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1. Introduction

Let X be a complex space (always reduced and with countable topology). By Xreg we
denote the set of manifold points ofX ,XsgDX nXreg the analytic set of singular points,
X� the normalization of X , and � W X� ! X the corresponding finite, holomorphic
surjective map.

Also we put X 0sg D �.X�sg/; it is an analytic subset of Xsg, and X 0sg � X has codi-
mension at least two. If T � X is a set, then denote ��1.T / by T �.

An open set � � X is said to be locally Stein at a subset � of X if any point of �
has an open neighborhoodU inX such thatU \� is Stein. If we may choose � D @�,
then we term � locally Stein (in X ).

A subset † of X is said to be
• pseudoconcave if † is closed and its complement is locally Stein;
• locally complete pluripolar if every point of† has a connected, open neighborhood
U on which there exists a plurisubharmonic (psh) function ', which is not identically
�1 on any irreducible component of U , and † \ U D ¹' D �1º. (For instance,
nowhere dense, locally closed analytic subsets ofX are locally complete pluripolar.)

Henceforth, unless explicitly stated, we consider only complex spaces of pure
dimension.

Now we can state a few of our results that we apply later to remove the compacity
assumptions in [3] (cf. Theorems 4 and 5).

https://creativecommons.org/licenses/by/4.0/
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The following result extends an interpolation theorem [16] that is recovered for X
normal.

Theorem 1. Let E be a holomorphic vector bundle over a Stein space X . Let� be an
open set of X with �� locally Stein at @�� nX�sg. Then, for any discrete subset ƒ of
� nXsg whose closure in X is disjoint with X 0sg, every section of E over ƒ extends to
a holomorphic section of E over �.

Then we generalize a theorem due to Scheja [12, Satz 3] from normal spaces to
arbitrary complex spaces. This will be applied in Section 4.

Theorem 2. For every hypersurface † of a Stein space X , there exists a holomorphic
function on X n† that does not extend holomorphically to X .

The following statement can be seen as a complement to [13]. Its proof is an
immediate consequence of Proposition 3.

Proposition 1. Let Y be a complex manifold and † � Y a closed, locally complete
pluripolar set. Then, for any open set � of Y that is locally Stein at @� n†, the set M�
of interior points of the union † [� is locally Stein.

Let X be a complex space, not necessarily of pure dimension. An open set � of X
is not a domain of holomorphy if there exist an irreducible component X 0 of X and
two nonempty open subsets U 0 and V 0 of X 0 such that the following holds.

The analytic set U 0 is irreducible, not contained in �, V 0 � � \ U 0, and for any
holomorphic function f 2OX .�/ there exists a holomorphic function g 2OX 0.U 0/

such that gjV 0 D f jV 0 .

Example 1. In C2 consider the Stein curves A D C � ¹0º and B D ¹0º �C, which
intersect only at the origin of C2. Obviously, X D A [ B is a reduced Stein space of
dimension one and X is not irreducible.

Now, let � D .A n ¹.1; 0/º/ [ .B n ¹.0; 1/º/, which is a Stein open subset X , and
put V D A n ¹.1; 0/; .0; 0/º and U D .A n ¹.1; 0/º/ [ B.

It follows that U and V are domains of X , V � � \ U , and U ¤ �.
Here we show that, in spite of the fact that � is a Stein open subset of the Stein

space X , for any holomorphic function f 2 O.�/ there exists a holomorphic function
g 2 O.U/ such that f D g on V.

Indeed, f induces two holomorphic functions, f1 2 O.A n ¹.1; 0/º/ and f2 2
O.B n ¹.0; 1/º/, such that f1.0; 0/ D f2.0; 0/. Then the function g W U! C, which
equals f1 on A n ¹.1; 0/º and g D f1.0; 0/ on B, is holomorphic on U and coincides
with f on V.
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Therefore, the ordinary definition of domains of holomorphy in complex manifolds
does no carry over ad litteram to complex spaces.

Example 2. Let X be the Segre cone of C4 (see [6]), namely X D ¹z1z2 D z3z4º.
Note that X is a connected, normal Stein space of dimension two.

