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Abstract. – We answer the question of Vidaux and Videla about the distribution of the Northcott
numbers for the Weil height. We solve the same problem for the weighted Weil heights. These
heights generalize both the absolute and relative Weil height. Our results also refine those of
Pazuki, Technau, and Widmer.
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1. Introduction

For a subset A � xQ, a function h W xQ! R�0, and a real number C > 0, we set

B.A; h; C / WD
®
a 2 A j h.a/ < C

¯
and

Z.A; h/ WD
®
a 2 A j h.a/ D 0

¯
:

The following definitions are important concepts when we study finiteness properties
in number theory.

Definition 1.1 ([6, 16]). (1) We say that A has the h-Northcott property (or h-(N) for
short) if the set B.A; h; C / is finite for all C > 0.

(2) We say that A has the h-Bogomolov property (or h-(B) for short) if the set
B.A; h; C / nZ.A; h/ is finite for some C > 0.

Definition 1.1 lets us set

Norh.A/ WD inf
®
C > 0 j #B.A; h; C / D1

¯
:

The non-negative number Norh.A/ is called the Northcott number of A with respect to
h, introduced in [16, 25]. By definition, a subset A has h-(N) (resp. h-(B)) if and only
if Norh.A/ D1 (resp. Norh.A nZ.A;h// > 0). Here we regard inf ; as1. We note
that h-(B) immediately follows from h-(N).

https://creativecommons.org/licenses/by/4.0/
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Let h W xQ! R�0 be the absolute logarithmic Weil height. In [25], Vidaux and
Videla proposed the following question.

Question 1.2 ([25, Question 6]). Which real numbers can be realized as Norh.L/ for
some field L � xQ?

The above question was first dealt with in [16, Theorem 3], which reveals that for
any given c > 0 there exists a field L � xQ satisfying that c=2 � Norh.L/ � c. This
result lets us expect that any positive real number can be realized as Norh.L/ for some
field L � xQ. Hence our main result is the following answer to Question 1.2.

Theorem 1.3. For any given c > 0, we can construct a field L satisfying that

Norh.L/ D c:

We prove a more general result for the weighted Weil heights, which generalize the
absolute and the relative Weil height. For each 
 2 R and a 2 xQ, we set

h
 .a/ WD deg.a/
h.a/;

where deg.a/ WD ŒQ.a/ W Q�. The function h
 is called the 
-weighted Weil height,
introduced in [16]. Here we should note that h
 -(B) was studied implicitly in [4] before
[16]. We first remark that h0 (resp. h1) is the absolute (resp. relative) Weil height. We
also note that the equality Z.xQ; h
 / D � xQ [ ¹0º holds for all 
 2 R, where �A is
the set of roots of unity in a subset A � xQ (see, e.g., [5, Theorem 1.5.9]). We denote
h
 -(N) (resp. h
 -(B)) by 
-(N) (resp. 
-(B)) for short. We write Norh
 .�/ as Nor
 .�/
for simplicity. The property 0-(N) (resp. 0-(B)) is usually called the Northcott property
(resp. Bogomolov property). There are several examples of infinite extensions of Q

that have 0-(N) or 0-(B) (see, e.g., [3,6,13,20] or [27]). On the other hand, the Lehmer
conjecture asserts that xQ has 1-(B) and Nor1.xQ n � xQ/ � log.s/, where s D 1:176 : : :
is the smallest known Salem number (see, e.g., [22, p. 100]). In [16, Theorem 4], Pazuki,
Technau, and Widmer gave fields that have 1-(B) but not 0-(B). More precisely, for each

 � 1 and " > 0, they constructed a field L � xQ that has 
-(N) but not .
 � "/-(B).
As we will see in Lemma 2.1, the sets

IN .A/ WD
®

 2 R j A has 
 -(N)

¯
and

IB.A/ WD
®

 2 R j A has 
 -(B)

¯
are intervals of the form .
;1/ or Œ
;1/ for some 
 2 R [ ¹˙1º. Thus the field L
in [16, Theorem 4] satisfies that .
 � ";1/ � IB.L/ � IN .L/ � Œ
;1/. However,
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the values of inf IB.L/ and inf IN .L/ were not mentioned in [16, Theorem 4]:


 � " 


not Bogomolov ? Northcott

As we will see in Corollary 2.4 and Remark 2.6, we remark that

inf IN .A n �A/ D inf IB.A/ 2 Œ�1; 1�

hold for all subsets A � xQ. Hence our generalization of Theorem 1.3 is the following.

