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ABsTrRACT. — Volume and layer potentials are integrals on a subset Y of the Euclidean space
R” that depend on a variable in a subset X of R”. Here we present a unified approach to some
results by assuming that X and Y are subsets of a metric space M and that Y is equipped with a
measure v that satisfies upper Ahlfors growth conditions that include non-doubling measures.
We prove continuity statements in the frame of (generalized) Holder spaces upon variation both
of the density functions on Y and of the off-diagonal potential kernel and 7'1 theorems that
generalize corresponding results of J. Garcia-Cuerva and A. E. Gatto in case X = Y for kernels
that include the standard ones.
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singular integrals, potential theory in metric spaces.
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1. INTRODUCTION

Volume and layer potentials are integrals on a subset Y of the Euclidean space R” that
depend on a variable in a subset X of R”. Typically, X and Y are either measurable
subsets of R” with the n-dimensional Lebesgue measure, or manifolds imbedded in
R™, or boundaries of open subsets of R” with the surface measure and X may well be
different from Y. Here we present a unified approach to some results by assuming that
X and Y are subsets of a metric space (M, d) and that Y is equipped with a measure
v that satisfies upper Ahlfors growth conditions that include non-doubling measures
introduced below. Let (M, d) be a metric space and let X, Y be subsets of M.

Let N be a o-algebra of parts of Y, By € N.
(1.1) Let v be a measure on N .

Letv(B(x,r)NY) <400 V(x,r) € X x]0,+o0l.
Here 8By denotes the o-algebra of the Borel subsets of ¥ and
(12) BEr)={neM:dEn<r}, BErl={neM:dEn <r},
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for all (§,r) € M x ]0, +00[. We plan to consider continuous off-diagonal kernels K
from (X x Y) \ Dxxy to C, where Dxxy denotes the diagonal set {(x,y) € X x Y :
x = y} and formulate reasonable assumptions so that the integral operators defined by

(13) / K(x.9)p() dv(y) VxeX
Y \{x}

are bounded from a space C l? B (Y) for some B € ]0, 1] of bounded Holder continuous
functions on Y to a space of (generalized) Holder continuous functions on X (see the
appendix for the Holder spaces). In particular, we plan to extend the work of Garcia-
Cuerva and Gatto [10, 11], Gatto [13] who have considered standard kernels in case
X =Y = M and proved T'1 theorems.

We assume that vy € ]0, +oo[ and we consider two types of assumptions on v. The
first assumption is that Y is upper vy -Ahlfors regular with respect to X, i.e., that

(1.4) there exist ry,y,u, € ]0,+00], cx,y,uy € ]0,+00[ such that
V(B(x,r)NY) < cx,ywyr"Y

forallx € X andr €]0, rx,y,vy [-

Incase X =Y, we just say that Y is upper vy -Ahlfors regular and this is the assumption
that has been considered by Garcia-Cuerva and Gatto [10, 11], Gatto [12, 13] in case
X =Y. See also Edmunds, Kokilashvili, and Meskhi [7, Chap. 6] in the frame of
Lebsgue spaces.

Then we consider a stronger version of the upper Ahlfors regularity. Namely, we
assume that Y is strongly upper vy -Ahlfors regular with respect to X, i.e., that

(1.5) there exist ry y,uy, € 10, +00)], cx,y,uy € ]0,+00[ such that
V((B(x,r2) \ B(x,r1)) NY) < cx vy (r," —r{")
forallx € X and r1,r2 € [0, rx,y vy [ With 1y < 12,

where we understand that B(x,0) = @ (in case X = Y, we just say that Y is strongly
upper vy -Ahlfors regular). So, for example, if Y is the boundary of an open Lipschitz
bounded subset of M = R” and v is the usual (# — 1)-dimensional measure, then Y is
upper (n — 1)-Ahlfors regular with respect to R” and if Y is the boundary of an open
bounded subset of M = R” of class C!, then Y is strongly upper (n — 1)-Ahlfors
regular with respect to Y. The condition (1.5) of strong upper vy -Ahlfors regularity
reveals to be useful in the analysis of limiting exponents.

Here we note that both the conditions above of upper Ahlfors regularity include
cases in which v does not satisfy a doubling condition. We note that Dyn’kin [5] (see
also Dyn’kin [6]) has considered the strong upper Ahlfors regularity condition (1.5) in
case X = Y isacurve in M = R? and for the specific choice r, = 57, r; = 1r for
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r € ]0, +ool. The author is not aware of other references on condition (1.5). We plan
to consider “potential type” kernels as in the following definition (see also [4]).

DEerINITION 1.6. Let X, Y € M. Let 51, 52, 53 € R. We denote by Ky, 5,5, (X X Y)
the set of continuous functions K from (X X Y) \ Dxxy to C such that

K1y, 505 x7) = sUp {d (x, ) [K(x, ¥)| 1 (x,y) € X X ¥, x # y}

A k(e y) - K" y)|

+ sup {d(x/ x')s3

X' x"eX, X #Xx", yeY\ B(x’,2d(x’,x”))}
< 4o00.

For s = 51 + 53, one has the so-called class of standard kernels that is the case in
which Garcia-Cuerva and Gatto [10, 11] and Gatto [13] have proved T'1 theorems for the
integral operators with kernel K in case of weakly singular, singular, and hyper-singular
integral operators with X =Y.

Here we extend some of those results also to case s, # s1 + 53, and for certain
exponents we assume the above strong upper vy -Ahlfors regularity condition to deal
with certain limiting cases.

More precisely, we prove Proposition 5.2 on the dependence of the integral in (1.3)
in a generalized Holder space upon variation both of the kernel K in the class of kernels
of Definition 1.6 and of the function ¢ in L°(Y'). Here we mention that in the critical
case s, = vy, we have to resort to the condition (1.5) of strong upper vy -Ahlfors
regularity and that the target space of the integral operator is a generalized Holder
space.

We prove the (generalized) Holder inequality of Proposition 5.11 that implies the
validity of the 7'1 Theorem 5.17, that in turn implies the continuity of the integral
in (1.3) upon variation both of the kernel K in a subclass of the class of kernels of
Definition 1.6 and of the function ¢ in the Holder space C ; B (Y). Here we mention that
in the critical case s, = vy + B we have to resort to the condition (1.5) of strong upper
vy -Ahlfors regularity and that the target space of the integral operator is a generalized
Holder space.

In Proposition 6.3, we prove the continuity for integral operators with kernels of the
form Z(x, y)(g(y) — g(x)), where Z is singular or hypersingular and g is a 8-Holder
continuous function on X U Y. Such operators find application in the proof of the
boundary behavior of the double layer potential and in particular of the tangential
gradient of the double layer potential (cf., e.g., Colton and Kress [2, p. 56], Dondi and
the author [4, §8], and Dalla Riva, Musolino, and the author [3, Thm. 4.35]).
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Finally, we prove the 7'1 theorem of Proposition 7.5 and the corresponding continuity
Theorem 7.12 for the integral operator of (1.3) upon perturbation of both the kernel K
and the density ¢ in the singular case s; = vy. Here we mention that in the critical
case s, = vy + B we have resorted to the condition (1.5) of strong upper vy -Ahlfors
regularity.

In most of the literature, potentials and corresponding applications have been
considered in case M = R”, and Y is a subset of R” with vy = (n — 1) for layer
potentials and with vy = n for volume potentials. Far less seems to have been developed
in case vy < (n — 1) (cf. Selvaggi and Sisto [22]) and the results above, as well as the
above-mentioned results of Garcia-Cuerva and Gatto offer a theoretical basis for case
vy < (n—1).

2. PRELIMINARIES ON WEAKLY SINGULAR INTEGRAL OPERATORS

An off-diagonal function in X X Y is a function from (X x Y) \ Dyxy to C. We now
wish to consider a specific class of off-diagonal kernels.

DeriniTION 2.1. Let X and Y be subsets of M. Let s € R. We denote by K xxy the
set of continuous functions K from (X x Y) \ Dxxy to C such that

1K N s 30y = sup |K(x,y)|d(x,y)" < +oo.
(6.0 EX XY\ Dy

The elements of K xxy are said to be kernels of potential type s in X x Y.

We now introduce the space
B(X)={f € C¥: fisbounded}, |f|px)=supl|f| Yf e B(X)
X

of bounded functions in X with the sup-norm. By the Holder inequality, one can prove
the following (see also Prossdorf [21, p. 49]).

Tueorewm 2.2 (Of Hille-Tamarkin for potential operators). Let X, Y be subsets of M.
Letv beasin (1.1). Let s € R. Let d(x,-)™* belong to LL(Y \ {x}) forall x € X. Let

sup/ d(x, ) dv(y) < +o0.

xeX JY\{x}

If (K. ¢) € Ksxxy x LS(Y), then the function A[K, ¢] from X to C defined by
AR A0 = [ Kepe0)dv() VreX

\{x}
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belongs to B(X). Moreover, the bilinear map from K xxy x LS°(Y) to B(X), which
takes (K, ) to A[K, ¢] is continuous and

A[K, <
| ALK, 01| g x) sup /Y y

forall (K, ¢) € Ksxxy x LL(Y).

} d(x. y)7 dv)IK N s sy @ lLsor)
P

3. INTEGRABILITY OF THE FUNCTION d(x, )"

In this section, we analyze the integrability of d(x, y)™°, both in case Y is upper
vy -Ahlfors regular as in Gatto’s work [13, p. 104] and in case Y is strongly upper
vy -Ahlfors regular. The proofs below are based on the use of the distribution function
(while those of Gatto [13, p. 104] are based on a dyadic decomposition).

