
Rend. Lincei Mat. Appl. 34 (2023), 159–173
DOI 10.4171/RLM/1002
© 2023 Accademia Nazionale dei Lincei
Published by EMS Press
This work licensed under a CC BY 4.0 license

Functional analysis. – The conditional measures for the determinantal point process
with the Bergman kernel, by Alexander I. Bufetov, communicated on 10 November
2022.

Abstract. – This note gives an explicit description of conditional measures for the determinantal
point process with the Bergman kernel.

Keywords. – Gaussian analytic function, determinantal measure, Bergman space, Palm
measure, Gibbs property.

2020 Mathematics Subject Classification. – Primary 37A50; Secondary 37A60, 60G57,
46N30.

1. Introduction

1.1. Formulation of the main result

The aim of this note is to give an explicit formula (see formula (8) in Theorem 1.2)
for the conditional measures of the zero set of the Gaussian analytic function under
the condition that the configuration be fixed in the complement of a compact set. The
conditional measure is an L-process in the sense of Borodin [1]; the kernel admits a
simple explicit expression in terms of generalized Blaschke products corresponding to
the fixed particles outside a compact set. Recall that, by the Peres–Virág theorem [21],
the zero set of the Gaussian analytic function is a determinantal point process with the
Bergman kernel; cf. (2). The main tool is the explicit representation obtained in [7]
of the Radon–Nikodym derivative of the reduced Palm measure of our determinantal
point process with respect to the process itself; the Radon–Nikodym derivative is found
as a generalized multiplicative functional corresponding to the divergent Blaschke
product over the particles of our configuration. The argument relies on the determinantal
property of the process and the specific properties of the kernel, while not explicitly
using the Gaussian property. The notation and conventions of this note follow [3, 7]. A
detailed general introduction to Gaussian analytic functions and determinantal point
processes may be found in Hough–Krishnapur–Peres–Virág [14].

We proceed to the precise formulations. Let D be the open unit disc. A configuration
X on D is a subset of D, possibly infinite, but without accumulation points in D, or,
equivalently, a purely atomic Radon measure on D. The space Conf.D/ is a complete
separable metric space with respect to the vague topology on Radon measures (cf.
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e.g. [3] and references therein). Let an.!/, n � 0, be independent standard complex
Gaussian random variables, with expectation 0 and variance 1. The power series

(1)
1X
nD0

an.!/z
n

almost surely has radius of convergence 1; by the Peres–Virág theorem [21], the law
PK of the zero set of the series (1) is the determinantal measure on the space Conf.D/
governed by the Bergman kernel

(2) K.z;w/ D
1

�.1 � z Nw/2
; z; w 2 D;

of orthogonal projection in the spaceL2.D/ of square-integrable functions with respect
to the usual Lebesgue measure onto the closed subspace of square-integrable holomor-
phic functions.

Consider a decomposition D D B t C of the unit disc into two disjoint Borel sets
with B open and having compact closure in D. The natural restriction map �C WX 7!
X \ C sends the measure PK forward to its projection PCK ; the PCK -almost surely
defined conditional measures of PK for a configuration Y on Conf.D/ satisfying
Y D Y \ C on the preimage ��1C .Y / are denoted by P . � jC I Y /. [8, Lemma 1.11]
states that if P is a determinantal point process induced by a positive Hermitian
contraction, then so is its conditional measure (cf. Lyons [17] for the case of a discrete
phase space); Lemma 1.11 also gives a limit procedure for finding the kernel governing
the conditional measure. Our aim in this note is to give an explicit formula, see (8), for
the conditional measure P . � jC IY /. The starting point for the argument is [7, Theorem
1.4] that gives an explicit expression for the Radon–Nikodym derivative of the Palm
measure PqK of PK with respect to PK ; the Radon–Nikodym derivative, cf. (11), is
expressed in terms of a regularized multiplicative functional x‰q , cf. (6), that we now
write in a slightly different way. The next step is an expression of the conditional
measure P . � jC IY / in terms of the multiplicative functional x‰q .

We consider the unit disc as the Poincaré model for the Lobachevsky plane, and for
p2D,R>0we letD.p;R/ stand for the Lobachevskian ball of radius R centered at p.