Theorem 1.4. Let 
 < 1 and c > 0 be real numbers. We can construct a field L � xQ
satisfying one of the following conditions (1), (2) or (3), respectively:

(1) IN .L/ D IB.L/ D Œ
;1/;

(2) IN .L/ D .
;1/ ¨ Œ
;1/ D IB.L/ with Nor
 .L/ D c;

(3) IN .L/ D IB.L/ D .
;1/.

Remark 1.5. We note that Theorem 1.4 covers neither the case 
 D 1 nor 
 D�1. We
will discuss fields L satisfying each of IN .L/D IB.L/D Œ1;1/, IN .L/D .1;1/ ¨
Œ1;1/ D IB.L/, and IN .L/ D IB.L/ D R in Section 5.

Remark 1.6. There are some works on calculating Northcott numbers with respect to
the house. The notion of Northcott numbers originally stems from Julia Robinson’s
numbers, which are Northcott numbers of sets of totally positive algebraic integers
with respect to the house (see, e.g., [7,12,17,24] or [25]). Another remarkable result is
[16, Theorem 1]. Pazuki, Technau, and Widmer constructed for any given c � 1 a field
whose ring of integers has Northcott number (with respect to the house) equal to c. The
image under the house of their rings of integers also satisfies additional topological
properties motivated by work on the undecidability of rings (see, e.g., [17, 24]).

The other result concerns the following theorem.

Theorem 1.7 (e.g., [10, Theorem 2.1]). Let L � xQ be a field with 0-(N). Then for any
d > 0, the set

L.d/ WD
®
a 2 xQ j ŒL.a/ W L� � d

¯
also has 0-(N).

The well-known fact that any number field has 0-(N) is an immediate consequence
of Theorem 1.7. We show that Theorem 1.7 fails for h
 whenever 0 < 
 � 1.
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Proposition 1.8. Let Qtr be the field of all totally real numbers. Then for all 0 < 
 � 1
the field Qtr has 
-(N) but the field Qtr.

p
�1/ does not have 
-(N). More precisely,

for all 0 < 
 � 1 the set Qtr.
p
�1/ n �Qtr.

p
�1/ does not have 
 -(N).

Outline of this paper

In Section 2, we study properties of IN .A/ and IB.A/ that we use later. As a conse-
quence of Proposition 2.3, we prove Proposition 1.8 at the end of Section 2. In Section 3,
we give some lemmata needed to calculate Northcott numbers. In Section 4, we give
a more explicit form of Theorem 1.4 and prove it. We also compare our fields with
those constructed in [16] and then we present further problems. In Section 5, we give
some supplemental remarks on the cases 
 D 1 and 
 D �1 of the conditions in
Theorem 1.4.

2. Intervals associated with 
 -(N) and 
 -(B)

Let A � xQ. In this section, we give some basic properties of IN .A/ and IB.A/ defined
in Section 1.

Lemma 2.1. Let 
 2 R. If A � xQ has 
-(N) (resp. 
-(B)), the set A also has ı-(N)
(resp. ı-(B)) for all ı > 
 .

Proof. Let ı > 
 andA � xQ. Since the inequality h
 .a/ � hı.a/ holds for all a 2 xQ,
the property ı-(N) of A immediately follows from 
 -(N) of A. On the other hand, a set
A having 
 -(B) means that there exists a constant D > 0 such that h
 .a/ � D for all
a 2 A n .�A [ ¹0º/. Thus ı-(B) of A also follows from 
 -(B) of A since we know that
hı.a/ � h
 .a/ � D for all a 2 A n .�A [ ¹0º/.

Proposition 2.2. For each subset A � xQ, the sets IN .A/ and IB.A/ are intervals of
forms .
;1/ or Œ
;1/ for some 
 2 R [ ¹˙1º.

Proof. This is an immediate consequence of Lemma 2.1.

By the definitions of 
 -(N) and 
 -(B), we know that IN .A/ � IB.A/, i.e.,

inf IN .A/ � inf IB.A/:

We actually have inf IN .A n �A/ D inf IB.A/. This is an immediate consequence of
the following proposition.