Lemma 3.1. Let X, Y C M. Letv beas in (1.1). Let s € 10, +00[. Then

/ d(x.y)™ dv(y)
(B(x,r2)\B(x,r1))NY \{x})

—1

= forz (Y \ {x}) N (B(x,r2) \ B(x, 1)) dt
s [ ) 0 (B B )

and

/ d(x. ) dv(y)
(B(x,r2)\B(x,r1)NY \{x})

= S/Orl (Y \ {x}) N (B(x.r2) \ B(x,r1)))dt
+ s /r2 tS—lv((Y \{X}) N (B(x,rz) \ B(x,t])) dt

1
forall x € X and ry,r;p € [0, +00] with ry < rp, where we understand that rl_l =400
and B(x,r1) = @ if ri = 0 and that rz_1 = 0and B(x,rp) = M if r, = 400 (see
(1.2) for the definition of B(x,t]).

Proor. We first consider the first equality of the statement. Let x € X, ry,r, € [0, +00]

with r; < 7. Since the function d(x,-)~! is continuous in Y \ {x}, a known result of
real analysis implies that

+o0
/ d(x,y)_s dl}(y) = S/ ts_lmd(x’,)—l(l) dt,
(BCx,r2)\B(x,r))N(Y\{x}) 0
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where

Mg(xy-1 (1) = v({y € (B(x,rz) \ B(x, rl)) N (Y \ {x}) 2d(x, y)_l > t})

for all ¢ € [0, +-00] is the distribution function associated to d(x,-)~! (cf., e.g., Folland
[9, Prop. 6.24]). Next we note that

Myy-1(1) =v({y € (B(x.,r2)\ B(x,r1)) N (Y \ {x}) 1 d(x,y)"" > 1})
= v({y € (BCr,r2) \ Blx,r)) N (Y \ {x}) :d(x,y) <17'})
= v((Y \ {x}) N B(x.™H) N (B(x.r2) \ B(x.r1))).

We also note that if 1 =1 > rp,ie., r <r;', then
B(x,t7) N (B(x,r2) \ B(x,r1)) = B(x.r2) \ B(x,11),
and thatincase r; > 0if0 <t~ 1 <ry, ie.,t > rl_l, then
B(x,t™") N (B(x,r2) \ B(x,r1)) =0,

and thatif ry < 17! < rp,ie,ry;' <t <r! with the usual understanding if r; = 0
orif r, = +o00, then

B(x,t™") N (B(x,r2) \ B(x,r1)) = B(x,t7") \ B(x,r1).

Then we have

+o00
S/O ls_lmd(x’.)—l(l‘) dt

+o0
N s/o T (((Y \{x}) N B(x,7Y) N (B(x,r2) \ B(x, 1)) dr
:3/0’2 tS—lv((Y\{X}) N (B(x,rz)\B(x,rl))) dt

—1 +o00

+s/r]l ts_lv((Y\{x})ﬂ(B(x,t_l)\B(x,rl)))dt+s/ 1 *~v(0) dt,

2 T

where the first addendum in the right-hand side is absent if r, = +o00 and the last
addendum in the right-hand side is absent if r; = 0 and is equal to zero in case r; > 0.

We now consider the second equality of the statement. Let x € X, ry,r; € [0, +00]
with r; < r,. Since the function d(x, -) is continuous in Y \ {x}, we have

400
/ d(x,y) dv(y) = s/ " myee () dt,
(B(x,r2)\B(x,r1))NY \{x}) 0
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where

My, (@) = v({y € (B(x.r2) \ B(x,r1)) N (Y \ {x}) : d(x,y) > t})

for all ¢ € [0, +o0][ is the distribution function associated to d(x, -). Next we note that
ift €]0, r1[, then

Mgy (@) = v({y € (B(x.r2) \ Bx.r)) N (Y \ {x}) : d(x.y) > 1})
= v((B(x,r2) \ B(x,r)) N (Y \ {x})).
We also note that if 7 € [ry, 5], then
Magey(®) = v({y € (B(x,r2) \ BGx,r1)) N (Y \ {x}) 1 d(x,y) > 1})
v((B(x.r2) \ B(x,t]) N (Y \ {x}))
and that if ¢ € ]r,, +00[, we have

My(x,)(t) = v({y € (B(x, r2) \ B(x, r1)) N (Y \ {x}) cd(x,y) > t}) =0.

Hence, the formula of the statement holds true. [

We are now ready to prove the following for upper Ahlfors regular sets.

Lemma 3.2. Let X, Y € M. Let vy € ]0,+o0[. Let v be as in (1.1). Let Y be upper
vy -Ahlfors regular with respect to X. Then the following statements hold.
(i) v(x}) =0forallxeXNY.
(ii)
/ d(x,y) ™ dv(y) < T vy v e 0, vy
B(x,r)NY Vy —§

and
/ d(x,y) 7 dv(y) < cx,yu, "™ Vse]—o00,0]
B(x,r)NY
forallx € X andr €0, rxy,uy [

Proor. (i) follows by the inequality
v({x}) < v(B(x,r)NY) < cxyupr? Vrel0.rxyuyl.

for all x € X N Y, which holds by the upper vy -Ahlfors regularity of Y with respect
to X . Indeed, it suffices to take the limit as r tends to 0.
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We now turn to prove statement (ii). If s = 0, then (ii) is an immediate consequence
of the upper vy -Ahlfors regularity of Y with respect to X. If s € ]0, vy [, Lemma 3.1
implies that

[ d(x.y)™ dv(y)
B(x,r)N(Y' \{x})

-1

= s/ (Y \ {x}) N B(x,r))dt
0
+o00
—I—s/ (Y \ {x}) N B(x,t7h)) dt

1 +o00
< sf 57 dt ex y oy 1YY —I—s/ 1 7 ex vy (THYY dt
0 r

+o00
= CX.Yuy {rUYr_S + s/ STy dt}
r

-1

N
Vy —§ —(s—v
< XYy {r Y- r Y)}
s — vy

S vy
Vy —S vy —S§
=cxyue Y (1= = Cx,Y,uy rYT,
S —Vy Vy — S

and thus statement (ii) holds true. If s € | — 0o, 0[, Lemma 3.1 implies that

/ d(x, )™ dv(y)
B(x,r)N(Y'\{x})

= (=) /0 1Oy ((B(x, )\ B(x,1]) N (Y \ {x})) dt
< () /0 LI (B, ) 0 (Y (1)) d
< (-s) /0 r 1O ey vy TV dE = cx y .y 1Y TS
and thus statement (ii) holds true. .

In the case of strongly upper Ahlfors regular sets, we can also prove the following.

LemMa 3.3, Let X, Y C M. Let vy €10, +o0[. Let v be as in (1.1). Let Y be strongly
upper vy -Ahlfors regular with respect to X. Then the following statements hold.

@ v({yeY:d(x,y)=r})=0forallx € X andr €]0,rxy,uy .
(i) Ifs € R\ {vy}, then

c v _ _
/ d(x. )™ dv(y) = ZTL (70 )
(B(x,r2)\B(x,r1))NY vy —§
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forallx € X andry,rp €0, rx,y,vy [withry < rs.
(iii)
_ r
| A, )™ du(y) < cx oy vy Tog 2
(B(x,r2)\B(x,r1))NY r
forallx € X andry,ry €0, rx,y,uy [withry < rs.

Proor. Statement (i) follows by the inequality
v({y eY:d(x,y) = r}) < v((B(x,rz) \ B(x,rl)) N Y) < cx,y,UY(r;Y — r;)Y)

forall x € X and ry,r2 € [0, ry,y,uy [ With r; < r < rp, which holds by the strong
upper vy -Ahlfors regularity of Y with respect to X . Indeed, it suffices to take the limit
as rq tends to 7~ and r, tends to .

Next we turn to prove statements (ii) and (iii). If s € ]0, +o00[, Lemma 3.1 implies
that

| d(x, )™ dv(y)
(B(x,r2)\B(x,r1))NY \{x})

<s /rz zs_lv(Y N (B(x,r2) \ B(x,ry)))dt
0

+S/r]l (Y N (B(x.t™")\ B(x,ry))) dt

&)
< s/ 571 dt cxywy (Y — 1Y) + s/ 1 ts_lcx,y,vy ((t_l)“Y — rfy) dt
0 r

2

r1 r1

1 1
= Cx.yuy {(r;Y -y + s/ R g [ r}’Ys/ 571 dt}.
r;! 5!

2 &)

We now consider separately case s € |0, +o00[ \ {vy } of statement (ii) and case s = vy
of statement (iii). Let s € ]0, +o00[ \ {vy }. Then we have

/ d(x. )~ dv(y)
(B(x,r2)\B(x,r1)NY \{x})

(rl—(s—vy) _ rz—(s—vy))

vy —§ vy _.—s§
Ecx,Y,UY{rz —ryn +S "
— Uy

(e - 05|

_ s _ s
:cX,Y,UY{r;Y S(1- S_Uy) Y S(S_UY - 1)}

Uy vy —§ vy —§
=& yvy Y -n ,
vy —
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and thus statement (ii) holds true for s € ]0, +00[ \ {vy}. Now let s = vy. Then we
have

/ d(x.y)™" dv(y)

(B(x,r2)\B(x,r1))NY \{x})

1 rl_l
YTV g — Yoy /

&)

T
fur 1 dz}

vy Uy .. —Uy
ECX,Y,vy{(rz =1 r, +UY/
r.