Proposition 1.1. For PK-almost every X 2 Conf.D/ and any q 2 D, the limit

z‰q.X/ D lim
R!1

Y
x2X\D.q;R/

ˇ̌̌̌
x � q

1 � Nxq

ˇ̌̌̌2
� exp

�p
�1

2�

Z
D.q;R/

�
1 �

ˇ̌̌̌
z � q

1 � Nzq

ˇ̌̌̌2�
dz ^ d Nz

.1 � jzj2/2

�
(3)

exists in L1.Conf.D/;PK/ as well as PK-almost surely along a subsequence.
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We have

(4)
Z
z‰q.X/ dPK.X/ D

e�1

2
;

where

(5)  D lim
n!1

�
1C

1

2
C � � � C

1

n
� logn

�
is the Euler–Mascheroni constant.

Denote

(6) x‰q.X/ D 2e
1� z‰q.X/:

In view of (4), we have

(7) x‰q.X/ D 2e
1� z‰q.X/:

We are now ready to proceed to the formulation of the main result of this note, an
explicit description of the conditional measures of the determinantal point process with
the Bergman kernel.

Theorem 1.2. For PCK -almost every configuration Y on the disc, the conditional mea-
sure PK. � jC IY / has the form

(8) �Y;0

 
1C

1X
mD1

detLY .qj ; qk/j;kD1;:::;m �
mY
jD1

�p
�1

2�

dqj ^ d Nqj

.1 � jqj j2/2

�!
;

where

(9) LY .q1; q2/ D
x‰q1

.Y /x‰q2
.Y /

1 � q1 Nq2

and
�Y;0 D

1

det.1C LY /
D P .#B D 0 j C IY /

is the conditional probability that there are no particles in B .

Equivalently, the conditional measure is an L-ensemble in the sense of Borodin [1]
(cf. also [2]), and the L-kernel is given by the formula (9).

Remark. Theorem 1.2, with minimal modifications, directly applies also to determi-
nantal point processes corresponding to Bergman spaces on the disc with respect to
more general weights. Given a Bergman weight ! on the disc (cf. [7, Definition 3.2 and
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Examples 6.1–6.2]), one considers the corresponding Bergman space, its reproducing
kernel, and the corresponding determinantal process on the disc; and, under a technical
condition, cf. [7, (3)], quite similarly to (3), one constructs the regularized Blaschke
product, cf. [7, (5)]. The normalized Blaschke product plays the role of x‰q of (7). The
formula (8) stays the same. Indeed, as we will see below, the proof of Theorem 1.2
only relies on the explicit form of the Radon–Nikodym derivative of our process with
respect to its Palm measure obtained in [7, (5)] also for Bergman kernels associated
to general Bergman weights. The equality (4) is of course specific to the classical
Bergman kernel.

Remark. The approach of this note in reconstructing the conditional measures of a
point process from the Radon–Nikodym derivatives of its Palm measures goes back
to [3, 4], where, following Olshanski [19], it is proved that, for determinantal point
processes governed by integrable kernels on R, the conditional measure, subject to
the condition that the configuration be fixed outside an interval, is an orthogonal
polynomial ensemble. The generalization to point processes on C is achieved in [5–7].
Note, however, that the point processes considered in [3, 4] are rigid in the sense
of Ghosh [10, 11], Ghosh and Peres [12]. The determinantal point process with the
Bergman kernel is, however, insertion tolerant; cf. Holroyd and Soo [13]. The result of
this note thus extends the program of [3] onto insertion tolerant processes.

Question. What are conditional measures for zero sets of more general Gaussian
analytic functions? The argument in this note relies on the determinantal property
and is not directly applicable. At the same time, convenient formulas for correlation
functions of zero sets also exist beyond the determinantal context: for instance, in the
recent paper [16], Katori and Shirai consider Gaussian Laurent series on the annulus
and establish explicit formulas for the correlation functions of the corresponding
random zero set as products of permanents and determinants. Is it possible to describe
conditional measures in this case? Proposition 1.3 does not use the determinantal
property, only the fact that the Radon–Nikodym derivative of our process with respect
to its Palm measure is given by a multiplicative functional. The analysis of Katori and
Shirai [16] uses the “elliptic extension of Cauchy’s evaluation of determinant due to
Frobenius”; cf. [16, p. 1130] and references therein. Is it possible also to obtain an
extension of the argument below for more general Gaussian analytic functions?

