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Abstract. – Volume and layer potentials are integrals on a subset Y of the Euclidean space
Rn that depend on a variable in a subset X of Rn. Here we present a unified approach to some
results by assuming that X and Y are subsets of a metric space M and that Y is equipped with a
measure � that satisfies upper Ahlfors growth conditions that include non-doubling measures.
We prove continuity statements in the frame of (generalized) Hölder spaces upon variation both
of the density functions on Y and of the off-diagonal potential kernel and T1 theorems that
generalize corresponding results of J. García-Cuerva and A. E. Gatto in case X D Y for kernels
that include the standard ones.
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1. Introduction

Volume and layer potentials are integrals on a subset Y of the Euclidean space Rn that
depend on a variable in a subset X of Rn. Typically, X and Y are either measurable
subsets of Rn with the n-dimensional Lebesgue measure, or manifolds imbedded in
Rn, or boundaries of open subsets of Rn with the surface measure and X may well be
different from Y . Here we present a unified approach to some results by assuming that
X and Y are subsets of a metric space .M; d/ and that Y is equipped with a measure
� that satisfies upper Ahlfors growth conditions that include non-doubling measures
introduced below. Let .M; d/ be a metric space and let X , Y be subsets of M .

(1.1)
Let N be a � -algebra of parts of Y; BY � N :

Let � be a measure on N :

Let �.B.x; r/ \ Y / < C1 8.x; r/ 2 X � �0;C1Œ:

Here BY denotes the � -algebra of the Borel subsets of Y and

(1.2) B.�; r/ �
®
� 2M W d.�; �/ < r

¯
; B.�; r� �

®
� 2M W d.�; �/ � r

¯
;
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for all .�; r/ 2M � �0;C1Œ. We plan to consider continuous off-diagonal kernels K
from .X � Y / nDX�Y to C, whereDX�Y denotes the diagonal set ¹.x; y/ 2 X � Y W
x D yº and formulate reasonable assumptions so that the integral operators defined by

(1.3)
Z
Y n¹xº

K.x; y/'.y/ d�.y/ 8x 2 X

are bounded from a space C 0;ˇ
b
.Y / for some ˇ 2 �0; 1� of bounded Hölder continuous

functions on Y to a space of (generalized) Hölder continuous functions on X (see the
appendix for the Hölder spaces). In particular, we plan to extend the work of García-
Cuerva and Gatto [10,11], Gatto [13] who have considered standard kernels in case
X D Y DM and proved T1 theorems.

We assume that �Y 2 �0;C1Œ and we consider two types of assumptions on �. The
first assumption is that Y is upper �Y -Ahlfors regular with respect to X , i.e., that

there exist rX;Y;�Y 2 �0;C1�; cX;Y;�Y 2 �0;C1Œ such that
�.B.x; r/ \ Y / � cX;Y;�Y r

�Y

for all x 2 X and r 2 �0; rX;Y;�Y Œ:

(1.4)

In caseX D Y , we just say that Y is upper �Y -Ahlfors regular and this is the assumption
that has been considered by García-Cuerva and Gatto [10, 11], Gatto [12, 13] in case
X D Y . See also Edmunds, Kokilashvili, and Meskhi [7, Chap. 6] in the frame of
Lebsgue spaces.

Then we consider a stronger version of the upper Ahlfors regularity. Namely, we
assume that Y is strongly upper �Y -Ahlfors regular with respect to X , i.e., that

there exist rX;Y;�Y 2 �0;C1�; cX;Y;�Y 2 �0;C1Œ such that
�
�
.B.x; r2/ n B.x; r1/

�
\ Y / � cX;Y;�Y .r

�Y
2 � r

�Y
1 /

for all x 2 X and r1; r2 2 Œ0; rX;Y;�Y Œ with r1 < r2;

(1.5)

where we understand that B.x; 0/ � ; (in case X D Y , we just say that Y is strongly
upper �Y -Ahlfors regular). So, for example, if Y is the boundary of an open Lipschitz
bounded subset ofM D Rn and � is the usual .n� 1/-dimensional measure, then Y is
upper .n � 1/-Ahlfors regular with respect to Rn and if Y is the boundary of an open
bounded subset of M D Rn of class C 1, then Y is strongly upper .n � 1/-Ahlfors
regular with respect to Y . The condition (1.5) of strong upper �Y -Ahlfors regularity
reveals to be useful in the analysis of limiting exponents.

Here we note that both the conditions above of upper Ahlfors regularity include
cases in which � does not satisfy a doubling condition. We note that Dyn’kin [5] (see
also Dyn’kin [6]) has considered the strong upper Ahlfors regularity condition (1.5) in
case X D Y is a curve in M D R2 and for the specific choice r2 D 5r , r1 D 1r for
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r 2 �0;C1Œ. The author is not aware of other references on condition (1.5). We plan
to consider “potential type” kernels as in the following definition (see also [4]).

Definition 1.6. Let X , Y �M . Let s1, s2, s3 2 R. We denote by Ks1;s2;s3.X � Y /

the set of continuous functions K from .X � Y / nDX�Y to C such that

kKkKs1;s2;s3
.X�Y / � sup

®
d.x; y/s1

ˇ̌
K.x; y/

ˇ̌
W .x; y/ 2 X � Y; x ¤ y

¯
C sup

²
d.x0; y/s2

d.x0; x00/s3

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
W

x0; x00 2 X; x0 ¤ x00; y 2 Y n B
�
x0; 2d.x0; x00/

�³
< C1:

For s2 D s1 C s3, one has the so-called class of standard kernels that is the case in
which García-Cuerva and Gatto [10,11] and Gatto [13] have proved T1 theorems for the
integral operators with kernelK in case of weakly singular, singular, and hyper-singular
integral operators with X D Y .

Here we extend some of those results also to case s2 ¤ s1 C s3, and for certain
exponents we assume the above strong upper �Y -Ahlfors regularity condition to deal
with certain limiting cases.

More precisely, we prove Proposition 5.2 on the dependence of the integral in (1.3)
in a generalized Hölder space upon variation both of the kernelK in the class of kernels
of Definition 1.6 and of the function ' in L1� .Y /. Here we mention that in the critical
case s2 D �Y , we have to resort to the condition (1.5) of strong upper �Y -Ahlfors
regularity and that the target space of the integral operator is a generalized Hölder
space.

We prove the (generalized) Hölder inequality of Proposition 5.11 that implies the
validity of the T1 Theorem 5.17, that in turn implies the continuity of the integral
in (1.3) upon variation both of the kernel K in a subclass of the class of kernels of
Definition 1.6 and of the function ' in the Hölder spaceC 0;ˇ

b
.Y /. Here we mention that

in the critical case s2 D �Y C ˇ we have to resort to the condition (1.5) of strong upper
�Y -Ahlfors regularity and that the target space of the integral operator is a generalized
Hölder space.

In Proposition 6.3, we prove the continuity for integral operators with kernels of the
form Z.x; y/.g.y/� g.x//, where Z is singular or hypersingular and g is a ˇ-Hölder
continuous function on X [ Y . Such operators find application in the proof of the
boundary behavior of the double layer potential and in particular of the tangential
gradient of the double layer potential (cf., e.g., Colton and Kress [2, p. 56], Dondi and
the author [4, §8], and Dalla Riva, Musolino, and the author [3, Thm. 4.35]).
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Finally, we prove theT1 theorem of Proposition 7.5 and the corresponding continuity
Theorem 7.12 for the integral operator of (1.3) upon perturbation of both the kernel K
and the density ' in the singular case s1 D �Y . Here we mention that in the critical
case s2 D �Y C ˇ we have resorted to the condition (1.5) of strong upper �Y -Ahlfors
regularity.

In most of the literature, potentials and corresponding applications have been
considered in case M D Rn, and Y is a subset of Rn with �Y D .n � 1/ for layer
potentials and with �Y D n for volume potentials. Far less seems to have been developed
in case �Y < .n � 1/ (cf. Selvaggi and Sisto [22]) and the results above, as well as the
above-mentioned results of García-Cuerva and Gatto offer a theoretical basis for case
�Y < .n � 1/.

2. Preliminaries on weakly singular integral operators

An off-diagonal function in X � Y is a function from .X � Y / nDX�Y to C. We now
wish to consider a specific class of off-diagonal kernels.

Definition 2.1. Let X and Y be subsets ofM . Let s 2 R. We denote by Ks;X�Y the
set of continuous functions K from .X � Y / nDX�Y to C such that

kKkKs;X�Y
� sup
.x;y/2.X�Y /nDX�Y

ˇ̌
K.x; y/

ˇ̌
d.x; y/s < C1:

The elements of Ks;X�Y are said to be kernels of potential type s in X � Y .

We now introduce the space

B.X/ � ¹f 2 CX
W f is boundedº; kf kB.X/ � sup

X

jf j 8f 2 B.X/

of bounded functions in X with the sup-norm. By the Hölder inequality, one can prove
the following (see also Prössdorf [21, p. 49]).

Theorem 2.2 (Of Hille–Tamarkin for potential operators). Let X , Y be subsets of M .
Let � be as in (1.1). Let s 2 R. Let d.x; �/�s belong to L1�.Y n ¹xº/ for all x 2 X . Let

sup
x2X

Z
Y n¹xº

d.x; y/�s d�.y/ < C1:

If .K; '/ 2Ks;X�Y � L
1
� .Y /, then the function AŒK; '� from X to C defined by

AŒK; '�.x/ �

Z
Y n¹xº

K.x; y/'.y/ d�.y/ 8x 2 X
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belongs to B.X/. Moreover, the bilinear map from Ks;X�Y �L
1
� .Y / to B.X/, which

takes .K; '/ to AŒK; '� is continuous andAŒK; '�
B.X/

� sup
x2X

Z
Y n¹xº

d.x; y/�s d�.y/kKkKs;X�Y
k'kL1� .Y /

for all .K; '/ 2Ks;X�Y � L
1
� .Y /.

3. Integrability of the function d.x; �/�s

In this section, we analyze the integrability of d.x; y/�s , both in case Y is upper
�Y -Ahlfors regular as in Gatto’s work [13, p. 104] and in case Y is strongly upper
�Y -Ahlfors regular. The proofs below are based on the use of the distribution function
(while those of Gatto [13, p. 104] are based on a dyadic decomposition).

Lemma 3.1. Let X , Y �M . Let � be as in (1.1). Let s 2 �0;C1Œ. ThenZ
.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/�s d�.y/

D s

Z r�1
2

0

t s�1�
��
Y n ¹xº

�
\
�
B.x; r2/ n B.x; r1/

��
dt

C s

Z r�1
1

r�1
2

t s�1�
��
Y n ¹xº

�
\
�
B.x; t�1/ n B.x; r1/

��
dt

and Z
.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/s d�.y/

D s

Z r1

0

t s�1�
��
Y n ¹xº

�
\
�
B.x; r2/ n B.x; r1/

��
dt

C s

Z r2

r1

t s�1�
��
Y n ¹xº

�
\
�
B.x; r2/ n B.x; t �

��
dt

for all x 2 X and r1; r2 2 Œ0;C1� with r1 < r2, where we understand that r�11 �C1
and B.x; r1/ � ; if r1 D 0 and that r�12 � 0 and B.x; r2/ � M if r2 D C1 (see
(1.2) for the definition of B.x; t �).