Let H be the hypersurface ¹z2D z3D 0º ofX . ThenX nH is domain of holomorphy
in X , but X n H is not Stein.

Indeed, first observe that X nH ' C � .C2 n ¹.0; 0/º/, where the biholomorphism
is induced by the holomorphic map

C �C2
3 .s; u; v/ 7! .su; v; u; sv/ D .z1; z2; z3; z4/ 2 X:

Second, in order to check that X n H is a domain of holomorphy in X , consider the
holomorphic function f W X n H! C defined by the formula

f .z/ D

´
.z1 � z4/=.z2 � z3/ if z2 ¤ z3;
�z1=z3 if z2 D z3 ¤ 0:

We claim that f is singular at any point of H. For this, let � 2 H and notice that
� D .s; 0; 0; t/ for some s; t 2 C. Then, to settle the claim, we produce a sequence
.�n/n of points in X n H that converges to � and such that f .�n/ D �n for all n 2 N.
This is done as follows.

If s ¤ 0 or t ¤ 0, then let �n D .s; t=n; s=n; t/ for all n 2 N.
If s D t D 0, then let �n D .1=n2; 1=n2; 1=n3; 1=n/ for all n 2 N.

Example 3. Let X be a two-dimensional Stein space with isolated singularities, and
let Xnn denote the analytic set of non-normal points of X . Then X nXnn is a domain
of holomorphy in X .

Indeed, to prove this, observe that Xnn � Xsg. Then, thanks to Markoe [11], the
space X is not normal at a point a 2 Xsg if and only if prof.OX;a/ D 1.

Now by Bănică and Stănăşilă [2, p. 365], for every point aj 2 Xnn there exists
a holomorphic function fj 2 O.X n ¹aj º/ that cannot be extended holomorphically
across aj .

Therefore, for "j > 0 sufficiently small, the series
P
"jfj converges uniformly on

compact subsets of X nXnn to a holomorphic function f on X nXnn that is singular
at every point aj .

A space that fulfills the above condition is the Stein surface due to Harvey [8];
namely X is the image of the proper holomorphic mapping

h W C2
! C4; .z; w/ 7! .z2; z3; w; zw/:
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In this case, Xnn D Xsg D ¹0º, X is irreducible, locally irreducible, the map h is a
homeomorphism onto X so that h is the normalization of X , and X n ¹0º is a domain
of holomorphy in X .

A direct proof of the last assertion above follows readily because the holomorphic
function f W X n ¹0º ! C given by

f .z/ D

´
z2=z1 if z1 ¤ 0;
z4=z3 if z3 ¤ 0

does not extend holomorphically to the whole space X . Otherwise, if Qf 2 O.X/ is a
holomorphic extension of f , then the holomorphic function

g W X ! C2; z D .z1; z2; z3; z4/ 7!
�
Qf .z/; z3

�
would be an inverse for h, which cannot hold since X is not smooth. In particular, this
shows also that X is not normal at the origin.

The behavior of the notion of domain of holomorphy with respect to normalization
is given below (cf. Proposition 5).

Proposition 2. Let � be an open subset of a Stein space X . If �� is a domain of
holomorphy in X�, then � is a domain of holomorphy in X .

2. Some useful results

In this section, we collect some facts that will be applied in Sections 3 and 4. First, we
quote a particular case of a theorem proved in [15].

Proposition 3. Let Y be a complex manifold and † � Y a closed, locally complete
pluripolar set. Then, for every pseudoconcave set A � Y n † its closure NA in Y is
pseudoconcave in Y .

Corollary 1. Let Y be a complex manifold and † � Y a closed, locally complete
pluripolar set. If � is an open subset of Y such that � is locally Stein at @� n† and
@� n† is dense in @�, then � is locally Stein.

Proof. Let M� be the interior of the union � [†. Obviously, � � M�. Then the proof
concludes by Proposition 3 and the topological property

M� n� D @� n @� n†:

Indeed, let us check first the inclusion “�”. Take y0 2 M� n�. Since† is nowhere dense
in Y , it follows that y0 2 x�, hence y0 2 @�. Let V be a connected open neighborhood
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of y0 in Y with V � � [†. Thus V n† � � so that there is a closed subset B of V
such that B � † and�\ V D V nB . Then V \ @�D B , hence V \ .@� n†/D ;,
whence y0 62 @� n†.

