : 0]; double along
the line /] = {z3 = 229 + 221 — 22 =0} 3 ¢| = [1 : —2: —2: 0] and along the
line I} = {z3 = 229 — 221 + 2o = 0} 3 ¢5 = [1 : 2: 2 : 0]; double along the
edgeslp ={z0 =22 =0}, 11 ={21 =220+ 22 =0}, [, = {21 =220 — 2, =0}
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of the trihedron 7'; double along the conic
C={2z1+2z3= 423 —z% — 2223 — 22% =0}

passing through g1, g2, b1 = [1 : —1:—=2:2]and by =[1:1:2:=2];

(iv) containing the lines

r ={221+Z3 =220+22=0}, r2={221 + z3 =220—22=0},
s1={z3 =220+ 22 =0}, 53 ={z3 =229 —z3 = 0},
t1 = {221 — 225 — z3 = 229 + 2z = 0},

12={221—222—Z3=220—22=0}. u

7. Tue BS-EF 3-roLD oF GENuUSs 10

Let us study the Enriques—Fano threefold described in [1, Section 6.5.1] (see also
[22, Theorem 1.1 No. 13]). We refer to Section A.6 of Appendix A for the computational
techniques we will use. Let us take the smooth Fano threefold X := P! x Sg, where
Se is a smooth sextic del Pezzo surface. We recall that S is the image of P2 via the
rational map A : P2 --> P® defined by the linear system of the plane cubic curves
passing through three fixed points a;, a;, a3 in general position. Up to a change of
coordinates, we may assume thata; = [1:0:0],a, =[0:1:0],a3 =[0:0:1],and

. R 2. . 2.2 . 2.2 . 2.
A [uo tup tug] > [uTu T uUS D UGUs D UeUS UG < UUT [ UoU Uz

Thanks to Macaulay2, we can say that S¢ = A(P?) C P j has ideal

) [x0:x1:X2:X3:X4:X5:X¢
generated by the polynomials

2 2
X3X5 — Xg, X2X5 — X4Xe, X1X5— XoXe, X3X4 — X2X6, X1X4 — Xg,

2
XoX4 — X5X6, XoX3 — X1Xg, XoX2 —X3Xg, XoX2 — Xg.

The quadratic transformation g, 4,.45 : P> --> P2, given by the linear system of the
conics passing through ay, a,, and a3, defines an involution of the above sextic del
Pezzo surface. Indeed, we have

qaj.aj.az [L RS U L]

ug S up U

[uo :uy :uz]

I

2 . 2.2 . 2.2 . 2.
[uluz SULUG T UGUL D UQUL D UGUT L UoUT .uouluz] A

2 . 2.2 . 2. 2. 2.
[u0u2 CULUG T UTUL T UQUT D ULUL D UoUS - Mouluz],
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and then we obtain the involution ¢’ of P® given by
t/
[xo :x1 :X2:X3:X4:X5:X6] > [X2:X4:X0:X5:X1:X3: Xg).
The locus of ¢'-fixed points of P® consists of two projective subspaces

Fy:i={xo+ X2 = x1 + x4 = X3 + x5 = x6 = 0} = P2,

F, = {X()—Xz = X1 — X4 = X3 — X5 ZO} = P?’-
In particular, we have F; N S¢ = @ and F> N S¢ = {d1,d>, d3, ds}, where

dy:=[1:1:1:1:1:1:1], dy:=[1:-1:1:—-1:-1:-1:1],
dy:=[-1:1:=1:—=1:1:—=1:1], dy:=[-1:=1:=1:1:=1:1:1].

Thus, 0, := t'|s, is an involution of S¢ with four fixed points. We also consider the
involution of P! with two fixed points [0 : 1] and [1 : 0], that is the map o} : P! — P!
given by [yo : y1] = [Yo : —»1]. Therefore, the map o := (07 X 02) : X — X isan
involution of X having eight fixed points pi, p2, p3, pa, P}, P5, Ps, Py. Where

pi:=[0:1]xd;, p;=[:0xd;, i=12734.

The quotient map 7 : X — X/o =: WBISO is given by the restriction on X of the mor-
phismg : P! x P — P[lu())o:~~-:w
polynomials of multidegree (2, 1);i.e., ¢ : [yo : y1] X [x0 : -+ : x6] > [wo : -+ - : wio]

where

0] defined by the (0 X t’)-invariant multihomogeneous

wo = yaxe, Wi = y5(xXo +x2), wa = yi(x1+x4), wz=yd(x3+x5),
ws = yixe, Ws = yi(xo+x2), wWe = yi(x1+x4), w7=yi(xs+xs),
wg = yoy1(xXo — X2), Wo = yoy1(x1 —x4), wig = yoy1(x3 — Xs).

Thanks to Macaulay?2, one can find that the BS-EF 3-fold WBlsf) has ideal generated by
the following 20 polynomials of degree 2 or 3:

wrwg — 2LU4U)9 + Wswio, WeWg — W5Wg + 2w4w10,

2wawg — W7Wy + WeW1p, W3Wg — 2WoW9 + W1Wjo,

WrWg — W1 W9 + 2w0w10, 211)011)8 — W3 W9 + woWio,

W3We — WoW7, WarWe — W3W7 — U)g + wfo, wiWe — 2LU()LU7 — WgWo,
2wowe — W1W7 — WeWip, W3Ws — WiW7, Warls — 2WoW7 — WeWo,

WiWs — W3W7 — W§ + Wi,  2Wols — W7 + Wolig,  W3Ws — WoW7,
2WaWyg — WiW7 — WgWio, 2WiW4 — Waw7 + WoWrg, 4Wows — wawy + Wiy,

3 2 2 2 3 2 2 2
4wy —waWs5 —WaWg +WsWeW7 —Waw7, 4Wy—wWoW] —WoW;5 +W1WrW3—WoW3.
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FiGURE 2. Base locus of the linear system M.

The eight singular points of Wg¢ are P; := m(p;) and P/ := m(p!),for 1 <i < 4,
that is

Pi=[0:0:0:0:1:2:2:2:0:0:0], Pl =[1:2:2:2:0:---:0],

P,=[0:0:0:0:1:2:-2:-2:0:0:0], Pp=[1:2:-2:-2:0:---:0],
P3=[0:0:0:0:1:-2:2:-2:0:0:0], P;=[1:-2:2:-2:0:---:0],
Py=100:0:0:0:1:-2:-2:2:0:0:0], P,=[1:-2:-2:2:0:---:0].

Let /; ; be the line joining P; and P; fori, j € {1,2,3,4,1',2/,3", 4} andi # j. We
have that WBISO contains the lines 11,2, 11,3, 11,4, 11’1/, 12’3, 12,4, 12,2/, 13,4, 13,3/, 14,4/, ll/’z/,
Ly g by, lo s, 1o 4, I3 42, while it does not contain the others. So each one of the
eight singular points of WBlSO is associated with m = 4 of the other singular points, as in
Table 2 of Appendix B. Hence there exist three mutually associated points (for example
Py, P, and P3). This case had been excluded by Fano for p > 7 (see [12, Section 5]).
So this suggests that in Fano’s paper there are other gaps to be discovered.

Tueorem 7.1. Let T C P3 be a tetrahedron with faces f; and edges l;; = f; N f; for
0 <i < j < 3. Let v; be the vertex opposite to the face f;, for 0 <i < 3. Let w be a
plane through the vertex vo, which intersects the face f; along a line r;, for 1 <i <3,
and let us define the point q; := r; N ly; (see Figure 2). Then WBlSO can be obtained as
the image of P3 via the rational map vy : P2 ——> P10 defined by the linear system M
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of the sextic surfaces of P which are quadruple at the vertex vy, triple at the other
three vertices v1, v, v3, and double along the three lines ry, ry, r3. Furthermore, a
general element of M also contains the six edges of T

Proor. Let us project P!? from the P® spanned by the singular points Py, P>, P,
P4, P|, P}, and P} of W,J. By using Macaulay2, we obtain the rational map

p:IE”lO - ]P’[3 [we:--+:wiz] > [2wo + w1 + wa — w3 : Wg : Wy : Wio].

Z():"-ZZ3] ’

Thanks to Macaulay2, we see that the restriction ply;, 10 WBls0 -—> IP3 is birational.
We also compute its inverse map, which is the rational map vy : P? --> Wid c P10
defined by the linear system M of the sextic surfaces

(i)  containing the six edges l,3 = {z; = z; —z3 = 0}, l13 = {z3 = z1 + z2 = 0},
ha={z2=1z1+23=0},lo1 ={z0 =21 + 22 + 23 = 0}, lo3 = {z0 = 21 —
zy + z3 = 0}, and lgp = {z9 = z1 + z2 — z3 = 0} of the tetrahedron T with
faces fo = {zo =0}, fi ={z1 + 22 + 23 =0}, fo = {z1 — 22 + z3 = 0}, and
fa={z1 +22—2z3 =0}

(ii))  double along the lines ry = {z; =z + z3 = 0}, 1, = {z3 = z; — 2z, = 0} and
r3 = {z; = z1 — z3 = 0} contained in the plane 7 = {z; — z, — z3 = 0}, and
obviously double at the points gy = [0:0:—=1:1],g2 =[0:1:1:0], and
g3 =1[0:1:0:1];

(iii) triple at the following vertices of 7'
vy =[0:0:1:1], vo2=[0:1:-1:0], v3=[0:1:0:-1];

(iv) and quadruple at the vertex vo = [1:0:0:0]. ]

8. TuEe P-EF 3-roLD oF GeENUS 17

Let us study the Enriques—Fano threefold described in [20, Section 3]. We refer to
Section A.7 of Appendix A for the computational techniques we will use. Let P be the
octic del Pezzo surface given by the image of the anticanonical embedding of P! x P!
in P8, which is defined by the linear system of the divisors of bidegree (2, 2), i.e.,

[Mo . ul] X [Uo : Ul] = [yo,o ©Yo,1:Y0,2,Y1,0 - Y1,1:Y1,2:)2,0:)2,1: yz,z],

where y; ; = uf)u%_i v({ vf_j. Let us consider P® as the hyperplane {x = 0} in
9 .
[0.0:¥0.1:70.2:¥1,0:¥1,1:71,2:¥2,0:¥2,1:¥2,2:X]" Let V be the cone over P with vertex at
the point

v:=[0:0:0:0:0:0:0:0:0:1];
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then V is a singular Fano threefold (see [20, Lemma 3.1]). By using Macaulay2, we
see that the ideal of V' is generated by the polynomials

y%,l —)2,0)2,2,
Y0,2Y2,1 — Y0,1)2,2,
Y1,1¥2,0 — ¥Y1,0)2,1,
J’12,2 —Y0,2)2,2,
y12,1 — )0,0)2,2,
Y0,1Y1,1 — Y0,0Y1,2,
Yo,1Y1,0 — Yo,0)1,1,

Y1,2Y2,1 — Y1,1)2,2,
Y0,1¥Y2,1 — Y0,0)2,2,
Y0,2Y2,0 — Y0,0)2,2,
Y1,1Y1,2 — Yo,1)2,2,
Y1,0Y1,1 — Y0,0Y2,1,
J’12,0 — Y0,0)2,0,

2
Yo,1 — Y0,0Y0,2-

Y1,1Y2,1 — Y1,0)2,2,
Y1,2Y2,0 — Y1,0)2,2,
Y0,1Y2,0 — Y0,0)2,1,
Y1,0Y1,2 — Y0,0)2,2,
Yo0,2Y1,1 — Yo,1)1,2,

Yo,2Y1,0 — Yo,0)1,2,

Let us consider the involution # of P° given by 7(x) = —x and #(y; ;) = (=1)'*/y; ;.
Letv;j :={x =0, yp; = 0] (k,I) # (i, j)}. The locus of z-fixed points in P°
consists of two projective subspaces

F1 = {00 = Y02 = Y11= Y20 = Y22 =0} =P*
and
F> = {yo,1 = 1,0 = Y12 = y2,1 = x = 0} =~ P*

such that F; NV = {v} and F> NV = {vg,0, V0,2, V2,0, V2,2}. Thus, ¢ defines an
involution t := t|y : V — V of V with five fixed points. The quotient of V' via the
involution 7 is an Enriques—Fano threefold of genus 17 (see [20, Proposition 3.2]). In
particular, the quotient map 7 : V — V/t =: WI}7 is defined by the restriction on V/
of the linear system @ of the quadric hypersurfaces of P° of type

q1(¥0,0, Y0,2, Y1,1- ¥2,0. ¥2,2) + @2(Yo,1, Y1,0. ¥1,2, 2,1, X) = 0,

where ¢; and ¢, are quadratic homogeneous forms. Let us observe that the linear

system @ defines a morphism ¢ : P — P22 [yg 0 :--+: yao: x| > [Zo:-++: Zao],
where

Zy = J’il’ Zy = )’3,07 Z, = y§,27 Z3 = y%,m

Z4 = Y3, Zs = x7, Zs = Y51 Z7 =1,

Zg = J’izv Zo = y%,l’ Z10 = Yyo,1X, Zi1 = Y1,0X,

Z13 = y1,2X, Z13 = y2,1X, Z14 = Y0,0Y1,1. Z15 = Y0,2V1,1

Z16 = y2,0¥1,1, Z17 = Y22Y1,1, Z1s8 = Y0,1Y1,0, Z19 = Y0,1)1.2

Z20 = Y1,0¥2,1, Z21 = Y1,2Y2.1, Z22 = Y0,0Y0,2, Z23 = Y0,0)2.0

Zoa = Y0,2Y22, Z25 = Y2022, Z26 = Y0,1Y2,1, Z27 = Y0,0¥2.2

Z28 = Y0,2Y2,0, Z29 = V1,012
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By looking at the ideal of V C P9, we deduce that ¢ (V') is contained in a 17-dimensional
projective subspace of P2° given by

Hiy7:={Z1s = Z14, Z19 = Z15, Z2o = Z16, L1 =217, Z2n=Ze, Lo3=127,
Zoy =23, Zos = Zg, Zoes = Lo, Za7 = Zo, Zrg = Zo, Zr9 = Zy}.