Proposition 2.3. Let 
 2 R. If A � xQ has 
-(B), the set A n �A has ı-(N) for all
ı > 
 .
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Proof. Take any C > 0 and a 2 A n .�A [ ¹0º/ with hı.a/ < C . Since A has 
 -(B),
there exists a constant D > 0 independent of a such that h
 .a/ � D. Thus we have

(2.1) deg.a/ D
�
hı.a/

h
 .a/

� 1
ı�


<

�
C

D

� 1
ı�


:

If ı � 0, then we have

(2.2) h.a/ � deg.a/ıh.a/ D hı.a/ < C:

By Theorem 1.7, the conditions (2.1) and (2.2) imply that the set B.A n �A; hı ; C / is
finite for the case ı � 0.

On the other hand, if ı < 0, then (2.1) implies that deg.a/�ı < .C=D/
�ı
ı�
 . There-

fore, we have

(2.3) h.a/ D deg.a/�ıhı.a/ <
�
C

D

� �ı
ı�


C:

By Theorem 1.7, the conditions (2.1) and (2.3) imply that the set B.A n �A; hı ; C / is
finite for the case ı < 0.

Corollary 2.4. For any subset A � xQ, the equality inf IN .A n �A/ D inf IB.A/
holds. In addition, if A contains only finitely many roots of unity, we have inf IN .A/ D
inf IB.A/.

Remark 2.5. We cannot remove the assumption “excluding �A” in Proposition 2.3.
This is because the set � xQ clearly has 
 -(B) but not 
 -(N) for all 
 2 R.

Remark 2.6. We set

hDob.a/ WD

� log0
�

deg.a/
�

log0 log
�

deg.a/
��3h1.a/;

where log0.�/ WDmax¹1; log.�/º. In [9], Dobrowolski proved that xQ has hDob-(B). Hence
there exists D > 0 such that f .a/ � D for all a 2 xQ n .� xQ [ ¹0º/. It is clear that for
any " > 0, if deg.a/ is sufficiently large, the inequality

deg.a/" >
� log0

�
deg.a/

�
log0 log

�
deg.a/

��3
holds. Thus xQ has .1C "/-(B) for any "> 0 by Theorem 1.7. Therefore, by Corollary 2.4,
we have

IN .xQ n � xQ/ D .1;1/ and inf IN .A n �A/ D inf IB.A/ 2 Œ�1; 1�
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for all subsets A � xQ. Note that these immediately follow if we assume the Lehmer
conjecture.

As a consequence of Proposition 2.3, we prove Proposition 1.8.

Proof of Proposition 1.8. It is known that Qtr has 0-(B) (see [20]). Thus Qtr has 
 -
(N) for each 
 > 0 by the equality �Qtr D ¹˙1º and Proposition 2.3. On the other hand,
the field Qtr.

p
�1/ does not have 
 -(N) for all 0 < 
 � 1. Indeed, the algebraic number

ak WD ..2�
p
�1/=.2C

p
�1//1=k is an element of Qtr.

p
�1/ for each k 2 Z>0 (see,

e.g., [2, Section 5]). Since we have the inequalities

h
 .ak/ D deg.ak/
h.a
1=k
1 / �

2


k1�

h.a1/ � 2h.a1/;

the field Qtr.
p
�1/ has infinitely many elements with bounded value of h
 .

3. Some remarks on lower bounds for heights

Throughout the rest of the paper, we denote the set of positive integers by N. This section
is devoted to giving some technical lemmata to calculate the 
-Northcott numbers.
Theorem 3.1 and Lemma 3.2 allow us to get a lower bound for the Northcott number
of our fields.

Theorem 3.1. LetK be a number field. Assume that a 2 xQ satisfies that ŒK.a/ WK�> 1.
We set M WD K.a/ and m WD ŒM W K�. Then we have the inequality

h.a/ �
1

2.m � 1/

� log
�
NK=Q.DM=K/

�
mŒK W Q�

� log.m/
�
;

where NK=Q is the usual norm and DM=K is the relative discriminant ideal of the
extension M=K.

Proof. See [21, Theorem 2].

Lemma 3.2. Let 
 2 R and A � xQ. We set

ı
 .B/ WD inf h
 .B/

for each non-empty subset B � A. Let A0 ¨ A1 ¨ A2 ¨ � � � be an ascending chain of
non-empty subsets of A satisfying that

(1) Ai has 
 -(N) for all i 2 Z�0 and

(2) A D
S
i2Z�0

Ai .
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Then we have
Nor
 .A/ D lim inf

i!1
ı
 .Ai n Ai�1/:

Proof. See [16, Lemma 6].