Proof. We first consider the first equality of the statement. Let x 2X , r1; r2 2 Œ0;C1�
with r1 < r2. Since the function d.x; �/�1 is continuous in Y n ¹xº, a known result of
real analysis implies thatZ

.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/�s d�.y/ D s

Z C1
0

t s�1md.x;�/�1.t/ dt;



m. lanza de cristoforis 200

where

md.x;�/�1.t/ � �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/�1 > t

¯�
for all t 2 Œ0;C1Œ is the distribution function associated to d.x; �/�1 (cf., e.g., Folland
[9, Prop. 6.24]). Next we note that

md.x;�/�1.t/ D �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/�1 > t

¯�
D �

�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/ < t�1

¯�
D �

���
Y n ¹xº

�
\ B.x; t�1/

�
\
�
B.x; r2/ n B.x; r1/

��
:

We also note that if t�1 � r2, i.e., t � r�12 , then

B.x; t�1/ \
�
B.x; r2/ n B.x; r1/

�
D B.x; r2/ n B.x; r1/;

and that in case r1 > 0 if 0 < t�1 � r1, i.e., t � r�11 , then

B.x; t�1/ \
�
B.x; r2/ n B.x; r1/

�
D ;;

and that if r1 < t�1 < r2, i.e., r�12 < t < r�11 with the usual understanding if r1 D 0
or if r2 D C1, then

B.x; t�1/ \
�
B.x; r2/ n B.x; r1/

�
D B.x; t�1/ n B.x; r1/:

Then we have

s

Z C1
0

t s�1md.x;�/�1.t/ dt

D s

Z C1
0

t s�1�
���
Y n ¹xº

�
\ B.x; t�1/

�
\
�
B.x; r2/ n B.x; r1/

��
dt

D s

Z r�1
2

0

t s�1�
��
Y n ¹xº

�
\
�
B.x; r2/ n B.x; r1/

��
dt

C s

Z r�1
1

r�1
2

t s�1�
��
Y n ¹xº

�
\
�
B.x; t�1/ n B.x; r1/

��
dt C s

Z C1
r�1
1

t s�1�.;/ dt;

where the first addendum in the right-hand side is absent if r2 D C1 and the last
addendum in the right-hand side is absent if r1 D 0 and is equal to zero in case r1 > 0.

We now consider the second equality of the statement. Let x 2 X , r1; r2 2 Œ0;C1�
with r1 < r2. Since the function d.x; �/ is continuous in Y n ¹xº, we haveZ

.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/s d�.y/ D s

Z C1
0

t s�1md.x;�/.t/ dt;
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where

md.x;�/.t/ � �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/ > t

¯�
for all t 2 Œ0;C1Œ is the distribution function associated to d.x; �/. Next we note that
if t 2 �0; r1Œ, then

md.x;�/.t/ D �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/ > t

¯�
D �

��
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

��
:

We also note that if t 2 Œr1; r2�, then

md.x;�/.t/ D �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/ > t

¯�
D �

��
B.x; r2/ n B.x; t �

�
\
�
Y n ¹xº

��
and that if t 2 �r2;C1Œ, we have

md.x;�/.t/ D �
�®
y 2

�
B.x; r2/ n B.x; r1/

�
\
�
Y n ¹xº

�
W d.x; y/ > t

¯�
D 0:

Hence, the formula of the statement holds true.

We are now ready to prove the following for upper Ahlfors regular sets.

Lemma 3.2. Let X , Y �M . Let �Y 2 �0;C1Œ. Let � be as in (1.1). Let Y be upper
�Y -Ahlfors regular with respect to X . Then the following statements hold.

(i) �.¹xº/ D 0 for all x 2 X \ Y .

(ii) Z
B.x;r/\Y

d.x; y/�s d�.y/ �
cX;Y;�Y �Y

�Y � s
r�Y�s 8s 2 �0; �Y Œ

and Z
B.x;r/\Y

d.x; y/�s d�.y/ � cX;Y;�Y r
�Y�s 8s 2 � �1; 0�

for all x 2 X and r 2 �0; rX;Y;�Y Œ.

Proof. (i) follows by the inequality

�
�
¹xº

�
� �

�
B.x; r/ \ Y

�
� cX;Y;�Y r

�Y 8r 2 �0; rX;Y;�Y Œ;

for all x 2 X \ Y , which holds by the upper �Y -Ahlfors regularity of Y with respect
to X . Indeed, it suffices to take the limit as r tends to 0C.



m. lanza de cristoforis 202

We now turn to prove statement (ii). If s D 0, then (ii) is an immediate consequence
of the upper �Y -Ahlfors regularity of Y with respect to X . If s 2 �0; �Y Œ, Lemma 3.1
implies thatZ

B.x;r/\.Y n¹xº/

d.x; y/�s d�.y/

D s

Z r�1

0

t s�1�
��
Y n ¹xº

�
\ B.x; r/

�
dt

C s

Z C1
r�1

t s�1�
��
Y n ¹xº

�
\ B.x; t�1/

�
dt

� s

Z r�1

0

t s�1 dt cX;Y;�Y r
�Y C s

Z C1
r�1

t s�1cX;Y;�Y .t
�1/�Y dt

D cX;Y;�Y

²
r�Y r�s C s

Z C1
r�1

t s�1��Y dt

³
� cX;Y;�Y

²
r�Y�s �

s

s � �Y
r�.s��Y /

³
D cX;Y;�Y r

�Y�s

�
1 �

s

s � �Y

�
D cX;Y;�Y

�Y

�Y � s
r�Y�s;

and thus statement (ii) holds true. If s 2 � �1; 0Œ, Lemma 3.1 implies thatZ
B.x;r/\.Y n¹xº/

d.x; y/�s d�.y/

D .�s/

Z r

0

t .�s/�1�
��
B.x; r/ n B.x; t �

�
\
�
Y n ¹xº

��
dt

� .�s/

Z r

0

t .�s/�1�
�
B.x; r/ \

�
Y n ¹xº

��
dt

� .�s/

Z r

0

t .�s/�1cX;Y;�Y r
�Y dt D cX;Y;�Y r

�Y�s

and thus statement (ii) holds true.

In the case of strongly upper Ahlfors regular sets, we can also prove the following.

Lemma 3.3. LetX , Y �M . Let �Y 2 �0;C1Œ. Let � be as in (1.1). Let Y be strongly
upper �Y -Ahlfors regular with respect to X . Then the following statements hold.

(i) �.¹y 2 Y W d.x; y/ D rº/ D 0 for all x 2 X and r 2 �0; rX;Y;�Y Œ.

(ii) If s 2 R n ¹�Y º, thenZ
.B.x;r2/nB.x;r1//\Y

d.x; y/�s d�.y/ �
cX;Y;�Y �Y

�Y � s
.r
�Y�s
2 � r

�Y�s
1 /
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for all x 2 X and r1; r2 2 �0; rX;Y;�Y Œ with r1 < r2.

(iii) Z
.B.x;r2/nB.x;r1//\Y

d.x; y/��Y d�.y/ � cX;Y;�Y �Y log
r2

r1

for all x 2 X and r1; r2 2 �0; rX;Y;�Y Œ with r1 < r2.

Proof. Statement (i) follows by the inequality

�
�®
y 2 Y W d.x; y/ D r

¯�
� �

��
B.x; r2/ n B.x; r1/

�
\ Y

�
� cX;Y;�Y .r

�Y
2 � r

�Y
1 /

for all x 2 X and r1; r2 2 Œ0; rX;Y;�Y Œ with r1 < r < r2, which holds by the strong
upper �Y -Ahlfors regularity of Y with respect to X . Indeed, it suffices to take the limit
as r1 tends to r� and r2 tends to rC.

Next we turn to prove statements (ii) and (iii). If s 2 �0;C1Œ, Lemma 3.1 implies
thatZ
.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/�s d�.y/

� s

Z r�1
2

0

t s�1�
�
Y \

�
B.x; r2/ n B.x; r1/

��
dt

C s

Z r�1
1

r�1
2

t s�1�
�
Y \

�
B.x; t�1/ n B.x; r1/

��
dt

� s

Z r�1
2

0

t s�1 dt cX;Y;�Y .r
�Y
2 � r

�Y
1 /C s

Z r�1
1

r�1
2

t s�1cX;Y;�Y
�
.t�1/�Y � r

�Y
1

�
dt

D cX;Y;�Y

²
.r
�Y
2 � r

�Y
1 /r�s2 C s

Z r�1
1

r�1
2

t s�1��Y dt � r
�Y
1 s

Z r�1
1

r�1
2

t s�1 dt

³
:

We now consider separately case s 2 �0;C1Œ n ¹�Y º of statement (ii) and case s D �Y
of statement (iii). Let s 2 �0;C1Œ n ¹�Y º. Then we haveZ

.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/�s d�.y/

� cX;Y;�Y

²
r
�Y�s
2 � r

�Y
1 r�s2 C

s

s � �Y
.r
�.s��Y /
1 � r

�.s��Y /
2 /

� r
�Y
1

�
.r�11 /s � .r�12 /s

�³
D cX;Y;�Y

²
r
�Y�s
2

�
1 �

s

s � �Y

�
C r

�Y�s
1

�
s

s � �Y
� 1

�³
D cX;Y;�Y

�Y

�Y � s

²
r
�Y�s
2 � r

�Y�s
1

³
;
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and thus statement (ii) holds true for s 2 �0;C1Œ n ¹�Y º. Now let s D �Y . Then we
haveZ
.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/��Y d�.y/

� cX;Y;�Y

²
.r
�Y
2 � r

�Y
1 /r

��Y
2 C �Y

Z r�1
1

r�1
2

t�Y�1��Y dt � r
�Y
1 �Y

Z r�1
1

r�1
2

t�Y�1 dt

³
D cX;Y;�Y

²
1 � r

�Y
1 r

��Y
2 C �Y log

r�11
r�12
� r

�Y
1

�
.r�11 /�Y � .r�12 /�Y

�³
D cX;Y;�Y �Y log

r2

r1

and thus statement (iii) holds true. Finally, we consider case s 2 � �1; 0� of (ii). If
s D 0, statement (ii) is an immediate consequence of the strong upper �Y -Ahlfors
regularity of Y with respect to X . Now let s < 0. Lemma 3.1 implies thatZ

.B.x;r2/nB.x;r1//\.Y n¹xº/

d.x; y/�s d�.y/

� .�s/

Z r1

0

t .�s/�1�
�
Y \

�
B.x; r2/ n B.x; r1/

��
dt

C .�s/

Z r2

r1

t .�s/�1�
�
Y \

�
B.x; r2/ n B.x; t/

��
dt

� r
.�s/
1 cX;Y;�Y .r

�Y
2 � r

�Y
1 /C .�s/

Z r2

r1

t .�s/�1cX;Y;�Y .r
�Y
2 � t

�Y / dt

D cX;Y;�Y

²
.r
�Y
2 � r

�Y
1 /r�s1 C .�s/

Z r2

r1

t .�s/�1 dt r
�Y
2

� .�s/

Z r2

r1

t .�s/�1C�Y dt

³
D cX;Y;�Y

²
r
�Y
2 r�s1 � r

�Y�s
1 C r

�Y
2 .r

.�s/
2 � r

.�s/
1 /

C
s

�s C �Y
.r
�sC�Y
2 � r

�sC�Y
1 /

³
D cX;Y;�Y

²
r
�Y�s
2 � r

�Y�s
1 C

s

�Y � s
r
�Y�s
2 �

s

�Y � s
r
�Y�s
1

³
D cX;Y;�Y

²
r
�Y�s
2

�
1C

s

�Y � s

�
� r

�Y�s
1

�
1C

s

�Y � s

�³
D cX;Y;�Y

�Y

�Y � s

®
r
�Y�s
2 � r

�Y�s
1

¯
:
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Then we can prove the following basic inequalities for the integral on an upper
Ahlfors regular set Y and on the intersection of Y with balls with center at a point x of
X of the powers of d.x; y/�1 with exponent s 2 � �1; �Y Œ.