For the reverse inclusion, let y0 2 @� n @� n†, and then let V be a connected
open neighborhood of y0 in Y with V \ .@� n†/ D ;. Hence .V n†/ \ @� D ;.
But V n† is connected and as † is nowhere dense in Y , it follows that V n† � �,
whence V � � [†, that is V � M�, a fortiori y0 2 M�.

From [16,17], we quote the following interpolation theorem.

Theorem 3. Let E be a holomorphic vector bundle over a normal Stein space X . Let
� � X be an open set that is locally Stein at @� nXsg.

Then, for any discrete set ƒ � � whose closure in X is disjoint with Xsg, every
section of E over ƒ extends to a holomorphic section of E over D.

We apply Corollary 1 and Theorem 3 to prove the following result.

Proposition 4. Let X be a normal Stein space. Let � � X be an open set. Then the
following assertions hold true.

(1) If � is a domain of holomorphy in X , then � is locally Stein at the set @� nXsg,
and for every analytic set † � X of codimension at least two, the set @� n† is
dense in @�.

(2) If there exists a closed, locally complete pluripolar set† ofX with @� n† dense in
@� and such that� is locally Stein at @� n†, then� is a domain of holomorphy.

Proof. Ad (1). Recall that in any Stein manifold, a domain of holomorphy means
precisely a connected, non empty Stein open set.

Then, granting the Riemann extension theorem, the above fact implies readily that
� is locally Stein at every point of @� nXsg.

Now let† be an analytic subset ofX of codimension at least two. In order to derive
a contradiction, assume that @� n† is not dense in @�. Therefore, there is a domain
W ofX withW \ @�¤ ; and .W n†/\ @�D ;. SinceW n† is connected, either
.W n†/\ x�D ; so thatW \ x��†, which is not possible since† is nowhere dense
in X , or W n† � � so that by Riemann’s extension theorem, � is not a domain of
holomorphy. Both ends contradict the hypothesis, hence @� n† is dense in @�.

Ad (2). In order to apply Theorem 3, we need to check that � is locally Stein at
@� nXsg and that @� nXsg is dense in @�.

The first part follows by Corollary 1. The second part is done by reductio ad
absurdum. So assume that @� nXsg is not dense in @�. Then there is x0 in @� such
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that, after shrinking X around x0, if necessary, one may take � D X n B for a closed
subset B ofXsg. Now the hypothesis says that B n† is dense in B andX nB is locally
Stein at B n†, whence B n†D ; by Riemann’s extension theorem sinceX is normal
and B � Xsg. Therefore, B � † from which we infer that B D ;, which contradicts
the existence of x0.

Now, with Theorem 3 at hand, the statement concludes again by contradiction and
routine arguments. (If V is a domain of X with V \ @� ¤ ; and ¹U˛º is the family of
connected components of V \�, then ¹U˛º is the family of connected components
of .V n Xsg/ \�, and by .�/ in the subsequent proof of Proposition 1 in Section 3,
for any ˛ there is a boundary point of � in V nXsg that is an accumulation point of
U˛ nXsg.)

Corollary 2. Let X be a normal Stein space. Then an open set � � X is a domain
of holomorphy if and only if � is locally Stein at @� n Xsg and the set @� n Xsg is
dense in @�.

The following result extends a similar one due to Hirschowitz [9] that is recovered
for normal spaces.

Corollary 3. The complement of every hypersurface of a Stein space is a domain of
holomorphy.

Proof. This follows by Proposition 2 and Corollary 2.

Proposition 5. Let � W X ! Y be a finite, surjective, holomorphic map of normal
Stein spaces X and Y . Then an open subset � of Y is a domain of holomorphy in Y if
and only if ��1.�/ is a domain of holomorphy in X .