Proposition 3.3. Let 
 � 1 be a real number. We also let .pi /i2N , .qi /i2N , and
.di /i2N be strictly increasing sequences of prime numbers. Assume that there exists
i0 2 N such that for all i > i0, the inequality pi < qi and

pi ; qi … ¹d1; p1; q1; : : : ; di�1; pi�1; qi�1º

hold. We set

V.i; 
/ WD

8̂̂̂<̂
ˆ̂:

log.pi / � log.di /
2

.
 D 1/;

log.pi /
d
1�


i

.0 � 
 < 1/;

log.pi /
.d1���di�1/

�
d
1�


i

.
 < 0/:

Then the field L WD Q..pi=qi /1=di j i 2 N/ satisfies that

Nor
 .L/ � lim inf
i!1

V.i; 
/:

Especially, we have the following:

(1) L has 
 -(N) if lim infi!1 V.i; 
/ D1;

(2) L has 
 -(B) if lim infi!1 V.i; 
/ > 0.

Proof. We set

K0 WD Q; Ki WD Ki�1
�
.pi=qi /

1=di
�
; and Fi WD Q

�
.pi=qi /

1=di
�

for each i 2 N. By Lemma 3.2, it is enough to show that the inequality

(3.1) lim inf
i!1

ı
 .Ki nKi�1/ � lim inf
i!1

V.i; 
/

holds. Take any i > i0 and a 2 Ki nKi�1. Note that the equalityKi�1.a/ D Ki holds
since ŒKi W Ki�1�D di is a prime number and a … Ki�1. Thus we have the inequalities

(3.2) di � deg.a/ � d1 � � � di

and

(3.3) h
 .a/ �
deg.a/


2.di � 1/

� log
�
NKi�1=Q.DKi=Ki�1/

�
di ŒKi�1 W Q�

� log.di /
�
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by Theorem 3.1. To estimate the value of h
 .a/ from below, we give a lower bound
for NKi�1=Q.DKi=Ki�1/. Since Fi D Q..piq

di�1
i /1=di / and .piq

di�1
i /1=di is a root

of the pi -Eisenstein polynomial Xdi � pid
di�1
i 2 QŒX�, we know that pi ramifies

totally in Fi (see, e.g., [11, Theorem 24 (a)]). Thus it holds that pdi�1i j DFi=Q (see,
e.g., [15, p. 199, (2.6)] and [15, p. 201, (2.9)]). Now we note that the equalities

(3.4) NKi�1=Q.DKi=Ki�1/D
ŒKi WKi�1�

Ki�1=Q
D DKi=Q D NFi=Q.DKi=Fi /D

ŒKi WFi �

Fi=Q

hold (see, e.g., [15, p. 202, (2.10)]). Since Ki�1 is the compositum of F1; : : : ; Fi�1
and pi … ¹d1; p1; q1; : : : ; di�1; pi�1; qi�1º, we know that pi does not ramify inKi�1
(see, e.g., [14, Theorem 85] and [26, Lemma 4.1]). Hence pi − DKi�1=Q holds. There-
fore, (3.4) yields that

(3.5) p
ŒKi WFi �.di�1/
i j NKi�1=Q.DKi=Ki�1/:

Replacing pi with qi in the above discussion, we also get

(3.6) q
ŒKi WFi �.di�1/
i j NKi�1=Q.DKi=Ki�1/:

Since the equality ŒKi W Fi � D d1 � � � di�1 D ŒKi�1 W Q� holds, the conditions (3.5)
and (3.6) yield that

(3.7) 2 log.pi / � log.piqi / �
log

�
NKi�1=Q.DKi=Ki�1/

�
ŒKi�1 W Q�.di � 1/

:

Thus we conclude that

h
 .a/ � deg.a/

�

log.pi /
di

�
log.di /
2.di � 1/

�
by (3.3); (3.7)

D

�
deg.a/
di

�
� log.pi /
d
1�

i

�
d


i log.di /
2.di � 1/

�

�

8̂<̂
:

log.pi /
d
1�


i

�
d



i
log.di /

2.di�1/
.0 � 
 � 1/

.d1 � � � di�1/


�

log.pi /
d
1�


i

�
d



i
log.di /

2.di�1/

�
.
 < 0/

by (3.2)