Lemma 3.4. Let X , Y �M . Let �Y 2 �0;C1Œ. Let � be as in (1.1). Let Y be upper
�Y -Ahlfors regular with respect to X . Then the following statements hold.

(i) Let �.Y / < C1. If s 2 �0; �Y Œ, then

(3.5) c0s;X;Y � sup
x2X

Z
Y

d�.y/

d.x; y/s
� �.Y /a�s C cX;Y;�Y

�Y

�Y � s
a�Y�s

for all a 2 �0; rX;Y;�Y Œ. If s D 0, then

c00;X;Y � sup
x2X

Z
Y

d�.y/

d.x; y/0
D �.Y /:

(ii) Let �.Y / < C1 whenever rX;Y;�Y < C1. If s 2 � �1; �Y Œ, then

c00s;X;Y � sup
.x;t/2X��0;C1Œ

t s��Y
Z
B.x;t/\Y

d�.y/

d.x; y/s
< C1:

Proof. (i) If x 2 X \ Y , then �.¹xº/ D 0 and thus a commonly accepted abuse of
notation allows us to writeZ

Y

d�.y/

d.x; y/s
D

Z
Y n¹xº

d�.y/

d.x; y/s
:

If instead x 2 X n Y , then Y D Y n ¹xº and we haveZ
Y

d�.y/

d.x; y/s
D

Z
Y n¹xº

d�.y/

d.x; y/s
:

If s > 0, Lemma 3.2 (ii) implies thatZ
Y n¹xº

d�.y/

d.x; y/s
�

Z
Y nB.x;a/

d�.y/

d.x; y/s
C

Z
Y\.B.x;a/n¹xº/

d�.y/

d.x; y/s

� �.Y /a�s C cX;Y;�Y
�Y

�Y � s
a�Y�s 8a 2 �0; rX;Y;�Y Œ:

If s D 0, then statement (i) is trivial and thus the proof of (i) is complete.
(ii) By the same remark at the beginning of the proof of (i) and by Lemma 3.2 (ii),

we haveZ
B.x;t/\Y

d�.y/

d.x; y/s
D

Z
Y\.B.x;t/n¹xº/

d�.y/

d.x; y/s

� cX;Y;�Y max
²
1;

�Y

�Y � s

³
t�Y�s 8t 2 �0; rX;Y;�Y Œ:
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If instead rX;Y;�Y <C1 and t 2 ŒrX;Y;�Y ;C1Œ, then case t 2 �0; rX;Y;�Y Œ implies that

t s��Y
Z
B.x;t/\Y

d�.y/

d.x; y/s

D t s��Y
Z
Y\.B.x;t/n¹xº/

d�.y/

d.x; y/s

� t s��Y lim sup
�!r�

X;Y;�Y

²Z
Y\.B.x;t/nB.x;�//

d�.y/

d.x; y/s
C

Z
Y\.B.x;�/n¹xº/

d�.y/

d.x; y/s

³
� t s��Y lim sup

�!r�
X;Y;�Y

max
�2Œ�;t�

��s�.Y /C r
s��Y
X;Y;�Y

lim sup
�!r�

X;Y;�Y

Z
Y\.B.x;�/n¹xº/

d�.y/

d.x; y/s

� t s��Y max
�2ŒrX;Y;�Y ;t�

��s�.Y /C r
s��Y
X;Y;�Y

lim sup
�!r�

X;Y;�Y

cX;Y;�Y max
²
1;

�Y

�Y � s

³
��Y�s

� r
��Y
X;Y;�Y

�.Y /C cX;Y;�Y max
²
1;

�Y

�Y � s

³
;

and thus the proof of (ii) is complete.

We now estimate the integral of the powers ofd.x;y/�1with exponent s 2 Œ�Y ;C1Œ
on the complement in Y of balls with center at a point x of X .

Lemma 3.6. Let X , Y � M . Let �Y 2 �0;C1Œ. Let � be as in (1.1), �.Y / < C1.
Then the following statements hold.

(i) Let Y be upper �Y -Ahlfors regular with respect to X . If s 2 ��Y ;C1Œ, then

c000s;X;Y � sup
.x;t/2X��0;C1Œ

t s��Y
Z
Y nB.x;t/

d�.y/

d.x; y/s
< C1:

(ii) Let Y be strongly upper �Y -Ahlfors regular with respect to X . Then

civX;Y � sup
.x;t/2X��0;1=eŒ

jlog t j�1
Z
Y nB.x;t/

d�.y/

d.x; y/�Y
< C1:

Proof. (i) Let x 2X . We first consider case rX;Y;�Y <C1. If t 2 �0; rX;Y;�Y Œ, Lemma
3.1 with r1 D t , r2 D C1, and the rule of change of variables in the integrals imply
that

t s��Y
Z
Y nB.x;t/

d�.y/

d.x; y/s

D t s��Y s

Z C1
t

.1=u/s�1�
��
Y n ¹xº

�
\
�
B.x; u/ n B.x; t/

��
u�2 du
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D t s��Y s

Z rX;Y;�Y

t

u�s�1�
��
Y n ¹xº

�
\
�
B.x; u/ n B.x; t/

��
du

C t s��Y s

Z C1
rX;Y;�Y

u�s�1�
��
Y n ¹xº

�
\
�
B.x; u/ n B.x; t/

��
du

� t s��Y s

Z rX;Y;�Y

t

cX;Y;�Y u
�s�1C�Y duC t s��Y s

�
u�s

�s

�C1
uDrX;Y;�Y

�.Y /

D t s��Y
scX;Y;�Y
�Y � s

Œu�Y�s�
uDrX;Y;�Y
uDt C t s��Y r�sX;Y;�Y �.Y /

�
scX;Y;�Y
s � �Y

C r
��Y
X;Y;�Y

�.Y /:

If instead t 2 ŒrX;Y;�Y ;C1Œ, then we have

t s��Y
Z
Y nB.x;t/

d�.y/

d.x; y/s
� t s��Y t�s�.Y / � r

��Y
X;Y;�Y

�.Y /;

and thus the proof of statement (i) in case rX;Y;�Y <C1 is complete. If rX;Y;�Y DC1,
we proceed as above without the integral from rX;Y;�Y toC1.

(ii) Let t� � 1
2

min¹1=e; rX;Y;�Y º. By Lemma 3.3 (iii), we haveZ
Y nB.x;t/

d�.y/

d.x; y/�Y
D

Z
Y nB.x;t�/

d�.y/

d.x; y/�Y
C

Z
.B.x;t�/nB.x;t//\Y

d�.y/

d.x; y/�Y

� t��Y� �.Y /C cX;Y;�Y �Y log
t�

t

� t��Y� �.Y /C cX;Y;�Y �Y .log t� � log t /

� jlog t j
�
t
��Y
� �.Y /C cX;Y;�Y �Y jlog t�j

jlog t j
C cX;Y;�Y �Y

�
� jlog t j

�
t��Y� �.Y /C

�
1C jlog t�j

�
cX;Y;�Y �Y

�
for all t 2 �0; t�Œ. If t 2 Œt�; 1=eŒ, then we have

jlog t j�1
Z
Y nB.x;t/

d�.y/

d.x; y/�Y
� jlog t j�1t��Y �.Y / �

ˇ̌
log.1=e/

ˇ̌�1
t��Y� �.Y /

and thus the proof of (ii) is complete.

4. Weakly singular potential operators in spaces of essentially bounded
functions on upper Ahlfors regular subsets of M

We now prove an “action statement” by exploiting the Hille–Tamarkin theorem in case
Y is upper �Y -Ahlfors regular with respect to X .
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Proposition 4.1. Let X , Y �M . Let �Y 2 �0;C1Œ, s 2 Œ0; �Y Œ. Let � be as in (1.1),
�.Y / <C1. Let Y be upper �Y -Ahlfors regular with respect toX . Then the following
statements hold.

(i) If .K; '/ 2Ks;X�Y �L
1
� .Y /, then the functionK.x; �/'.�/ is integrable in Y for

all x 2 X and the function AŒK; '� defined by

(4.2) AŒK; '�.x/ �

Z
Y

K.x; y/'.y/ d�.y/ 8x 2 X

is bounded.

(ii) The bilinear map from Ks;X�Y �L
1
� .Y / to B.X/, which takes .K;'/ toAŒK;'�,

is continuous and the following inequality holds:

(4.3) sup
X

ˇ̌
AŒK; '�

ˇ̌
� c0s;X;Y kKkKs;X�Y

k'kL1� .Y /

for all .K; '/ 2Ks;X�Y � L
1
� .Y / (see (3.5) for c0s;X;Y ).

Proof. By Lemma 3.4 (i), we have

sup
x2X

Z
Y

d.x; y/�s d�.y/ D c0s;X;Y < C1:

Then the Hille–Tamarkin theorem (Theorem 2.2) for potential operators implies the
continuity of AŒ�; �� from Ks;X�Y � L

1
� .Y / to B.X/ and the validity of inequality

(4.3). Hence, statements (i) and (ii) hold true.

5. Conditions of action into generalized Hölder spaces for weakly
singular potential operators acting on essentially bounded functions in

upper Ahlfors regular subsets of M

Next we consider off-diagonal kernels K as in Definition 1.6. One can easily verify
that .Ks1;s2;s3.X � Y /; k � kKs1;s2;s3

.X�Y // is a Banach space. By Definition 1.6, if
s1, s2, s3 2 R, we have Ks1;s2;s3.X � Y / �Ks1;X�Y and

kKkKs1;X�Y
� kKkKs1;s2;s3

.X�Y / 8K 2Ks1;s2;s3.X � Y /:

Next we introduce a function that we need for a generalized Hölder norm. For each
� 2 �0; 1�, we define the function !� .�/ from Œ0;C1Œ to itself by setting

!� .r/ �

8̂̂<̂
:̂
0 r D 0;

r� jln r j r 2 �0; r� �;

r�
�
jln r� j r 2 �r� ;C1Œ;

where
r� � e

�1=�
8� 2 �0; 1�:
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Obviously, !� .�/ is concave and satisfies condition (A.1) of the appendix. We also note
that if D �M , then the continuous embedding

C
0;�
b
.D/ � C 0;!� .�/

b
.D/ � C 0;�

0

b
.D/

holds for all � 0 2 �0; �Œ. We refer to the appendix for the notation of (generalized) Hölder
spaces. In particular, the subscript b denotes that we are considering the intersection
of a (generalized) Hölder space with the space B.D/ of the bounded functions in D.
Next we introduce the following elementary lemma, which we exploit later and which
can be proved by the triangular inequality.

Lemma 5.1. If x0; x00 2M , x0 ¤ x00, y 2M n B.x0; 2d.x0; x00//, then

1

2
d.x0; y/ � d.x00; y/ � 2d.x0; y/:

We now consider the properties of an integral operator with a kernel in the class
Ks1;s2;s3.X � Y / and acting on essentially bounded functions on Y .

Proposition 5.2. LetX , Y �M . Let �Y 2 �0;C1Œ. Let � be as in (1.1), �.Y / <C1.
Let Y be upper �Y -Ahlfors regular with respect to X . Let

s1 2 Œ�Y � 1; �Y Œ; s1 � 0; s2 2 Œ0;C1Œ; s3 2 �0; 1�:

If s2 D �Y , we further require that Y be strongly upper �Y -Ahlfors regular with
respect to X .