Hence we obtain the morphism v : V — W37 = ¢(V) C Hy7 = P'7 defined by

[J/o,o Y0,1:)Y02:Y1,0:)V1,1:)V1,2:)Y2,0:¥2,1)22" X] = [z0:2z1: 1216 : Z17)s
where

Z0 = J’il’ Z1 = yg,Ov 2 = y&z, z3 = y%,o,

Z4 = yg,zv zs = X7, Z6 = yg,l’ Z7 = y%,O’

Zg = Yiz, Z9 = yil, 210 = Yo,1X, Z11 = )1,0X,

Z12 = )Y1,2X,

Z16 = Y2,0)1,1»

Thanks to Macaulay2, we find that the threefold WI}7 has ideal generated by the 88

quadratic polynomials

Z15Z16 — 214217,
Z6Z16 — Z1217,
213215 — 210217,
Z4Z15 — Z8Z17,
Z12Z14 — 211215,
Z6Z14 — Z1Z15,
Z0Z14 — Z1217,
Z7Z13 — Z11Z16>
20213 — 211217,
Z7Z12 — Z10Z16>
20212 — 210217,
Z6Z11 — 210214,
Z9Z10 — 211217,
Z3Z10 — Z11Z216>
2629 — Z14217,
20Z9 — Z16217,

2328 — Z16Z17,

Z13 = Y2,1X,

217 = Y2,2)1,1-

Z12Z16 — 211217,
Z4Z16 — 29217,
Z9Z15 — Z0Z17,
Z3Z15 — Z7217,
29Z14 — Z7217,
Z4Z14 — 20217,
212213 — 25217,
26213 — Z11Z215;
Z11Z12 — 210213,
26Z12 — Z10Z15;
Z10Z211 — 25214,
Z4Z11 — 213217,
28210 — Z12215,
20210 — Z11215,
Z5Z9 —Zf3,
Z7Z8 — Z14Z17,

2128 — Z14Z15,

Z14 = )0,0)1,1;

Z9Z16 — 23217,
22216 — 26217,
Z8Z15 — Z2217,
20215 — Z6217,
Z8Z14 — Z6Z217,
23214 — Z7Z16,
211213 — Z5Z16;
22213 — Z12Z215;
Z10Z12 — 25215,
Z3Z12 — Z13Z16;
Z9Z11 — Z13Z16;
Z2Z11 — Z10215,
27210 — Z11214,
Z8Z9 —Zf7,

Z2Z9 — Z15217,
Z6Z8 — Z1s,

Z0Z8 — Z15Z17,

Z15 = )Y0,2)1,1;

Z8Z16 — 20217,
20216 — 27217,
Z7Z15 — Z1217,
Z13Z14 — Z10Z16,
Z7Z14 — Z1Z216>
22214 — Z6Z15,
Z8Z13 — Z12Z217,
Z1Z13 — Z11Z14;
29212 — Z13217,
Z1Z12 — Z10Z14;
Z8Z11 — 210217,
Z0Z11 — Z10Z216>
24210 — Z12217,
Z7Z9 _2%6’
Z1Z9 — Z14216>
Z5Z8 — 21y,

2
Z6Z7 — Z14
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2527 — Z%p Z4Z7 — Z16217, 2227 — Z14215,  Z0Z7 — Z14Z16>
Z5Z26 — Zfo, Z4Z26 — Z15217, Z3Z6 — Z14Z216> Z20Z6 — Z14Z215,
Z0Z5 — 210213, 2324—23, 2224—25, Z1Z4 — Z14217,
ZOZ4—Z%7, ZpZ3 — Z142Z17, 2123—23, 2023—2%6,
ZlZz—Zg, 2022—2%5, Z0Z1 —2%4, 23—214217.

26

Furthermore, W37 has the five singular points

Py :=m(voo), Pr:=m(vo2), P3:=m(v20). Ps:=m(v22), Ps:=mn(v),

thatis P; ={zxy =0 |k #i}forl <i <5.

Proposition 8.1. Ifi = 1,2, 3,4, the tangent cone T Cp, W}}7 to W£7 at the point P;
is a cone over a Veronese surface.

Proor. Each point P;,i = 1,2, 3,4, can be viewed as the origin of the open affine set
Ui := {z; # 0}. The ideal of the tangent cone 7 Cp, (W1}7 N U;) is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of Wp” N Uj.
By using Macaulay2, we obtain the following tangent cones.

TCp,(Wp” N Uy) has ideal generated by z17, Z16, Z15, 213, 212, 29, Z8, Z4, 23, 22, 20,
210211 — 25714, 26711 — Z10Z14> 27210 — 2112145 2627 — 214> 2527 — 211> 2526 — Z10-
Hence TCp, W7 is a cone with vertex Py over a Veronese surface in the P> defined
by{z; =0]i=0,1,2,3,4,8,9,12,13,15,16, 17}.

Tsz(WI}7 N U,) has ideal generated by 217, Z16, Z14> 213> Z11> 29, 275 Z4» 235 Z1, 20,
210212 — 252155 26Z12 — 210215, 28210 — 2122155 2628 — Zfs, Z5Z8 — Zfz, Z5Z6 — Zfo-
Hence T'Cp, W57 is a cone with vertex P, over a Veronese surface in the P defined
by{z; =0]i=0,1,2,3,4,7,9,11,13, 14, 16, 17}.

TCP3 (WI}7 N U3) has ideal generatedby Z1752155 2145212+ 210528526+ 24522521520,
211213 — Z5Z165 27213 — Z11Z165 29211 — Z13Z165 2729 — 2%6, Z5Z9 — Zf3, Z5Z7 — Zfl'
Hence T'Cp, W7 is a cone with vertex P3 over a Veronese surface in the P> defined
by{z; =0]i=0,1,2,3,4,6,8,10,12,14,15,17}.

TCp4(W}}7 N Uy) has ideal generated by z16, Z15, 214> Z11> 210> 27 265 23, 225 Z1, 205
Z12Z213 — Z5Z17, 28213 — Z12Z217, 29212 — 213217, 2829 — Zf7, Z5Z9 — 2%3, Z5Z8 — Zfz-
Hence TCp, WI}7 is a cone with vertex P4 over a Veronese surface in the P> defined
by{zi =0]i =0,1,2,3,4,6,7,10, 11, 14, 15, 16}. [

THEOREM 8.2. The tangent cone T Cpy W[}7 to WI}7 at the point Ps is a cone over a
reducible sextic surface Mg C P7 C P17, which is given by the union of four planes
T, Wo, Ty, Wy and a quadric surface Q C P3 C P7. In particular, each one of the

planes 1, s, 7, 7} intersects the quadric Q respectively along a line Iy, [, 11, I},
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FIGURE 3. The reducible sextic surface Mg C P7 given by the union of four planes 71, 72, ni,
74, and a quadric surface Q C P3 < P7, which intersect as in the statement of Theorems 8.2
and 10.3.

where l; is disjoint from l], for i = 1,2. In the other cases, the intersections of two of
these lines identify four points, i.e., q12 =11 Ny, g1 =11 N1}, g =11 Ny,
and qv,2 = li N lé

Proor. The point Ps can be viewed as the origin of the open affine set given by
Us := {z5 # 0}. The ideal of the tangent cone 7Cps (WA’ N Us) is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of W1§7 N Us. By
using Macaulay2, we find that T Cp, (W1§7 N Us) has ideal generated by the polynomials

217> 2165 2155 Z14, 29, Z8, Z7, Z65 20, Z11Z12 — Z10Z13,

22213, Z1213, 23212, Z1Z12, Z4Z11, 22211, 24210, 23210,

Z3Z4, 2224, Z1Z24, 2223, 2123, Z122-
Hence T Cp; W1}7 is a cone with vertex Ps over a surface Mg contained in the P’
defined by {z; =01]i =0,5,6,7,8,9, 14,15, 16, 17}. This surface Mg is the union
of four planes 7y, 75, 7y, 75 and a quadric surface Q, where
m:={z,=0]i=0,1,3,4,5,6,7,8,9,11,13, 14,15, 16, 17},
m:={z=0]i=0,2,3,4,5,6,7,8,9,12,13,14, 15,16, 17},
m:={z=0]i=0,1,2,4,5,6,7,8,9,10,12,14,15,16, 17},
my,=1{z=0|i=0,1,2,3,5,6,7,8,9,10,11, 14,15,16, 17},
Q:={2;=0]i=0,1,2,3,4,5,6,7,8,9,14,15,16,17}N{z11212— 210213 =0}.

We give an idea of Mg in Figure 3. [



V. MARTELLO 28

By Proposition 8.1 and Theorem 8.2, we have that W1§7 has five non-similar points.
For completeness, let us find their configuration. Let /; j := {zx = 0 | k # i, j } be the
line joining the singular points P; and P; with 1 <i < j < 5. By looking at the ideal
of W37, we deduce that the lines /1 5, [ 5, I3 5, 14,5 are contained in W7, while the
lines 1 2, 1,3, [1,4, [2,3, [2,4, [3 4 are not. Hence the five singular points Py, P,, Ps,
P4, Ps of W37 are associated as in Table 3 of Appendix B.

RemMARK 8.3. Lethl : Blp,—1, 5 P'7 — P!7 be the blow-up of P!7 at the five singular
points of WA7 and let W be the strict transform of W27, Then W intersects the
exceptional divisor b/ ~1(Ps) along a surface which is isomorphic to Mg and which has
four singular points locally given by the intersection of three planes of P4, such that two
of them intersect the third along two lines and intersect each other at a point which is
the intersection of these two lines. Consequently, W is not a desingularization of WI}7,
since there are four singular points infinitely near to Ps. Therefore, it is not enough
to blow-up WI}7 at Py, P>, P3, P4, Ps to solve the singularities of W27 as instead
implicitly assumed by Fano and explicitly by Conte—Murre (see [7, Section 3.10]).

9. THE P-EF 3-rFoLD OF GENUS 13

Let us study the Enriques—Fano threefold mentioned in [20, Remark 3]. We refer to
Section A.8 of Appendix A for the computational techniques we will use. Let us take
the smooth sextic del Pezzo surface S¢ C IP’[fC 011 X X34 105 1] defined in Section 7.
Let us consider P® as the hyperplane {yo = 0} C IP’[ZCO:Xl tyorairsxairery] ANd let V be
the cone over Sg with vertex v :=[0:0:0:0:0:0:0: 1]. With a similar proof as the
one of [20, Lemma 3.1], one can see that V' is a singular Fano threefold. Let ¢ be the
involution of P7 defined by [xg : -+ : X6 : V] > [X2: X4 1 X0 : X5 : X1 : X3 : X¢ : —)].

The locus of 7-fixed points in 7 consists of two projective subspaces:

F1={X0+X2=X1+X4=X3+X5=x6=0}’£]P’3,

Fz={X0—X2=X1—X4=)C3—X5 =Yy =0}§P3
In particular, we have that F; NV = {v} and F> N V = {v1, v3, v3, v4}, Where

vpi=[l:1:1:1:1:1:1:0], vpi=[l:=1:1:=1:-1:-1:1:0],
v3i=[-1:1:—-1:-1:1:-1:1:0], vg:=[-1:—1:—1:1:—-1:1:1:0].

Thus, ¢ induces an involution 7 := ¢|y of V with five fixed points. The quotient of V'
via the involution 7 is an Enriques—Fano threefold of genus 13, which we will denote by
Wp3: one can deduce this by using a similar proof as the one of [20, Proposition 3.2].
In this case, the quotientmap 7 : V — V/t = WI}3 is defined by the restriction on V'
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of the linear system @ of the quadric hypersurfaces of P° of type
q1(xo + X2, X1 + X4, X3 + X5, X6) + g2(x0 — X2, X1 — X4, X3 — x5,y) = 0,

where ¢; and g, are quadratic homogeneous forms. The linear system @ defines a

morphism ¢ : P7 — P° such that [xg : -+-: X6 : Y]~ [Zo : -+ : Z19], where
Z()=X§, Z =x§+x%, Zzzxf—l—xi,
Z3 = x§ + x?, Z4 = (x9 + x2)Xs, Zs5 = (x1 + x4)Xs,
Zs = (X3 + Xx5)X6, Z7 = XoX1 + X2X4, Zg = X2X3 + XoXs,
Zo = x1X3 + XaXs5, Zio = (X0 —x2)y, Z11 = (X1 —X4)y,
Zin=(x3—xs5)y, Ziz=)> Z14 = 2X0X2,
Z15 = 2X1X4, Zi6 = 2x3Xs, Z17 = X4x3 + X1X5,
Z18 = XoX3 + X2X5, Zi9 = X1X2 + XoX4.

By looking at the ideal of V' C PP7, we observe that the threefold ¢ (V') is contained in
a 13-dimensional projective subspace of P1° given by

Hyz:={Z4=2Zy, Z15 =22y, Z16 =220, Z17=Z4, Z1g =Zs, Z19 = Zg¢}.