D

8̂̂̂<̂
ˆ̂:
V.i; 1/ �

log.di /
2.di�1/

.
 D 1/;

V .i; 
/ �
d



i
log.di /

2.di�1/
.0 � 
 < 1/;

V .i; 
/ �
log.di /

2.d1���di /
�
 .di�1/

.
 < 0/:

Since we have the equalities

lim
i!1

log.di /
2.di � 1/

D 0; lim
i!1

d


i log.di /
2.di � 1/

D 0 .0 � 
 < 1/;
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and
lim
i!1

log.di /
2.d1 � � � di /�
 .di � 1/

D 0 .
 < 0/;

we get the inequality (3.1) by letting i !1.

4. Controlling Northcott numbers

4.1. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. More precisely, we prove the following theorem.

Theorem 4.1. Let 
 < 1 and c > 0 be real numbers. We also let .pi /i2N , .qi /i2N ,
and .di /i2N be strictly increasing sequences of prime numbers with qi < piC1 and
pi < qi < 2pi for all i 2 N. Furthermore, we let f .x/ be log.x/, c, or 1= log.x/. If

 � 0, then we assume that the inequalities

exp
�
f .di /d

1�

i

�
� pi � 2 exp

�
f .di /d

1�

i

�
hold for all i 2 N. On the other hand, if 
 < 0, then we assume that the inequalities

exp
�
f .di /.d1 � � � di�1/

�
d
1�

i

�
� pi � 2 exp

�
f .di /.d1 � � � di�1/

�
d
1�

i

�
hold for all i 2 N and the equality

lim
i!1

i log.di /
d
�

i

D 0

holds. We set L WD Q..pi=qi /1=di j i 2 N/.

(1) If f .x/ D log.x/, the field L satisfies that IN .L/ D IB.L/ D Œ
;1/.

(2) If f .x/ D c, the field L satisfies that

IN .L/ D .
;1/ ¨ Œ
;1/ D IB.L/

with Nor
 .L/ D c.

(3) If f .x/ D 1= log.x/, the field L satisfies that IN .L/ D IB.L/ D .
;1/.

Remark 4.2. By the theorem of Bertrand–Chebyshev, we can take .pi /i2N and .qi /i2N

in Theorem 4.1. Furthermore, for each 
 < 0, the sequence of prime numbers .di /i2N

satisfies the equality

lim
i!1

i log.di /
d
�

i

D 0

if, for example, the inequality d�
i � i2 holds for each i 2 N.
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Proof of Theorem 4.1. Let V.i; 
/ be the quantity defined in Proposition 3.3. First,
we prove the assertion in the case 
 � 0. We prepare some notation. By the assumptions
exp.f .di /d1�
i / � pi and 
 < 1, there exists i0 2 N such that di < pi for all i > i0.
Combining the assumption qi < piC1, we know that

pi ; qi … ¹d1; p1; q1; : : : ; di�1; pi�1; qi�1º

for all i > i0. Thus we can apply Proposition 3.3 to our setting. For each ı � 
 with
ı < 1 and " � 
 , we have the inequalities

V.i; ı/ �
f .di /d

1�

i

d1�ıi

D d
ı�

i f .di / DW L1.i; ı/

and

0 < h"
�
.pi=qi /

1=di
�
D d "�1i log.qi / <

log.4/
d1�"i

C
f .di /

d

�"
i

DW U1.i; "/

by the assumption qi < 2pi � 4 exp.f .di /d1�
i /.

(1) For ı � 
 , since we have

V.i; ı/ � L1.i; ı/ D d
ı�

i log.di /!1

as i !1, the field L has ı-(N) by Proposition 3.3.
For " < 
 , because we observe that

0 < h"
�
.pi=qi /

1=di
�
< U1.i; "/ D

log.4/
d1�"i

C
log.di /
d

�"
i

! 0

as i !1, the field L does not have "-(B).