-1
¥
vy . —Vy 1 vy ((,—1 -1
= CX.,Y,uy {1 —r{r + vy log _r_l - ((’"1 )Uy — (r2 )vy)}
2
)
= cx,y,uy Vy log -
1

and thus statement (iii) holds true. Finally, we consider case s € | — 00, 0] of (ii). If
s = 0, statement (ii) is an immediate consequence of the strong upper vy -Ahlfors
regularity of ¥ with respect to X. Now let s < 0. Lemma 3.1 implies that

/ d(x, )™ dv(y)
(B(x,r2)\B(x,r1))NY \{x})

< (-s) /rl t(_s)_lv(Y N (B(x,r2) \ B(x,r1))) dt
0
+ (=s) /rz 1T (Y N (B(x,r2) \ B(x,1))) dt

r
= rl( S)CX,Y,vy(r;Y - rijy) + (_S)/ l(_s)_ICX,Y,vy(r;}Y _tvy)dl
r

r2
= Cx.v.0y {(r;Y — )+ () / 1O dr )Y
8

o [ e a)
r

= CX.Y,uy {r;yrfs ="+ (rz(_s) - ”f_S))
_Sj_—UY rz—s-l—vy _ rl—S+UY)}
R {r;y—s . r;Jy—s + UYS_ Sr;y—s _ UYS_ Srlv)'—s}
= CX,Y,uy {r;y_s (1 + UYS_ s) B rlvy_s(l * Uys— S)}
= CX,Yvy o {77 =) -

vy — 8
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Then we can prove the following basic inequalities for the integral on an upper
Ahlfors regular set Y and on the intersection of ¥ with balls with center at a point x of
X of the powers of d(x, y)~! with exponent s € ] — 0o, vy][.

LemMma 34, Let X, Y C M. Let vy €]0,4o00[. Let v be as in (1.1). Let Y be upper
vy -Ahlfors regular with respect to X. Then the following statements hold.

(1) Letv(Y) < 4o0. Ifs €0, vy]|, then

dv(y) _
(3.5) c! = su ——— <v(¥)a"* +cxy,
XY xeg' y d(x,y)* vy vy — S

vy —§

foralla €10, rx vy [ If s = 0, then

, v (y)
= —= =p(Y).
€o.x.¥ EEE/Yd(x,yw V)

(ii) Letv(Y) < +o0o whenever ry y,uy < +00.Ifs €] — 00, vy|, then

dv(y)
C// = Sup tS—UY /
XY (x,8)€X x]0,400[ B(x,)ny d(x,¥)*

Proor. (i) If x € X NY, then v({x}) = 0 and thus a commonly accepted abuse of
notation allows us to write

dv(y) :/ dv(y)
y d(x,y)* Y\ d(x,y)S

Ifinstead x € X \ Y,thenY =Y \ {x} and we have

/ dv(y) :/ dv(y)
v d(x,y)°  Jrvm d(x,y)*

If s > 0, Lemma 3.2 (ii) implies that

/ dv(y) </ dv(y) +/ dv(y)
Y\ix) d(X,¥)* T Jy\Bx,a) d(x, )’ YABGx,a\{x}) d(x,y)’

vy —§

_ Vy
<v(¥)a"* + cx,yuy ’ a
Y

— Va e ]0, XY, vy [

If s = 0, then statement (i) is trivial and thus the proof of (i) is complete.
(i1) By the same remark at the beginning of the proof of (i) and by Lemma 3.2 (ii),
we have

/ dv(y) _ / dv(y)
B(x,)nY d(x,¥)* YABG)\x) d(x,y)*

v
Y tVYS Vi e 10, IX.Y,vy [-
vy —§

< cx,y,uy Max {1,
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Ifinstead rx,y,v, < +ocandt € [rx,y,vy , +00[, thencaset € |0, rx,y,v, [ implies that

SV / dv(y)
B(x.)ny d(x,y)*

:Zs_vy/ dv(y)
YNB&.H\x) d(x,y)S

d d
E ZS_UY hm sup {/ U(y) + / V(y) }
P=7% vy JYBEN\B@) 4, 1) JynBaavay 4(x,1)°

s—vy

dv
<7 limsup max n*v(Y) +ryyy  limsup / d(x—(y))s
P=TY vy MEPA] P=Tx v oy JYNBE\) 4X Y

vy } v s
vy —§

<7 max nv(@)+ r;_;’le limsup cx,y,uy max {1,

nelrx.y vy st PTX Y vy

_ Vy
Vy
= rX,Y,vYV(Y) + Cx,y,vy Max {1’ vy —S}’

and thus the proof of (ii) is complete. |

We now estimate the integral of the powers of d (x, y) ™! with exponent s € [vy , +o0|
on the complement in Y of balls with center at a point x of X.

LemMmA 3.6. Let X, Y € M. Let vy € ]0, 400[. Let v be as in (1.1), v(Y) < +o0.
Then the following statements hold.

(1)  Let Y be upper vy-Ahlfors regular with respect to X. If s € vy, +00|, then

dv
vy = sup ts_”Y/ _Av) < 400
T (ex x]o,+oo] Y\BGx.r) d(x,9)°
(i) Let Y be strongly upper vy -Ahlfors regular with respect to X. Then

; _ dv(y)
Yy = sup [log ] 1/ ——— < 40
XY exx10.1 /el Y\B(x,r) d(x, Y)Y

Proor. (i) Letx € X. We first consider case ry,y,y,, < +00.1ft €]0,rx y,uy [, Lemma
3.1 with r; = ¢, rp = +00, and the rule of change of variables in the integrals imply
that

ps—vy / dv(y)
Y\B(x,) d(x,y)*

S / "\ ) 0 (B \ B ) du
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— 57Uy /;rX)Y!UY u—s—lv((Y \ {x}) N (B(x,u) \ B(X,t))) du

g /+°° ST Io((Y\ {x)) N (BGeow) \ B(x.1))) du

X.Y, vy

rx.Y.vy 1 u_s +oo
< ts_””s/ CX,Y,oy U TV dy 157V g v(Y)
t - U=TX.Y.vy

—vuy SCX,Y,v —s¥=IX,Y v — -
__ 4S—vy >, L,Vy 1 vy —s Youy S—Vy ,.—S
=1 vy — 8 [u ]u=t +1 rX,Y,vyv(Y)

< schYaUY —vy

+r v(Y).
< g ()

If instead ¢ € [rx,y,uy ., +00[, then we have

_ dv(y) o _
¢ UY/ — <Y TS(Y) <y o u(Y),
Y\B(x,r) d(x,)* Yoy

and thus the proof of statement (i) in case rx,y,y, < +00iscomplete. If rx,y,y, = 400,
we proceed as above without the integral from rx,y,y, to +oo.
(i) Let t4 = 1 min{1/e, rx,Y,vy ;- By Lemma 3.3 (iii), we have

Y\B(x,r) d(x, y)vY Y\B(x,t) d(x, Y)VY (B(x,t:)\B,)ny d(x, y)vY
x
t
<1, v(Y) + cx,y,vy vy (log t — log )

< |logr|(

< |logt|(t*_”Yv(Y) + (1 + |log t*|)cX5Y’UY Uy)

<t.""v(Y) + cx,y,vy Uy log

tx Yv(Y) + cx,v,uy Vy |log iy
[log 7]

+ cx,y,vy UY)

forall ¢ € ]0, t«[. If ¢ € [t«, 1/e[, then we have

pogrl [ O g ) < [log1 /o) w(n)
Y\B(x,r) d(x, y)VY

and thus the proof of (ii) is complete. ]

4. WEAKLY SINGULAR POTENTIAL OPERATORS IN SPACES OF ESSENTIALLY BOUNDED
FUNCTIONS ON UPPER AHLFORS REGULAR SUBSETS OF M

We now prove an “action statement” by exploiting the Hille-Tamarkin theorem in case
Y is upper vy -Ahlfors regular with respect to X .
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ProrosiTion 4.1. Let X, Y C M. Let vy €]0,+00[, s € [0, vy[. Let v be as in (1.1),
v(Y) < 4o00. Let Y be upper vy -Ahlfors regular with respect to X . Then the following
statements hold.

() If(K,p) € Ksxxy X L°(Y), then the function K(x,)¢(-) is integrable in Y for
all x € X and the function A[K, ¢] defined by

42) A[K. 9](x) = /Y K)o dv(y) VxeX

is bounded.
(ii) The bilinear map from Ks xxy x L (Y) to B(X), which takes (K, ¢) to A[K, ¢],

is continuous and the following inequality holds:

(4.3) sup |AIK. ¢]| < ¢; x.y |1 Kl s, xoy [€]lL50 ()

Jorall (K, ¢) € Ksxxy x L°(Y) (see (3.5) for c{ x y ).

Proor. By Lemma 3.4 (i), we have
sup/ d(x, ) dv(y) =c, yy < +00.
xex Jy o

Then the Hille—Tamarkin theorem (Theorem 2.2) for potential operators implies the
continuity of A[-, ] from Ky xxy x L°(Y) to B(X) and the validity of inequality
(4.3). Hence, statements (i) and (ii) hold true. ]

5. CONDITIONS OF ACTION INTO GENERALIZED HOLDER SPACES FOR WEAKLY
SINGULAR POTENTIAL OPERATORS ACTING ON ESSENTIALLY BOUNDED FUNCTIONS IN
UPPER AHLFORS REGULAR SUBSETS OF M

Next we consider off-diagonal kernels K as in Definition 1.6. One can easily verify
that (K, 55,55 (X X Y), || - %, s,.5, (Xx¥)) is @ Banach space. By Definition 1.6, if
51,82, 83 € R, we have Ky, 5,6, (X xY) € Ky, xxy and

1K s, sy < 1K 1565, 0y 3001y VK € Koy g3 (X X Y.
Next we introduce a function that we need for a generalized Holder norm. For each
6 €10, 1], we define the function wg(-) from [0, +o0[ to itself by setting
0 r=20,
we(r) =14 rPInr| r €], rgl,
rg|lnr9| r € |rg, +00[,

where
ro=e Y voelo 1]
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Obviously, wg (+) is concave and satisfies condition (A.1) of the appendix. We also note
that if D € M, then the continuous embedding

¢, ) < ¢ € ¢ )

holds for all 6 € ]0, O]. We refer to the appendix for the notation of (generalized) Holder
spaces. In particular, the subscript » denotes that we are considering the intersection
of a (generalized) Holder space with the space B(ID) of the bounded functions in D.
Next we introduce the following elementary lemma, which we exploit later and which
can be proved by the triangular inequality.

LemMa 5.1, Ifx',x" e M, x" # x", y € M \ B(x’,2d(x’, x")), then
1 !/ " !/
Sd(xy) =d(x7,y) =2d(x’, y).