Thus, we obtain the morphism 7 : V — W23 = ¢(V) C Hy3 = P'? defined by
[xo: - :Xx6:y]+[zo:-: z13], where

zozxg, Z1 =x§+x§, 22=xf+x£,

Z3 = x§ + x?, z4 = (x¢ + x2)x6, z5 = (X1 + X4)Xs,
Z6 = (X3 + X5)X¢, 27 = XoX1 + X2X4, Zg8 = X2X3 + XoXs,
Z9 = X1X3 + X4X5, Z10 = (Xo —X2)y,  Z11 = (X1 — X4)),
Z12 = (X3 — X5)Y, Z13 = y2-

By using Macaulay2, we find that the threefold WI}3 has
quadratic polynomials

ideal generated by the 42

2 2
Z5 —Zg —ZeZ7 + Z5Z8,

2 2
Zy —Zg — Z6Z7 + ZaZo,

z42Z5 — 220Z¢ — Z2Z6 + Z5Z9,

22025 + 2325 — Z4Z6 — Z629»

z4Z5 —220Z¢ — Z1Z6 + Z4Z3,
2z0z4 + 2324 — Z5Z6 — Z6Zs,
422 — 23 — 22 + 2627, zsZ
—Z6Z10 + 220211 — Z4Z12,

2z0z4 — 22526 + 22029,

— 22425 + 22026 + 22027,

—220z5 — 2125 + Z4Z¢ + Z4Z7,
22024 + 2224 — Z5Z6 — 2527,
10 — Z4Z11 + 220212,

2z9z10 — Z6Z11 + 25212,

22025 — 22426 + 220Zg,

2 2 2
2z0z3 + z4 + 25 —2z5 — ZeZ7,
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22022 + z‘% — Zg — ZgZ7, 2Z0Z1 — Zf + z? — ZeZ7,

23, + 220213 — 23213, Z11Z12 + Z4Z13 — Z9Z13,
Z10Z12 — Z5Z13 + 28213, Z4Z10 — Z5Z11 t+ Z7Z12,

Zfl + 220213 — 22213, Z10Z11 + Z6Z13 — Z7Z13,

—Zz5Z10 + 29211 — Z2Z12, —Z4Z10 + Z8Z11 — Z6Z12,
—ZeZ10 t+ Z3Z11 — Z9Z12, Zf0+220213—21213,
Z9Z10 — 25211 + Z6Z12, Z8Z10 — Z4Z11 *+ Z1Z12,
zZ7210 — Z1Z211 + Z4Z12,  Z3Z10 — Z6Z11 + Z8Z12,

Z2z10 — Z7Z11 + 25212,  —ZaZs + 2ZoZe¢ — Z3Z6 + Z8Z9,
2z0z5 — Z2Z5 — Z4Ze + Z7Z9, 2Z0Z4 — Z5Z7 — Z6Z8 + Z1Z9,
220zZ4 — 2124 — Z5Z6 + 2728, —Z1Z5 + Z4Ze + 2228 — ZeZ9,
22425 —220Z6 — Z1Z6 — Z2Z¢ + 2327, Z2Z3 + Z? — ZgZ7 — Zg,

2 2 2 2 2 2
2123+ Z4 —ZeZ7 — Zg, Z1Z2 +zZ4 + Z5 —Zg — ZeZ7 — Z7.

Furthermore, W3? has the five singular points

Piri=n(vy)=[1:2:2:2:2:2:2:2:2:2:0:0:0:0],

Py=nw(vy)=[1:2:2:2:2:-2:-2:-2:-2:2:0:0:0:0],
Py:=n(vz)=[1:2:2:2:-2:2:-2:-2:2:-2:0:0:0:0],
Pyi=m(vg) =[1:2:2:2:-2:-2:2:2:-2:-2:0:0:0:0],

Ps:=n(v)=[0:0:0:0:0:0:0:0:0:0:0:0:0: 1].

Prorosition 9.1. Ifi = 1,2, 3, 4, the tangent cone TCpi WIP to W1}3 at the point P;
is a cone over a Veronese surface.

Proor. Let us consider the following change of coordinates of P13:

Zo = Wo, Zzi =w;+2we, z; =wj;, =1,...,9 j=10,...,13.
With respect to the new system of coordinates [wg : --- : wy3] of P!3, the point Py
has coordinates [1 : 0 : --- : 0] and can be viewed as the origin of the open affine set

Up := {wo # 0}. The ideal of the tangent cone TCp, (Wp> N Up) is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of W[}3 N Up.
Via Macaulay, TCp, (Wp> N Up) is found to have ideal generated by

— 9w1 + 811)7 + 811)8 — 4w9, —9U)2 + SU)7 — 4w8 + 811)9,

— w3 — 4w7 + 8wg + 8wy, —9w4 + 2wy + 2wg — wo,

— ws + 2wy — wg + 2wy, —Ywe — w7 + 2wg + 2wg,
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wio — wi1 + w2, Ywriwiz + 2wrwiz + 2wgwiz — 10wewy 3,

2wrwig — 10wswig + 2wowr; — 10w7w12 4+ 2wswiz + 2wowi2,

6w7w11 — 6wgw11 — 18w9w11 + 61,()711)12 — 6w8w12 + 1811)911)12,

911)%2 + 4U)7U)13 — 8w8w13 — SU)QU)13, 911)%1 — 811)711)13 + 4wgw13 — 8w9w13,

w% —2wywg + wé — 2w7wg9 — 2wgwg + wé.
Hence TCp, W23 is a cone with vertex at P; over a Veronese surface in
1p

{wog =0, —%w; + 8w; + 8wg — 4wy = 0, —%w, + 8w7 — 4wg + 8wg = 0,
- 9U)3 - 4w7 + 8w8 + 8U)9 =0, —9U)4 + 211)7 + 2w3 — W9 = O,
—9ws + 2wy — wg + 2we = 0, —%wg — w7 + 2wg + 2wge = 0,

wio — w11 + Wiz = 0} = P°.
Similar analysis holds for the points P,, P3, and Pjy. [

THEOREM 9.2. The tangent cone T Cpy W[}3 to W1}3 at the point Ps is a cone over a
reducible quintic surface Ms, which is given by the union of five planes my, 71, 7o, 73,
14, such that the four planes 1y, w,, 73, 74 intersect the plane 7y along the four edges
of a quadrilateral.

Proor. The point Ps5 can be viewed as the origin of the open affine set given by
Uys := {z13 # 0}. The ideal of the tangent cone TCPS(WI}3 N Uy3) is generated
by the minimal degree homogeneous parts of all the polynomials in the ideal of
WIP N U;3. By using Macaulay?2, we find that TC pS(Wl,;3 N Uy3) has ideal generated
by the polynomials
Z¢ —Z7, ZZ5—1Z8, Z4a—Z9, Z2—Z3, Z1—Z3, 2Z0—Z3,
Z9Z1o — Z8Z11 + Z7Z12, Z8Z10 — Z9Z11 t+ Z3Z12, Z7Z10 — Z3Z11 + Z9Z12,
2_ .2 2.2 2_ .2
Z3Z10 — Z7Z11 + Z8Z12, Zg — Zg, Z7 —Z§, Z3—Zg, Z7Z8 — Z3Z9,
Z3Zg — Z7Z9, Z3Z7 — ZgZg.
Hence T'Cp, WI}3 is a cone with vertex at Ps over a surface M5 contained in the P°®
defined by {z13 = 0, z¢ = 27, z5 = zg, Z4 = Z9, Z3 = Z3, Z1 = Z3, 229 = z3}. This
surface M5, an idea of which is given in Figure 4, is the union of the five planes
mo:=1{z; =0|i # 10,11},
w1 :={2z20 =21 =12 =23 =24 =1725=2¢ =27 =Zg = Zy,
Z10 = Z11 — Z12, Z13 = 0},
o :={220 =21 =2y =23 =24 = —2I5 = —Z¢g = —2Z7 = —Zg = Z9,

Z10 = Z12 — Z11, 213 = 0},
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FiGURE 4. The reducible quintic surface M5 C P® given by the union of five planes g, 71, 72,
73, 4, Which intersect as in the statement of Theorem 9.2.

m3:={2z0 =21 =zp =23 = —z4 =I5 = —Zg = —I7 = I3 = —ZI9,
Z10 = —Z11 — Z12, 213 = 0},

g ={220 =21 =2, =23 =—Z4 = —I5 =12 =27 =—Ig = —Z9,
Z10 = Z11 + Z12, 213 = 0}. n

By Proposition 9.1 and Theorem 9.2, we have that Wp?> has five non-similar points.
For completeness, let us find their configuration. Let /; ; be the line joining the singular
points P; and P; for 1 <i < j < 5. Thanks to Macaulay2, we find that the lines 1,5,
l>.5,135, 14 5 are contained in W33, while the lines /1 2, [1 3, 11,4, [2.3, [2.4, 13 4 are not.
Hence the five singular points Py, P,, P3, P4, Ps of W1}3 are associated as in Table 3
of Appendix B.

REMARK 9.3. Letbl : Blp,—1,.5 P!> — P2 be the blow-up of P!? at the five singular
points of WI}3 and let W be the strict transform of W1§3. Then W intersects the
exceptional divisor b/~ (Ps) along a surface isomorphic to Ms, which has six singular
points locally given by the intersection of three planes of P#, such that two of them
intersect the third along two lines and intersect each other at a point which is intersection
of these two lines. Therefore, W is not a desingularization of W23, since there are six
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singular points infinitely near to Ps. Therefore, it is not enough to blow-up WI}3 at
Py, P,, P3, P4, Ps to solve the singularities of W}P, as instead implicitly assumed by
Fano and explicitly by Conte—Murre (see [7, Section 3.10]).

10. Tue KLM-EF 3-roLD OF GENUS 9

Let us study the Enriques—Fano threefold described in [16, Section 13]. We refer to
Section A.9 of Appendix A for the computational techniques we will use. Let S be the
linear system of the sextic surfaces of P[ioz__': ] having double points along the six edges
lij :={t; =t; = 0} of afixed tetrahedron T := {tot1f2t3 = 0}, for0 <i < j < 3.Let
us denote the vertices of T by v; :={ty =0 |k #i},for0 <i < 3. Then § defines
a rational map vg : P3 --» P[IU?O,~--,W13] whose image is the Enriques—Fano threefold
Wi = Wg$ studied in Section 5 (see Theorem 1.3).

Let us fix a general element X € § and let us take its image S := vg(X). Then there
exists a hyperplane Hy, = P!2 c P!3 such that § = W1~13 N Hi,. By the generality
of 3, we may assume that H;, does not pass through the singular points Py, P,, P3,
P4, P{, P}, P}, P,, and so that Hy» = {Zilio a;w; = 0}, where ag, a1, as, as, do,
ajo, d12, i3 are not equal to zero. In particular, we may suppose that ap = 1. Let
us blow-up P at the vertices of T: we obtain a smooth threefold Y’ and a birational
morphism b’ : Y’ — P3 with exceptional divisors E; := (bl’)"!(v;), for 0 <i < 3.
If H denotes the pullback on Y of the hyperplane class on P2, the strict transform of
Y on Y’ is linearly equivalent to 6 H — 3 Z? _o Ei. Let us blow-up Y’ along the strict
transforms i, j of theedges of T', for 0 <i < j < 3: we obtain a smooth threefold Y'”" and
a birational morphism b/” : Y" — Y’ with exceptional divisors Fj; := (bl” )L i)
for0 <i < j < 3.Let X" be the strict transform on Y” of X. Then

3
S ~6H -3 Ei—-2 Y Fy,
i=0

0<i<j<3

where E ; denotes the strict transform of E;, for 0 <i < 3, and H denotes the pullback
bl"™* H , by abuse of notation. Let v’ : Y --> W3 C P13 be the birational map defined
by the linear system |Qy~(X")| and let us take E3 := v”(Fp3 N X”). The hyperplane
sections of W4* C P'3 containing v”(F,3) correspond to the divisors on Y linearly
equivalent to

3
6H—3Y E; —3F3— Y  2F;.

i=0 0<i<j<3

@,7)#(2,3)
Since

(V'(F23)) = {ws = we = w7 = wg = wo = Wig = w1 = Wiz = w3 = 0} = P4,
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then we have that (E3) = Hyp N (v”(Fy3)) = P3, and so that E3 = S N (E3), which
is defined by the equations
wo + ajwy + axwy + azws + agws = 0,
W5 = We = W7 = Wg = W9 = Wip = W11 = W12 = w13 =0,
W1W3 + ajwiwyg + Arwas + azwswy + agwi = 0,
w% + ajwiwy + awawg + azswzwy + a4w£ =0.
Thus, E3 is a quartic elliptic curve, since it is the complete intersection of two quadric

surfaces of (E3) = P3. If P(E3) - P13 ——» P? denotes the projection of P13 from
(E3) = IP3, then WI?LM = P(E3)(W1}3) C P? is the KLM-EF 3-fold of genus 9.

ReEMARK 10.1. For the construction of ng Ly WE have fixed a general sextic X € §.
The hyperplane sections of WI? m C P2 correspond to the hyperplane sections of
W;3 C PP!3 containing E3, which are images via vs of the sextic surfaces R of §
which are tangent to X along the two branches of ¥ intersecting at /53. Then WI? Ly 18
the image of IP3 via the rational map defined by the sublinear system R C § of these
sextic surfaces R.

By using Macaulay?2, we find that the projection map is given by

[wozw1:w2:w3:W4:w5:w61w7:wg:w9:w10:w11:w12:w13]

IP(E3)

[wo+a1w1 +arwy +azwz +aqwq P W5 We : W7 LW - W9 : WiQ - W11 - W12 - w13]

and that the ideal of W¢, ,, C P?) ] is generated by the following

[Z()IZ] 1ZD1Z31Z425.26:27.28:Z9

16 polynomials of degree 2 or 3:

Z6Z8 — Z5Z9, Z3Zg — Z2Z9, Z% — 2529, Z4Z7 — Z2Z9,
Z3Z7 — Z1Z9, ZpZ7 — Z1Z8, Z4Ze — Z1Z9, Z2Z6 — Z1Z7,
Z4Z5 —Z128, Z3Z5 —Z1Z7, Z2Z3 — Z1Z4,
Z1Z2 +a1z123 + az2124 + a3z224 + AazZ3z24 — ZoZ7,
Z§Z9 + ai1z1z4z9 + 2222429 + 61324%28 + a42§29 — Z0zgZ9,
2%29 + a1Z§Zs + axz1z3z9 + azz1z4z9 + 04232,29 —Z0Z6Z9,
Z%ZS + (132528 — ap043Z22Z428 — Z0Z52Z8 + A2Z0Z728 — a%Z%Zg
+ (as — a3 — a1az)z3z9 + +2a3azz1z3z9 + a1(2a3 — asg)z12479
4+ (Qajaza3 — a2a4)222429 + 2410204232429 + +0a1Z0Z52Z9 — A1A220Z729,
Zfzs + alzfz6 — Z0Z5Z¢ + a22f27 + (a4 — alaz)zf@ - a%z%@ + ajaaszi1z3zg

2 2
—asz(aq — a2)212429 + axa3z2z429 + a2a3a4232429 + A3Z0Z5Z9 — A2A3Z0Z7Z9.
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Let us take the images of the eight quadruple points of WIP, by denoting them, by
abuse of notation, in the following way:

Py = p(es)(P) ={zx = 0| k #5},  Pr:= p(es)(Py) = {zx = 0| k # 9}
P3 = p(EB)(P3) = {Zk =0 | k 7é 6}, Py = ,O(E3)(P4) = {Zk =0 | k 7& 8}’
Ps := p(s)(P1) = p(Es)(P2) = pE3)(P3) = p(E3)(Py) = {zx = 0 | k # 0},

ProposiTioN 10.2. Ifi = 1,2, 3, 4, the tangent cone T Cp, WI?LM to WI?LM at the
point P; is a cone over a Veronese surface.