1.2. Palm measures of the point process PK

1.2.1. Correlation functions of point processes

Let E be a Polish space. A configuration on E is a countable or finite collection of
points in E, called particles, considered without regard to order and subject to the
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additional requirement that every compact set contain only finitely many particles of a
configuration. Let Conf.E/ be the space of configurations on E. For a bounded Borel
set B � E, let

#B WConf.E/! N [ ¹0º

be the function that to a configuration assigns the number of its particles belonging
to B . The random variables #B over all bounded Borel sets B � E determine the Borel
sigma-algebra on Conf.E/. A Borel probability measure P on Conf.E/ is called a
point process with phase space E. Recall that the point process P is said to admit
correlation measures of order l if, for any continuous compactly supported function '
on El , the functional X

x1;:::;xl2X

'.x1; : : : ; xl/

is P -integrable; the sum is taken over all ordered l-tuples of distinct particles in X .
The l-th correlation measure �l of the point process P is then defined by the formula

EP

� X
x1;:::;xl2X

'.x1; : : : ; xl/
�
D

Z
E l

'.q1; : : : ; ql/d�l.q1; : : : ; ql/:

If all correlation measures of a point process are well defined and for any m 2 N the
m-th correlation measure is absolutely continuous with respect tom-th tensor power of
the first one, then say that our point process admits correlation functions of all orders.

1.2.2. Campbell and Palm measures

Following Kallenberg [15] and Daley–Vere-Jones [9], we recall the definition of
Campbell measures of point processes; the notation follows [3]. Let P be a point
process on E admitting the first correlation measure �P

1 . The Campbell measure CP of
P is a sigma-finite measure on E � Conf.E/ such that for any Borel subsets B � E,
Z � Conf.E/ we have

CP .B � Z/ D

Z
Z

#B.X/dP .X/:

The Palm measure yPq is the canonical conditional measure, in the sense of Rohlin
[22], of the Campbell measure CP with respect to the measurable partition of the space
E � Conf.E/ into subsets ¹qº � Conf.E/, q 2 E; cf. [3].

By definition, the Palm measure yPq is supported on the subset of configurations
containing a particle at position q. Removing these particles, one defines the reduced
Palm measure Pq as the push-forward of the Palm measure yPq under the erasing map
X ! X n ¹qº.
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Iterating the definition, one arrives at iterated Campbell, Palm, and reduced Palm
measures: the r-th Campbell measure CrP of P is a sigma-finite measure on the product
E � � � � �E � Conf.E/ of r copies of E and Conf.E/ such that for any disjoint Borel
subsets B1; : : : ; Br � E, Z � Conf.E/ we have

CP .B1 � � � � � Br � Z/ D

Z
Z

#B1
.X/ � � � #Br

.X/dP .X/:

Given distinct q1; : : : ; qr 2 E, the Palm measure yPq1;:::;qr is the canonical conditional
measure, in the sense of Rohlin [22], of the Campbell measure C rP with respect to the
measurable partition of the space E � � � � �E � Conf.E/ into subsets ¹q1; : : : ; qrº �
Conf.E/, q 2 E; cf. [3]. By definition, the Palm measure yPq1;:::;qr is supported on the
subset of configurations containing a particle at each position q1; : : : ; qr . Removing
these particles, one defines the reduced Palm measure Pq1;:::;qr as the push-forward of
the Palm measure yPq under the erasing map X ! X n ¹q1; : : : ; qrº; see Kallenberg
[15], whose formalism is also adopted in [3], for a more detailed exposition. As all
conditional measures, reduced Palm measures Pq are a priori only defined for �1-almost
every q. In our context of determinantal point processes, for any distinct q1; : : : ; qm 2E,
the Shirai–Takahashi theorem allows us to fix a convenient explicit Borel realization
Pq1;:::;qm of reduced Palm measures.

1.2.3. Determinantal point processes

As before, let E be a Polish space, and let � be a sigma-finite Borel measure on E.
Recall that a Borel probability measure P on Conf.E/ is called determinantal if there
exists a locally trace class operator K acting in L2.E; �/ such that for any bounded
measurable function g, for which g � 1 is supported in a bounded set B , we have

(10) EP

Y
x2X

g.x/ D det
�
1C .g � 1/K�B

�
:

Here and elsewhere in similar formulas, 1 stands for the identity operator. The Fredholm
determinant in (10) is well defined since K is locally of trace class. The equation (10)
determines the measure P uniquely. We use the notation PK for the determinantal
measure induced by the operator K. By a theorem due to Macchì [18], Soshnikov [27],
and Shirai–Takahashi [23] (cf. also [24,25]), any Hermitian positive contraction that
belongs to the local trace class defines a determinantal point process.