We now consider the properties of an integral operator with a kernel in the class
K 52,53 (X x Y) and acting on essentially bounded functions on Y.

ProrosiTion5.2. Let X, Y C M. Let vy €10, +o00[. Letv beasin (1.1), v(Y) < +o0.
Let Y be upper vy -Ahlfors regular with respect to X. Let

s1 € vy —Lvy[, s1>0, s2€[0,400f, s3€]0,1].

If s = vy, we further require that Y be strongly upper vy -Ahlfors regular with
respect to X .

If so > vy, we further require that s, < vy + s3.

Let @ be the map from [0, 400 to itself defined by w (0) = 0 and

rrnin{Uy—sl,S3} lfSZ < vy,
5.3) w(r) = { max {r”Y_sl,a)s3(r)} if s, =vy, Vre]l0,4o00[.

rmin{vy—sl ,$3+vy —s2} lsz > vy,
Then the bilinear map from
Ksr sz (X X V)X LX) 10 CY7O(X),
which takes (K, @) to A[K, ¢], is continuous.
Proor. We first note that the inequality (4.3), the elementary inequality

IK N sy 3oy = 1K, 5505 X x7)
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the membership of sy in [0, vy [, and Lemma 3.4 imply that c;] x.y 1s finite and that

5.4) sup
xeX

/Y Ko 7)) dv )| < 1K 6,y 1025016l 1.y
< 1K,y o xx l@llLge s, x.v

forall (K, p) € K, 5,,55(X x Y) x L7°(Y). Next we turn to estimate the (generalized)
Holder constant of A[K, ¢]. We first note that vy — 51 € |0, 1] and that if 5, > vy,
then we also have

O<vy —s2 +53 <853 <1.

Now let x’, x” € X, x’ # x”. By the above inequality (5.4), the function A[K, ¢] is
bounded. Thus there is no loss of generality in assuming that

0<3d(x',x") <rg, < e 153 < 1/e

(cf. Remark A.2 of the appendix). We plan to split the integral on Y that appears in the
definition of our integral operator A[K, ¢] into two parts. Namely, the part of Y in the
ball B(x’,2d(x’, x”")) and the part of Y outside of the same ball. Thus we write

|A[K’ (p](x/) - A[K7 (p](x")|

<

K" y)p(y)dv(y)

/;(x’,zd(x’,x”))ﬂY

- f K(x’ﬁy)qo(y)dv(y)‘
B(x’,2d(x’',x"))NY

+ ‘/ [K(x',y)— K(X”,y)]so(y)dv(y)‘
Y\B(x',2d(x’,x""))
< ”(P”LS"(Y){/ |K(x', y)| dv(y)
B(x’,2d(x’,x"))NY

4 / K, )] dv(y)
B(x’,2d(x’,x"))NY

+ / K. y) - K", y)| dv(y)}.
Y\B(x’,2(x’,x"))

Since 51 € [0, vy [, we would like to apply Lemma 3.4 (ii) in order to estimate the first
two integrals in the right-hand side. However, we note that in the second one we have
|K(x"”, y)|, while the center of the ball of integration is in x” and not in x” that is the
first argument in | K (x"”, y)|. Thus we observe that

B(x',2d(x",x")) € B(x",3d(x', x"))
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and that the triangular inequality implies that

(5.5  |AIK.¢](x") — A[K. ](x")]

< Iolles o] [ K| dv(y)
B(x’,2d(x’,x"))NY

4 / K" 3)| dv(y)
B(x",3d(x',x"))NY

+ / K y) — K" y)| dv(y)}.
Y\B(x’,2d(x’,x"))

Since 51 € [0, vy [, Lemma 3.4 (ii) implies that

(5.6) / K )] dv(y) + / K, )] dv(y)
B(x’,2d(x’,x"))NY B(x",3d(x’ ,x"))NY

dv(y)
E”K”JCSSSXY{/ d(x',y)t
152,53 (XxT) B 2d(x' xyny d(x', y)*

n / dv(y) }
B(x",3d(x",x"))NY d(x”’ y)sl

=< ||K||J’CS1 59253 (X><Y)2C§/1 ,X’Y3UY_SI d(x', x")vr =s1,

Hence, we can estimate the integrals in inequality (5.5) on the part of Y in the ball
B(x’,2d(x’, x")) in terms of the power d(x’, x”)VY 751, We now try to estimate the
integral on the part of Y that is outside of the same ball. To do so, we observe that

(5.7 |K(x".y) — K", y)|dv(y)

/Y\B(x’,Zd(x/,x”))

d(x/’ x//)S3
=< ||K||J<s1_52,s3(XxY)/ —

dv(y)
Y\B(G' 2d(x'x7)) (X', )52

for all s, € [0, +o0o[ and 53 € ]0, 1]. If 55 € [0, vy [, Lemma 3.4 (i) implies that

d(x’, x//)S3
(5.8) / ——~ _dv(y) <! d(x', x")%s3.
Y\BG/2d(x x)) d(x,y)*2 52.%,Y
Then the above inequalities (5.5), (5.6), (5.7), and (5.8) imply that we can estimate
|A[K, p](x") — A[K, ¢](x")] in terms of the powers d(x’, x”)VY 751 and d(x’, x")*3
for 3d (x’, x"") < rg; < 1. Since we can estimate supy |A[K, ¢]| by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement.
If s, = vy, Lemma 3.6 (ii) implies that
d(x’, x//)53 )
(5.9 ————dv(y) < cPyd(x', x")*3|In (2d (x", x")
Y\B(/,2d (' x7)) d(x,y)%2 xr | ( )|
< cyd(x . x")3 (14 [Ind(x', x")|).
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Then the above inequalities (5.5), (5.6), (5.7), and (5.9) imply that we can estimate
|A[K, ¢](x") — A[K, ¢](x")] in terms of

d(x’, x//)vy—sl , d(X/, x//)S3’ d(X/, x//)Sg, | In (d(x/, x//))|

for 3d(x’, x"") < rs; < 1. Since we can estimate supy |A[K, ¢]| by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement.
If s, € Juy, +oo[, Lemma 3.6 (i) implies that

d(x', x//)S3
(5.10) — T T dv(y) < 5 y2VY 24 (x!, x") VY 5283,
Y\B(x'2d(x'x7)) d(x',y)*2 524X
Then the above inequalities (5.5), (5.6), (5.7), and (5.10) imply that we can estimate
|A[K, ¢](x") — A[K, ¢](x")] in terms of d(x’, x")VY =51 and d(x’, y)V¥ ~52%53 for
3d(x',x") < rg; < 1. Since we can estimate supy |A[K, ¢]| by means of inequality
(5.4), Remark A.2 of the appendix implies the validity of the statement. |

In case the density or moment ¢ is Holder continuous in Y, then we can prove the
following.

ProposiTioN 5.11. Let X, Y € M. Let
vy €]0,+00[, s1€[0,vy[, B €]0,1], s2€[B,400[, s3€]0,1].

Let v be as in (1.1), v(Y) < 400. Let Y be upper vy-Ahlfors regular with respect
to X.

If so — B = vy, we further require that Y be strongly upper vy -Ahlfors regular
with respect to X .

If s — B > vy, we further require that s3 + vy — (s — B) > 0.

Then there exists ¢ > 0 such that the function A[K, @] defined by (4.2) satisfies the
Jfollowing inequality:

(5.12) |A[K, ¢](x") — A[K, 9] (x")|
< cllK s, 5y .55 (XxY)||(p||cl?~ﬂ(y)w(d(x/a X))

1
+ iA[K, 1](x") — A[K, 1](x”)’ sup lo| Vx',x" e X, d(x',x") < 33
Y

SJorall (K, @) € K, 55,5;(X xY) X Cl?”g (Y), where w(0) = 0 and

pmin{vy —s1+8,s3} ifso— B < vy,
(5.13) o(r) = { max {rvr =18 g (r)} ifso— B =vy, Vre]0, +ool.
poin{vy =si+B.s3tvy —(2-B)} jrg, — B> vy,
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Proor. Let (K, @) € Ky, 5,.53(X X Y) X CI;)’B (Y). Since s; € [0, vy[, the Hille—
Tamarkin proposition (Proposition 4.1) implies that K (x, -)¢(-) is integrable in Y for
all x in X and that the function A[K, ¢] is bounded in X . Since the statement is trivial
for d(x’, x"”) = 0, it suffices to assume that d(x’, x”") > 0. Since ¢ € Cl?’ﬁ (Y), the
McShane extension theorem (Theorem A.3 of the appendix) implies that there exists
S Clg)’ﬂ (M) such that

(5.14) SAI;P gl = Sl;p lol, lg: M|,3 =l Y|ﬂv ”(p“CZ?’B(M) = ||(p||cgs3(y)‘
By the triangular inequality, we have
(5.15) |A[K. 9](x") — A[K. @] (x")]

<

/Y [K(.y) — K& 0] (F0) — 7)) dv(y)‘

+ |<'/7(X’)|‘ /Y [K(x'.y)— K(x",y)] dv(y)‘-
Since sup,, |@| = supy ||, second addendum in the right-hand side is less or equal to

[A[K 1](x") — A[K, 1](x")] sup ol

We now estimate the first addendum. The idea is to split it into two parts. Namely, the
part of Y in the ball B(x’,2d(x’, x")) and the part of ¥ outside of the same ball. Thus
we write

‘ /Y [KG3) = KG" )](@0) — 30) dv(y)

<

/ K( )|y, x Y dv())F : Mg
B(x’,2d(x’,x"))NY

4 / K. )| d( 3 dv()|7 : Mg
B(x’,2d(x’,x""))NY

4 / K\ ) — K )| d (o x') dv()[F - M.
Y\B(x’,2d(x’,x"))

Since 51 € [0, vy [, we would like to apply Lemma 3.4 (ii) in order to estimate the first
two integrals in the right-hand side. However, we note that in the second one we have
|K(x"”, y)|, while the center of the ball of integration is in x” and not in x” that is the
first argument in |K(x”, y)|. It is enough to observe that