(2) Proposition 3.3 and the inequality

V.i; 
/ � L1.i; 
/ D c

imply that Nor
 .L/ � c holds. On the other hand, since

h

�
.pi=qi /

1=di
�
< U1.i; 
/ D

log.4/
d
1�

i

C c ! c

as i ! 1, the inequality Nor
 .L/ � c also holds. Hence we get the equality
Nor
 .L/ D c. It also follows that

IN .L/ D .
;1/ ¨ Œ
;1/ D IB.L/

by Proposition 2.3.
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(3) For ı > 
 , since we have

V.i; ı/ � L1.i; ı/ D
d
ı�

i

log.di /
!1

as i !1, the field L has ı-(N) by Proposition 3.3.
For " � 
 , because we observe that

0 < h"
�
.pi=qi /

1=di
�
< U1.i; "/ D

log.4/
d1�"i

C
1

d

�"
i log.di /

! 0

as i !1, the field L does not have "-(B).

Next, we prove the assertion in the case 
 < 0. As in the case 
 � 0, we can apply
Proposition 3.3 to our setting. For each of the negative real numbers ı � 
 and " � 
 ,
we have the inequalities

V.i; ı/ �
f .di /.d1 � � � di�1/

�
d
1�

i

.d1 � � � di�1/�ıd
1�ı
i

D .d1 � � � di /
ı�
f .di / DW L2.i; ı/

and

0 < h"
�
.p1=q1/

1=d1 � � � .pi=qi /
1=di

�
D .d1 � � � di /

"h
�
.p1=q1/

1=d1 � � � .pi=qi /
1=di

�
� .d1 � � � di /

"
�
h
�
.p1=q1/

1=d1
�
C � � � C h

�
.pi=qi /

1=di
��

D .d1 � � � di /
"

�
log.q1/
d1

C � � � C
log.qi /
di

�
� .d1 � � � di /

"

��
1

d1
C � � � C

1

di

�
log.4/C

�
f .d1/

d


1

C � � � C
f .di /

.d1 � � � di /


��
<
i log.4/
d�"i

C
f .d1/C � � � C f .di�1/

d�"i
C

f .di /

.d1 � � � di /
�"
DW U2.i; "/

by the assumption qi < 2pi � 4 exp.f .di /.d1 � � � di�1/�
d1�
i /.

(1) For ı � 
 , since we have

V.i; ı/ � L2.i; ı/ D .d1 � � � di /
ı�
 log.di /!1

as i !1, the field L has ı-(N) by Proposition 3.3.
For " < 
 , because we observe that

0 < h"
�
.p1=q1/

1=d1 � � � .pi=qi /
1=di

�
< U2.i; "/

<
i log.4/
d�"i

C
i log.di /
d�"i

C
log.di /

.d1 � � � di /
�"
! 0

as i !1, the field L does not have "-(B).
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(2) Proposition 3.3 and the inequality

V.i; 
/ � L2.i; 
/ D c;

imply that Nor
 .L/ � c holds. On the other hand, since

h

�
.p1=q1/

1=d1 � � � .pi=qi /
1=di

�
< U2.i; 
/ <

i log.4/
d
�

i

C
ic

d
�

i

C c ! c

as i ! 1, the inequality Nor
 .L/ � c also holds. Hence we get the equality
Nor
 .L/ D c.

(3) For ı > 
 , since we have

V.i; ı/ � L2.i; ı/ D
.d1 � � � di /

ı�


log.di /
!1

as i !1, the field L has ı-(N) by Proposition 3.3.
For " � 
 , because we observe that

0 < h"
�
.p1=q1/

1=d1 � � � .pi=qi /
1=di

�
< U2.i; "/

<
i log.4/
d�"i

C
i

d�"i log.d1/
C

1

.d1 � � � di /
�" log.di /
! 0

as i !1, the field L does not have "-(B).

In summary, the fields L D Q..pi=qi /1=di j i 2 N/ in Theorem 4.1 satisfy the
items displayed in Table 1.

f .x/ IN .L/ and IB.L/
log.x/ IN .L/ D IB.L/ D Œ
;1/

c > 0 IN .L/ D .
;1/ ¨ Œ
;1/ D IB.L/ with Nor
 .L/ D c
1= log.x/ IN .L/ D IB.L/ D .
;1/

Table 1. Stratification of L.

4.2. Comparison with previous work and further problems

In this section, we compare our result with that in [16] and then present further problems.
The following is a variant of [16, Theorems 3 and 4].

Theorem 4.3. Let 
 < 1 and c > 0 be non-negative real numbers. We also let .pi /i2N

and .di /i2N be strictly increasing sequences of prime numbers. Furthermore, we let
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f .x/ be log.x/, c, or 1= log.x/. Assume that the inequalities

exp
�
f .di /d

1�

i

�
� pi � 2 exp

�
f .di /d

1�

i

�
hold for all i 2 N. We set L0 WD Q.p1=dii j i 2 N/.