Proof. For the “only if” assertion observe first that, for every open set D of Y , the
closure of ��1.D/ equals the pull-back through � of the closure of D. Hence we
get that @��1.�/ D ��1.@�/. Therefore, with † D ��1.Ysg/, which is an analytic
subset of X of codimension at least two, we deduce the density assertion from (2) of
Proposition 3. On the other hand, since for every Stein open subset of Y its pull-back
through � is Stein, we conclude by statement (2) of Proposition 4.

Now, consider the “if” part. We prove this by contradiction, so assume that� is not
a domain of holomorphy in Y , hence there is a point y0 2 @� and open sets U and V
as in Definition 1, V is connected and contains y0. Let x0 2 X with �.x0/ D y0 and
let V � be a connected open neighborhood of x0 such that �.V �/ � V . Let U � be any
nonempty connected component of V � \ ��1.�/. There is a boundary point x� of
��1.�/ in V � that is an accumulation point of U �. (See the topological fact .�/ in the
subsequent proof of Proposition 2.)
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Further, by Theorem 3 there exists a holomorphic function h 2 O.��1.�// whose
restriction to U � is unbounded.

Now, by routine arguments, there is a monic holomorphic polynomial P.t; y/ D
td C a1.y/t

d�1 C � � � C ad .y/ of some degree d 2 N (given by the number of sheets
of � above a neighborhood of y0), where the coefficients are holomorphic functions
on �, such that P.h.x/; �.x// D 0 for all x 2 ��1.�/.

Let Qa1; : : : ; Qad be the holomorphic “extensions” to V of the holomorphic functions
a1; : : : ; ad 2 O.�/, respectively.

Hence setting QP .t; y/ D td C Qa1.y/td�1 C � � � C Qad .y/, by the identity theorem
of holomorphic functions one has QP .h.x/; �.x// D 0 for all x 2 U �, which is not
possible. Thus the proof of proposition.

In the final part of this section, we recall a few more facts from [7].
Let zOX denote the coherent sheaf of germs of weakly holomorphic functions in X .

Recall that zOX D �?.OX?/ and zOX is a subsheaf of the sheaf of meromorphic functions
MX on X .

Let I � OX be the coherent ideal sheaf of universal denominators. At stalk level,
for every x 2 X , Ix D ¹hx 2 Ox W hx zOx � Oxº.

The vanishing set V.I/ of I coincides with the analytic set Xnn of not normal points
of X so that V.I/ � Xsg; hence V.I/ is nowhere dense.

A holomorphic function h 2 O.X/ is said to be active if, for every point x 2 X , the
germ hx is not a zero divisor of OX;x . Also, if a germ gx of a holomorphic function
defined in a neighborhood of a point x 2 X is not a zero divisor, then this property is
maintained in a neighborhood of x.

It can be shown that h 2O.X/ is active, precisely when h does not vanish identically
on any irreducible component of X .

Proposition 6. Let X be a Stein space of finite dimension. Then there are finitely
many holomorphic functions in I.X/ whose common zero set is V.I/. Besides, there is
an active holomorphic function in I.X/.

Proof. The first part is a standard application of induction over the dimension of
X n V.I/ and Cartan’s Theorem B. (It is perhaps important to note that, here we really
need Theorem B for coherent ideals with nilpotents.)

Now consider finitely many holomorphic functions h1; : : : ; hm in I.X/ whose
common zero set is V.I/. (As a matter of fact, if n is the complex dimension of X ,
then we may takem D nC 1.) Since V.I/ does not contain any irreducible component
of X , there is a discrete set ¹xj º of X such that for any irreducible component X 0 of X
there is some xj 2 X 0 n V.I/. For any j consider the set Bj � Cm of all .c1; : : : ; cm/
such that c1h1 C � � � C cmhm does not vanish at xj . This set is open and dense in Cm.
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Therefore, by Baire’s theorem, there are c1; : : : ; cm 2 C such that the holomorphic
function h WD c1h1C � � � C cmhm does no vanish at any point of ¹xj º; hence h is active,
whence the proof of proposition.

3. The proofs

Proof of Theorem 1. Of course, Cartan’s Theorem B settles the case when ƒ is
finite.