B(x’, 2d(x', x")) C B(x”, 3d(x’, x”)).
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We also observe that the factor d(y, x")? of |K(x”, y)| in the second integral in the
right-hand side contains d(y, x’) and instead we would like to have d(y, x”"), because
the first argument of |K(x”, y)| is x” and not x’. It is enough to remember the Yensen
inequality

d(y.x =d(y.x") +d(x' 5"

and we deduce that

‘/Y[K(x’,y) — K" »](@() —@#(x")) dv(y)

<

/ K )| dr. ) dvn)|F = Mg
B(x’,2d(x’,x"))NY

4 / K& p)] d(y.x)P dv(n)|7 - Mg
B(x”,3d(x’ ,x""))NY

+/Y\B( it |K(x'.y) — K(x".y)| d(y. x")P dv(y)|Z : Mg
X/, X/, x"
S Ky, gy xx) 1@ 2 Mg
{/ dv(y)
« _ @)
B(x2d(x' )y d(y, x')s17B

d(x',x") dv(y)
+ s
B(x’/,3d(x/,x”))ﬂY d(y7x ) 1

n / dv(y)
B, 3d(x xyny d(y,x")s17P

/ d(x',x")3d(x', y)P dv()/)}
+ ’ s :
Y\BG/2d(x',x"")) d(x', y)s2

Then by Lemma 3.4 (ii), we have

(5.16) ' /Y (K& y) — K" ) ](F0) — 567 du(y)'
< Ky, 5055 xx1) 1@ 2 Mg
X {c;’l_ﬂ,X’YZUY_“J”ﬂd(x/,x”)“Y_S1+ﬂ
+ d(x’,x”)ﬁc;’l’x,y?y_s‘d(x’,x”)“Y_s‘

+ e _px 3 Tha, x"yvr—sith

aeay [ et}
Y\B(G' 2d(x' x7)) d (X', y)$27P



INTEGRAL OPERATORS IN HOLDER SPACES 215

At this point, we distinguish three cases. If s, — 8 € [0, vy [, then Lemma 3.4 (i) implies

that P 4
/v(y) o< ,v(J’) _ < axy
Y\BG/2d(x' x)) d(X', )52~ y d(x', y)$2~ o
Since 0 < d(x’,x") < ry, <e /3 < 1/e < 1, we have
d(x/7x//)vy—s1+ﬁ < d(x/’x//)min{vy—sl-l—ﬂ,S;;}’

d(x/’x//)s_w, < d(x/’x/l)min{vy—sl+ﬂ,S3}’

and thus inequality (5.16) implies that we can estimate the first term in the right-hand
side of (5.15) in terms of the power d (x', x”)™in{vy =s1+8.53} Hence, equalities (5.14),
inequalities (5.15) and (5.16) imply that there exists ¢ > 0 such that inequality (5.12)
holds with

w(r) = pmirtvy=si+853b v €10, 400]

and the proof of this case is complete.
If s — B = vy, then Lemma 3.6 (ii) and inequality 0 < 2d(x’, x”") < 1/e imply
that

d .
/Y v(y) aniln (2d(x’,x”))|

<c
\B(x' 2d(x' %)) d(x', y)$27P
< c}}jy(l + |lnd(x’,x”)

),

and thus inequality (5.16) implies that we can estimate the first term in the right-
hand side of (5.15) in terms of the powers d(x’, x”")V* =51+B_d(x’, x”)%3 and of
d(x’,x")%3|Ind(x’, x")|. Hence, equalities (5.14), inequalities (5.15) and (5.16) imply
that there exists ¢ > 0 such that inequality (5.12) holds with

o(r) = max {qu—s1+ﬂ7 r*3, o (r)}  Yr €0, +ool.

Since max{rV¥ =18 53 o (r)} = max{rV* ~1+8 wg. (r)}forr €]0,rs,[, the proof
of this case is complete.
If s, — B > vy, then Lemma 3.6 (i) implies that

dv(y) " e o
g = Cy vy —(s2 ﬂ)d(x/’x//)\)y' (s2-B)
/};\B(x’,zd(x/,x//)) d(_x/’ y)Sz—ﬂ s>—B,X,Y

Since 0 < d(x',x") <rgy = e~ 1/s3 < 1/e < 1,and s3 + vy — (s2 — ) > 0, we have
d(x’,x//)UY_sl+ﬂ < d(x/’x//)min{vy—sl+ﬂ,S3+Uy—(S2—ﬁ)}’

d(x/7x//)s3+UY_(52_13) < d(x/’x”)min{UY_Sl+ﬁ,53+UY_(52_IS)}’
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and thus inequality (5.16) implies that we can estimate the first term in the right-hand
side of (5.15) in terms of d (x”, x”)™n{vy =s1+B.s3+vy =(s2=A)} Hence, equalities (5.14),
inequalities (5.15) and (5.16) imply that there exists ¢ > 0 such that inequality (5.12)
holds with

w(r) = pmin{vy —s1+8.53+vy —(52-8)} vy, ¢ 10, +o0],
and thus the proof of this last case is complete. ]

Then we have the following immediate consequence of Proposition 5.11 (see also
Proposition 4.1 and Remark A.2), that can be considered a “7T'1 theorem” for weakly
singular integral operators acting in Holder spaces of the sort of a corresponding result
of Gatto [13, Thm. 1] who considered case X = Y, Y upper vy-Ahlfors regular in
the case s, = 51 + 3, Fx,y,uy = +00 that we also consider as a specific case in the
statement below. Thus the following theorem can be considered an extension of Gatto’s
theorem [13, Thm. 1].

THEOREM 5.17. Let X, Y C M. Let
vy €]0,+00[, s1€[0,vy[, B€]0,1], s2€[B,400[, s3€]0,1].

Let v be as in (1.1), v(Y') < 400. Let Y be upper vy-Ahlfors regular with respect
to X.

If s5 — B = vy, we further require that Y be strongly upper vy -Ahlfors regular
with respect to X .

If s — B > vy, we further require that

s34+ vy —(s2 —fB) > 0.
Let w be as in (5.13). Let K € Ky, 5,,5;(X x Y). Then the following statements are
equivalent.
(1)  The linear operator A[K, -] from C,;)’ﬂ (Y)to Cl?’w(') (X) that takes ¢ to A[K, ¢]
is continuous.
(ii)  The function A[K, 1] from X to C that takes x to A[K, 1](x) belongs to Cbo’w(') (X).

Under the assumptions of Theorem 5.17, one could consider the vector space
K (XxY)ofthose Ke Ksy 52,55 (X xY) such that A[K, 1] belongs to C %) (X),

S$1,52,53
introduce the norm

”KHJC;U](..S)LB(XXY) = ”K“'KSI-SISB)(XXY) + |A[K’ 1] : X|w(')

forall K € JC;L;(S)z s3(X x Y), and conclude that A[-, -] is bilinear and continuous from
KO, (X xY) x CPF (¥) 10 CP(X) (cf. Proposition 5.11).
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6. ANALYSIS OF AN INTEGRAL OPERATOR WITH A SPECIFIC KERNEL

Let X, Y be subsets of M. Let v be as in (1.1). We plan to analyze the integral operator

61 0[Z.g. 1)) = /Y Z(e ) (g(0) — g()) dv(y) Vx € X,

where Z belongs to a class K, 5, 5 (X x Y) as in Definition 1.6 and g is a C-valued
function in Y. We exploit the operator in (6.1) in the next section and we note that
operators as in (6.1) appear in the applications (cf., e.g., Colton and Kress [2, p. 56] and
Dondi and the author [4, §8]). In order to estimate the Holder quotient of Q[Z, g, 1],
we need to introduce a further norm for kernels.

DEerINITION 6.2. Let X, Y C M.Letv beasin (1.1). Let 51, 52, 53 € R. We set
K (X xY) = {K € Ky 5053 (X X Y):
K(x,-)is v —integrable in Y \ B(x,r) forall (x,r) € X x]0, +o0],

sup  sup ‘/ K(x,y)dv(y)
x€X relo,+oo[ | JY\B(x,r)

< +oo}

and

| K”‘K?l 5953 (XXY) = ”K”(K\l .sp.53 (XXY)

+ sup  sup ‘/ K(x,y) dv(y)' VK € JC?I’S2’S3(X xY).
x€X relo,+oo[ | JY\B(x,r)

52, € XxY)) is a normed space. By definition,

Clearly. (JC}, .6y (X X ¥). |-l

K fl 52,53 (X X Y) is continuously embedded into the space K, 5,55 (X x Y). We are
now ready to prove the following statement on the Holder continuity of Q[Z, g, 1]
that extends some work of Gatto [13, Proof of Thm. 3, Thm. 4]. Here we note that
C%B(X UY) is endowed with the seminorm |- : X U Y|g.

ProprosiTiON 6.3. Let X, Y C M. Let
vy €0, 400, B€]0,1], s1€[Bvy +B[ s2€[B.+oof, s3€]0,1].

Let v be as in (1.1), v(Y) < 4o00. Then the following statements hold.
(1) Ifs1 < vy, then the following statements hold.
(@) Ifsy— B > vy, sz <vy + B+ s3, andY is upper vy -Ahlfors regular with
respect to X, then the bilinear map from

Koy oz (X X Y)x COP(X UY) 10 CPmmbortssth=slx)

which takes (Z, g) to Q[Z, g, 1], is continuous.
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(i)

(1ii)

(aa) If s, — B = vy and Y is strongly upper vy -Ahlfors regular with respect
to X, then the bilinear map from

0,max{rf s, (r)}

Ko, (X x V) x COP(XUY) 10 C, (X),

which takes (Z, g) to Q|Z, g, 1], is continuous.