If s2 > �Y , we further require that s2 < �Y C s3.
Let $ be the map from Œ0;C1Œ to itself defined by $.0/ � 0 and

(5.3) $.r/ �

8̂̂<̂
:̂
rmin¹�Y�s1;s3º if s2 < �Y ;

max
®
r�Y�s1 ; !s3.r/

¯
if s2 D �Y ;

rmin¹�Y�s1;s3C�Y�s2º if s2 > �Y ;

8r 2 �0;C1Œ:

Then the bilinear map from

Ks1;s2;s3.X � Y / � L
1
� .Y / to C

0;$.�/

b
.X/;

which takes .K; '/ to AŒK; '�, is continuous.

Proof. We first note that the inequality (4.3), the elementary inequality

kKkKs1;X�Y
� kKkKs1s2;s3

.X�Y /;
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the membership of s1 in Œ0; �Y Œ, and Lemma 3.4 imply that c0s1;X;Y is finite and that

sup
x2X

ˇ̌̌̌ Z
Y

K.x; y/'.y/ d�.y/

ˇ̌̌̌
� kKkKs1;X�Y

k'kL1� .Y /c
0
s1;X;Y

� kKkKs1s2;s3
.X�Y /k'kL1� .Y /c

0
s1;X;Y

(5.4)

for all .K;'/ 2Ks1;s2;s3.X � Y /�L
1
� .Y /. Next we turn to estimate the (generalized)

Hölder constant of AŒK; '�. We first note that �Y � s1 2 �0; 1� and that if s2 > �Y ,
then we also have

0 < �Y � s2 C s3 < s3 � 1:

Now let x0; x00 2 X , x0 ¤ x00. By the above inequality (5.4), the function AŒK; '� is
bounded. Thus there is no loss of generality in assuming that

0 < 3d.x0; x00/ � rs3 � e
�1=s3 � 1=e

(cf. Remark A.2 of the appendix). We plan to split the integral on Y that appears in the
definition of our integral operator AŒK; '� into two parts. Namely, the part of Y in the
ball B.x0; 2d.x0; x00// and the part of Y outside of the same ball. Thus we writeˇ̌

AŒK; '�.x0/ � AŒK; '�.x00/
ˇ̌

�

ˇ̌̌̌ Z
B.x0;2d.x0;x00//\Y

K.x0; y/'.y/ d�.y/

�

Z
B.x0;2d.x0;x00//\Y

K.x00; y/'.y/ d�.y/

ˇ̌̌̌
C

ˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

�
K.x0; y/ �K.x00; y/

�
'.y/ d�.y/

ˇ̌̌̌
� k'kL1� .Y /

²Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x0; y/

ˇ̌
d�.y/

C

Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x00; y/

ˇ̌
d�.y/

C

Z
Y nB.x0;2.x0;x00//

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
d�.y/

³
:

Since s1 2 Œ0; �Y Œ, we would like to apply Lemma 3.4 (ii) in order to estimate the first
two integrals in the right-hand side. However, we note that in the second one we have
jK.x00; y/j, while the center of the ball of integration is in x0 and not in x00 that is the
first argument in jK.x00; y/j. Thus we observe that

B
�
x0; 2d.x0; x00/

�
� B

�
x00; 3d.x0; x00/

�
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and that the triangular inequality implies thatˇ̌
AŒK; '�.x0/ � AŒK; '�.x00/

ˇ̌
� k'kL1� .Y /

²Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x0; y/

ˇ̌
d�.y/

C

Z
B.x00;3d.x0;x00//\Y

ˇ̌
K.x00; y/

ˇ̌
d�.y/

C

Z
Y nB.x0;2d.x0;x00//

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
d�.y/

³
:

(5.5)

Since s1 2 Œ0; �Y Œ, Lemma 3.4 (ii) implies thatZ
B.x0;2d.x0;x00//\Y

ˇ̌
K.x0; y/

ˇ̌
d�.y/C

Z
B.x00;3d.x0;x00//\Y

ˇ̌
K.x00; y/

ˇ̌
d�.y/

� kKkKs1;s2;s3
.X�Y /

²Z
B.x0;2d.x0;x00//\Y

d�.y/

d.x0; y/s1

C

Z
B.x00;3d.x0;x00//\Y

d�.y/

d.x00; y/s1

³
� kKkKs1;s2;s3

.X�Y /2c
00
s1;X;Y

3�Y�s1d.x0; x00/�Y�s1 :

(5.6)

Hence, we can estimate the integrals in inequality (5.5) on the part of Y in the ball
B.x0; 2d.x0; x00// in terms of the power d.x0; x00/�Y�s1 . We now try to estimate the
integral on the part of Y that is outside of the same ball. To do so, we observe thatZ

Y nB.x0;2d.x0;x00//

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
d�.y/

� kKkKs1;s2;s3
.X�Y /

Z
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d�.y/

(5.7)

for all s2 2 Œ0;C1Œ and s3 2 �0; 1�. If s2 2 Œ0; �Y Œ, Lemma 3.4 (i) implies that

(5.8)
Z
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d�.y/ � c0s2;X;Y d.x

0; x00/s3 :

Then the above inequalities (5.5), (5.6), (5.7), and (5.8) imply that we can estimate
jAŒK; '�.x0/ � AŒK; '�.x00/j in terms of the powers d.x0; x00/�Y�s1 and d.x0; x00/s3
for 3d.x0; x00/ � rs3 < 1. Since we can estimate supY jAŒK;'�j by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement.

If s2 D �Y , Lemma 3.6 (ii) implies thatZ
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d�.y/ � civX;Y d.x

0; x00/s3
ˇ̌
ln
�
2d.x0; x00/

�ˇ̌
� civX;Y d.x

0; x00/s3
�
1C

ˇ̌
ln d.x0; x00/

ˇ̌�
:

(5.9)
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Then the above inequalities (5.5), (5.6), (5.7), and (5.9) imply that we can estimate
jAŒK; '�.x0/ � AŒK; '�.x00/j in terms of

d.x0; x00/�Y�s1 ; d.x0; x00/s3 ; d.x0; x00/s3
ˇ̌
ln
�
d.x0; x00/

�ˇ̌
for 3d.x0; x00/ � rs3 < 1. Since we can estimate supY jAŒK;'�j by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement.

If s2 2 ��Y ;C1Œ, Lemma 3.6 (i) implies that

(5.10)
Z
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d�.y/ � c000s2;X;Y 2

�Y�s2d.x0; x00/�Y�s2Cs3 :

Then the above inequalities (5.5), (5.6), (5.7), and (5.10) imply that we can estimate
jAŒK; '�.x0/ � AŒK; '�.x00/j in terms of d.x0; x00/�Y�s1 and d.x0; y/�Y�s2Cs3 for
3d.x0; x00/ � rs3 < 1. Since we can estimate supY jAŒK; '�j by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement.

In case the density or moment ' is Hölder continuous in Y , then we can prove the
following.

Proposition 5.11. Let X , Y �M . Let

�Y 2 �0;C1Œ; s1 2 Œ0; �Y Œ; ˇ 2 �0; 1�; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1. Let Y be upper �Y -Ahlfors regular with respect
to X .

If s2 � ˇ D �Y , we further require that Y be strongly upper �Y -Ahlfors regular
with respect to X .

If s2 � ˇ > �Y , we further require that s3 C �Y � .s2 � ˇ/ > 0.
Then there exists c > 0 such that the function AŒK; '� defined by (4.2) satisfies the

following inequality:ˇ̌
AŒK; '�.x0/ � AŒK; '�.x00/

ˇ̌
� ckKkKs1;s2;s3

.X�Y /k'kC0;ˇ
b

.Y /
!
�
d.x0; x00/

�
C
ˇ̌
AŒK; 1�.x0/ � AŒK; 1�.x00/

ˇ̌
sup
Y

j'j 8x0; x00 2 X; d.x0; x00/ �
1

3
rs3 ;

(5.12)

for all .K; '/ 2Ks1;s2;s3.X � Y / � C
0;ˇ

b
.Y /, where !.0/ � 0 and

(5.13) !.r/ �

8̂̂<̂
:̂
rmin¹�Y�s1Cˇ;s3º if s2 � ˇ < �Y ;
max

®
r�Y�s1Cˇ ; !s3.r/

¯
if s2 � ˇ D �Y ;

rmin¹�Y�s1Cˇ;s3C�Y�.s2�ˇ/º if s2 � ˇ > �Y ;

8r 2 �0;C1Œ:
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Proof. Let .K; '/ 2 Ks1;s2;s3.X � Y / � C
0;ˇ

b
.Y /. Since s1 2 Œ0; �Y Œ, the Hille–

Tamarkin proposition (Proposition 4.1) implies that K.x; �/'.�/ is integrable in Y for
all x in X and that the function AŒK; '� is bounded in X . Since the statement is trivial
for d.x0; x00/ D 0, it suffices to assume that d.x0; x00/ > 0. Since ' 2 C 0;ˇ

b
.Y /, the

McShane extension theorem (Theorem A.3 of the appendix) implies that there exists
z' 2 C

0;ˇ

b
.M/ such that

(5.14) sup
M

jz'j D sup
Y

j'j; jz' WM jˇ D j' W Y jˇ ; kz'kC0;ˇ
b

.M/
D k'k

C
0;ˇ

b
.Y /
:

By the triangular inequality, we haveˇ̌
AŒK; '�.x0/ � AŒK; '�.x00/

ˇ̌
�

ˇ̌̌̌ Z
Y

�
K.x0; y/ �K.x00; y/

��
z'.y/ � z'.x0/

�
d�.y/

ˇ̌̌̌
C
ˇ̌
z'.x0/

ˇ̌ˇ̌̌̌ Z
Y

�
K.x0; y/ �K.x00; y/

�
d�.y/

ˇ̌̌̌
:

(5.15)

Since supM jz'j D supY j'j, second addendum in the right-hand side is less or equal toˇ̌
AŒK; 1�.x0/ � AŒK; 1�.x00/

ˇ̌
sup
Y

j'j:

We now estimate the first addendum. The idea is to split it into two parts. Namely, the
part of Y in the ball B.x0; 2d.x0; x00// and the part of Y outside of the same ball. Thus
we writeˇ̌̌̌ Z

Y

�
K.x0; y/ �K.x00; y/

��
z'.y/ � z'.x0/

�
d�.y/

ˇ̌̌̌
�

Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x0; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ

C

Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x00; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ

C

Z
Y nB.x0;2d.x0;x00//

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ :

Since s1 2 Œ0; �Y Œ, we would like to apply Lemma 3.4 (ii) in order to estimate the first
two integrals in the right-hand side. However, we note that in the second one we have
jK.x00; y/j, while the center of the ball of integration is in x0 and not in x00 that is the
first argument in jK.x00; y/j. It is enough to observe that