Proor. Each point P;, fori = 1,2, 3, 4, can be viewed as the origin of the open affine
set Ujiy :=1{zj) # 0}, where j(1) =5, j(2) =9, j(3) = 6, j(4) = 8. The ideal of the
tangent cone 7' Cp, (WI? .y N Ujay) is generated by the minimal degree homogeneous
parts of all the polynomials in the ideal of WI? .m N Ujay. Thanks to Macaulay?2, we
obtain the following tangent cones.

TCp, (WI?LM N Us) has ideal generated by zg, z4, Z3, Z% — ZgZg, 2227 — Z1Z8,
ZpZ6 — 2127, Z3 — ZoZ8, Z1Z2 — Z0Z7, Z1 — ZoZe. Hence TCp W2, ,, is a cone with
vertex Py over a Veronese surface in {z; = 0 | i = 3,4,5,9} =~ P>.

TCPZ(WI?LM N Ug) has ideal generated by zs, z5, 71, z% — ZgZ8, Z4Z7 — Z3Z3,
Z4Z6 — 2327, d4ZF — Z0Z8, A4Z3Z4 — 2027, d4Z3 — ZoZe. Hence T Cp, W, 4, is a cone
with vertex P, over a Veronese surface in {z; =0 | i = 1,2,5,9} = P>.

TCp, (WI?LM N Us) has ideal generated by zg, z4, 2, Z% — Z529, 2327 — 2129,
Z3Z5 — 2127, alzg — Z0Z9,A12123 — Z0Z7, alzf —zozs. Hence TCp, WI?LM is a cone
with vertex P3 over a Veronese surface in {z; = 0 | i = 2,4,6,8} = P>,

TCP4(WI?LM N Ug) has ideal generated by zg, z3, 21, Z% — 2529, Z4Z7 — Z2Z9,
Z4Zs5 — Z327,a3Z3 — ZoZ9, A3Z2Z4 — Z0Z7, 323 — ZoZs. Hence TCp, W, 5, is a cone
with vertex P, over a Veronese surface in {z; = 0 |i = 1,3,6,8} = P>, [ ]

THeorEM 10.3. The tangent cone T Cp, WI?LM to WI?LM at the point Ps is a cone
over a reducible sextic surface Mg C P7 C P°, which is given by the union of four
planes w1, s, n{, né and a quadric surface Q C P3cP.In particular, each one of
the planes 1, w,, 7y, 75 intersects the quadric surface Q respectively along a line [y,
l2, 13, I3, where I; is disjoint from I, for i = 1,2. In the other cases, the intersections
of two of these lines identify four points, which are q12 =1y N ls, g1, := 11 N1},
qiv 2 ‘= l{ N 12, and qv,2 = l{ N lé

Proor. The point Ps can be viewed as the origin of the open affine set given by
Up := {zo # 0}. The ideal of the tangent cone T Cp, (W2 ;, N Uy) is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of W¢; ,, N Up.



V. MARTELLO 36

By using Macaulay2, one finds that T'Cp (WI? 1.y N Uo) has ideal generated by the
polynomials

Z7, Z829, 2629, 2529, 2229, Z129, Z6Z8, Z5Z8, Z3Z8,

Z1Z8, Z526, Z4Z6, 2226, Z4Z5, Z3Z5, Z22Z3 — Z1Z4.

Hence T'Cp, WI? 1.1 18 a cone with vertex Ps over a surface My contained in the P7
given by {z; = 0| i = 0,7}. The surface M is the union of four planes 7, 5, 7y,
nr, and a quadric surface Q, where

m:={=0]i=0,1,2,5,6,7,8}, mp:={z,=0]i=0,1,3,5,6,7,9},
7 :={z;=0|i=0,3,4,6,7,8,9}, 7m,:={z;,=0]i=0,2,4,57,8,9},
Q:={z;=01]i=0,5,6,7,8,9 N{z22z3 — z1z4 = O}.

We obtain the same situation as the one described in Theorem 8.2, and so a sextic
surface Mg as in Figure 3. u

By Proposition 10.2 and Theorem 10.3, we have that Py, P, P3, P4, P5 are non-
similar singular points of WI? 1.y~ For completeness, let us find their configuration. Let
l;,; be the line joining the singular points P; and P; for 1 <i < j < 5. Then we have
ho={z =0k #59% ha=1{z =0k #56}l14={z =0k #58),
ls={zk =0k #0,5, b3={zk =0k #6,9}, ba={zx =0]k #8,9},
los =12k =0k #0.9) ls4 = {zx = 0| k # 6.8}, I5 = {z = 0| k # 0,6},
lys ={zr = 0| k # 0, 8}. By looking at the ideal of WI?LM C P?, we deduce that
the lines 11,3, 11’4, 11,5, 12,3, 12,4, 12’5, 13,5, l4’5 are contained in WI?LM’ while 11,4 and
[5,3 are not. So the five singular points Py, Py, P3, P4, Ps of WI? 1.3 are associated as
in Table 3 of Appendix B.

11. PROJECTIVE NORMALITY

Some authors define an Enriques—Fano threefold just as a threefold satisfying the
following assumption (see for example [16, Definition 1.3]).

AssUMPTION (x). Let W C PV be a non-degenerate threefold whose general hyper-
plane section S is an Enriques surface and such that W is not a cone over S.

If the pair (W, £ := |Ow (S)]) satisfies Assumption (x), it is enough to take its
normalization v : WY — W to obtain an Enriques—Fano threefold in the general
sense, that is (W", v*£). Indeed, an element of v*£ is ample, since it is the pullback
of a very ample divisor of £ via the finite birational morphism v : WV — W (see
[17, Theorem 1.2.13]). Moreover, if (W"V, v*£) were a (polarized) generalized cone,
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WY would contain a 3-dimensional family of curves of degree 1 with respect to the
given polarization such that they all pass through a point; thus, W C P would be the
union of lines through a point, contradicting Assumption ().

Furthermore, we observe that if a pair (X, &£) is an Enriques—Fano threefold such
that the elements of &£ are very ample divisors on X, then £ defines an embedding
¢g : X — PP and ¢p¢(X) C P? is a threefold satisfying Assumption ().

An example of “Enriques—Fano threefold” in the sense of Assumption () is the
KLM-EF 3-fold Wg, ,, C P?: instead of proving the normality of this threefold,
Knutsen—Lopez—Muiioz study properties of its normalization (see [16, Proposition
13.1]). We will see below that the KLM-EF 3-fold actually is (projectively) normal.

Also the rational F-EF 3-folds Wlf =679 PP are “Enriques—Fano threefold” in
the sense of Assumption (*): indeed, their normality is unproved, even if Fano assumed
normality at the beginning of his work. The normality of the non-rational F-EF 3-fold
Wy is unproved too; however, it does not exactly satisfy Assumption (x), since its
hyperplane sections are not Enriques surfaces, but their minimal desingularizations
are (see [9, p. 275]). We will see below that the rational F-EF 3-folds of genus 7, 9,
and 13 actually are (projectively) normal.

Instead, the BS-EF 3-folds and the P-EF 3-folds are normal by construction, since
they are quotient of normal threefolds under the action of a finite group defined by a
certain involution with a finite number of fixed points (see [ 10, Proposition 2.15]). In
particular, the BS-EF 3-folds with very ample hyperplane sections satisfy Assumption
(x) in the projective space in which they are embedded, while the other eight BS-
EF 3-folds are Enriques—Fano threefolds satisfying exactly the abstract definition.
Furthermore, as we saw in Sections 8 and 9 the P-EF 3-folds Wlf =13.17 .an be embedded
in P? and they also satisfy Assumption ().

DEeriNtTION 11.1. Let R be a 3-dimensional linear system of quadric surfaces of P3.
Let us suppose that R is sufficiently general, i.e., &R is base point free and, if / is
a double line for Q € R, then Q is the unique quadric in R containing /. A Reye
congruence is a surface obtained as the set

{l € G(1,3) |/ is contained in a pencil contained in R}
where G (1, 3) denotes the Grassmannian variety of lines in P3.

Tueorem 11.2. Let W C PV be a threefold satisfying Assumption (x). If S ¢ PN~1
is linearly normal and if either N > 7 or N = 6 and S is not a Reye congruence, then
h'(Ow) = 0and W C PV is projectively normal.

Prookr. Since the case where N = 6 and S is a Reye congruence is excluded, we have
that S ¢ PV~ is projectively normal (see [13, Theorem 1.1]). Thus, by using the
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arguments of [8, Lemmas 1.5, 1.6, and 1.7] (which are inspired by the ones of [1 1, pp. 10—
11]), we obtain that 2! (Oy) = 0 and that W C P¥ is projectively normal. [

ProposiTiON 11.3. Let W C PV be a threefold satisfying Assumption (x). If W C PN
is linearly normal and h' (Ow) = 0, then S C PN~V is linearly normal.

Proor. We have to show that 1°(Os (1)) = h°(Opn~-1(1)) = N. This follows by the
exact sequence

0— 0Oy — Ow(1) > Os(1) = 0,
since 1°(Ow) = 1, ' (Ow) = 0and h°(Ow (1)) = h°(Opn (1)) = N + 1 by hypoth-

esis. n

CoROLLARY 11.4. Let W C PN be a threefold satisfying Assumption (). If W C PV
is linearly normal and h*(Ow) = 0, then W C PV is projectively normal (except
when N = 6 and S is a Reye congruence).

Proor. See Theorem 11.2 and Proposition 11.3. |

ProrpositioN 11.5. Let W C P? be a threefold satisfying Assumption (%) such that
p is the genus of a curve section of W. Then W C P? and S C PP~! are linearly
normal.

Proor. By Riemann-Roch on S we obtain 1°(@Os (1)) = p. From W C P?, we have
that 2°(Ow (1)) > p + 1. On the other hand, from the exact sequence

0—0Ow — Ow(l) - Os(1) > 0
one gets h°(Ow (1)) < p + 1 and hence equality holds. ]
CoroLLARY 11.6. The following Enriques—Fano threefolds are projectively normal:
WI?LM c P°, W;=7’9’13 c PP, WBpS=7,8,9,10,13 C‘E} PP, W[§’=13’17 c PP
Proor. See Theorem 11.2 and Proposition 11.5. ]

We cannot say the same for the F-EF 3-fold W& C P, since its hyperplane sections

are Reye congruences (see [6, Proposition 3] and [12, Section 3]). As for the BS-EF

3-fold WBGS 3) IP®, Macaulay2 enables us to find that its hyperplane section S C P>

is not contained in quadric hypersurfaces of P> (see Code A.1 of Appendix A): this
is equivalent to saying that S C P is projectively normal (use Riemann—Roch and
see [13, Theorem 1.1]), and so we have that WB6$ C P is projectively normal too (see
Theorem 11.2). Thus, we obtain Theorem 1.6.
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A. MACAULAY2 CODES

In the following, we will collect the input codes used in Macaulay?2 for the computational
analysis of this paper. We will essentially use the package Cremona of Staglian0 (see
(23D "

A.l. Computational analysis of the BS-EF 3-fold of genus 6

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP3xPP3 = 7Z/10000019[x_0,x_1,x_2,x_3]%*ZZ/16000019[y_0,y_1,y_2,y_31;

i3 : X = ideal{ x_O0*y_0-7*x_1*y_1+4*x_2*y_2+2*x_3*y_3,
X_0%y_0-6*x_1%y_142%x_2*y_2+3%*x_3*y_3, x_0*y_0-x_1*y_1-7*x_2*y_2+7*x_3*y_3};

i4 : PP9 = ZZ/10000019[Z_0..Z_9];

i5 : phi = rationalMap map(PP3xPP3,PP9,matrix{{x_0*y_0,x_1*y_1,x_2*y_2,x_3*y_3,
X_0%y_1+x_1*y_0,x_0*y_2+x_2*y_0,x_0*y_3+x_3*y_0,x_1*y_2+x_2*y_1,x_1*y_3+x_3*y_1,
X_2%y_3+x_3*y_21});

i6 : (dim(image phi) -1, degree(image phi)) == (6,10)

i7 : image phi ==
ideal{-2*Z_1%Z_5*Z_6+Z_4*Z_6%Z_7+Z_4*Z_5*7Z_8-2%Z_0*Z_7*Z_8+4*Z_0%*Z_1%*Z_9-Z_4+2*Z_9,
—2%7_2%7_4*7_6+Z_5%Z_6%Z_T+4%Z_0*Z_2%7_8-Z_5A2%Z_8+Z_4*Z_5%7_9-2%Z_0*Z_7%Z_9,
-4%Z_1%Z_2%Z_6+Z_6%Z_772+2%Z_2*7Z_4*Z_8-Z_5*Z_T7*Z_8+2%Z_1*%Z_5%7_9-7Z_4*Z_7*Z_9,
-2%Z_3%Z_4%Z_5+4%Z_O%Z_3%Z_7-7Z_672*Z_7+Z_5*Z_6%Z_8+Z_4%*Z_6%Z_9-2*Z_0*Z_8*Z_9,
-4%Z_1%Z_3%Z_5+2%Z_3%Z_4*Z_7-7_6%Z_7*Z_8+Z_5%Z_8*2+2*Z_1*7Z_6%*Z_9-Z_4*Z_8*Z_9,
—4%7_2%7_3%7_A4+2%7_3%Z_5%Z_T7+2%7_2%7Z_6%Z_8-Z_6%Z_7%Z_9-Z_5%7Z_8*Z_9+Z_4*7Z_9+2,
-4%Z_1%Z_2%Z_3+Z_3%Z_772+Z_2%7_8r2-Z_7*Z_8*Z_9+Z_1%Z_9/2,
-4%Z_0%Z_2%Z_3+Z_3%Z_5M2+Z_2%7_6*2-Z_5*Z_6%Z_9+Z_0%Z_9/2,
—4%Z_O0%Z_1*Z_3+Z_3%Z_4r2+Z_1%7_6r2-7Z_4%Z_6%Z_8+Z_0*Z_8"2,
—4%7_O%Z_1%Z_2+Z_2%Z_AN2+Z_1%Z_5A2-7Z_A*7_5*Z_T7+Z_0*Z_742}