Now, assume thatƒ is infinite and writeƒD ¹xk W k 2 Nº. For any index k, select
a point x�

k
2D� nX�sg such that �.x�

k
/D xk . This is possible since �.X�sg/ � Xsg and

ƒ � D nXsg.
Since � is proper, the set ƒ� D ¹x�

k
W k 2 Nº is discrete inD� nX�sg, and because

Nƒ \Xsg D ;, the closure of ƒ� in X� is disjoint with X�sg.
LetE? be the pull-back ofE through � . For each index k 2 N, consider any vector

vk 2 Exk
and let v�

k
be in the fiber of E� over x�

k
that maps onto vk .

By Proposition 6, there are finitely many holomorphic functions h1; : : : ; hm in
I.X/ whose common zero set is V.I/. Therefore, for every open subset U of X and
weakly holomorphic function g 2 zO.U /, the products hjg are holomorphic functions
in O.U /.

Since Xreg \ V.I/ D ;, for each k there is an index j such that hj .xk/ ¤ 0. Hence
we may select complex numbers jk such that, for each k one has

mX
jD1

jkhj .xk/ D 1:

By Theorem 3, there are holomorphic sections �j of E� over D� satisfying �j .x�k / D
kj v�

k
for all k.

Therefore, � D h1�1 C � � � C hm�m becomes a holomorphic section of E over D,
and this � is what we want, whence the proof of theorem.

Proof of Proposition 2. Note that X 0sg D �.X�sg/ is an analytic subset of X of codi-
mension at least two (becauseX has pure dimension). Hence��1.X 0sg/ has codimension
at least two in X�, so that the set @�� n ��1.X 0sg/ is dense in @�� according to Propo-
sition 4.

From this we infer that @� n X 0sg is dense in @�. This is a consequence of the
following straightforward assertion.

.�/ Let ' W S ! T be a proper, surjective map between Hausdorff topological spaces
S and T . Then, for every open set D � T one has '.@'�1.D// D @D.
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Therefore, given a point a 2 @� nX 0sg, by Theorem 1 it follows that, for every sequence
.x�/� of points in � nXsg converging to a and for every sequence .c�/� of complex
numbers, there is a holomorphic function h 2 O.�/ such that h.x�/ D c� for all �.

To proceed with the proof, in order to reach a contradiction, assume that � is not a
domain of holomorphy, and let U and V be as in definition.

For the sake of simplicity, let X be irreducible so that X� is connected. (Otherwise,
we have to work with a connected component of X� that maps onto the irreducible
component of X that contains U .)

We will show that there are a holomorphic function f 2 O.�/ and a sequence
.x�/� of points in � \ U converging to a boundary point of � that belongs to U for
which f is unbounded on .x�/� .

Indeed, since U is irreducible, its preimage U � D ��1.U / is connected, and the
irreducible components ¹Gj ºj of � \ U are in one-to-one correspondence with the
connected components ¹G�j ºj of �� \ U �.

Recall the following fact (cf. [5, the lemma on p. 50]).

.�/ Let S be a topological space, locally arcwise-connected and locally compact. Let
D and U be open subsets of S such that U \ @D ¤ ;. If U is connected, then,
for any connected component W ¤ ; of D \ U , there is a boundary point s� of
D in U that is an accumulation point of W .

Indeed, select two points s0 2W , s1 2 U \ @D, and let  W Œ0; 1�! U be a continuous
path such that .0/ D s0 and .1/ D s1. Let t� be the supremum of all t 2 Œ0; 1� such
that .Œ0; t �/ � W . Clearly, t� 2 .0; 1� and s� D .t�/ is as desired.

In the complex manifoldX�reg, we have the open set�� nX�sg, the domain U � nX�sg,
and the connected components G�

k
nX�sg of .U � nX�sg/ \ .�� nX�sg/.

By .�/, for every k there is a boundary point bk of �� nX�sg (with respect to X�reg)
that is an accumulation point of G�

k
\ .�� n X�sg/. We choose an index k such that

Gk \ V ¤ ; and let b be the corresponding bk . Then, because�� n ��1.Xsg/ is dense
in �� nX�sg, there is a sequence .x�� /� of points in G�

k
n ��1.Xsg/ converging to b.