B
�
x0; 2d.x0; x00/

�
� B

�
x00; 3d.x0; x00/

�
:
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We also observe that the factor d.y; x0/ˇ of jK.x00; y/j in the second integral in the
right-hand side contains d.y; x0/ and instead we would like to have d.y; x00/, because
the first argument of jK.x00; y/j is x00 and not x0. It is enough to remember the Yensen
inequality

d.y; x0/ˇ � d.y; x00/ˇ C d.x0; x00/ˇ ;

and we deduce thatˇ̌̌̌ Z
Y

�
K.x0; y/ �K.x00; y/

��
z'.y/ � z'.x0/

�
d�.y/

ˇ̌̌̌
�

Z
B.x0;2d.x0;x00//\Y

ˇ̌
K.x0; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ

C

Z
B.x00;3d.x0;x00//\Y

ˇ̌
K.x00; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ

C

Z
Y nB.x0;2d.x0;x00//

ˇ̌
K.x0; y/ �K.x00; y/

ˇ̌
d.y; x0/ˇ d�.y/jz' WM jˇ

� kKkKs1;s2;s3
.X�Y /jz' WM jˇ

�

²Z
B.x0;2d.x0;x00//\Y

d�.y/

d.y; x0/s1�ˇ

C

Z
B.x00;3d.x0;x00//\Y

d.x0; x00/ˇ d�.y/

d.y; x00/s1

C

Z
B.x00;3d.x0;x00//\Y

d�.y/

d.y; x00/s1�ˇ

C

Z
Y nB.x0;2d.x0;x00//

d.x0; x00/s3d.x0; y/ˇ d�.y/

d.x0; y/s2

³
:

Then by Lemma 3.4 (ii), we haveˇ̌̌̌ Z
Y

�
K.x0; y/ �K.x00; y/

��
z'.y/ � z'.x0/

�
d�.y/

ˇ̌̌̌
� kKkKs1;s2;s3

.X�Y /jz' WM jˇ

�

²
c00s1�ˇ;X;Y 2

�Y�s1Cˇd.x0; x00/�Y�s1Cˇ

C d.x0; x00/ˇc00s1;X;Y 3
�Y�s1d.x0; x00/�Y�s1

C c00s1�ˇ;X;Y 3
�Y�s1Cˇd.x0; x00/�Y�s1Cˇ

C d.x0; x00/s3
Z
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ

³
:

(5.16)
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At this point, we distinguish three cases. If s2 � ˇ 2 Œ0; �Y Œ, then Lemma 3.4 (i) implies
that Z

Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
�

Z
Y

d�.y/

d.x0; y/s2�ˇ
� c0s2�ˇ;X;Y :

Since 0 < d.x0; x00/ � rs3 � e�1=s3 � 1=e < 1, we have

d.x0; x00/�Y�s1Cˇ � d.x0; x00/min¹�Y�s1Cˇ;s3º;

d.x0; x00/s3 � d.x0; x00/min¹�Y�s1Cˇ;s3º;

and thus inequality (5.16) implies that we can estimate the first term in the right-hand
side of (5.15) in terms of the power d.x0; x00/min¹�Y�s1Cˇ;s3º. Hence, equalities (5.14),
inequalities (5.15) and (5.16) imply that there exists c > 0 such that inequality (5.12)
holds with

!.r/ D rmin¹�Y�s1Cˇ;s3º 8r 2 �0;C1Œ

and the proof of this case is complete.
If s2 � ˇ D �Y , then Lemma 3.6 (ii) and inequality 0 < 2d.x0; x00/ � 1=e imply

that Z
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
� civX;Y

ˇ̌
ln
�
2d.x0; x00/

�ˇ̌
� civX;Y

�
1C

ˇ̌
ln d.x0; x00/

ˇ̌�
;

and thus inequality (5.16) implies that we can estimate the first term in the right-
hand side of (5.15) in terms of the powers d.x0; x00/�Y�s1Cˇ , d.x0; x00/s3 and of
d.x0; x00/s3 jlnd.x0; x00/j. Hence, equalities (5.14), inequalities (5.15) and (5.16) imply
that there exists c > 0 such that inequality (5.12) holds with

!.r/ D max
®
r�Y�s1Cˇ ; rs3 ; !s3.r/

¯
8r 2 �0;C1Œ:

Since max¹r�Y�s1Cˇ ; rs3 ;!s3.r/ºDmax¹r�Y�s1Cˇ ;!s3.r/º for r 2 �0; rs3 Œ, the proof
of this case is complete.

If s2 � ˇ > �Y , then Lemma 3.6 (i) implies thatZ
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
� c000s2�ˇ;X;Y 2

�Y�.s2�ˇ/d.x0; x00/�Y�.s2�ˇ/:

Since 0 < d.x0; x00/ � rs3 � e�1=s3 � 1=e < 1, and s3 C �Y � .s2 � ˇ/ > 0, we have

d.x0; x00/�Y�s1Cˇ � d.x0; x00/min¹�Y�s1Cˇ;s3C�Y�.s2�ˇ/º;

d.x0; x00/s3C�Y�.s2�ˇ/ � d.x0; x00/min¹�Y�s1Cˇ;s3C�Y�.s2�ˇ/º;
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and thus inequality (5.16) implies that we can estimate the first term in the right-hand
side of (5.15) in terms of d.x0;x00/min¹�Y�s1Cˇ;s3C�Y�.s2�ˇ/º. Hence, equalities (5.14),
inequalities (5.15) and (5.16) imply that there exists c > 0 such that inequality (5.12)
holds with

!.r/ D rmin¹�Y�s1Cˇ;s3C�Y�.s2�ˇ/º 8r 2 �0;C1Œ;

and thus the proof of this last case is complete.

Then we have the following immediate consequence of Proposition 5.11 (see also
Proposition 4.1 and Remark A.2), that can be considered a “T1 theorem” for weakly
singular integral operators acting in Hölder spaces of the sort of a corresponding result
of Gatto [13, Thm. 1] who considered case X D Y , Y upper �Y -Ahlfors regular in
the case s2 D s1 C s3, rX;Y;�Y D C1 that we also consider as a specific case in the
statement below. Thus the following theorem can be considered an extension of Gatto’s
theorem [13, Thm. 1].

Theorem 5.17. Let X , Y �M . Let

�Y 2 �0;C1Œ; s1 2 Œ0; �Y Œ; ˇ 2 �0; 1�; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1. Let Y be upper �Y -Ahlfors regular with respect
to X .

If s2 � ˇ D �Y , we further require that Y be strongly upper �Y -Ahlfors regular
with respect to X .

If s2 � ˇ > �Y , we further require that

s3 C �Y � .s2 � ˇ/ > 0:

Let ! be as in (5.13). Let K 2 Ks1;s2;s3.X � Y /. Then the following statements are
equivalent.

(i) The linear operator AŒK; �� from C
0;ˇ

b
.Y / to C 0;!.�/

b
.X/ that takes ' to AŒK; '�

is continuous.

(ii) The functionAŒK;1� fromX to C that takesx toAŒK;1�.x/ belongs toC 0;!.�/
b

.X/.

Under the assumptions of Theorem 5.17, one could consider the vector space
K
!.�/
s1;s2;s3.X�Y / of thoseK2Ks1;s2;s3.X�Y / such thatAŒK;1� belongs toC 0;!.�/.X/,

introduce the norm

kKk
K
!.�/
s1;s2;s3

.X�Y /
� kKkKs1;s2;s3

.X�Y / C
ˇ̌
AŒK; 1� W X

ˇ̌
!.�/

for allK 2K
!.�/
s1;s2;s3.X � Y /, and conclude that AŒ�; �� is bilinear and continuous from

K
!.�/
s1;s2;s3.X � Y / � C

0;ˇ

b
.Y / to C 0;!.�/

b
.X/ (cf. Proposition 5.11).
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6. Analysis of an integral operator with a specific kernel

LetX , Y be subsets ofM . Let � be as in (1.1). We plan to analyze the integral operator

(6.1) QŒZ; g; 1�.x/ �

Z
Y

Z.x; y/
�
g.x/ � g.y/

�
d�.y/ 8x 2 X;

where Z belongs to a class Ks1;s2;s3.X � Y / as in Definition 1.6 and g is a C-valued
function in Y . We exploit the operator in (6.1) in the next section and we note that
operators as in (6.1) appear in the applications (cf., e.g., Colton and Kress [2, p. 56] and
Dondi and the author [4, §8]). In order to estimate the Hölder quotient of QŒZ; g; 1�,
we need to introduce a further norm for kernels.

Definition 6.2. Let X , Y �M . Let � be as in (1.1). Let s1, s2, s3 2 R. We set

K]
s1;s2;s3

.X � Y / �

²
K 2Ks1;s2;s3.X � Y / W

K.x; �/ is � � integrable in Y n B.x; r/ for all .x; r/ 2 X � �0;C1Œ;

sup
x2X

sup
r2�0;C1Œ

ˇ̌̌̌ Z
Y nB.x;r/

K.x; y/ d�.y/

ˇ̌̌̌
< C1

³
and

kKk
K
]
s1;s2;s3

.X�Y /
� kKkKs1;s2;s3

.X�Y /

C sup
x2X

sup
r2�0;C1Œ

ˇ̌̌̌ Z
Y nB.x;r/

K.x; y/ d�.y/

ˇ̌̌̌
8K 2K]

s1;s2;s3
.X � Y /:

Clearly, .K]
s1;s2;s3.X � Y /; k � kK]

s1;s2;s3
.X�Y /

/ is a normed space. By definition,
K
]
s1;s2;s3.X � Y / is continuously embedded into the space Ks1;s2;s3.X � Y /. We are

now ready to prove the following statement on the Hölder continuity of QŒZ; g; 1�
that extends some work of Gatto [13, Proof of Thm. 3, Thm. 4]. Here we note that
C 0;ˇ .X [ Y / is endowed with the seminorm j� W X [ Y jˇ .

Proposition 6.3. Let X , Y �M . Let

�Y 2 �0;C1Œ; ˇ 2 �0; 1�; s1 2 Œˇ; �Y C ˇŒ; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1. Then the following statements hold.

(i) If s1 < �Y , then the following statements hold.

(a) If s2 � ˇ > �Y , s2 < �Y C ˇC s3, and Y is upper �Y -Ahlfors regular with
respect to X , then the bilinear map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to C

0;min¹ˇ;�YCs3Cˇ�s2º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.
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(aa) If s2 � ˇ D �Y and Y is strongly upper �Y -Ahlfors regular with respect
to X , then the bilinear map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to C

0;max¹rˇ ;!s3 .r/º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(aaa) If s2 � ˇ < �Y and Y is upper �Y -Ahlfors regular with respect to X , then
the bilinear map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to C

0;min¹ˇ;s3º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(ii) If s1 D �Y , then the following statements hold.

(b) If s2 � ˇ > �Y , s2 < �Y C ˇC s3, and Y is upper �Y -Ahlfors regular with
respect to X , then the bilinear map from

K]
s1;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;min¹ˇ;�YCs3Cˇ�s2º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(bb) If s2 � ˇ D �Y and Y is strongly upper �Y -Ahlfors regular with respect
to X , then the bilinear map from

K]
s1;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;max¹rˇ ;!s3 .r/º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(bbb) If s2 � ˇ < �Y and Y is upper �Y -Ahlfors regular with respect toX , then
the bilinear map from

K]
s1;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;min¹ˇ;s3º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(iii) If s1 > �Y , then the following statements hold.

(c) If s2 � ˇ > �Y , s2 < �Y C ˇC s3, and Y is upper �Y -Ahlfors regular with
respect to X , then the bilinear map from

Ks1;s2;s3.X�Y /�C
0;ˇ .X[Y / to C

0;min¹�YCˇ�s1;�YCs3Cˇ�s2º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.



integral operators in hölder spaces 219

(cc) If s2 � ˇ D �Y and Y is strongly upper �Y -Ahlfors regular with respect
to X , then the bilinear map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to C

0;max¹r�YCˇ�s1 ;!s3 .r/º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

(ccc) If s2 � ˇ < �Y and Y is upper �Y -Ahlfors regular with respect to X , then
the bilinear map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to C

0;min¹�Y�.s1�ˇ/;s3º
b

.X/;

which takes .Z; g/ to QŒZ; g; 1�, is continuous.