i8 : phiX = ideal{Z_2-7_3,Z_1-Z_3,Z_0-Z_3,
-2%Z_1%Z_5%Z_6+Z_4%Z_6%Z_T7+Z_4*Z_5*7Z_8-2%Z_O%Z_7*Z_8+4*Z_0*Z_1*7Z_9-7_4+2*Z_9,
-2%Z_2%Z_A*Z_6+Z_5%Z_6%Z_T7+4%Z_0%Z_2%Z_8-Z_5"2*Z_8+Z_4%Z_5%Z_9-2%Z_0*Z_7*Z_9,
—4%Z_1%Z_2%Z_6+Z_6%Z_T7A2+42%Z_2%7Z_4%7_8-Z_5*Z_7*Z_8+2*Z_1*Z_5%7Z_9-Z_4*Z_7*7Z_9,
-2%Z_3%Z_4%Z_5+4%Z_Q%Z_3%Z_7-7Z_672%Z_7+Z_5*Z_6%Z_8+Z_4%Z_6%Z_9-2*7Z_0*Z_8*Z_9,
-4*Z_1%Z_3%Z_5+2%Z_3%Z_A4*Z_7-7_6*Z_7*Z_8+Z_5*Z_8"2+2%Z_1*Z_6%*Z_9-7Z_4*Z_8*Z_9,
—4%7_2%Z_3%Z_4+2%Z_3*Z_S5*Z_T7+2*Z_2%7Z_6%Z_8-Z_6*Z_7*Z_9-7Z_5*Z_8*Z_9+Z_4%7_9+2,
—4%Z_1%Z_2%Z_3+Z_3%Z_T7A2+Z_2%Z_8r2-Z_T7*Z_8*Z_9+Z_1*Z_9*2,
-4%7_Q*Z_2%Z_3+Z_3%Z_5A2+Z_2%Z_672-Z_5%Z_6*Z_9+Z_0%Z_942,
-4*Z_0%Z_1%Z_3+Z_3%Z_4r2+Z_1*7_6*2-Z_4*Z_6*Z_8+Z_0%*Z_8"2,
-4%Z_0%Z_1%Z_24Z_2%Z_AAN2+Z_1%Z_5A2-Z_A4*Z_5%Z_T7+Z_0%Z_772};

i9 : (dim oo -1, degree oo, oo == phi(X) ) == (3, 10, true)

i1 : H6 = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3};

ill : PP6 = ZZ/10000019[w_0..w_6];

il12 : inclusion = rationalMap map(PP6,PP9,matrix{{w_0,w_0,w_O0,w_0,w_1,w_2,w_3,
w_4,w_5,w_6}});

il3 : image oo == H6

il4 : pigreca = phi*(rationalMap map(PP9,PP6, sub(matrix inverseMap(inclusion]||H6), PP9) ))

() For more information, visit the website http://www?2.macaulay2.com/Macaulay2/doc/
Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html.


http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.21/share/doc/Macaulay2/Cremona/html/index.html
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il5 : pigreca(X) == inclusion**(phiX)

il6 : WB6 = ideal{
=2*W_0%w_2*w_3+w_1*w_3*w_4+w_1*w_2*Ww_5-2*w_0*w_4*w_5+4*w_022*w_6-w_142*w_6,
=2*wW_0*w_1*w_3+w_2*w_3*w_4+4*w_0r2%w_5-w_2A2*w_5+w_1*w_2*w_6-2*w_0*w_4*w_6,
—4*W_0A2*W_3+W_3*W_422+2*w_0%*w_1*w_5-w_2*w_4*w_5+2*w_0*w_2*w_6-w_1*w_4*w_6,
=2*W_0%wW_1*w_2+4*w_0r2*w_4-w_3A2*w_4+w_2*w_3*w_5+w_1*w_3*w_6-2*w_0*w_5*w_6,
—4*W_0A2*W_2+2%wW_0*w_1*w_4-w_3*W_4*W_5+w_2%Ww_5A2+2%w_0*w_3*w_6-w_1*w_5*w_6,
—4%W_0A2%w_1+2*w_0*w_2*%w_4+2*w_0*w_3*w_5-w_3*w_4*w_6-w_2*w_5*w_6+w_1*w_6/2,
-4*W_0A3+w_0%w_422+w_0*w_522-w_4*w_5*w_6+w_0*w_642,
—4*W_0A34+wW_0%w_2A2+w_0*w_322-w_2*W_3*W_6+w_0*wW_6/2,
—4%W_0A3+w_0%w_1A2+w_0%*w_3A2-w_1*w_3*w_5+w_0%w_542,
—4*W_0A34+w_0%w_1A2+w_0*w_2/2-w_1*w_2*w_4+w_0%w_4/2};

il7 : WB6 == pigreca(X)

i18 : (dim ooo -1, degree ooo) == (3, 10)

i19 : P1 = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};
i20 : P2 = ideal{w_1+2*w_0,w_2+2*w_0,w_3+2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_03};
i21 : P3 = ideal{w_1+2*w_0,w_2-2*w_0,w_3-2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_03};
i22 : P4 = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_03};
i23 : P5 = ideal{w_1-2*w_0,w_2+2*w_0,w_3-2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};
i24 : P6 = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_03};
i25 : P7 = ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_03};
i26 : P8 = ideal{w_1-2*w_O0,w_2-2*w_0,w_3+2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_03};
i27 : -- let us see if the lines 1lij joining the points Pi and Pj

-- are contained in the threefold WB6

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

i28 : (112 + WB6 == 112) == true

i29 : 113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i30 : (113 + WB6 == 113) == true

i31 : 114 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i32 : (114 + WB6 == 114) == true

i33 : 115 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i34 : (115 + WB6 == 115) == true

i35 : 116 = ideal{(toMap(saturate(P1*P6),1,1)).matrix};

i36 : (116 + WB6 == 116) == true

i37 : 117 = ideal{(toMap(saturate(P1*P7),1,1)).matrix};

i38 : (117 + WB6 == 117) == true

i39 : 118 = ideal{(toMap(saturate(P1*P8),1,1)).matrix};

i40 : (118 + WB6 == 118) == true

i4l : -- etc...

-- let us now change the coordinates of PP6

-- in order to have P1 = [1:0...0]

PP6’=ZZ/10000019[z_0..z_6];

i42 : W = sub(WB6, {(gens PP6)_0 =>(gens PP6’)_0,

(gens PP6)_1 =>(gens PP6’)_1+2*(gens PP6’)_0,

(gens PP6)_2 =>(gens PP6’)_2+2*(gens PP6’)_0,

(gens PP6)_3 =>(gens PP6’)_3+2*(gens PP6’)_0,

(gens PP6)_4 =>(gens PP6’)_4+2*(gens PP6’)_0,

(gens PP6)_5 =>(gens PP6’)_5+2*(gens PP6’)_0,

(gens PP6)_6 =>(gens PP6’)_6+2*(gens PP6’)_03})

i43 : W'U® = sub(oo, {(gens PP6’)_0 => 1})

i44 : ConePl = sub(tangentCone oo, {(gens PP6’)_0 => (gens PP6)_0,

(gens PP6’)_1 =>(gens PP6)_1-2*(gens PP6)_0,
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(gens PP6’)_2 =>(gens PP6)_2-2*(gens PP6)_0,

(gens PP6’)_3 =>(gens PP6)_3-2*(gens PP6)_0,

(gens PP6’)_4 =>(gens PP6)_4-2%(gens PP6)_0,

(gens PP6’)_5 =>(gens PP6)_5-2*(gens PP6)_0,

(gens PP6’)_6 =>(gens PP6)_6-2*(gens PP6)_0})

i45 : degree oo ==

i46 : -- similarly for P2,P3,P4,P5,P6,P7,P8

-- we observe now that WB6 is not contained in a quadric hypersurface of PP6
rationalMap toMap(WB6,2,1)

i47 : -- let us also see that a general hyperplane section S is not
-- contained in a quadric hypersurface of PP5, where

-- S = ideal{random(1,PP6)}+WB6

-- for example:

S = ideal{w_0-w_1+72%w_2-13*w_3+4*w_4+8*w_5+35*w_6}+WB6

i48: PP5 = ZZ/10000019[t_0..t_5]

i49 : inc = rationalMap map(PP5,PP6,matrix{{t_0-72*t_1+13*t_2-4*t_3-8*t_4-35*t_5,
t0,t_1,t_2,t_3,t_4,t_5}})

i50 : image oo == ideal{S_0}

i51 : incA*S

i52 : (dim oo -1, degree oo) == (2, 10)

i53 : toMap(oo00,2,1)

A.2. Computational analysis of the BS-EF 3-fold of genus 7

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP1xPP1xPP1xPP1 =
ZZ/10000019[x_0,x_1]1**ZZ/10000019[y_0,y_11**ZZ/10000019[z_0,z_1]**ZZ/10000019[t_0,t_1];
i3 : a0001=1;

i4 : a0010=1;
i5 : a0100=1;
i6 : al®00=1;
i7 : allle=1;
i8 : all@l=1;
i9 : al®ll=1;

i10 : a®l1l1=1;

i1l : X = ideal{a®001*x_0*y_0%z_0*t_1+a0010*x_0*y_0%z_1*t_0+a0100*x_0*y_1*z_0*t_0+
alee0*x_1*y_0%z_0*t_0+alll@*x_1*y_1%z_1*t_0+all@l*x_1*y_1*z_Q*t_1+
al®ll*x_1*y_0%*z_1*t_1+a0111*x_0*y_l1*z_1*t_1};

il2 : phi = rationalMap map(PP1xPP1xPP1xPP1, ZZ/10000019[w_0..w_7],
matrix(PP1xPP1xPP1xPP1, {{x_1*y_1*z_1%*t_1, x_1*y_0%z_0*t_1, x_0*y_0*z_1%t_1,
x_1*y_0%z_1*t_0, x_0*y_0%z_0*t_0, x_0*y_1*z_1%t_0,

x_1*y_1%z_0*t_0, x_0*y_1*z_0*t_1}}));

il3 : WB7 = phi(X);

il4 : (dim oo -1, degree oo) == (3,12)

il5 : PP7 = ring WB7;

i16 : P1 = ideal{w_1, w_2, w_3, w_4, w_5, w_6, w_7};

i17 : P2 = ideal{w_0®, w_2, w_3, w_4, w_5, w_6, w_7};

i18 : P3 = ideal{w_0®, w_1, w_3, w_4, w_5, w_6, w_7};

i19 : P4 = ideal{w_0, w_1, w_2, w_4, w_5, w_6, w_7};
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i20 : P1’ = ideal{w_0, w_1, w_2, w_3, w_5, w_6, w_7};

i21 : P2’ = ideal{w_0, w_1, w_2, w_3, w_4, w_6, w_7};

i22 : P3’ = ideal{w_®, w_1, w_2, w_3, w_4, w_5, w_7};

i23 : P4’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_6};

i24 : -- let us see if the lines lij joining the points Pi and Pj
-- are contained in the threefold WB7

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

i25 : (112 + WB7 == 112) == true

i26 : 113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};
i27 : (113 + WB7 == 113) == true

i28 : 114 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};
i29 : (114 + WB7 == 114) == true

i30 : 111’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};
i31 : (111’ + WB7 == 111’) == false

i32 : 112’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};
i33 : (112’ + WB7 == 112’) == true

i34 : 113’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};
i35 : (113’ + WB7 == 113’) == true

i36 : 114’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};
137 : (114’ + WB7 == 114’) == true

i38 : -- etc.

sub(WB7 {(gens PP7)_0=>1});

i39 : ConePl = tangentCone 00

i40 : degree oo ==

i41 : sub(WB7, {(gens PP7)_1=>1});

i42 : ConeP2 = tangentCone oo

i43 : degree oo == 4

i44 : -- etc.. similarly for P3,P4,P5,P1’,P2’,P3’,P4’

A.3. Computational analysis of the BS-EF 3-fold of genus 9

Macaulay?2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona"

i2 : PP5 = ZZ/10000019[x_0, x_l, x_2, y_3, y_4, y_51;

i3 : sl = x_042-3%x_1A242%x_242;

i4 : s2 = 3*x_QA2-8*%x_1A2+5%x_2A2;

i5 @ rl = 3*y_342-8%y_4A2+5%y_542;

16 @ r2 = y_3A2-3%y_4r2+42%y_542;

i7 : X = ideal{sl+rl, s2+r2};

i8 : (dim oo -1, degree o0o) == (3,4)

i9 : PP11 = ZZ/10000019[Z_0..Z_11];

i1® : phi = rationalMap map(PP5, PP11, matrix(PP5,{{x_042, x_142, x_242, x_0*x_1,
x_0%x_2, x_1*x_2, y_342, y_422, y_542, y_3*y_4, y_3*y_ 5, y_4*y_5}}));

ill : phi(X)

il2 : (dim oo -1, degree oo) == (3,16)

i13 : H9 = ideal{oo0_0, ooo_1}

il4 : phi(X) + H9 == phi(X)

il5 : PP9 = ZZ/10000019[w_0..w_9];

i16 : inclusion = rationalMap map(PP9,PP11, matrix(PP9, {{w_0+21*w_4-55*w_5+34*w_6,
w_0+8*w_4-21*w_5+13*w_6, w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w9 }}));
i17 : image oo == H9



SINGULARITIES AND PROJECTIVE NORMALITY OF EF 3-FOLDS

i18 : WB9 = inclusion** (phi(X));

il9 : (dim oo -1, degree oo) == (3, 16)

i20 : rationalMap map(PP11,PP9, sub(matrix inverseMap(inclusion||H9), PP11))
i21 : pigreca = phi* oo

i23 : fixedPlanex = associatedPrimes (X+ideal{x_0,x_1,x_2});
i24 : fixedPlaney = associatedPrimes (X+ideal{y_3,y_4,y_51});
i25 : P1 = inclusion** phi(fixedPlaney#0);

i26 : P4 = inclusion** phi(fixedPlaney#1);

i27 : P2 = inclusion** phi(fixedPlaney#2);

i28 : P3 = inclusion** phi(fixedPlaney#3);

i29 : P1’ = inclusion** phi(fixedPlanex#0);

i30 : P4’ = inclusion** phi(fixedPlanex#1);

i31 : P2’ = inclusion** phi(fixedPlanex#2);

i32 : P3’ = inclusion** phi(fixedPlanex#3);

i33 : -- let us see if the lines 1lij joining the points Pi and Pj
-- are contained in the threefold WB9