(aaa) If s, — B < vy and Y is upper vy -Ahlfors regular with respect to X, then
the bilinear map from

Ksr 53 (X x V) x COB(XUY) 10 CP™MP53(X),

which takes (Z, g) to Q|Z, g, 1], is continuous.
If s1 = vy, then the following statements hold.
(b) Ifs — B > vy, s <vy + B+ s3, and Y is upper vy -Ahlfors regular with

respect to X, then the bilinear map from

KE X XY)xCOB(XUY) 10 clmMBrrtsthosd

51,852,853
which takes (Z, g) to Q[Z, g, 1], is continuous.

(bb) If s, — B = vy and Y is strongly upper vy -Ahlfors regular with respect
to X, then the bilinear map from

max B s
KE (X xY)xCOP(XUY) 10 "D,

8§1,52,53
which takes (Z, g) to Q|Z, g, 1], is continuous.

(bbb) Ifsy; — B < vy and Y is upper vy -Ahlfors regular with respect to X, then
the bilinear map from

K

faXx)xC*(XUY) 0 ™),
which takes (Z, g) to Q|Z, g, 1], is continuous.
If s1 > vy, then the following statements hold.

(©) Ifsy — B > vy, s <vy + B+ s3, and Y is upper vy -Ahlfors regular with
respect to X, then the bilinear map from

‘KS],S2,SS (XXY) % CO,ﬂ (XUY) to C[?smin{UY‘HS—SlsUY+S3+ﬂ—52}(X)’

which takes (Z, g) to Q[Z, g, 1], is continuous.
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(cc) If s, — B = vy and Y is strongly upper vy -Ahlfors regular with respect
to X, then the bilinear map from

0,max{rvy A1 o (1)}

Ky, (X xY)x COP(XUY) 10 C, (X),

which takes (Z, g) to Q|Z, g, 1], is continuous.

(cce) If s — B < vy and Y is upper vy -Ahlfors regular with respect to X, then
the bilinear map from

Koy X X Y)x COB(X UY) 10 CPmmr=1=Pssdiyy,
which takes (Z, g) to Q[Z, g, 1], is continuous.

Proor. By the elementary inequality

|Z(x, y)(g(x) — ()|

lg: XUY]g
= W”Z”K‘YI'SZ’SS(XXY) V(x,y) € (X xY)\ Dxxy

for all (Z, g) € Ky, 55,5, (X x ¥) x C%# (X UY), the map from
K50, (X xY) x Co’ﬂ(X UuY) to JCsl_ﬂ,Xxy

that takes (Z, g) to the kernel Z(x, y)(g(x) — g(»)) is bilinear and continuous. Since
s1 — B € [0, vy|[, Proposition 4.1 (ii) implies that the map Q[-, -, 1] is bilinear and
continuous from Ky, 5,5, (X xY) X C%F(X UY) to B(X) under the assumptions
of all the statements (i)—(iii).

We now turn to estimate the Holder quotient of Q[Z, g, 1], under the assumptions
of all the statements (i)—(iii). Let x’, x”” € X. By Remark A.2 of the appendix, it suffices
to consider case 0 < 3d(x", x") < rs, < e~ 1/s3 (< 1/e < 1). Then Lemma 3.4 and the
inclusion B(x’,2d(x’, x")) € B(x”,3d(x’, x")) imply that

(6.4)
|Q[27 g 1](X/) - Q[Z’ g, 1](x//)|
- ' /Y 2 ) (g() — g(&)) dv(y) - /Y 26" ) (8() — g () dv(y)‘

<

/ 12 9| |80 — g dv(y)
YNB(x/,2d(x’,x"))

4 / 126" )| 60 — (™) dv(y)
YNB(x/,2d(x’,x"))

+ ‘ / Z(x' y)(g(y) —g(x)) — Z(x", y)(g(y) — g(x") dV(y)'
Y\B(x’,2d(x’,x"))
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dv(y)
NB(x’,2d(x’,x")) d(x/, y)sl -8

+/ dv(y) }
YNBG 3d(x x7)) d(x”, y)s17B

+ ‘ / Z(X »[(g») —g(x") — (g(y) — g(x)] dV(y)'
Y\B(x’,2d(x’,x"))

< 1Zl5,, oylg X U w{/y

4 ‘ / (2 y) = Z(" )] () — g (™)) dv(y)'
Y\B(x’,2d(x’,x"))

<1 Zllst,, xor |8 : X UYIge! sy

% {(zd(x/ x//))UY_(Sl_,B) + (3d(x/ x//))UY_(Sl_ﬂ)}
+ ‘/ Z(x',y) dv(y)‘lg X UY|gd(x, x")P
Y\B(x’,2d(x’,x"))

d(x/,x”)s3
F1Zl5, 0y ey xsmlg: X UY [ / A6, x")™

d(y,x")? dv(y).
Y\B(x,2d(x' x7)) d(X/, y)S2

We now turn to estimate the second addendum in the right-hand side of (6.4).If 5; < vy,
then Lemma 3.4 (i) implies that

(6.5) Z(x',y) dv(y)‘|g CX UYgd(x, x")P

‘ /I;\B(x/,zd(x/,x/'))
g X UY|pd(x' x")P.

< NZ s, xr Co1,x,¥

If s; = vy, then the definition of the norm in X 51 52,53 (X X Y) implies that

(6.6) Z(x/,y)dv(y)‘|g CX UY|gd(x, x")P

‘ /)"\B(x’,Zd(x’,x”))
= I|Z||JC.§1,S2,S3(X><Y)|g rX U Y|13d(x/’x//)ﬂ'

If s; > vy, then Lemma 3.6 (i) implies that

6.7)

/ Z(X’,y)dV(y)‘Ig X UY|gd(x',x")P
Y\B(x’,2d(x’,x"))

<NZ Ny, oy €l |8 1 X UY [pd (' XYY S1d (2 5"
We now turn to estimate the last integral in the right-hand side of (6.4) by exploiting

Lemma 3.6. To do so, however, we need to replace the factor d(y, x” )8 by a constant
multiple of d(y, x’)#. Thus we note that the elementary Lemma 5.1 implies that

d(y,x")<2d(x',y) VyeY\B(x 2dx" x"))
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and we conclude that

d(x’, x//)S3
©6.8) / CE2 ) 4y, 2" d(y)
Y\B(x',2d(x',x")) d(X',y)%2

E 2ﬂ / dlv(y) _/3 d(x’,x”)”.
Y\B( 2d(x',x")) (X', y)*2

We now distinguish three cases. If s; — 8 > vy, then Lemma 3.6 (i) implies that

d
(6.9) / /"—(y) A0 X"y
Y\B(' 2d(x/x7)) d(X', y)$27P

< C;Z—B,X,Yd(x/’ x”)“Y_(sz_ﬁ)d(x’,x”)”
= ¢l gy yd(x! x")r AT,
If s, — B = vy, then Lemma 3.6 (ii) implies that

d
6.10) [ DOy
Y\B(' 2d(x/ x7)) d(x', y)$27B

< c)i(’jy |log (2d (x', x"))| d(x', x")*3

. log 2
< cfty ozd (x| a1+ ﬁ)

< 2c)’}jy|log d(x', x”)| d(x',x")%.

If s, — B < vy, then Lemma 3.4 (i) implies that

dv(y)
6.11 — 7 A, x")3 <! d(x’, x")3.
( ) L\B(x’,Zd(x’,x”)) d(X/, y)sZ_ﬁ ( ) — XY ( )

We are now ready to estimate |Q[Z, g, 1](x") — Q[Z, g, 1](x”)]. We first consider
statement (i), where s1 < vy.

If s, — B > vy, inequalities (6.4), (6.5), (6.8), and (6.9) imply that we can estimate
|0[Z,g.1](x") — OQ[Z, g,1](x")] in terms of the powers

d(x', x//)uy—(m—ﬂ)’ d(x', x”)ﬂ, d(x’, x”)UY+S3+ﬁ_52.

Then we observe that condition 0 < d(x’, x”) < rs, < e /53 < 1/e < 1, as well as
the inequalities vy — (s — B) > 0, vy + s3 + B — s > 0, imply that
d(x', x”)vy—(31—ﬂ) < d(x”x”)miﬂ{UY—(Sl—B),ﬁ,Uy +53+/3—S2}’
d(x/,x”)ﬁ < d(x/,x/l)min{vy—(sl—ﬂ),ﬂ,vy+S3+ﬂ—S2}7

d(x/,x//)UY+s3+ﬁ_52 < d(x/’x//)min{uy—(sl—ﬁ),ﬂ,vy+53+,3—52}'

Since B < vy — (51 — B), we conclude that statement (a) holds true.
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If s, — B = vy, inequalities (6.4), (6.5), (6.8), and (6.10) imply that we can estimate
|10[Z,g,1](x") — Q[Z, g, 1](x")] in terms of
d(x', x" )y =E=B L d(x xE L o (A x7)).
Then we observe that condition
0<d(x',x")<rg < eV <1/e <1
implies that
d(x', x")vr~617B) < max {d(x, XYY =61=B) gy, x”)ﬁ,a)s3 (d(x'.x"))}.
d(x',x")? < max {d(x, X" =6=B gy, )C")B,a)s3 (d(x'.x"))}.
|log d(x',x") |d(x', x")%3 < max {d(x’, x”)vy_(sl_ﬂ), d(x’, x”)ﬂ , Wss (d(x’, x”))}.