Set a D �.b/, and x� D �.x�� / for all � 2 N.
Then the existence of the holomorphic function f 2 O.�/ that is unbounded on

.x�/� follows now by Theorem 1. In particular, there cannot be a holomorphic function
g 2 O.U / such that f jV D gjV as this would imply that f and g agree on Gk , so that
f would be bounded on .x�/� . The proof of the proposition is complete.

Proof of Theorem 2. Let n be the complex dimension of X . We keep the notations
as in the proof of Theorem 1, and borrow freely some ideas from Scheja’s paper [12].
Recall that � W X� ! X denotes the normalization map of X , and A� D ��1.A/.

By using the identity theorem for holomorphic functions on irreducible complex
spaces, it is easily seen that we may assume A irreducible.
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Now the proof continues by case analysis.

Case 1. Suppose that A is not contained in V.I/. Since A is irreducible, A \ V.I/ is
nowhere dense in A.

Let h be an active holomorphic function onX that vanishes onA. Hence h� D h ı �
is a holomorphic function onX� that vanishes onA� and h� does not vanish identically
on any connected component of X�.

Let B� be the union of the (at most countable) irreducible components B�j of
¹h�D 0º that are not contained inA�, and let �j 2N be the vanishing order of h� onB�j .
Hence the analytic set B� \A� has dimension� n� 2 so that A0 D A n �.B� \A�/
is a Zariski dense open subset of A. Besides, � D A0 n V.I/ is dense in A.

We show that, for every point a 2 � , there is a holomorphic function f 2 O.X nA/
that is unbounded in any neighborhood of a.

To check this, let a� 2 A� n B� such that �.a�/ D a. By [12, Satz 4], there is a
holomorphic function g� 2 O.X�/ that vanishes of order at least �j on each B�j and
g�.a�/ ¤ 0. Therefore, the meromorphic function g�=h� on X� is holomorphic on
X� n A� and has a pole at a�.

Let � be the weakly holomorphic function on X n A induced by g�=h�.
Since a 62 V.I/, by Proposition 6, there exists a holomorphic function h1 2 I.X/

such that h1.a/ ¤ 0. It follows that f D h1� is holomorphic on X n A and satisfies
the following property.

For every irreducible component Y of X passing through a and for every open
neighborhood V of a in Y , f is unbounded on V n A.

In particular, f does not extend holomorphically across a.

Case 2. Let A � V.I/. We follow the recipe from Case 1. Here we select the active
holomorphic function h to be an element of I.X/.

We show that for any point a 2 A0 there is a holomorphic function on X n A that
is unbounded about a.

Indeed, as in Case 1, we produce the weakly holomorphic function � exactly as
there. It is, then, readily seen that h�2, which is holomorphic on X n A, satisfies the
same properties as the function f , whence the proof of theorem.

4. On envelopes of holomorphy

An envelope of holomorphy of a complex space X is a pair .X \; �/ of a Stein space
X \ and a holomorphic map � W X ! X \ such that the canonically induced map

O.X \/! O.X/; f 7! f ı �;
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is bĳective. If � is understood from the context, we simply say that X \ is the envelope
of holomorphy of X .

The pair .X \; �/, if it exists, is unique up to a natural isomorphism.
Observe that if O.X/ separates points and gives local coordinates (this is the case

when X is an open subset of a Stein space) and its envelope X] exists, then there is an
open immersion � W X ! X] so that one may view X as an open subset of X].

Another way of saying that X has an envelope of holomorphy is that O.X/ is a
Stein algebra [4].

Proposition 7. Let X be a complex space such that O.X/ separates points and gives
local coordinates. If X has an envelope of holomorphy .X \; �/ and � W Y ! X \ is the
normalization map, then Y is the envelope of holomorphy of ��1.�.X//.