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

i34 : (112 + WB9 == 112) == false

i35 : 113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i36 : (113 + WB9 == 113) == false

i37 : 114 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i38 : (114 + WB9 == 114) == false

i39 : 111’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i40 : (111’ + WB9 == 111’) == true

i41 : 112’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i42 : (112’ + WB9 == 112’) == true

i43 : 113’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i44 : (113’ + WB9 == 113’) == true

i45 : 114’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i46 : (114’ + WB9 == 114’) == true

i47 : -- etc..

projl = rationalMap toMap(P2,1,1);

i48 : proj2 = rationalMap toMap(projl(P3),1,1);

i49 : proj3 = rationalMap toMap(proj2(projl(P4)),1,1);

i50 : proj4 = rationalMap toMap(proj3(proj2(projl(P2’))),1,1);
i51 : proj5 = rationalMap toMap(proj4(proj3(proj2(projl(P3’)))),1,1);
i52 : proj6 = rationalMap toMap(proj5(proj4(proj3(proj2(proj1(P4’)>))),1,1);
i53 : proj = projl*proj2*proj3*proj4*proj5*proj6;

i54 : proj(WB9)

i55 : PP3 = ring oo0;

i56 : isBirational( proj|WB9 )

i57 : septics = rationalMap map( PP3, PP9, matrix(inverseMap( proj|WB9 )));
i58 : time image oo == WB9

i59 : comp = associatedPrimes(ideal septics)

i60 : 13’ = comp#0;

i61 : 12’ = comp#l;

i62 : r2l1 = comp#2;

i63 : rll = comp#3;

i64 : r31 = comp#4;

i65 : 11’ = comp#5;

i66 : r23 = comp#6;

i67 : rl3 = comp#7;
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i68 : r33 = comp#8;

i69 : r22 = comp#9;

i70 : rl12 = comp#10;

i71 : r32 = comp#l1;

i72 : 11 = comp#12;

i73 : 12 = comp#13;

i74 : 13 = comp#14;

i75 : -- trihedron T’

f1’ = ideal{(gens PP3)_3};

i76 : f2’ = ideal{(gens PP3)_1+(gens PP3)_3};
i77 : £3’ = ideal{(gens PP3)_2+(gens PP3)_3};

i78 @ f1°+£2° == 13’

i79 @ £1°+£3° == 12’

i80 : f2’+£3’ == 11’

i81 : v’= saturate(fl’+£2’+£3’)
i82 : -- trihedron T :

f1 = ideal{(gens PP3)_0-55*(gens PP3)_1+34*(gens PP3)_2};
i83 : f2 = ideal{(gens PP3)_0 - 21*(gens PP3)_1 +13*(gens PP3)_2};
i84 : f3 = ideal{(gens PP3)_0};

i85 : f1+f2 == 13

i86 : fl1+f3 == 12

i87 : f2+£f3 == 11

i88 : v = saturate(11+12+13)

i89 : rll == fl1+f1’

i90 : ri12 == f1+£2’

i91 : ri13 == f1+£3’

i92 : r21 == f2+£f1’

i93 : r22 == f2+£2’

i94 : r23 == f2+£3’

i95 : r31 == f3+f1’

i96 : r32 == f3+f2’

i97 : r33 == £3+£3’

i98 : -- general septic surface of the linear system :
K = septics** ideal{random(1,PP9)};

i99 : (dim oo -1, degree oo) == (2,7)

i100 : -- K has double point along 11,12,13,11’,12",13’
(m1nors(1 jacobian(K))+11 == 11) == true

1101 : (minors(l,jacobian(K))+12 == 12) == true

1102 : (minors(l,jacobian(K))+13 == 13) == true

1103 : (minors(l,jacobian(K))+11’ == 11’) == true

1104 : (minors(l,jacobian(K))+12’ == 12’) == true

1105 : (minors(l,jacobian(K))+13’ == 13’) == true

i106 : -- K has triple point at v and v’

(m1nors(1 jacobian(jacobian(K)))+minors(1, jacobian(K))+v == v) == true

1107 : (minors(l,jacobian(jacobian(K)))+minors(1l,jacobian(K))+v’' == v’) == true
i108 : -- remark

septlcs(fl) == P2

i109 : septics(fl’) == P2’
i110 : septics(f2) == P3
i111 : septics(f2’) == P3’
i112 : septics(f3) == P4
i113 : septics(f3’) == P4’
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A.4. Computational analysis of the BS-EF 3-fold of genus 13

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il
i2
i3
i4
i5

i7

: needsPackage "Cremona";

: PP1lx = ZZ/10000019[x_0,x_1];
: PPly
: PPlz = ZZ/10000019[z_0,z_1];
: X = PP1x ** PPly ** PPlz;

i6 :
: pigreca = rationalMap map(X, ZZ/10000019[w_0..w_13], matrix{{x_042*y_042%z_042,

77/10000019[y_0,y_11;

use X;

X_0A2%y_0r2%z_142, x_0r2*y_0*y_1*z_0%z_1, x_0+2*y_142%z_0+2, x_0r2%y_142%z_142,
x_0%x_1%y_0+2%z_0%z_1, x_0*x_1*y_0*y_1*z_0+2, x_0*x_1*y_0*y_1*z_142,
X_0%x_1%y_142%z_0%z_1, x_1r2*y_0/2%z_042, x_142*y_0r2%z_142, x_1A2*y_Q*y_l1*z_0%z_1,
X_1A2%y_1A2%z_0A2, x_1A2%y_142%z_1423}});

i8

i1l
i12
i13

i15
il6
i17
i18

: WB13 = image pigreca;
i9 :
i10 :
: P1 = pigreca(ideal{x_1,y_0,z_0});
: P2 = pigreca(ideal{x_1,y_1,z_1});
: P3 = pigreca(ideal{x_0,y_1,z_0});
il4 :

(dim oo -1, degree oo) == (3, 24)
PP13 = ring WB13;

P4 = pigreca(ideal{x_0,y_0,z_1});

: P1’ = pigreca(ideal{x_0,y_1,z_1});
: P2’ = pigreca(ideal{x_0,y_0,z_0});
: P3’ = pigreca(ideal{x_1,y_0,z_1});
: P4’ = pigreca(ideal{x_1,y_1,z_0});
i19 :

-- let us see if the lines 1lij joining the points Pi and Pj

-- are contained in the threefold WB13

112 =
i20 :
i21 :
i22 :
i23 :
i24 :
i25
i26 :
i27
i28 :
i29 :
i30 :
i31 :
i32 :
i33 :
PP3 =
i34 :

ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

(112 + WB13 == 112) == false

113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
(113 + WB13 == 113) == false

114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
(114 + WB13 == 114) == false

111’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};
(111’ + WB13 == 111’) == false

112’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};
(112’ + WB13 == 112’) == true

113’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};
(113’ + WB13 == 113’) == true

114’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};
(114’ + WB13 == 114’) == true

-- etc..

7Z/10000019[t_0..t_3];

sexties = rationalMap map(PP3,PP13, matrix{{t_0*t_1A3*t_2%t_3, t_0A2*t_142%t_242,

T_OA2FE_1A2%t_2%t_3, t_0A2%t_142%t_342, t_OA3%t_1%t_2%t_3, t_0*t_1A2%t_242%t_3,

t_0*

T_IA2%E 2%t 342, t_OA2%t_1%t_242%t_3, t_0A2%t_1%t_2%t_342, t_1A2%t_2/2%t_342,

T_OFt_1%t_243%t_3, t_0%t_1%t_2/2%t_342, t_0*t_1*t_2%t_343, t_0/2%t_242%t_342}});

i35

: WF13 = image oo
i36 :

(WF13 == WB13) == true

45
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A.5. Computational analysis of the BS-EF 3-fold of genus 8

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
il : needsPackage "Cremona";

i2 : PP4 = ZZ/10000019[x_0..x_4];

i3 : Q = ideal{x_022-x_142 -x_2A2+x_342};

i4 : R = ideal{2*x_042-x_142-3%x_2A2+2%x_342};

i5 : fixedconicl = ideal{x_2,x_3,x_442-R_0};

i6 : fixedconic2 = ideal{x_0,x_1,x_442+R_0};

i7 : four = associatedPrimes (fixedconicl+Q)

i8 : pl = four#0;

i9 : p2 = four#l;

110 : pl’ = four#2;

ill : p2’ = four#3;

i12 : four’ = associatedPrimes (fixedconic2+Q)

il13 : p3 = four’#0;

i1l4 : p4 = four’#1;

115 : p3’ = four’#2;

il6 : p4’ = four’#3;

il7 : PP9 = ZZ/10000019[z_0..z_9];

i18 : phi = rationalMap map(PP4,PP9,matrix{{x_4+2*x_0+x_0*R_0,x_4+2*x_1+x_1*R_0,

X_472%x_2-x_2%R_0,x_442%x_3-x_3*R_0,x_4%x_042,x_4%x_142,
X_4%X_272,X_4%*x_3422,x_4%x_0*x_1,x_4*x_2*x_3}});

i19 :
i20 :
: PP8 = ZZ/10000019[w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8];
i22 :

i21

i23

i24 :
i25
i26 :

i27
i28

i29 :
i30 :

i31
i32
i33

i34 :

112 =
i35
i36 :
i37
i38 :
i39 :
i40 :
i41 :
i42 :

: phiY =
H8 =

phi(Q);
ideal{phiY_0}

inclusion = rationalMap map(PP8,PP9,
matrlx(PPS {{w_0,w_1,w_2,w_3,w_4+w_5-w_6,w_4,w_5,w_6,w_7,w_83}}));

: H8 == image inclusion
WB8 = inclusion** phiY;
(dim oo -1, degree oo) == (3,14)
P1 = inclusion** phi(pl)

: P2 = inclusion** phi(p2)

: P3 = inclusion** phi(p3)
P4 = inclusion** phi(p4)
P1’ = inclusion** phi(pl’)

: P2’ = inclusion** phi(p2’)

: P3’ = inclusion** phi(p3’)

: P4’ = inclusion** phi(p4’)

-- let us see if the lines 1ij joining the points Pi and Pj
-- are contained in the threefold WB8
ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

(112 + WB8 == 112) == true

113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};
(113 + WB8 == 113) == true
114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};

(114 + WB8 == 114) == true

111’

= ideal{(toMap(saturate(P1*P1’),1,1)) .matrix};

(111’ + WB8 == 111’) == false

112”

= ideal{(toMap(saturate(P1*P2’),1,1)) .matrix};
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i43 : (112’ + WB8 == 112’) == false

i44 : 113’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};
i45 : (113’ + WB8 == 113’) == true

i46 : 114’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};
i47 : (114’ + WB8 == 114’) == true

i48 : -- etc...

projl = rationalMap toMap(P1l,1,1);

i49 : projl’ = rationalMap toMap(projl(P1’),1,1);

i50 : proj2 = rationalMap toMap(projl’(projl(P2)),1,1);
i51 : proj3 = rationalMap toMap(proj2(projl’(projl(P3))),1,1);
i52 : proj3’ = rationalMap toMap(proj3(proj2(projl’(proj1i(P3’)))),1,1);
i53 : proj = projl¥*projl’*proj2*proj3*proj3’

i54 : isBirational(proj | WB8)

i55 : PP3 = target proj;

i56 : septies = rationalMap map( PP3, PP8, matrix(inverseMap(proj|WB8)) )
i57 : image oo == WB8

i58 : baselL = associatedPrimes ideal septies

159 : e0= basel#0;

i60 : 11= baselL#1;

i61 : 12= baselL#2;

162 : sl= baseL#3;

i63 : s2= basel#4;

i64 : 12’= basel#5;

i65 : 11’= baselL#6;

166 : 10= baselL#7;

i67 : rl= baselL#8;

i68 : tl= baselL#9;

i69 : r2= baselL#10;

i70 : t2= baselL#11;

i71 : C= baselL#12;

i72 : v = saturate(11+12+10);

i73 : gl = saturate(ll+rl+sl+e0+12’)

i74 : g2 = saturate(l2+r2+s2+e®+11’)

i75 : ar = saturate(rl+r2+10)

i76 : as = saturate(sl+s2+10)

i77 : at = saturate(tl+t2+10)

i78 : al = saturate(l1+tl)

i79 : a2 = saturate(12+t2)

i80 : bl = saturate(rl+tl+C)

i81 : b2 = saturate(r2+t2+C)

182 : cl = saturate(sl+tl)

i83 : c2 = saturate(s2+t2)

i84 : ql’ = saturate(l1l’+tl)

i85 : g2’ = saturate(l2’+t2)

i86 : -- general septic surface of the linear system :
N = septies** ideal{random(1,PP8)};

i87 : (dim oo -1, degree o00) == (2, 7)

i88 : -- N is double along 10,11,12,11°,12°,C
(minors (1, jacobian(N))+ 11 == 11) == true

i89 : (minors(l,jacobian(N))+ 12 == 12) == true

i90 : (minors(l,jacobian(N))+ 12’ == 12’) == true

i91 : (minors(1l,jacobian(N))+ 11’ == 11’) == true
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i92 : (minors(l,jacobian(N))+ 10 == 10) == true
i93 : (minors(l,jacobian(N))+ C == C) == true

i94 : -- N is triple at v
(minors (1, jacobian(jacobian(N)))+minors(1l, jacobian(N))+ v == v) == true
i95 : -- N is quadruple at ql and g2

(minors (1, jacobian(jacobian(jacobian(N))))+minors(1, jacobian(jacobian(N)))+
minors(1l,jacobian(N))+ ql == ql) == true

196 : (minors(1l,jacobian(jacobian(jacobian(N))))+minors(1l,jacobian(jacobian(N)))+
minors(l, jacobian(N))+ g2 == q2) == true