1.2.4. Generalized multiplicative functionals

Let g be a Borel function on E and let ‰ be a Borel function defined on a Borel subset
Z� Conf.E/ and satisfying the following: ifX;Y 2 Z and there exist distinct particles
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p1; : : : ; pr ; q1; : : : ; qs 2 E such that

X n ¹p1; : : : ; prº D Y n ¹q1; : : : ; qsº;

then
‰.X/ D

g.p1/ � � �g.pr/

g.q1/ � � �g.qs/
‰.Y /:

In this case, we say that ‰ is a generalized multiplicative functional corresponding to
the function g. The regularized multiplicative functional (3) is a particular case of a
generalized multiplicative functional. If the point process P has trivial tail � -algebra,
then a generalized multiplicative functional corresponding to a function g, provided it
exists, is P -almost surely unique up to multiplication by a constant.

1.2.5. The characterization of Palm measures for PK

The starting point for the argument is [7, Theorem 1.4] that, in view of Proposition
1.1, can be formulated as follows: for any q 2 D, the reduced Palm measure PqK of our
determinantal point process PK with the Bergman kernel is given by the formula

(11) PqK D
x‰qPK :

In other words, the Radon–Nikodym derivative is given by a regularized multiplicative
functional. The argument is completed by a general proposition describing the condi-
tional measures for a point process whose Palm measures are expressed as a product of
the original measure and a multiplicative functional.

1.3. Palm measures, multiplicative functionals and conditional measures

Let P be a point process with phase space E admitting correlation functions of all
orders. We fix a Borel realization Pq of its reduced Palm measures and assume that
there exists a symmetric positive Borel function B.q1; q2/, q1; q2 2 E, defined on
E � E and such that for any q 2 E the Radon–Nikodym derivative dPq=dP is a
generalized multiplicative functional corresponding to the function B.q; � /.

Proposition 1.3. For any decompositionE DB tC into two Borel sets with �P
1 .B/ <

C1 and for PC -almost everyY2Conf.EIC/, the conditional measure PYDP . � jY;C /

has the form

�Y;0

 
1C

1X
mD1

Y
1�i<j�m

B.qi ; qj / �

mY
iD1

dPqi

dP
.Y / d�1.qi /

!
;

where �Y;0 D P .#B.X/ D 0jY IC/.
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Proposition 1.3, together with Proposition 1.1, directly implies Theorem 1.2 in view
of the Cauchy identity

det
�

1

1 � qj Nqk

�
j;kD1;:::;n

D

Q
1�j<k�n

ˇ̌
qj � qk

ˇ̌2Q
1�j<k�n

ˇ̌
1 � qj Nqk

ˇ̌2 :
It remains to prove Propositions 1.1 and 1.3.

2. Proof of Proposition 1.3

2.1. Conditional measures of point processes

Let E be a locally compact complete metric space, let Conf.E/ be the space of
configurations on E. Given a configuration X 2 Conf.E/ and a subset C � E, we let
X jC stand for the restriction of X onto the subset C . We let xPC be the push-forward
measure under the natural projection X ! X jC . Given a point process on E, that is, a
Borel probability measure P on Conf.E/, the measure P .�jX IC/ on Conf.E n C/ is
defined as the conditional measure of P with respect to the condition that the restriction
of our random configuration onto C coincides with X jC . More formally, we consider
the surjective restriction mappingX ! X jC from Conf.E/ to Conf.C /. Fibers of this
mapping can be identified with Conf.EnC/ and conditional measures, in the sense of
Rohlin [22], are precisely the measures P .�jX IC/. Let Conf.EIC/ be the subset of
those configurations on E all whose particles lie in C ; in other words, the image of the
natural projection X ! X jC . By definition, we have

P D

Z
Conf.E IC/

P .�jY IC/d xPC .Y /:

The decomposition into conditional measures is by definition lifted onto the level
of Campbell measures:

(12) CP D

Z
Conf.E IC/

CP.�jY IC/d xP
C .Y /:

2.2. Palm measures of different orders

As before, let P be a point process on a Polish space E. We assume that the point
process P admits correlation functions of all orders and that the reduced Palm measures
of P are almost surely absolutely continuous with respect to P ; it follows that reduced
Palm measures of all orders are also almost surely absolutely continuous with respect
to P ; almost surely is here understood with respect to the first correlation measure.