(1) If f .x/ D log.x/, the field L0 satisfies that IN .L0/ D IB.L0/ D Œ
;1/.

(2) If f .x/ D c, the field L0 satisfies that

IN .L
0/ D .
;1/ ¨ Œ
;1/ D IB.L

0/

with c=2 � Nor
 .L0/ � c.

(3) If f .x/ D 1= log.x/, the field L0 satisfies that IN .L0/ D IB.L0/ D .
;1/.

We can similarly prove Theorem 4.3 as Theorem 4.1. The field constructed in
[16, Theorem 4] is that of Theorem 4.3 (2) with replacement of 
 by 
 � "=2 for given
positive real numbers 
 � 1 and " � 2
 . Indeed, the field has 
 -(N) but not .
 � "/-(B).
The fieldL0 in Theorem 4.3 (1), (2) or (3) also satisfies the condition about the intervals
in Theorem 1.4 (1), (2) or (3). However, to calculate the Northcott number, we employed
one more sequence .qi /i2N . This idea is based on the argument in [23, Section 1].
We also note that similar fields were dealt with in [18, Proposition 1] and [19, p. 18,
Example]. Here we should emphasize the following advantage of fields in Theorem 4.3.
The field L0 in Theorem 4.3 (2) also satisfies the inequalities

c=2 � Nor
 .OL0/ � c;

while it seems difficult to estimate the value of Nor
 .OL/ for our field L in The-
orem 4.1 (2), where OF is the set of algebraic integers in a field F � xQ. In fact,
combining Theorem 4.3 (2) and [16, proof of Theorem 1 (b)], we can construct for any
given c > 0 a field L0 � xQ which satisfies that

c=2 � Nor0.L0/ � Nor0.OL0/ � c and NorlogC. � /.OL0/ D c;

where � W xQ! R�0 is the house and we set logC.�/ WD max¹log.�/; 0º. As we did for
the Weil height, for each 
 2 R and a 2 O xQ, we set

log.
/.a / WD deg.a/
 logC.a /:

We denote Norlog.
/. � /.�/ by Norhs

 .�/. For each subset A � O xQ, we also set

I hs
N .A/ WD

®

 2 R j A has log.
/. � /-(N)

¯
and

I hs
B .A/ WD

®

 2 R j A has log.
/. � /-(B)

¯
:
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Here we remark that, since the inequality h.a/ � logC.a / holds for all a 2 O xQ, we
can similarly prove the equality I hs

N .A n �A/ D I
hs
B .A/ as Corollary 2.4. We also note

that the inequalities

Nor
 .F / � Nor
 .OF / � Norhs

 .OF /

and
inf IB.F / � inf IB.OF / � inf I hs

B .OF /

hold for each 
 2 R and each field F � xQ. These observations let us propose the
following questions.

Question 4.4. Let 
 � 1 be a real number.

(1) Which real numbers can be realized as Nor
 .OF / for some field F � xQ?

(2) Can we give an example of a field F � xQ such that all the values Nor
 .F /,
Nor
 .OF /, and Norhs


 .OF / are positive real numbers, and we can explicitly calcu-
late all of them?

(3) For given real numbers 0 � c1 � c2 � c3, is there a field F � xQ satisfying the
equalities Nor
 .F / D c1, Nor
 .OF / D c2, and Norhs


 .OF / D c3?

(4) For given real numbers 1 � 
1 � 
2 � 
3, is there a field F � xQ satisfying the
equalities inf IB.F / D 
1, inf IB.OF / D 
2, and inf I hs

B .OF / D 
3?

Remark 4.5. Although we furthermore dealt with the house in Question 4.4, we kept
restricting our attention to the case 
 � 1 because of [8, Theorem 1], which asserts
that the inequality Norhs

1 .O xQ/ � log.2/=4 holds.

Remark 4.6. We imposed the condition that the Northcott numbers are positive real
numbers on Question 4.4 (2) since we have already known the following trivial examples.
For all 
 2 R, the field xQ satisfies that

Nor
 .xQ/ D Nor
 .O xQ/ D Norhs

 .O xQ/ D 0

and any number field K does that Nor
 .K/ D Nor
 .OK/ D Norhs

 .OK/ D1.