A.6. Computational analysis of the BS-EF 3-fold of genus 10

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP2=ZZ/10000019[u_0,u_1,u_2];

i3 : PP6 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6];

i4 : cubics3points = rationalMap map(PP2, PP6, matrix{{u_142*u_2,

u_l*u_242, u_0+2*u_2,u_0*u_242, u_042*u_1,u_0*u_142, u_0*u_1*u_21}});

i5 : S6 = image cubics3points

i6 : PP1 = ZZ/10000019[y_0,y_11;

i7 : PP1xPP6= PP1 ** PP6;

i8 : pr2 = rationalMap(PP1xPP6,PP6, matrix{{x_0,x_1,x_2,x_3,x_4,x_5,Xx_6}});

i9 : PP10 = ZZ/10000019[w_0..w_10];

i10 : phi = rationalMap map(PP1xPP6,PP10, matrix{{y_042*x_6,y_0+2%x_0+y_042%x_2,
V_0r2%x_1+y_0A2%x_4,y_0A2%x_3+y_0r2%x_5,y_1A2%x_6,y_1A2%x_0+y_122%x_2,
y_1A2%x_1+y_1A2%x_4,y_142%x_3+y_122*x_5,y_0*y_1*x_0-y_0*y_1*x_2,
y_1*y_0*x_1-y_1*y_0*x_4,y_1*y_0*x_3-y_l1*y_0*x_5}});

ill : PP1xS6 = pr2+* S6;

i12 : WB1O® = phi(PP1xS6);

i13 : (dim WB10® -1, degree WB10®) == (3,18)

il4 : ideal{WB10_0,WB10_1,2*WB10_2,WB10_3,WB10_4,2*WB10_5,WB10_6,WB10_7,WB10_8,
2*WB10_9,WB10_10,WB10_11,WB10_12,2*WB10_13,WB10_14,2*WB10_15,2*WB10_16,
4*WB10_17,4*WB10_18,4*WB10_19}

il5 : oo == WB10

i16 : P1 = ideal{w_O,w_1,w_2,w_3,w_5-2*w_4,w_6-2*w_4,w_7-2*"w_4,w_8,w_9,w_10};
i17 : P2 = ideal{w_0,w_1,w_2,w_3,w_5-2*w_4,w_6+2*w_4,w_7+2*w_4,w_8,w_9,w_10};
i18 : P3 = ideal{w_O,w_1,w_2,w_3,w_5+2*w_4,w_6-2%w_4,w_7+2*w_4,w_8,w_9,w_10};
119 : P4 = ideal{w_0O,w_1,w_2,w_3,w_5+2*w_4,w_6+2*w_4,w_7-2*w_4,w_8,w_9,w_10};
i20 : P1’ = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i21 : P2’ = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i22 : P3’ ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i23 : p4’ ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i24 : -- let us see if the lines 1lij joining the points Pi and Pj

-- are contained in the threefold WB10

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

i25 : (112 + WB1O® == 112) == true

i26 : 113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i27 : (113 + WB1O® == 113) == true

i28 : 114 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i29 : (114 + WB1O® == 114) == true
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i30 : 111’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i31 : (111’ + WB1® == 111’) == true

i32 : 112’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i33 : (112’ + WB1® == 112’) == false

i34 : 113’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i35 : (113’ + WB1® == 113’) == false

i36 : 114’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i37 : (114’ + WB1® == 114’) == false

i38 : -- etc...

projl = rationalMap toMap(P1l,1,1);

i39 : proj2 = rationalMap toMap(projl(P2),1,1);

i40 : proj3 = rationalMap toMap(proj2(projl(P3)),1,1);

i41 : proj4 = rationalMap toMap(proj3(proj2(projl(P4))),1,1);
i42 : projl’ = rationalMap toMap(proj4(proj3(proj2(proji(P1’)))),1,1);
i43 : proj2’ = rationalMap toMap(projl’ (proj4(proj3(proj2(projl(P2’))))),1,1);
i44 : proj3’ = rationalMap toMap(proj2’(projl’ (proj4(proj3(proj2(projl(P3’)))))),1,1);
i45 : proj = projl*proj2*proj3*proj4*projl’*proj2’*proj3’

i46 : isBirational(proj | WB1®)

i47 : PP3 = target proj;

i48 : sexties = rationalMap map( PP3, PP10®, matrix(inverseMap(proj|WB10)) )
i49 : image oo == WB1O

i50 : basel = associatedPrimes ideal sexties

i51 : 123 = baseL#0

i52 : rl = baseL#1

i53 : 112 = baselL#2

i54 : r3 = baselL#3

i55 : 113 = baselL#4

i56 : r2 = baseL#5

i57 : 102 = basel#6

i58 : 103 = baseL#7

i59 : 101 = baseL#8

i6® : vl = baseL#9

i6l : v2 = baseL#10

i62 : v3 = baseL#11

i63 : f0 =ideal{(gens PP3)_0};

i64 : f1 =ideal{(gens PP3)_1+(gens PP3)_2+(gens PP3)_3};

i65 : f2=ideal{(gens PP3)_1-(gens PP3)_2+(gens PP3)_3};

i66 : f3 =ideal{(gens PP3)_1+(gens PP3)_2-(gens PP3)_3};

i67 : plane = ideal{(gens PP3)_1-(gens PP3)_2-(gens PP3)_3};
i68 : 112 == fl1+f2

i69 : 113 == f1+£3

i70 : 123 == f2+13

i71 : 101 == f0+f1

i72 : 102 == fO+f2

i73 : 103 == fO+13

i74 : rl1 == plane+fl

i75 : r2 == plane+f2
i76 : r3 == plane+f3
i77 : v0 = fl+f2+f3+plane
i78 : vl == fO+£f2+£3
i79 : v2 == fO+f1+£3
i80 : v3 == fO+fl1+f2
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i81 : gl = saturate(101l+rl)

i82 : g2 = saturate(102+r2)

i83 : g3 = saturate(103+r3)

i84 : -- general element of the linear system defining sexties :
M = sexties?** ideal{random(1,PP10)};

i85 : (dim oo -1, degree o00)

i86 : -- M has double points along ril,r2,r3 :

(minors (1, jacobian(M))+rl == rl) == true

i87 : (minors(l,jacobian(M))+r2 == r2) == true

i88 : (minors(1l,jacobian(M))+r3 == r3) == true

i89 : -- M has triple points at vl,v2,v3 :

(minors(1, jacobian(jacobian(M)))+minors(1l, jacobian(M))+ vl == v1) == true

i90 : (minors(1l,jacobian(jacobian(M)))+minors(1l,jacobian(M))+ v2 == v2) == true
i91 : (minors(1l,jacobian(jacobian(M)))+minors(1l, jacobian(M))+ v3 == v3) == true
i92 : -- v0 is a quadruple point of M :

(minors(1, jacobian(jacobian(jacobian(M))))+minors(1l, jacobian(jacobian()))+
minors(1l, jacobian(M))+ v0® == v0) == true

A.7. Computational analysis of the P-EF 3-fold of genus 17

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Points";

i2 : needsPackage "Cremona";

i3 : PP1 = ZZ/10000019[u_0,u_1];

i4 : PP1’= ZZ/10000019[v_0,v_1];

i5 : P1P1 = PP1 ** PP1’;

i6 : PP9 = ZZ/10000019[y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},
y_{1,2},y_{2,0},y_{2,1},y_{2,2},x];

i7 : antiCanonicalEmbeddingP = rationalMap map(P1P1,PP9, matrix{{u_142%*v_142,
u_142*%v_0%*v_1, u_1A2*v_0+2,u_1*u_0*v_142,u_1*u_0*v_0*v_1,u_1*u_0*v_0+2,
u_042%v_142,u_042*%v_0*v_1,u_0+2*v_042,0}});

i8 : P = image oo

i9 : (dim P -1, degree P) == (2,8)

i10 : numgens P

i1l : V = ideal{P_1,P_2,P_3,P_4,P_5,P_6,P_7,P_8,P_9,P_10,P_11,P_12,
p_13,p_14,P_15,P_16,P_17,P_18,P_19,P_20}

il2 : (dim V -1, degree V) == (3, 8)

i13 : PP29 = ZZ/10000019[Z_0..Z_29];

il4 : phi = rationalMap map(PP9, PP29, matrix(PP9, {{y_{1,1}42, y_{0,0}42, y_{0,2}42,
y_{2,03%2, y_{2,2}*2, x*2, y_{0,1}*2, y_{1,0}42, y_{1,2}*2, y_{2,1}*2, y_{0,1}*x,
y_{1,0}*x, y_{1,2}*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0}*y_{1,1},
y-{2,2}*y_{1,1}, y_{0,1}*y_{1,0}, y_{0,1}*y_{1,2}, y_{1,0}*y_{2,1}, y_{1,2}*y_{2,1},
y_{0,0}*y_{0,2}, y_{0,0}*y_{2,0}, y_{0,2}*y_{2,2}, y_{2,0}*y_{2,2}, y_{0,1}*y_{2,1},
y-{0,0}*y_{2,2}, y_{0,2}*y_{2,0}, y_{1,03}*y_{1,2} }}));

i15 : phi(V)

il6 : H17 = ideal{Z_18-Z_14, Z_19-Z_15, Z_20-Z_16, Z_21-Z_17, Z_22-7Z_6, Z_23-Z_7,
Z_24-7_8, Z_25-7_9, Z_26-Z_0, Z_27-Z_0, Z_28-7Z_0, Z_29-Z_0};

i17 : phi(V) + H17 == phi(V)

i18 : PP17=ZZ/10000019[z_0..z_17];

i19 : inclusion = rationalMap map(PP17, PP29, matrix(PP17, {{z_0,z_1,z_2,z_3,z_4,z_5,z_6,
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z_7,z.8,z.9,z_10,z_11,z_12,z_13,z_14,z_15,z_16,z_17, z_14,z_15,z_16,z_17,z_6,z_7,z_8,
z.9,2.0,z.0,2z_.0,z_0 }}));

i20 :
: WP17 = inclusion** (phi(V))
i22 :

i21

i23

y_{2

i24

image oo == H17

(dim oo -1, degree oo) == (3, 32)

: pigreca = rationalMap map(PP9,PP17, matrix(PP9, {{y_{1,13}+2, y_{0,0}*2, y_{0,2}42,
y_{2,03*2, y_{2,23}+2, x*2, y_{0,1}*2, y_{1,0}*2, y_{1,2}*2, y_{2,1}*2, y_{0,1}*x,
y-{1,0}*x, y_{1,2}*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1},

,0

i25 :
i26 :
i27
: sub(WP17, {(gens PP17)_2=>1});
i29 :
i30 :
i31 :
i32 :
i33 :
i34 :
i35

i28

i36

i40

i42
i43

i45

i48

Yy_{1,1}, y_{2,2}*y_{1,1} }1));

: pigreca(V) == WP17

sub(WP17, {(gens PP17)_1=>1});
ConePl = tangentCone oo
degree oo == 4

ConeP2 = tangentCone oo
degree oo == 4

sub(WP17, {(gens PP17)_3=>1});
ConeP3 = tangentCone oo
degree oo == 4

sub(WP17, {(gens PP17)_4=>1});
ConeP4 = tangentCone oo

: degree oo ==
i37
i38 :
i39 :

sub(WP17, {(gens PP17)_5=>1});
ConeP5 = tangentCone oo
degree oo ==

: M6 = ConeP5+ideal{(gens PP17)_5}
i41 :

time irredCompM6 = associatedPrimes M6;

: planel = irredCompM6#0
: plane2 = irredCompM6#1
i44 :

planel’ = irredCompM6#2

: plane2’ = irredCompM6#3
i46 :
i47 :

Q = irredCompM6#4
linel = Q+planel;

: linel’ = Q+planel’;
i49 :
i50 :
i51
i52 :
i53 :
i54 :
i55
i56 :

line2 = Q+plane2;

line2’ = Q+plane2’;
(dim(linel+linel’)-1) == -1
(dim(line2+line2’)-1) == -1

ql2 = saturate(linel+line2)
ql2’ = saturate(linel+line2’)
ql’2 = saturate(linel’+line2)
ql’2’ = saturate(linel’+line2’)

A.8. Computational analysis of the P-EF 3-fold of genus 13

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il
i2

H !
H S
i3 :
i4 :

a
a.

eedsPackage "Cremona";
P2=2Z/10000019[u_0,u_1,u_2];
1 = ideal{u_1,u_2};

2 = ideal{u_0,u_2};
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i5 : a3 = ideal{u_0,u_1};

i6 : cubics3points = rationalMap toMap(saturate(al*a2*a3),3,1);

i7 : DelPezzo6ic = image cubics3points

i8 : (dim DelPezzobic -1, degree DelPezzob6ic)

i9 : PP6 = ring DelPezzobic;

i1l® : PP7 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,X_6,y];

ill : inclusion = rationalMap map(PP6,PP7, matrix{{(gens PP6)_0, (gens PP6)_1,
(gens PP6)_2, (gens PP6)_3, (gens PP6)_4, (gens PP6)_5, (gens PP6)_6,0}1});
i12 : S6 = inclusion(DelPezzo6ic)

il3 : numgens S6 == 10

il4 : V = ideal{S6_1,S6_2,S6_3,S6_4,S6_5,S6_6,S6_7,5S6_8,S6_9};

il5 : (dim V -1, degree V) == (3, 6)

il6 : F1 = ideal{(gens PP7)_0+(gens PP7)_2, (gens PP7)_1+(gens PP7)_4,
(gens PP7)_3+(gens PP7)_5, (gens PP7)_6};

il7 : v = (associatedPrimes (F1+V))#0

il8 : oo

ideal{x_0,x_1,x_2,x_3,x_4,x_5,x_6}

i19 : F2 = ideal{(gens PP7)_0-(gens PP7)_2, (gens PP7)_1-(gens PP7)_4,
(gens PP7)_3-(gens PP7)_5, y};
i20 : F2intV = associatedPrimes saturate(F2+V);

i21 : vl
i22 : v2
i23 : v3
i24 : v4

F2intV#0
F2intV#3
F2intV#2
F2intV#1

i25 : PP13 = ZZ/10000019[z_0..z_13];

i26 : pigreco = rationalMap map(PP7,PP13, matrix{{x_642, x_042+x_242, x_1A2+x_442,
X_3A2+x_542, (x_0+x_2)*x_6, (X_1+x_4)*x_6, (X_3+x_5)*x_6, x_0*x_1+x_2*x_4, X_2*x_3+x_0%x_5,
x_1*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y*2}});
i27 : PP19 = ZZ/10000019[Z_0..Z_19];

i28 : phi

rationalMap map(PP7,PP19,matrix{{x_642, x_042+x_242, x_142+x_442,

X_3A2+x_542, (x_0+x_2)*x_6, (x_1+x_4)*x_6, (x_3+x_5)*x_6, x_0%*x_1+x_2%x_4,
x_2%x_3+x_0%x_5, x_1%*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y*2,