Since B < vy — (s1 — B), we conclude that statement (aa) holds true.
If s, — B < vy, inequalities (6.4), (6.5), (6.8), and (6.11) imply that we can estimate
|0[Z,g,1](x") — Q[Z, g, 1](x")| in terms of the powers

d(x/,x”)vy_(sl_ﬁ), d(x', x//)ﬂ’ d(x’, x//)S3.
Then we observe that condition
0<d(x',x")<rs < e /s < /e <1
implies that
d(x/,x”)vy_(sl_ﬂ) < d(x/’x//)min{vy—(sl—ﬁ),ﬁ,sﬁ,
d(x’, x//)ﬂ < d(x/, x//)min{vy—(sl—ﬂ),ﬂ, S3},
d(x/’x//)g < d(x/7x//)min{uY—(sl—ﬂ),,B,S3}'
Since 8 < vy — (s1 — B), we conclude that statement (aaa) holds true.
The proof of statements (ii) and (iii) can be completed by arguments that are similar
to those of statement (i). Thus we only sketch the proofs.
So we now prove (ii), where s; = vy. If s, — 8 > vy, inequalities (6.4), (6.6),

(6.8), and (6.9) imply that we can estimate |Q[Z, g, 1](x’) — Q[Z, g, 1](x")| in terms
of the powers

d(x’, x//)vy—(sl—ﬂ)’ d(x’, x//)B, d(x', x//)vY+S3+ﬂ—sz’

where vy — (s1 — B) = B. Then inequalities vy — (s; — ) = 8 > O and vy + 53 +
B — s > 0 imply that statement (b) holds true.
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If s, — B = vy, inequalities (6.4), (6.6), (6.8), and (6.10) imply that we can estimate
|0[Z,¢g,1](x") — Q[Z, g, 1](x")] in terms of

d(x/’x//)vy—(sl—ﬁ)’ d(x',x”)ﬂ, Wy, (d(x',x”)),

where vy — (s; — 8) = B. Hence, statement (bb) holds true.
If s, — B < vy, inequalities (6.4), (6.6), (6.8), and (6.11) imply that we can estimate
|0[Z, g, 1](x") — OQ[Z, g,1](x")] in terms of the powers

d(x/,x”)vy_(sl_ﬂ), d(x’,x”)ﬁ, d(x/’x//)s:;’

where vy — (s; — B) = B. Then inequality vy — (s; — ) = B > 0 implies that
statement (bbb) holds true.

Finally, we consider statement (iii), where s > vy.

If s, — B > vy, inequalities (6.4), (6.7), (6.8), and (6.9) imply that we can estimate
|0[Z,g,1](x") — Q[Z, g, 1](x")| in terms of the powers

d(x/, x”)UY_(Sl_ﬂ)’ d(x/, x//)vy+S3+ﬂ—S2‘
Then inequalities vy — (s1 — B) > 0 and vy + s3 + B — s > 0 imply that statement
(c) holds true.

If s, — B = vy, inequalities (6.4), (6.7), (6.8), and (6.10) imply that we can estimate
|101Z, g, 1]1(x") — Q[Z, g, 1](x")] in terms of

d(x’, x//)Uy—(Sl—ﬁ)’ Wy, (d(x’, x//)).

Hence, statement (cc) holds true.
If s, — B < vy, inequalities (6.4), (6.7), (6.8), and (6.11) imply that we can estimate
|0[Z, g, 1](x") — Q[Z, g, 1](x")] in terms of the powers

d(x/’x//)vy—(sl—ﬂ), d(x/, x//)S3.
Hence, statement (ccc) holds true. ]

It is interesting to note that although the integrand in (6.1) that defines Q[Z, g, 1](x)
displays a weak singularity at y = x when (Z, g) belongs to K, xxy X cof(xUY),
the estimates of the Holder quotient of Q[Z, g, 1] of Proposition 6.3 (ii) require that

Z e Kﬂy,sZ& (X xY),ie., we can estimate

/ Z(x,y)dv(y)
Y\B(x,r)

and that the singularity of Z(x, y) at y = x is not weak. Due to the importance of

sup  sup
x€X rel0,+o0[

such estimate, one can understand the importance of the following classical definition.
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DerINITION 6.12. Let X,Y € M.Letvbeasin (1.1). Lets; € R. If K € K, xxy
and if K(x,-) is v-integrable in Y \ B(x,r) forall (x,r) € X x]0, +o0[, then we set

A#[K, 1](x) = sup ‘/ K(x,y)dv(y)| VxeX.
r€lo,+oo[ | JY\B(x,r)

The function A*[K, 1] is said to be the maximal function associated to the kernel K.

So the estimates of the Holder constant of Q[Z, g, 1] of Proposition 6.3 (ii) requires
that we can estimate the maximal function A*[Z, 1] associated to the kernel Z.

ExampLE 6.13. Let n > 2 be a natural number and let 2 be a bounded open subset of
class C! of R”. Let Z4; be the kernel of the double layer potential on 92 corresponding
to the fundamental solution of the Laplace operator. Let v be the ordinary surface
measure on d€2. Then d<2 is strongly upper (n — 1)-Ahlfors regular (with respect to
02) and one can verify the following.

() Ifs3,B€]0,1[, B + 53 > 1 and Q is of class C !:53, then the tangential gradient
grad, Z4;(x, y) belongs to (Ky—g;.n,s, (02 x 9€2))" (cf. [16, §4]) and Propo-
sition 6.3 (iii)(c) implies that Q[grad, Z4, -, 1] is linear and continuous from
CO8(3Q) to C*s3+tB~1(9Q, R") (see Miranda [20, Statement 15.VI], where
the author mentions a result of Giraud [14]. For case n = 2, see Fichera and
De Vito [8, Statement LXXXIII]).

(i) Ifs3€]0,1[, B =1 and Q is of class C!~*3, then the tangential gradient
grad, Z4;(x,y) belongs to (Ky—_s;.n,s; (02 x 982))" (cf. [16, §4]) and Propo-
sition 6.3 (iii)(cc) implies that Q[grad, Z4, -, 1] is linear and continuous from
Co(3Q) to C%¢530 (32, R™).

Actually, Proposition 6.3 can be applied to analyze the properties of the double layer
potential corresponding to more general second order elliptic differential operators
with constant coeflicients, but we have no room to show it here (see [16]).

ExaMPLE 6.14. Let n > 2 be a natural number. Let
X =B,0.1)={xeR": x| <1}, Y =R"

Let§,y €]0, +o0[. Then Y is strongly upper n-Ahlfors regular with respect to X and
the (nonstandard) kernel

|sin(|x —y|_8)|3]ﬁ

|x_y|y V(X,y)EXXY\DXXy

Lsy(x.y) =
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belongstotheclassJ{yyJrl 1 (XXY) Ifﬂe]“_l,l] yelnn+p— S-SH[ then

Proposition 6.3 (iii)(c) 1mphes that O[Ls,y,- 1] is hnear and continuous from C, 0.6 (Y)

0,min{n+B—y,n+p—y— } 0n+ﬂ y—
to Cb 6+1 (X) 8+1(X).

7. SINGULAR INTEGRAL OPERATORS ON SUBSETS OF M IN SPACES OF HOLDER
CONTINUOUS FUNCTIONS

Let X, Y be subsets of M. Let v be as in (1.1). Then under reasonable assumptions on
a C-valued function K in (X x Y) \ Dyxy and on a C-valued function ¢ in Y, the

integral
1.1) | Kememave)
may exist in the sense of the principal value, i.e., the limit
p-v. /Y K(x,y)p(y) dv(y) = lim S K(x,y)p(y) dv(y)

may exist and may define a linear operator from a function space of functions defined
on Y to a function space of functions defined on X.

We plan to analyze the case in which Y is (strongly) upper vy -Ahlfors regular
with respect to X, K is a kernel of potential type vy, and ¢ is Holder continuous and
bounded.

Then under additional reasonable assumptions that ensure that the above integral in
(7.1) exists in the sense of the principal value also for the constant function ¢ = 1, the
classical idea is to observe that if ¢ is an extension to M of ¢, then

12 pw. /Y K. y)o() dv(y)

=P.V-/ K(x, »)(@(y) = §(x)) dv(y) +<5(X)p-V-/ K(x,y)dv(y)
Y Y

for all x € X and to consider separately the first and the second integral that appear in
the right-hand side of (7.2). In order to estimate the Holder norm of the first integral in
the right-hand side of (7.2) in terms of a norm of K and of the Holder norm of ¢, we
plan to exploit Proposition 6.3. Then in order to estimate the Holder norm of the second
integral in the right-hand side of (7.2), we plan to introduce another norm for K.

We now turn to consider the first integral in the right-hand side of (7.2) and we
introduce the following consequence of Proposition 6.3 (ii) that implies the convergence
of the first integral in the right-hand side of (7.2).
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ProrosiTioN 7.3. Let X, Y C M. Let
Vy € ]07 +OO[, 18 € ]07 1[’ :3 =< Vy, §2 € [ﬁ’ +OO[, §3 € ]0’ 1]

Let v be as in (1.1), v(Y) < 4o00. Then the following statements hold.

1) Ifsy > vy + B, so < vy + s3, and Y is upper vy -Ahlfors regular with respect
to X, then the bilinear map from Kﬂy’szm (X xY)xCO(XUY)r Cbo’ﬂ (X)
which takes (K, ) to the function

(7.4) /Y K. )W) -y () dv(y) VxeX

is continuous.

(i) Ifso =vy + B, B <s3, and Y is strongly upper vy -Ahlfors regular with respect
to X, then the bilinear map from J’Cﬂy,sZ,s3 (X xY)xCOB(XUY)t0 Cbo’ﬂ (X)
which takes (K, V) to the function in (7.4) is continuous.

(iii) Ifsy; < vy + B, B < s3, and Y is upper vy-Ahlfors regular with respect to X,
then the bilinear map from JC{#,Y 52,53(X X Y) x CoB(XUY)to Cl;)’ﬂ (X) which
takes (K, V) to the function in (7.4) is continuous.