Proof. By the elementary inequalityˇ̌
Z.x; y/

�
g.x/ � g.y/

�ˇ̌
�
jg W X [ Y jˇ

d.x; y/s1�ˇ
kZkKs1;s2;s3

.X�Y / 8.x; y/ 2 .X � Y / nDX�Y

for all .Z; g/ 2Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y /, the map from

Ks1;s2;s3.X � Y / � C
0;ˇ .X [ Y / to Ks1�ˇ;X�Y

that takes .Z; g/ to the kernel Z.x; y/.g.x/� g.y// is bilinear and continuous. Since
s1 � ˇ 2 Œ0; �Y Œ, Proposition 4.1 (ii) implies that the map QŒ�; �; 1� is bilinear and
continuous from Ks1;s2;s3.X � Y / � C

0;ˇ .X [ Y / to B.X/ under the assumptions
of all the statements (i)–(iii).

We now turn to estimate the Hölder quotient of QŒZ; g; 1�, under the assumptions
of all the statements (i)–(iii). Let x0, x00 2X . By Remark A.2 of the appendix, it suffices
to consider case 0 < 3d.x0; x00/ � rs3 � e�1=s3.� 1=e < 1/. Then Lemma 3.4 and the
inclusion B.x0; 2d.x0; x00// � B.x00; 3d.x0; x00// imply that

ˇ̌
QŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/

ˇ̌(6.4)

D

ˇ̌̌̌ Z
Y

Z.x0; y/
�
g.y/ � g.x0/

�
d�.y/ �

Z
Y

Z.x00; y/
�
g.y/ � g.x00/

�
d�.y/

ˇ̌̌̌
�

Z
Y\B.x0;2d.x0;x00//

ˇ̌
Z.x0; y/

ˇ̌ ˇ̌
g.y/ � g.x0/

ˇ̌
d�.y/

C

Z
Y\B.x0;2d.x0;x00//

ˇ̌
Z.x00; y/

ˇ̌ ˇ̌
g.y/ � g.x00/

ˇ̌
d�.y/

C

ˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

Z.x0; y/
�
g.y/ � g.x0/

�
�Z.x00; y/

�
g.y/ � g.x00/

�
d�.y/

ˇ̌̌̌
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� kZkKs1;X�Y
jg W X [ Y jˇ

²Z
Y\B.x0;2d.x0;x00//

d�.y/

d.x0; y/s1�ˇ

C

Z
Y\B.x00;3d.x0;x00//

d�.y/

d.x00; y/s1�ˇ

³
C

ˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

Z.x0; y/
��
g.y/ � g.x0/

�
�
�
g.y/ � g.x00/

��
d�.y/

ˇ̌̌̌
C

ˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

�
Z.x0; y/ �Z.x00; y/

��
g.y/ � g.x00/

�
d�.y/

ˇ̌̌̌
� kZkKs1;X�Y

jg W X [ Y jˇc
00
s1�ˇ;X;Y

�

²�
2d.x0; x00/

��Y�.s1�ˇ/
C
�
3d.x0; x00/

��Y�.s1�ˇ/³
C

ˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

Z.x0; y/ d�.y/

ˇ̌̌̌
jg W X [ Y jˇd.x

0; x00/ˇ

C kZkKs1;s2;s3
.X�Y /jg WX[Y jˇ

Z
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d.y; x00/ˇ d�.y/:

We now turn to estimate the second addendum in the right-hand side of (6.4). If s1 < �Y ,
then Lemma 3.4 (i) implies thatˇ̌̌̌ Z

Y nB.x0;2d.x0;x00//

Z.x0; y/ d�.y/

ˇ̌̌̌
jg W X [ Y jˇd.x

0; x00/ˇ

� kZkKs1;X�Y
c0s1;X;Y jg W X [ Y jˇd.x

0; x00/ˇ :

(6.5)

If s1 D �Y , then the definition of the norm in K
]
s1;s2;s3.X � Y / implies thatˇ̌̌̌ Z

Y nB.x0;2d.x0;x00//

Z.x0; y/ d�.y/

ˇ̌̌̌
jg W X [ Y jˇd.x

0; x00/ˇ

� kZk
K
]
s1;s2;s3

.X�Y /
jg W X [ Y jˇd.x

0; x00/ˇ :

(6.6)

If s1 > �Y , then Lemma 3.6 (i) implies thatˇ̌̌̌ Z
Y nB.x0;2d.x0;x00//

Z.x0; y/ d�.y/

ˇ̌̌̌
jg W X [ Y jˇd.x

0; x00/ˇ

� kZkKs1;X�Y
c000s1;X;Y jg W X [ Y jˇd.x

0; x00/�Y�s1d.x0; x00/ˇ :

(6.7)

We now turn to estimate the last integral in the right-hand side of (6.4) by exploiting
Lemma 3.6. To do so, however, we need to replace the factor d.y; x00/ˇ by a constant
multiple of d.y; x0/ˇ . Thus we note that the elementary Lemma 5.1 implies that

d.y; x00/ � 2d.x0; y/ 8y 2 Y n B
�
x0; 2d.x0; x00/

�
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and we conclude thatZ
Y nB.x0;2d.x0;x00//

d.x0; x00/s3

d.x0; y/s2
d.y; x00/ˇ d�.y/

� 2ˇ
Z
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
d.x0; x00/s3 :

(6.8)

We now distinguish three cases. If s2 � ˇ > �Y , then Lemma 3.6 (i) implies thatZ
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
d.x0; x00/s3

� c000s2�ˇ;X;Y d.x
0; x00/�Y�.s2�ˇ/d.x0; x00/s3

D c000s2�ˇ;X;Y d.x
0; x00/�YCs3Cˇ�s2 :

(6.9)

If s2 � ˇ D �Y , then Lemma 3.6 (ii) implies thatZ
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
d.x0; x00/s3

� civX;Y
ˇ̌
log

�
2d.x0; x00/

�ˇ̌
d.x0; x00/s3

� civX;Y
ˇ̌
log d.x0; x00/

ˇ̌
d.x0; x00/s3

�
1C

log 2ˇ̌
log d.x0; x00/

ˇ̌�
� 2civX;Y

ˇ̌
log d.x0; x00/

ˇ̌
d.x0; x00/s3 :

(6.10)

If s2 � ˇ < �Y , then Lemma 3.4 (i) implies that

(6.11)
Z
Y nB.x0;2d.x0;x00//

d�.y/

d.x0; y/s2�ˇ
d.x0; x00/s3 � c0s2�ˇ;X;Y d.x

0; x00/s3 :

We are now ready to estimate jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j. We first consider
statement (i), where s1 < �Y .

If s2 � ˇ > �Y , inequalities (6.4), (6.5), (6.8), and (6.9) imply that we can estimate
jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; d.x0; x00/�YCs3Cˇ�s2 :

Then we observe that condition 0 < d.x0; x00/ � rs3 � e�1=s3 � 1=e < 1, as well as
the inequalities �Y � .s1 � ˇ/ > 0, �Y C s3 C ˇ � s2 > 0, imply that

d.x0; x00/�Y�.s1�ˇ/ � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ;�YCs3Cˇ�s2º;

d.x0; x00/ˇ � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ;�YCs3Cˇ�s2º;

d.x0; x00/�YCs3Cˇ�s2 � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ;�YCs3Cˇ�s2º:

Since ˇ < �Y � .s1 � ˇ/, we conclude that statement (a) holds true.
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If s2 � ˇD �Y , inequalities (6.4), (6.5), (6.8), and (6.10) imply that we can estimate
jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; !s3
�
d.x0; x00/

�
:

Then we observe that condition

0 < d.x0; x00/ � rs3 � e
�1=s3 � 1=e < 1

implies that

d.x0; x00/�Y�.s1�ˇ/ � max
®
d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; !s3

�
d.x0; x00/

�¯
;

d.x0; x00/ˇ � max
®
d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; !s3

�
d.x0; x00/

�¯
;ˇ̌

log d.x0; x00/
ˇ̌
d.x0; x00/s3 � max

®
d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; !s3

�
d.x0; x00/

�¯
:

Since ˇ < �Y � .s1 � ˇ/, we conclude that statement (aa) holds true.
If s2 � ˇ < �Y , inequalities (6.4), (6.5), (6.8), and (6.11) imply that we can estimate

jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; d.x0; x00/s3 :

Then we observe that condition

0 < d.x0; x00/ � rs3 � e
�1=s3 � 1=e < 1

implies that

d.x0; x00/�Y�.s1�ˇ/ � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ;s3º;

d.x0; x00/ˇ � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ; s3º;

d.x0; x00/s3 � d.x0; x00/min¹�Y�.s1�ˇ/;ˇ;s3º:

Since ˇ < �Y � .s1 � ˇ/, we conclude that statement (aaa) holds true.
The proof of statements (ii) and (iii) can be completed by arguments that are similar

to those of statement (i). Thus we only sketch the proofs.
So we now prove (ii), where s1 D �Y . If s2 � ˇ > �Y , inequalities (6.4), (6.6),

(6.8), and (6.9) imply that we can estimate jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms
of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; d.x0; x00/�YCs3Cˇ�s2 ;

where �Y � .s1 � ˇ/ D ˇ. Then inequalities �Y � .s1 � ˇ/ D ˇ > 0 and �Y C s3 C
ˇ � s2 > 0 imply that statement (b) holds true.
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If s2 � ˇD �Y , inequalities (6.4), (6.6), (6.8), and (6.10) imply that we can estimate
jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; !s3
�
d.x0; x00/

�
;

where �Y � .s1 � ˇ/ D ˇ. Hence, statement (bb) holds true.
If s2 � ˇ < �Y , inequalities (6.4), (6.6), (6.8), and (6.11) imply that we can estimate

jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/ˇ ; d.x0; x00/s3 ;

where �Y � .s1 � ˇ/ D ˇ. Then inequality �Y � .s1 � ˇ/ D ˇ > 0 implies that
statement (bbb) holds true.

Finally, we consider statement (iii), where s1 > �Y .
If s2 � ˇ > �Y , inequalities (6.4), (6.7), (6.8), and (6.9) imply that we can estimate

jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/�YCs3Cˇ�s2 :

Then inequalities �Y � .s1 � ˇ/ > 0 and �Y C s3 C ˇ � s2 > 0 imply that statement
(c) holds true.

If s2 � ˇD �Y , inequalities (6.4), (6.7), (6.8), and (6.10) imply that we can estimate
jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of

d.x0; x00/�Y�.s1�ˇ/; !s3
�
d.x0; x00/

�
:

Hence, statement (cc) holds true.
If s2 � ˇ < �Y , inequalities (6.4), (6.7), (6.8), and (6.11) imply that we can estimate

jQŒZ; g; 1�.x0/ �QŒZ; g; 1�.x00/j in terms of the powers

d.x0; x00/�Y�.s1�ˇ/; d.x0; x00/s3 :

Hence, statement (ccc) holds true.