2%x_0%x_2, 2%x_1%x_4, 2*x_3%*x_5, x_4%"x_3+x_1%x_5, x_0%*x_3+x_2%x_5, x_1*x_2+x_0%x_4}});

i29 : phi(V)

i30 : phiV = sub(phi(V), {Z_14 => 2*Z_0,Z_15 => 2*Z_0,Z_16 => 2*Z_0, Z_19 => Z_6,
Z_18 => Z_5, Z_17 => Z_4})

i31 : PP13’ = ZZ/10000019[Z_0..Z_13];

i32 : ideal(submatrix(gens (sub(ooo, PP13’)), {6..47}))

i33 : WP13 = sub(oo, { (gens PP13’)_0=>(gens PP13)_0, (gens PP13’)_1=>(gens PP13)_1,

(gens PP13’)_2=>(gens PP13)_2, (gens PP13’)_3=>(gens PP13)_3,

(gens PP13’)_4=>(gens PP13)_4, (gens PP13’)_5=>(gens PP13)_5,

(gens PP13’)_6=>(gens PP13)_6, (gens PP13’)_7=>(gens PP13)_7,

(gens PP13’)_8=>(gens PP13)_8, (gens PP13’)_9=>(gens PP13)_9,

(gens PP13’)_10=>(gens PP13)_10, (gens PP13’)_11=>(gens PP13)_11,
(gens PP13’)_12=>(gens PP13)_12, (gens PP13’)_13=>(gens PP13)_13 })

i34 : (di
i35 : WP1
i36 : P1
zZ_6 -2%z_|
i37 : P2
Z_6 +2%zZ_
i38 : P3

m
3

oo -1, degree oo) == (3, 24)
== pigreco(V)
ideal{z_1 -2*z_0,z_2 -2%*z_0,z_3 -2%z_0,z_4 -2*z_0,z_5 -2%z_0,

,z2_7 -2%z_0,z_8 -2%z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

ideal{z_1 -2*z_0,z_2 -2%z_0,z_3 -2%z_0,z_4 -2%z_0,z_5 +2%z_0,

,z_7 +2*z_0,z_8 +2%z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

ideal{z_1 -2*z_0,z_2 -2%*z_0,z_3 -2%z_0,z_4 +2*z_0,z_5 -2%z_0,

z_6 +2%z_0,z_7 +2*z_0,z_8 -2%z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};
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i39 : P4 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 +2*z_0,z_5 +2%z_0,
z_6 -2%z_0,z_7 -2*z_0,z_8 +2%z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};

i40 : P5 = pigreco(v);

i41 : -- let us see if the lines 1lij joining the points Pi and Pj

-- are contained in the threefold WP13

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

i42 : (112 + WP13 == 112 ) == false

i43 : 113 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};
i44 : (113 + WP13 == 113) == false

i45 : 114 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};
i46 : (114 + WP13 == 114 ) == false

i47 : 115 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};
i48 : (115 + WP13 == 115) == true

i49 : 123 = ideal{(toMap(saturate(P2*P3),1,1)).matrix};
i50 : (123 + WP13 == 123) == false

i51 : 124 = ideal{(toMap(saturate(P2*P4),1,1)).matrix};
i52 : (124 + WP13 == 124) == false

i53 : 125 = ideal{(toMap(saturate(P2*P5),1,1)).matrix};
i54 : (125 + WP13 == 125) == true

i55 : 134 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};
i56 : (134 + WP13 == 134) == false

i57 : 135 = ideal{(toMap(saturate(P3*P5),1,1)).matrix};
i58 : (135 + WP13 == 135) == true

i59 : 145 = ideal{(toMap(saturate(P4*P5),1,1)).matrix};
i60 : (145 + WP13 == 145) == true

i6l : W = sub(WP13, {(gens PP13)_0=>(gens PP13’)_0,
(gens PP13)_1=>(gens PP13’)_1+2*(gens PP13’)_0,

(gens PP13)_2=>(gens PP13’)_2+2*(gens PP13’)_0,

(gens PP13)_3=>(gens PP13’)_3+2*(gens PP13’)_0,

(gens PP13)_4=>(gens PP13’)_4+2*(gens PP13’)_0,

(gens PP13)_5=>(gens PP13’)_5+2*(gens PP13’)_0,

(gens PP13)_6=>(gens PP13’)_6+2*(gens PP13’)_0,

(gens PP13)_7=>(gens PP13’)_7+2*(gens PP13’)_0,

(gens PP13)_8=>(gens PP13’)_8+2*(gens PP13’)_0,

(gens PP13)_9=>(gens PP13’)_9+2*(gens PP13’)_0,

(gens PP13)_10=>(gens PP13’)_10, (gens PP13)_11=>(gens PP13’)_11,
(gens PP13)_12=>(gens PP13’)_12, (gens PP13)_13=>(gens PP13’)_13});
i62 : W'U® = sub(oo, {(gens PP13’)_0 => 1});

i63 : tangentCone W’U® == ideal{-9*Z_1+8*Z_7+8*Z_8-4%Z_9, -9*Z_2+8*Z_7-4*Z_8+8*Z_9,

-9%Z_3-4%Z_7+8%Z_8+8%Z_9, -9%Z_4+2%Z_7+2%Z_8-7_9, -9%Z_5+2%Z_7-7Z_8+2%Z_9,
-9%Z_6-Z_7+2%7Z_8+2%7_9, Z_10-Z_11+7Z_12, 9*Z_12+2-(-4*Z_7+8%Z_8+8*Z_9)*Z_13,
9%Z_1142-(8*Z_7-4*Z_8+8%Z_9)*Z_13, 9*Z_11*Z_12+(2*Z_7+2*%Z_8-10%Z_9)*Z_13,
(2*Z_7-10*%Z_8+2*Z_9)*Z_11+(-10*%Z_7+2*Z_8+2%Z_9)*Z_12,
(6%Z_7-6%Z_8-18%Z_9)*Z_11+(6*Z_7-6*Z_8+18*Z_9)*Z_12,
Z_7r2-2%7_T7%Z_8+Z_8r2-2%7_7%7_9-2%7Z_8*Z_9+Z_942}

i64 : degree (tangentCone W’UQ) ==

i65 : sub(WP13, {(gens PP13)_13=>1});

i66 : ConeP5 = tangentCone oo

i67 : degree oo ==

i68 : TCOW’U13 = ideal{ z_6-z_7, z_5-z_8, z_4-z 9, z_2-z_3, z_1-z_3, 2*z_0-z_3,

z_9%z_10-z_8%z_11+z_7%z_12, z_8%z_10-z_9%z_11+4z_3%z_12,
z_7%z_10-z_3%z_11+z_9%z_12, z_3%z_10-z_7%z_11+z_8%z_12,
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z_822-2_942, z_7%z_8-z_3%z_9, z_3%z_8-z_7%z_9,

z_7%2-2_9%2, z_3%z_7-z_8%z_9, z_3/2-z_9/2 }

i69 : (ConePS == 00 ) == true

i70 : = ConeP5+ideal{(gens PP13)_13}

i71 : (dim oo -1, degree o0o) == (2, 5)

i72 : irredCompM5 = associatedPrimes M5;

i73 : plane®=irredCompM5#0

i74 : planel=irredCompM5#1

i75 : plane2=irredCompM5#2

i76 : plane3=irredCompM5#3

i77 : planed4=irredCompM5#4

i78 : (dim(plane®+planel)-1, degree (plane®+planel)) == (1,1)
i79 : (dim(plane®+plane2)-1, degree (plane®+plane2)) == (1,1)
i80 : (dim(plane®+plane3)-1, degree (plane®+plane3)) == (1,1)
i81 : (dim(plane®+plane4)-1, degree (plane®+plane4)) == (1,1)
182 : (dim(planel+plane2)-1, degree (planel+plane2)) @,1)
i83 : (dim(planel+plane3)-1, degree (planel+plane3)) == (0,1)
i84 : (dim(planel+plane4)-1, degree (planel+plane4)) == (0,1)
i85 : (dim(plane2+plane3)-1, degree (plane2+plane3)) == (0,1)
i86 : (dim(plane2+plane4)-1, degree (plane2+plane4)) == (0,1)
i87 : (dim(plane3+plane4)-1, degree (plane3+plane4)) == (0,1)

A.9. Computational analysis of the KLM-EF 3-fold of genus 9

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP3 = ZZ/10000019[t_0..t_3];

i3 : PP13 = ZZ/10000019[w_0..w_13];

i4 : sexties = rationalMap map(PP3,PP13, matrix{{t_0*t_1A3%*t_2%t_3, t_0A2%t_1A2%t_2A2,
T_OA2%E_1A2%t_2%t_3, t_0A2%t_1A2%t_342, t_OA3*t_1*t_2%t_3, t_@*t_1A2%t_242%t_3,
T_OFT_1A2%t_2%t_3A2, t_OA2%t_1%t_2A2%t_3, t_OA2%t_1%t_2%t_342, t_1A2%t_242%t_3/2,
T_OFt_1%t_243%t_3, t_@¥t_1%t_2/2%t_342, t_O*t_1*t_2%t_343, t_0r2%t_242%t_342}});
i5 : WF13 = image sexties

i6 : (dim WF13 -1, degree WF13) == (3, 24)

i7 : P1 = ideal{w_O,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i8 : tangentCone sub(WF13, {(gens PP13)_4=>1})

i9 : degree oo == 4

i1 : P2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

ill : tangentCone sub(WF13, {(gens PP13)_0=>1})

il2 : degree oo ==

i13 : P3 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};

il4 : tangentCone sub(WF13, {(gens PP13)_10=>1})

il5 : degree oo ==

i16 : P4 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};

i17 : tangentCone sub(WF13, {(gens PP13)_12=>1})

i18 : degree oo == 4

i19 : P1’ = ideal{w_O,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};

i20 : tangentCone sub(WF13, {(gens PP13)_9=>1})

i21 : degree oo == 4

i22 : P2’ = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};
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i23 : tangentCone sub(WF13, {(gens PP13)_13=>1})

i24 : degree oo ==

i25 : P3’ = ideal{w_ O®,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i26 : tangentCone sub(WF13, {(gens PP13)_3=>1})

i27 : degree oo ==

i28 : P4’ = ideal{w_O,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i29 : tangentCone sub(WF13, {(gens PP13)_1=>1})

i30 : degree oo ==

i31 : J = jacobian((map sexties).matrix);

i32 : JJ = jacobian(J);

i33 : JJ123 = sub(JJ,{(gens PP3)_2=> 0, (gens PP3)_3 =>0})

i34 : SPANnuF23 = ideal{w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i35 : -- H12 = ideal{random(1,PP13)};

-- for example

H12 = ideal{w_0+11%*w_1+2*w_2+3*w_3+5*w_4+4*w_5+6*w_6-7*w_7-8*w_8-9*w_9+
10*w_10-11*w_11+12*w_12+13*w_13};

i36 : S = H12+WF13;

i37 : E3 = saturate(S+SPANnuF23)

i38 : (dim oo -1, degree oo, genus oo) == (1, 4, 1)

i39 : SPANE3 = ideal{E3_0,E3_1,E3_2,E3_3,E3_4,E3_5,E3_6,E3_7,E3_8,E3_9};
i40 : PP9 = ZZ/10000019[z_0..z_9];

i41 : projE3 = rationalMap map(PP13,PP9, matrix{{SPANE3_9,SPANE3_8,SPANE3_7,SPANE3_6,
SPANE3_5,SPANE3_4,SPANE3_3,SPANE3_2,SPANE3_1,SPANE3_0}1})

i42 : KLM = projE3(WF13)

i43 : (dim oo -1, degree oo) == (3, 16)

i44 : isBirational ((projE3|WF13)||KLM) == true

i45 : sub(KLM, {(gens PP9)_5=>11});

i46 : Conepl = tangentCone oo

i47 : degree oo

i48 : sub(KLM, {(gens PP9)_9=>1});

i49 : Conep2 = tangentCone 00

i50 : degree oo

i51 : sub(KLM, {(gens PP9)_6=>1});

i52 : Conep3 = tangentCone oo

i53 : degree oo

i54 : sub(KLM, {(gens PP9)_8=>1});

i55 : Conep4 = tangentCone 00

i56 : degree oo

i57 : sub(KLM, {(gens PP9)_0=>11});

i58 : Conep5 = tangentCone oo

i59 : degree oo

i60 : M6 = Conep5+ideal{(gens PP9)_0}

i61 : irredComplM6 = associatedPrimes M6;

i62 : planel = irredCompM6#0

i63 : plane2 = irredCompM6#1

i64 : plane2’ = irredComplM6#2

i65 : planel’ = irredComplM6#3

i66 : Q = irredCompM6#4

i67 : linel = Q+planel;

i68 : linel’ = Q+planel’;

i69 : line2 = Q+plane2;

i70 : line2’ = Q+plane2’;
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i71 : dim(linel+linel’)-1 == -1

i72 : dim(line2+line2’)-1 == -1

i73 : ql2 = saturate(linel+line2)
i74 : ql2’ = saturate(linel+line2’)

i75 : ql’2 = saturate(linel’+line2)
i76 : ql’2’ = saturate(linel’+line2’)

. CONFIGURATIONS OF THE SINGULARITIES OF SOME ENRIQUES—FANO THREEFOLDS
OF GENUS 6,7, 8,9, 10, 13, 17

In this appendix, we graphically represent the configurations of the singular points of
the F-EF 3-folds W2 ~=%"%"3  the BS-EF 3-folds W% >"%%'®!3 the P-EF 3-folds
WE =17 and the KLM-EF 3-fold W2, ,,.

6 6
LvhS’ Lv}T
P

Py Py

P Py

Py Py

P Py

Py

P Py

TaBLE 1. %onﬁgurations of the eight quadruple points of the Enriques—Fano threefolds WI‘? cPp”?
and W2 <> P?, for p = 6,7,9.13.
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b
TasLE 2. Configurations of the eight quadruple points of the Enriques—Fano threefolds W3 2L
P2, for p = 8§, 10.

13 17 9
WP ’WP ’ WKLM

P Py P

Py P, Py Py

TasLE 3. Configurations of the five singular points of the Enriques—Fano threefolds W13, Wll7,
and WI? LM
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