5. Remarks on the cases 
 D 1 and 
 D �1

In this section, we partially deal with the cases 
 D 1 and 
 D �1 of the conditions
in Theorem 1.4. Before dealing with the case 
 D 1, we note that constructing a field
L satisfying the condition (2) or (3) in Theorem 1.4 of 
 D 1 will disprove the Lehmer
conjecture. Thus we deal with neither the case 
 D 1 of the conditions in Theorem
1.4 (2) nor (3). Now we give a field L � xQ such that IN .L/ D IB.L/ D Œ1;1/.
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Proposition 5.1. Let .pi /i2N and .qi /i2N be strictly increasing sequences of prime
numbers with qi < piC1 and pi < qi < 2pi for all i 2 N. Then the field L WD
Q..pi=qi /1=pi j i 2 N/ satisfies that IN .L/ D Œ1;1/.

Proof. Let .di /i2N WD .pi /i2N and V.i; 
/ be the quantity defined in Proposition 3.3.
Since we have

V.i; 1/ D
1

2
log.pi /!1

as i !1, the field L has 1-(N) by Proposition 3.3.
For " < 1, because we observe that

0 < h"
�
.pi=qi /

1=pi
�
D

log.qi /
p1�"i

<
log.2pi /
p1�"i

! 0

as i !1, the field L does not have "-(B).

Next, we deal with fieldsL � xQ such that IN .L/D .1;1/ ¨ Œ1;1/D IB.L/. By
using the result in [1], we can construct for any given c > 0 a field L � xQ satisfying
that c � Nor1.L/ <1. For each integer b � 2 and prime number p � 3, we set

Lb;p WD Q.�pi ; b
1=pi
j i 2 N/;

hbi WD .the subgroup of L�b;p generated by b/;

and p
hbi WD

®
a 2 Lb;p j a

n
2 hbi for some n 2 N

¯
;

where �m is a primitivem-th root of unity for eachm 2N. Amoroso gave the following
theorem.

Theorem 5.2 ([1, Theorem 3.3]). If p − b and p2 − bp�1 � 1, the set Lb;p n
p
hbi

has 0-(B).

Proposition 5.3. Let c > 0 be a real number. We also let a prime number b 2N satisfy
that b � exp.c/ and b 2

®
9nC 2 j n 2 Z

¯
. Then the field L0

b;3
WD Q.b1=3

i
j i 2 N/

satisfies that IN .L0b;3/ D .1;1/ ¨ Œ1;1/ D IB.L
0
b;3
/ and c � Nor1.L0b;3/ <1.

Remark 5.4. By Dirichlet’s theorem on primes in arithmetic progressions, such b as
in Proposition 5.3 always exists.

Proof of Proposition 5.3. By Corollary 2.4 and the equality �L0
b;3
D ¹˙1º, it is

sufficient only to prove the inequalities c � Nor1.L0b;3/ <1. Note that 3 − b D 9nC 2
and 32 − b3�1 � 1D .9nC 3/.9nC 1/ hold. Thus, by Proposition 2.3 and Theorem 5.2,
the set L0

b;3
n
p
hbi has 1-(N). Thus there are only finitely many a 2 L0

b;3
n
p
hbi such
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that h1.a/ � log.b/. On the other hand, we know that h1.a/ � log.b/ for all a 2p
hbi n ¹˙1º and that h1.b1=3

i
/D log.b/ for all i 2 N. Hence we have Nor1.L0b;3/D

log.b/ � c.

Finally, we deal with fields L � xQ such that IN .L/D IB.L/D R. We remark that
any number field satisfies the condition by Theorem 1.7. Here we give such a field of
infinite extensions of Q.

Proposition 5.5. Let .di /i2N , .pi /i2N , and .qi /i2N be strictly increasing sequences
of prime numbers. Assume that the inequalities

exp.d1Ci
2

i / � pi < qi < piC1

hold for all i 2N. Then the fieldL WDQ..pi=qi /1=di j i 2N/ satisfies that IN .L/DR.

Proof. Let V.i; 
/ be the quantity defined in Proposition 3.3. For 
 < 0, since we
have

V.i; 
/ �
d1Ci

2

i

.d1 � � � di�1/�
d
1�

i

�
d1Ci

2

i

d
1�i

i

D d
i.iC
/
i !1

as i !1, the field L has 
 -(N) by Proposition 3.3.
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