It is convenient to think that the space E is endowed with a sigma-finite Borel
measure � such that the first correlation measure of P is absolutely continuous with
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respect to �; the m-th correlation measure of P then has the form

�m.q1; : : : ; qm/d�.q1/ � � � d�.qm/;

where �m is the m-th correlation function.
For �-almost any distinct points p1; : : : ; pm; q1; : : : ; qr and P -almost any con-

figuration X 2 Conf.E/ not containing any of the points p1; : : : ; pm, q1; : : : ; qr the
following identity directly follows from the definition of the Palm measures:

�mCr.p1; : : : ; pm; q1; : : : ; qr/

�r.q1; : : : ; qr/
�
dPp1;:::;pm;q1;:::;qr

dPq1;:::;qr
.X/

D �m.p1; : : : ; pm/
dPp1;:::;pm

dP
.X; q1; : : : ; qr/:

(13)

2.3. Palm measures and conditional measures

As before, we consider a point process P on the phase space E; the point process
P is assumed to admit correlation functions of all orders. Consider a decomposition
E D B t C of our phase space E as a disjoint union of two Borel sets. As before, we
let xPC be the push-forward measure under the natural projection X ! X jC , and, for
a configuration Y all whose particles lie in C , in this subsection, we write PŒY;C � D

P . � jY IC/. We take a natural m and let P be a point process whose reduced Palm
measures of order m are �P

m-almost surely absolutely continuous with respect to P .
From (12), it follows that, xPC -almost surely, the m-th correlation measure of the

measure PŒY;C � is absolutely continuous with respect to the m-th tensor power of the
first correlation measure of P (note that for determinantal point processes governed by
Hermitian contractions this requirement is automatically verified by [8, Lemma 1.11]
on the preservation of the determinantal property under taking conditional measures;
observe, however, that Lemma 1.11 is not used in this derivation of the explicit form
of the conditional measures).

Let �ŒY;C �;m be the m-th correlation function of PŒY;C �. By definition, we have

(14)
�ŒY;C �;m.q1; : : : ; qm/ dPq1;:::;qm

ŒY;C �

dPŒY;C �
.Z/ D

�m.q1; : : : ; qm/dPq1;:::;qm

dP
.Y [Z/:

We now directly obtain the following.

Corollary 2.1. Assume that the first correlation measure of the set B is finite. Then
for xPC -almost any configuration Y , the conditional measure PŒY;C � has the form

(15)
1X
mD0

�ŒY;C �;m.q1; : : : ; qm/ d�.q1/ � � � d�.qm/;
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where �ŒY;C �;0 D PŒY;C �.¿/ is the conditional probability of the absence of particles
in B and

(16) �ŒY;C �;m.q1; : : : ; qm/ D �ŒY;C �;0 �
�m.q1; : : : ; qm/dPq1;:::;qm

dP
.Y /:

Proof. That the conditional measure PŒY;C � is absolutely continuous with respect to
the Poisson process of intensity � follows from the fact that the measure PŒY;C � is,
xPC -almost surely, supported on the set of configurations with finitely many particles
and that the m-th correlation measure of the measure PŒY;C � is absolutely continuous
with respect to the m-th tensor power of the first correlation measure of P .

Now take a general measure of the form (15) for some Borel functions �ŒY;C �;m,
m D 1; : : : I the r-th Palm measure of our measure at the particles p1; : : : ; pr takes
the form

M�1.p1; : : : ; pr/

1X
mD0

�ŒY;C �;mCr.p1; : : : ; pr ; q1; : : : ; qm/ d�.q1/ � � � d�.qm/;

where M.p1; : : : ; pr/ is a normalization constant.
We now write (14) with Z D ¿. By definition,

�ŒY;C �;m.q1; : : : ; qm/ � P
q1;:::;qm

ŒY;C �
.¿/ D �ŒY;C �;m.q1; : : : ; qm/;

and the desired equality (16) follows.