It is interesting to note that although the integrand in (6.1) that definesQŒZ;g;1�.x/
displays a weak singularity at y D x when .Z;g/ belongs to K�Y ;X�Y �C

0;ˇ .X [ Y /,
the estimates of the Hölder quotient of QŒZ; g; 1� of Proposition 6.3 (ii) require that
Z 2K

]
�Y ;s2;s3.X � Y /, i.e., we can estimate

sup
x2X

sup
r2�0;C1Œ

ˇ̌̌̌ Z
Y nB.x;r/

Z.x; y/ d�.y/

ˇ̌̌̌
and that the singularity of Z.x; y/ at y D x is not weak. Due to the importance of
such estimate, one can understand the importance of the following classical definition.
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Definition 6.12. Let X , Y �M . Let � be as in (1.1). Let s1 2 R. If K 2Ks1;X�Y

and if K.x; �/ is �-integrable in Y n B.x; r/ for all .x; r/ 2 X � �0;C1Œ, then we set

A]ŒK; 1�.x/ � sup
r2�0;C1Œ

ˇ̌̌̌ Z
Y nB.x;r/

K.x; y/ d�.y/

ˇ̌̌̌
8x 2 X:

The function A]ŒK; 1� is said to be the maximal function associated to the kernel K.

So the estimates of the Hölder constant ofQŒZ;g; 1� of Proposition 6.3 (ii) requires
that we can estimate the maximal function A]ŒZ; 1� associated to the kernel Z.

Example 6.13. Let n � 2 be a natural number and let � be a bounded open subset of
classC 1 of Rn. LetZdl be the kernel of the double layer potential on @� corresponding
to the fundamental solution of the Laplace operator. Let � be the ordinary surface
measure on @�. Then @� is strongly upper .n � 1/-Ahlfors regular (with respect to
@�) and one can verify the following.

(i) If s3; ˇ 2 �0; 1Œ, ˇ C s3 > 1 and� is of class C 1;s3 , then the tangential gradient
gradx Zdl.x; y/ belongs to .Kn�s3;n;s3.@� � @�//

n (cf. [16, §4]) and Propo-
sition 6.3 (iii)(c) implies that QŒgradx Zdl ; �; 1� is linear and continuous from
C 0;ˇ .@�/ to C 0;s3Cˇ�1.@�;Rn/ (see Miranda [20, Statement 15.VI], where
the author mentions a result of Giraud [14]. For case n D 2, see Fichera and
De Vito [8, Statement LXXXIII]).

(ii) If s3 2 �0; 1Œ, ˇ D 1 and � is of class C 1;s3 , then the tangential gradient
gradx Zdl.x; y/ belongs to .Kn�s3;n;s3.@� � @�//

n (cf. [16, §4]) and Propo-
sition 6.3 (iii)(cc) implies that QŒgradx Zdl ; �; 1� is linear and continuous from
C 0;ˇ .@�/ to C 0;!s3 .�/.@�;Rn/.

Actually, Proposition 6.3 can be applied to analyze the properties of the double layer
potential corresponding to more general second order elliptic differential operators
with constant coefficients, but we have no room to show it here (see [16]).

Example 6.14. Let n � 2 be a natural number. Let

X D Bn.0; 1/ �
®
x 2 Rn W jxj < 1

¯
; Y D Rn:

Let ı;  2 �0;C1Œ. Then Y is strongly upper n-Ahlfors regular with respect to X and
the (nonstandard) kernel

Lı; .x; y/ �

ˇ̌
sin
�
jx � yj�ı

�ˇ̌ 1
ıC1

jx � yj
8.x; y/ 2 X � Y nDX�Y
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belongs to the class K;C1; 1
ıC1

.X � Y /. If ˇ 2 � ı
ıC1

; 1�,  2 �n; nC ˇ � ı
ıC1

Œ, then
Proposition 6.3 (iii)(c) implies thatQŒLı; ; �; 1� is linear and continuous from C

0;ˇ

b
.Y /

to C
0;min¹nCˇ�;nCˇ�� ı

ıC1
º

b
.X/ D C

0;nCˇ�� ı
ıC1

b
.X/.

7. Singular integral operators on subsets of M in spaces of Hölder
continuous functions

Let X , Y be subsets ofM . Let � be as in (1.1). Then under reasonable assumptions on
a C-valued function K in .X � Y / nDX�Y and on a C-valued function ' in Y , the
integral

(7.1)
Z
Y

K.x; y/'.y/ d�.y/

may exist in the sense of the principal value, i.e., the limit

p:v:
Z
Y

K.x; y/'.y/ d�.y/ � lim
"!0

Z
Y nB.x;"/

K.x; y/'.y/ d�.y/

may exist and may define a linear operator from a function space of functions defined
on Y to a function space of functions defined on X .

We plan to analyze the case in which Y is (strongly) upper �Y -Ahlfors regular
with respect to X , K is a kernel of potential type �Y , and ' is Hölder continuous and
bounded.

Then under additional reasonable assumptions that ensure that the above integral in
(7.1) exists in the sense of the principal value also for the constant function ' D 1, the
classical idea is to observe that if z' is an extension to M of ', then

p:v:
Z
Y

K.x; y/'.y/ d�.y/

D p:v:
Z
Y

K.x; y/
�
z'.y/ � z'.x/

�
d�.y/C z'.x/p:v:

Z
Y

K.x; y/ d�.y/

(7.2)

for all x 2 X and to consider separately the first and the second integral that appear in
the right-hand side of (7.2). In order to estimate the Hölder norm of the first integral in
the right-hand side of (7.2) in terms of a norm of K and of the Hölder norm of z', we
plan to exploit Proposition 6.3. Then in order to estimate the Hölder norm of the second
integral in the right-hand side of (7.2), we plan to introduce another norm for K.

We now turn to consider the first integral in the right-hand side of (7.2) and we
introduce the following consequence of Proposition 6.3 (ii) that implies the convergence
of the first integral in the right-hand side of (7.2).
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Proposition 7.3. Let X , Y �M . Let

�Y 2 �0;C1Œ; ˇ 2 �0; 1Œ; ˇ � �Y ; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1. Then the following statements hold.

(i) If s2 > �Y C ˇ, s2 � �Y C s3, and Y is upper �Y -Ahlfors regular with respect
toX , then the bilinear map from K

]
�Y ;s2;s3.X � Y /�C

0;ˇ .X [ Y / toC 0;ˇ
b
.X/

which takes .K; / to the function

(7.4)
Z
Y

K.x; y/
�
 .y/ �  .x/

�
d�.y/ 8x 2 X

is continuous.

(ii) If s2 D �Y C ˇ, ˇ < s3, and Y is strongly upper �Y -Ahlfors regular with respect
toX , then the bilinear map from K

]
�Y ;s2;s3.X � Y /�C

0;ˇ .X [ Y / toC 0;ˇ
b
.X/

which takes .K; / to the function in (7.4) is continuous.

(iii) If s2 < �Y C ˇ, ˇ � s3, and Y is upper �Y -Ahlfors regular with respect to X ,
then the bilinear map from K

]
�Y ;s2;s3.X � Y /�C

0;ˇ .X [ Y / toC 0;ˇ
b
.X/which

takes .K; / to the function in (7.4) is continuous.

Proof. (i) Since

s2 � ˇ > �Y ; s2 � �Y C s3 < �Y C s3 C ˇ;

then Proposition 6.3 (ii)(b) implies that the bilinear map from

K]
�Y ;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;min¹ˇ;�YCs3Cˇ�s2º
b

.X/;

which takes .K; / to the function in (7.4) is continuous. Since s2 � �Y C s3, we have

�Y C s3 C ˇ � s2 � ˇ

and accordinglyC 0;min¹ˇ;�YCs3Cˇ�s2º
b

.X/ equals the spaceC 0;ˇ
b
.X/. Hence, statement

(i) holds true.
(ii) Since s2 � ˇ D �Y , then Proposition 6.3 (ii)(bb) implies that the bilinear map

from
K]
�Y ;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;max¹rˇ ;!s3 .r/º
b

.X/

which takes .K; / to the function in (7.4) is continuous. Since ˇ < s3,

C
0;max¹rˇ ;!s3 .r/º
b

.X/

equals C 0;ˇ
b
.X/. Hence, statement (ii) holds true.

(iii) Since s2 � ˇ < �Y , Proposition 6.3 (ii)(bbb) implies that the bilinear map from

K]
�Y ;s2;s3

.X � Y / � C 0;ˇ .X [ Y / to C
0;min¹ˇ;s3º
b

.X/;



integral operators in hölder spaces 227

which takes .K; / to the function in (7.4), is continuous. Since ˇ � s3, statement (iii)
holds true.

Before we turn to consider the second integral in the right-hand side of (7.2), we
try to understand for which kernels K as in the previous Proposition 7.3 the principal
value in the left-hand side of equality (7.2) exists for all x 2 X and defines a linear and
continuous operator fromC 0;ˇ

b
.Y / toC 0;ˇ

b
.X/. We do so by means of the following, that

can be considered a “T1 theorem” for singular integral operators acting in Hölder spaces
of the sort of corresponding results of Lemarié [17] and Meyer [19] for X D Y D Rn

and of Gatto’s theorem [13, Thm. 3] who considered caseX D Y , Y upper �Y -Ahlfors
regular in the case s2 D �Y C s3, rX;Y;�Y D C1. Thus the following proposition can
be considered an extension of Gatto’s theorem [13, Thm. 3].

Proposition 7.5. Let X , Y �M . Let

�Y 2 �0;C1Œ; ˇ 2 �0; 1Œ; ˇ � �Y ; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1.
If s2 > �Y C ˇ, we assume that s2 � �Y C s3 and that Y is upper �Y -Ahlfors

regular with respect to X .
If s2 D �Y C ˇ, we assume that ˇ < s3 and that Y is strongly upper �Y -Ahlfors

regular with respect to X .
If s2 < �Y C ˇ, we assume that ˇ � s3 and that Y is upper �Y -Ahlfors regular

with respect to X .
Let K 2K

]
�Y ;s2;s3.X � Y /. Then the following statements are equivalent.

(i) The principal value

AŒK; '�.x/ � p:v:
Z
Y

K.x; y/'.y/ d�.y/

exists in C for all x 2 X and ' 2 C 0;ˇ
b
.Y /, the function AŒK; '� from X to C

that takes x to AŒK; '�.x/ belongs to C 0;ˇ
b
.X/ for all ' 2 C 0;ˇ

b
.Y /, and the

linear operator AŒK; �� from C
0;ˇ

b
.Y / to C 0;ˇ

b
.X/ that takes ' to AŒK; '� is

continuous.

(ii) The principal value

AŒK; 1�.x/ � p:v:
Z
Y

K.x; y/ d�.y/

exists in C for all x 2 X and the function AŒK; 1� from X to C that takes x to
AŒK; 1�.x/ belongs to C 0;ˇ

b
.X/.
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If statements (i) and (ii) hold, then the following equality holds:

p:v:
Z
Y

K.x; y/'.y/ d�.y/

D

Z
Y

K.x; y/
�
z'.y/ � z'.x/

�
d�.y/C z'.x/p:v:

Z
Y

K.x; y/ d�.y/

(7.6)

for all x 2 X , ' 2 C 0;ˇ
b
.Y / and for all z' 2 C 0;ˇ

b
.M/ such that z'jY D '.