Proof. Note that if X is a relatively compact open subset of a Stein space Z, Proposi-
tion 7 reduces to [3, Lemma 3.2]. The relative compacity has been used there in the
following way. For a point z 2 Z, consider the minimal number nz of generators of
zOZ;z as an OZ;z-module.

The function Z 3 z 7! nz 2 N is upper semi-continuous, and since X is relatively
compact in Z one has supz2X nz <1. By routine arguments, it follows that every
weakly holomorphic function on X is quotient of two holomorphic functions on X .

This idea does not work when X is not relatively compact, but we are saved by
Proposition 6.

Now, for the commodity of the reader, we sketch a proof of Proposition 7 that goes
along the lines in [3]. All we need to show is the following claim.

Every weakly holomorphic function f 2 zO.X/ has a unique weakly holomorphic
extension F 2 zO.X]/.

Indeed, let f 2 zO.X/. Let h 2 I.X]/ be an active holomorphic function. Thus f h is
holomorphic onX . Let g 2 O.X]/ be its (unique) extension. Then F D g=h 2M.X]/.
We check that F is weakly holomorphic on X].

For this to be true we prove that the pole set B of the meromorphic function
F ı � on X] is the empty set. Otherwise, B would be a hypersurface, and, then, since
f ı � is holomorphic on X], the intersection �.B/ \ X is the empty set. Now by
Theorem 2, there is a holomorphic function f] 2 O.X] n B/ that cannot be extended
holomorphically to X], hence as X � X] n B , f] restricted to X cannot be extended
holomorphically to X], contradicting the fact that X] is the envelope of holomorphy
of X .

In conclusion, B is the empty set, whence the claim. This finishes the proof of the
proposition.
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Remark. We may apply Proposition 7 for X an open subset of a Stein space Z such
that X is locally Stein at every point of @X n Zsg. This happens if either X is an
increasing union of Stein open subsets, or X is a domain of holomorphy, or X satisfies
the subsequent principal hypersection condition.

Therefore, we improve [3, Theorem 3.2] as follows.

Theorem 4. A locally Stein domain X of a Stein space Z is Stein if and only if X has
an envelope of holomorphy.

Proof. Note that, under the above hypothesis, for every point a 2 @X nZsg and for
every sequence .xk/k of points in X that converges to a, granting Theorem 1, there is
a holomorphic function f 2 O.X/ that is unbounded on the sequence .xk/k . Then,
with Proposition 7 at hand, the proof in [3] works ad litteram.

In the same vein, in order to state an improved version of [3, Theorem 3.14] we
give the following ad hoc definition.

LetZ be a Stein space of pure dimensionn. An open setX �Z satisfies the principal
hypersection condition, (PH) in short, if, for every active holomorphic function h on
Z, the trace of its zero set on X is Stein.

Obviously, this condition is interesting only in dimensions at least three. Notice that
(PH)-condition is weaker than the hypersection condition in [3].

Theorem 5. Let Z be a Stein space of pure dimension at least three. Then a domain
X of Z that satisfies the PH-condition is Stein if and only if X has an envelope of
holomorphy.

Proof. We proceed as in the proof of Theorem 4, and for this we needX be locally Stein
at every point of @X nZsg. But this follows by routine arguments from the following
fact (cf. [14, Theorem 3]).

Proposition 8. A domainD � Cn .n � 3/ is Stein if, for any point a 2 @D, there is a
dense subsetƒ.a/ of the unit sphere in Cn such thatD \H� is Stein for all � 2 ƒ.a/,
where H� D ¹z 2 Cn W hz � a; �i D 0º.

5. A few open problems

In the circle of ideas discussed in this article, we would like to state some open problems.
(1) Is is true that, in any normal Stein surface, every domain of holomorphy is

Stein?
(2) Let X be any complex space such that O.X/ separates points. Does it follow

that every meromorphic function on X is quotient of two holomorphic functions on X?
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This is true for X Stein (with singularities) [1], or when X is an open subset of a
Stein manifold [10].

(3) Let Z be any irreducible Stein space. Let X be an open subset of Z such that,
for any principal hypersurface Y ofZ, the intersectionX \ Y is Stein and Runge in Y .
Does it follow that � is Stein?
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