2.4. Conclusion of the proof of Proposition 1.3

Iterating (13), we arrive at the identity

�m.p1; : : : ; pm/
dPp1;:::;pm

dP
.X/ D

�1.p1/
dPp1

dP
.X; p2; : : : ; pm/ � � � �1.pm�1/

dPpm�1

dP
.X; pm/ � �1.pm/

dPpm

dP
.X/:

Combining with (16), we obtain the expression

�Y;m.q1; : : : ; qm/

D �Y;0 � �1.q1/ � � � �m.qm/ �
dPq1

dP
.Y / �

dPq2

dP
.q1; Y / � � �

dPqm

dP
.q1; : : : ; qm�1; Y /:

Substituting the expression of the Radon–Nikodym derivative as the multiplicative
functional completes the proof.
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3. Proof of Proposition 1.1

Recall, cf. e.g. Simon [26], that the Hilbert–Carleman regularization det2 of the Fred-
holm determinant is introduced on finite rank operators by the formula

det2.1C A/ D exp.� trA/ det.1C A/

and then extended by continuity onto the space of Hilbert–Schmidt operators.
We first recall a well-known observation (cf. e.g. Osada–Shirai [20, p. 737]). Let

gWD ! RC

be a nonnegative bounded Borel radial function, in other words, a function depending
only on the absolute value of its argument. The eigenfunctions of the operatorpgKpg
are precisely the functionspgzk , k � 0, and the corresponding eigenvalue is

k C 1

�

Z
D
g.z/jzj2k dz D .k C 1/

Z 1

0

Qg.�/�k d�;

where Qg.�/ D g.p�ei� / for any � .
It directly follows that the operator

K1.z; w/ D
p
1 � jzj2K.z;w/

p
1 � jwj2

is Hilbert–Schmidt, as its eigenvalues are

.k C 1/

Z 1

0

.1 � �/�k d� D
1

k C 2
; k D 0; 1; : : : :

By definition (3), we have

(17) EPK
z‰ D det2.1CK1/:

Note here that
1

�
�
1 � jzj2

� D �1 � jzj2�K.z; z/:
For r 2 .0; 1/, set

z‰r.X/ D
Y

x2X;jxj<r

jxj2 � exp
�p
�1

2�

Z
¹zWjzj<rº

dz ^ d Nz

.1 � jzj2/

�
:

By definition, we have

EPK
z‰r D det2.1C �¹zWjzj<rºK1�¹zWjzj<rº/:
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Since
�¹zWjzj<rºK1�¹zWjzj<rº ! K1

in the Hilbert–Schmidt norm as r ! 1, writing the Cauchy–Bunyakovsky–Schwarz
inequality

EPK
j z‰ � z‰r j �

q
EPK
j z‰r j2

q
EPK
j z‰ z‰�1r � 1j

2

one directly checks the relation

lim
r!1

EPK

ˇ̌
z‰ � z‰r

ˇ̌
D 0;

which is to say that the limit
z‰ D lim

r!1

z‰r

exists in L1.Conf.D/;PK/ as well as almost surely along a subsequence.
We now compute the right-hand side of (17). In order to do so, we let K.n/ be the

orthogonal projection onto ¹1; z; : : : ; znº in L2.D/ and write

K
.n/
1 D

p
1 � jzj2K.n/

p
1 � jwj2:

We have K.n/1 ! K1 in the Hilbert–Schmidt norm as n!1, whence

det2.1CK1/ D lim
n!1

det.1CK.n/1 / � exp.� trK.n/1 /:

By definition, we have

det.1CK.n/1 / D

nY
kD0

�
1C

1

k C 2

�
D
nC 3

2
:

and
tr.K.n/1 / D

1

2
C � � � C

1

nC 1
:

Summing up, cf. (5), we obtain

det2.1CK1/ D
e�1

2
:

We, therefore, obtain an alternative representation of the Palm measure P0K with respect
to the original measure:

dP0K
dP

.X/ D
e�1

2
lim
r!1

Y
x2X Wjxj<r

jxj2 exp
�p
�1

2�

Z
¹zWjzj<rº

dz ^ d Nz

1 � jzj2

�
:

Setting D.z; R/ to be the Lobachevskian ball centered at z and of Lobachevskian
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radius R, for any q 2 D we rewrite

dPqK
dP

.X/ D
e�1

2
lim
R!1

Y
x2D.q;R/\X

ˇ̌̌̌
x � q

1 � Nqx

ˇ̌̌̌2
� exp

�p
�1

2

Z
D.q;R/

�
1 �

ˇ̌̌̌
z � q

1 � Nqz

ˇ̌̌̌2��
K.z; z/ dz ^ d Nz:

Proposition 1.1 is proved. Theorem 1.2 is proved completely.
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