Proof. If ' 2 C 0;ˇ
b
.Y /, then there exists at least an extension z' 2 C 0;ˇ

b
.M/ of ' to

M (see the McShane extension theorem (Theorem A.3)) and we haveZ
Y nB.x;"/

K.x; y/'.y/ d�.y/

D

Z
Y nB.x;"/

K.x; y/
�
z'.y/ � z'.x/

�
d�.y/C z'.x/

Z
Y nB.x;"/

K.x; y/ d�.y/

(7.7)

for all " 2 �0;C1Œ and x 2X . By our assumptions and by Proposition 7.3, the function
K.x; y/.z'.y/ � z'.x// is �-integrable in the variable y 2 Y n ¹xº and accordingly

(7.8) lim
"!0

Z
Y nB.x;"/

K.x;y/
�
z'.y/� z'.x/

�
d�.y/D

Z
Y

K.x;y/
�
z'.y/� z'.x/

�
d�.y/

for each x 2 X . Then by taking the limit in equality (7.7) as " tends to 0, we deduce
that the principal value p:v:

R
Y
K.x; y/'.y/ d�.y/ exists in C for all x 2 X if and

only if the principal value

p:v:
Z
Y

z'.x/K.x; y/ d�.y/

exists in C for all x 2 X and that in case of existence we have

p:v:
Z
Y

K.x; y/'.y/ d�.y/

D

Z
Y

K.x; y/
�
z'.y/ � z'.x/

�
d�.y/C p:v:

Z
Y

z'.x/K.x; y/ d�.y/:

(7.9)

If statement (i) holds true, then by taking ' D 1, we deduce the validity of (ii). Then
the equality (7.9) and equality

p:v:
Z
Y

z'.x/K.x; y/ d�.y/

D lim
"!0

Z
Y

z'.x/K.x; y/ d�.y/ D z'.x/ lim
"!0

Z
Y

K.x; y/ d�.y/;

(7.10)
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for all x 2 X , ' 2 C 0;ˇ
b
.Y / and for all z' 2 C 0;ˇ

b
.M/ such that z'jY D ', imply the

validity of equality (7.6) of the statement.
Conversely, if statement (ii) holds true, then equality (7.10) implies that the principal

value
p:v:

Z
Y

z'.x/K.x; y/ d�.y/

exists in C for all x 2X , ' 2C 0;ˇ
b
.Y / and for all z' 2C 0;ˇ

b
.M/ such that z'jY D '. Then

the argument above implies that the principal value p:v:
R
Y
K.x; y/'.y/ d�.y/ exists

in C and that equality (7.9) holds for all x 2 X , ' 2 C 0;ˇ
b
.Y / and for all z' 2 C 0;ˇ

b
.M/

such that z'jY D '. Then equalities (7.9) and (7.10) imply the validity of equality (7.6)
of the statement.

We now turn to show that the linear operator AŒK; �� is continuous from C
0;ˇ

b
.Y /

to C 0;ˇ
b
.X/. It suffices to show that AŒK; �� is bounded on the unit ball B

C
0;ˇ

b
.Y /
.0; 1/

of C 0;ˇ
b
.Y /. By the McShane extension theorem (Theorem A.3), the set®

z'jX[Y W ' 2 BC0;ˇ
b

.Y /
.0; 1/

¯
is bounded in C 0;ˇ

b
.X [ Y /.

Then Proposition 7.3 implies that the set of the first addenda of equality (7.6) of
the statement as ' 2 B

C
0;ˇ

b
.Y /
.0; 1/ is bounded in C 0;ˇ

b
.X/.

Then the continuity of the restriction operator from C
0;ˇ

b
.X [ Y / to C 0;ˇ

b
.X/, the

membership of AŒK; 1� in C 0;ˇ
b
.X/, and the continuity of the pointwise product in

C
0;ˇ

b
.X/ imply that the set of the second addendums of equality (7.6) of the statement

as ' 2 B
C
0;ˇ

b
.Y /
.0; 1/ is bounded in C 0;ˇ

b
.X/.

Hence, equality (7.6) of the statement implies that the set of the AŒK; '� such
that ' 2 B

C
0;ˇ

b
.Y /
.0; 1/ is bounded in C 0;ˇ

b
.X/ and thus proof of the statement is

complete.

Proposition 7.5 suggests to introduce the following class of potential-type kernels
to estimate the Hölder norm of second integral in the right-hand side of (7.2).

Definition 7.11. Let X , Y �M . Let � be as in (1.1). Let s1, s2, s3 2 R, � 2 �0; 1�.
We set

K]0;�
s1;s2;s3

.X � Y / �

²
K 2K]

s1;s2;s3
.X � Y / W

p:v:
Z
Y

K.x; y/ d�.y/ 2 C for all x 2 X;ˇ̌̌̌
p:v:

Z
Y

K.�; y/ d�.y/ W X

ˇ̌̌̌
�

< C1

³
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and

kKk
K
]0;�
s1;s2;s3

.X�Y /
� kKk

K
]
s1;s2;s3

.X�Y /
C

ˇ̌̌̌
p:v:

Z
Y

K.�; y/ d�.y/ W X

ˇ̌̌̌
�

for all K 2K
]0;�
s1;s2;s3.X � Y /.

By definition of K
]0;�
s1;s2;s3.X � Y /, we havep:v:
Z
Y

K.�; y/ d�.y/


C
0;�
b

.X/

� kKk
K
]0;�
s1;s2;s3

.X�Y /
;

for allK 2K
]0;�
s1;s2;s3.X � Y /. Then by combining Propositions 7.3 and 7.5, we deduce

the validity of the following theorem.

Theorem 7.12. Let X , Y �M . Let

�Y 2 �0;C1Œ; ˇ 2 �0; 1Œ; ˇ � �Y ; s2 2 Œˇ;C1Œ; s3 2 �0; 1�:

Let � be as in (1.1), �.Y / < C1.
If s2 > �Y C ˇ, we assume that s2 � �Y C s3 and that Y is upper �Y -Ahlfors

regular with respect to X .
If s2 D �Y C ˇ, we assume that ˇ < s3 and that Y is strongly upper �Y -Ahlfors

regular with respect to X .
If s2 < �Y C ˇ, we assume that ˇ � s3 and that Y is upper �Y -Ahlfors regular

with respect to X .
Then the bilinear map A from

K]0;ˇ
�Y ;s2;s3

.X � Y / � C
0;ˇ

b
.Y / to C

0;ˇ

b
.X/

that takes .K; '/ to the function

AŒK; '�.x/ D p:v:
Z
Y

K.x; y/'.y/ d�.y/ 8x 2 X

is continuous.

Proof. By the definition of K
]0;ˇ
�Y ;s2;s3.X � Y /, Proposition 7.5 implies that the prin-

cipal value that defines AŒK; '�.x/ exists in C for all x 2 X , and that the function
AŒK; '� from X to C that takes x to AŒK; '�.x/ belongs to C 0;ˇ

b
.X/ for all K 2

K
]0;ˇ
�Y ;s2;s3.X � Y / and ' 2 C 0;ˇ

b
.Y /.

Since AŒ�; �� is bilinear, it suffices to show that AŒ�; �� is bounded on the product

B � B
K
]0;ˇ
�Y ;s2;s3

.X�Y /
.0; 1/ � B

C
0;ˇ

b
.Y /
.0; 1/



integral operators in hölder spaces 231

of the unit balls in K
]0;ˇ
�Y ;s2;s3.X � Y / and C 0;ˇ

b
.Y /, respectively. By the McShane

extension theorem (Theorem A.3), the set

B
K
]0;ˇ
�Y ;s2;s3

.X�Y /
.0; 1/ �

®
z'jX[Y W ' 2 BC0;ˇ

b
.Y /
.0; 1/

¯
is bounded in K

]0;ˇ
�Y ;s2;s3.X � Y / � C

0;ˇ

b
.X [ Y /. Then Proposition 7.3 and the con-

tinuous imbedding of K
]0;ˇ
�Y ;s2;s3.X � Y / into K

]
�Y ;s2;s3.X � Y / imply that the set of

the first terms in the right-hand side of equality (7.6) as .K; '/ 2 B is bounded in
C
0;ˇ

b
.X/.

Then the continuity of the restriction operator from C
0;ˇ

b
.X [ Y / to C 0;ˇ

b
.X/, the

definition of norm in K
]0;ˇ
�Y ;s2;s3.X � Y /, and the continuity of the pointwise product in

C
0;ˇ

b
.X/ imply that the set of the second addendums of equality (7.6) as .K; '/ 2 B

is bounded in C 0;ˇ
b
.X/.

Hence, equality (7.6) implies that the set of the AŒK; '� such that .K; '/ 2 B is
bounded in C 0;ˇ

b
.X/ and thus proof of the statement is complete.

A. Generalized Hölder spaces

Let ! be a function from Œ0;C1Œ to itself such that

(A.1)

!.0/ D 0; !.r/ > 0 8r 2 �0;C1Œ;

! is increasing; lim
r!0C

!.r/ D 0;

and sup
.a;t/2Œ1;C1Œ��0;C1Œ

!.at/

a!.t/
< C1:

If f is a function from a subset D of M to C, then we denote by jf W Dj!.�/ the
!.�/-Hölder constant of f , which is delivered by the formula

jf W Dj!.�/ � sup
² ˇ̌
f .x/ � f .y/

ˇ̌
!
�
d.x; y/

� W x; y 2 D; x ¤ y

³
:

If jf W Dj!.�/ < 1, we say that f is !.�/-Hölder continuous. Sometimes, we sim-
ply write jf j!.�/ instead of jf W Dj!.�/. The subset of C 0.D/ whose functions are
!.�/-Hölder continuous is denoted by C 0;!.�/.D/ and jf W Dj!.�/ is a semi-norm on
C 0;!.�/.D/. Then we consider the space

C
0;!.�/

b
.D/ � C 0;!.�/.D/ \ B.D/

with the norm

kf k
C
0;!.�/

b
.D/
� sup
x2D
jf .x/j C jf j!.�/ 8f 2 C

0;!.�/

b
.D/:
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Remark A.2. Let ! be as in (A.1). Let D be a subset of M . Let f be a bounded
function from D to C, a 2 �0;C1Œ. Then,

sup
x;y2D; d.x;y/�a

ˇ̌
f .x/ � f .y/

ˇ̌
!
�
d.x; y/

� �
2

!.a/
sup
D
jf j:

In the case in which !.�/ is the function r˛ for some fixed ˛ 2 �0; 1�, a so-called
Hölder exponent, we simply write j� W Dj˛ instead of j� W Djr˛ , C 0;˛.D/ instead of
C 0;r

˛
.D/, C 0;˛

b
.D/ instead of C 0;r

˛

b
.D/, and we say that f is ˛-Hölder continuous

provided that jf W Dj˛ <1.
We also mention the following immediate consequence of the extension theorem of

McShane [18] (see Björk [1, Prop. 1], Kufner, John, and Fučík [15, Thm. 1.8.3]).

Theorem A.3. Let .M; d/ be a metric space, Y �M . Let ˛ 2 �0; 1�. If ' 2 C 0;˛
b
.Y /,

then there exists z' 2 C 0;˛
b
.M/ such that

sup
M

jz'j D sup
Y

j'j; jz' WM j˛ D j' W Y j˛; kz'kC0;˛
b

.M/
D k'k

C
0;˛
b

.Y /
:

Proof. If ' 2 C 0;˛
b
.Y /, then ' is uniformly continuous and admits a unique extension

'] to the closure xY . Then one can readily show that

sup
xY

j']j D sup
Y

j'j; j'] W xY j˛ D j' W Y j˛:

Since xY is closed, the above-mentioned extension theorem of McShane implies that
there exists z' 2 C 0;˛

b
.M/ such that z'

j xY D '
] and

sup
M

jz'j D sup
xY

j']j; jz' WM j˛ D j'
]
W xY j˛:

Accordingly, z'jY D ' and the equalities of the statement follow.

One could exploit the extension theorem of McShane to define an isometric extension
operator fromC 0;˛

b
.Y / toC 0;˛

b
.M/. However, such extension operator is not necessarily

linear.
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