Proor. (i) Since
so— B >vy, s <vy+s3<vy-+s3+p,
then Proposition 6.3 (ii)(b) implies that the bilinear map from

Kh (X XY)xCOP(XUY) to cpmntburtssthost iy

Vy »52,53

which takes (K, ¥) to the function in (7.4) is continuous. Since s, < vy + s3, we have
vy +s3+B—s52>f

and accordingly C bo omin{f,vy +s3+6=s2} (X) equals the space C 1? B (X). Hence, statement
(i) holds true.
(ii) Since s, — B = vy, then Proposition 6.3 (ii)(bb) implies that the bilinear map
from
O,max{r’g,ws3 )}

X X xY)xC*(xuy) w0 C, (X)

VY 182,53
which takes (K, ¥) to the function in (7.4) is continuous. Since 8 < s3,
O,max{rﬂ,ws3 )}

G, (X)

equals C 1? B (X). Hence, statement (ii) holds true.
(iii) Since s, — B < vy, Proposition 6.3 (ii)(bbb) implies that the bilinear map from

KE (X xY)xCOP(XUY) o cpmmPs(x),

Uy »52,53
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which takes (K, ) to the function in (7.4), is continuous. Since 8 < s3, statement (iii)
holds true. ]

Before we turn to consider the second integral in the right-hand side of (7.2), we
try to understand for which kernels K as in the previous Proposition 7.3 the principal
value in the left-hand side of equality (7.2) exists for all x € X and defines a linear and
continuous operator from C 1? A Y)toC 1? B (X). We do so by means of the following, that
can be considered a “T’'1 theorem” for singular integral operators acting in Holder spaces
of the sort of corresponding results of Lemarié [17] and Meyer [19] for X =Y = R”
and of Gatto’s theorem [13, Thm. 3] who considered case X = Y, Y upper vy -Ahlfors
regular in the case s, = vy + 53, r'x,v,uy = +00. Thus the following proposition can
be considered an extension of Gatto’s theorem [13, Thm. 3].

ProprosiTioN 7.5. Let X, Y C M. Let

vy €10, 400, B€]0,1[, B

IA

UY7 S2 € [ﬁ’ +OO[7 S3 € ]07 1]

Let v be as in (1.1), v(Y) < 4o0.

If s > vy + B, we assume that s, < vy + §3 and that Y is upper vy -Ahlfors
regular with respect to X .

If s, = vy + B, we assume that B < s3 and that Y is strongly upper vy -Ahlfors
regular with respect to X .

If 55 < vy + B, we assume that B < s3 and that Y is upper vy -Ahlfors regular
with respect to X .

Let K € JCﬂy, 52,53 (X X Y). Then the following statements are equivalent.

(i)  The principal value
AK. 1) = pv. | K. p)e()dv(y)

exists in C forall x € X and ¢ € C]?’ﬂ (Y), the function A[K, ¢] from X to C
that takes x to A[K, ¢](x) belongs to Cl?’ﬂ (X) forall ¢ € Cl?’ﬂ (Y), and the
linear operator A[K, -] from Cl?’ﬁ (Y) to C,;)’B (X) that takes ¢ to A[K, ¢] is
continuous.

(i1)  The principal value
A[K, 1](x) = p.v./Y K(x,y)dv(y)

exists in C for all x € X and the function A[K, 1] from X to C that takes x to
A[K, 1](x) belongs to C;’ﬂ (X).
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If statements (i) and (ii) hold, then the following equality holds:

16 pw. f K(x. y)e(y) dv(y)
Y
- / K ) (30 — 300) dv(y) + Fp.v. / K. y) dv(y)
Y Y
forallx € X, 9 € CP(Y) and for all § € CP (M) such that §y = ¢.

Proor. If ¢ € CI?’B (Y), then there exists at least an extension ¢ € Cl?’ﬂ (M) of ¢ to
M (see the McShane extension theorem (Theorem A.3)) and we have

(7.7) K(x,y)p(y)dv(y)
Y\B(x,¢)

- / K ) (30) — () dv(y) + F(x) / K(x.y) dv(y)
Y\B(x,¢) Y\B(x,8)

forall ¢ € ]0, +o0o[ and x € X. By our assumptions and by Proposition 7.3, the function
K(x,y)(@(y) — @(x)) is v-integrable in the variable y € Y \ {x} and accordingly

(7.8) lim K(x,Y)(a()’)—a(x))dV(y)=/ K(x, y)(@(y) = §(x)) dv(y)
£=>0 JY\B(x,¢) Y

for each x € X. Then by taking the limit in equality (7.7) as € tends to 0, we deduce
that the principal value p.v. [, K(x, y)e(y) dv(y) exists in C for all x € X if and
only if the principal value

p. | K dv(y)
exists in C for all x € X and that in case of existence we have

(7.9) p-V./YK(x,y)cp(y)dV(y)

- /Y K ) (F0) — () dv(y) + p.v. [Y FK(x. ) dv(y).

If statement (i) holds true, then by taking ¢ = 1, we deduce the validity of (ii). Then
the equality (7.9) and equality

(7.10) p.V./;,g’E(x)K(x,y)dv(y)

= limy [ 0K dv() = 506 fim | K(x ) dv(y)
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forallx € X, ¢ € Cl?’ﬂ(Y) and for all ¢ € Cl?’ﬁ(M) such that ¢y = ¢, imply the
validity of equality (7.6) of the statement.

Conversely, if statement (ii) holds true, then equality (7.10) implies that the principal
value

py. /Y F)K(x.y) dv(y)

existsin C forallx € X, ¢ € Cg’ﬂ (Y)andforall ¢ € C,;)’ﬂ (M) such that gy = ¢. Then
the argument above implies that the principal value p.v. [, K(x, y)@(y) dv(y) exists
in C and that equality (7.9) holds forall x € X, ¢ € Cl?’ﬁ (Y)andforall ¢ € CI?’B (M)
such that @y = ¢. Then equalities (7.9) and (7.10) imply the validity of equality (7.6)
of the statement.

We now turn to show that the linear operator A[K, -] is continuous from C l? A Y)
to Cl?’ﬂ (X). It suffices to show that A[K, -] is bounded on the unit ball BC(”B(Y)(O’ 1)
of C [? B (Y). By the McShane extension theorem (Theorem A.3), the set ’

@ixuy 1¢ € BC]?,B(Y)(O, D}

is bounded in CI;)’B (XUY).

Then Proposition 7.3 implies that the set of the first addenda of equality (7.6) of
the statement as ¢ € BCO_;S(Y)(O, 1) is bounded in Cbo’ﬂ (X).

b

Then the continuity of the restriction operator from C bo # (XuY)toC bo # (X), the
membership of A[K, 1] in C [f A (X), and the continuity of the pointwise product in
C l? A (X) imply that the set of the second addendums of equality (7.6) of the statement
as ¢ € Bo.sy(0.1) is bounded in P (x).

Hence, equality (7.6) of the statement implies that the set of the A[K, ¢] such
that ¢ € Bcg,g(y)(o, 1) is bounded in Cl?’/’ (X) and thus proof of the statement is

complete. u

Proposition 7.5 suggests to introduce the following class of potential-type kernels
to estimate the Holder norm of second integral in the right-hand side of (7.2).

DerintTioN 7.11. Let X, Y € M. Letv be asin (1.1). Let sy, 52,53 € R, 6 €]0, 1].
We set

51552553 §1:52,53

JcHo.6 (XxY)E{KeJc** (X xY):
p.V./ K(x,y)dv(y) e Cforall x € X,
Y

‘p.v./y K y)dv(y): X

< +oo}
6
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and

”K”Jcﬁ?:?z.ss(XxY) = ”K”MI sy (Xx) T

p.V.LK(-,y)dv(y) X ,

for all K € J{f?,’fz,%(X xY).

By definition of J{fl()jfz,s3 (X xY), we have

< ||K .

Hp.v. /Y KC.y)dv(y)

(XxY)’

forall K € K ;:10 ”52,53 (X x Y). Then by combining Propositions 7.3 and 7.5, we deduce
the validity of the following theorem.

TueorEM 7.12. Let X, Y C M. Let

vy €10, 400, B€]0,1[, B

IA

UYv s2 € [IB’ +OO[7 S3 € ]0’ 1]

Letv be asin (1.1), v(Y) < 4o0.

If s > vy + B, we assume that s, < vy + §3 and that Y is upper vy -Ahlfors
regular with respect to X .

If s, = vy + B, we assume that B < s3 and that Y is strongly upper vy -Ahlfors
regular with respect to X .

If 55 < vy + B, we assume that B < s3 and that Y is upper vy -Ahlfors regular
with respect to X .

Then the bilinear map A from

KL (X xY)xCPP(r) w0 P (x)

Uy »82,53

that takes (K, @) to the function

A[K. 9](x) = puv. [Y K(x.y)e(») dv(y) VxeX

is continuous.

Proor. By the definition of X 52’22 s3(X x Y), Proposition 7.5 implies that the prin-
cipal value that defines A[K, ¢](x) exists in C for all x € X, and that the function
A[K, ¢] from X to C that takes x to A[K, ¢](x) belongs to Cl?’ﬂ (X) for all K €
KIE, (X x Y)and g € CYP(Y).
Since A[-, -] is bilinear, it suffices to show that A[-, -] is bounded on the product
B = BJ(ﬁO’B (XxY)(O’ 1) x BC,?'B(Y)(O’ 1)

Y :52.53
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of the unit balls in Kﬁg’§2’s3 (X xY) and C,? A (Y), respectively. By the McShane
extension theorem (Theorem A.3), the set

BJ{ﬁO.ﬁ (XXY)(O’ 1) X {a|XUY ‘@€ BC}?'ﬁ(Y)(O’ 1)}

vy .52.53

is bounded in Kﬂg’ﬁz,% (XxY)xC l? A (X UY). Then Proposition 7.3 and the con-
tinuous imbedding of JCS?,%Z s3(X x Y)into Kﬁy 52,53 (X X Y') imply that the set of
the first terms in the right-hand side of equality (7.6) as (K, ¢) € B is bounded in
P (x).

Then the continuity of the restriction operator from C bo # (XuY)toC bo # (X), the
definition of norm in KX ﬁgiz s3 (X x'Y), and the continuity of the pointwise product in
C 1;) B (X) imply that the set of the second addendums of equality (7.6) as (K, ¢) € B
is bounded in C;"? (X).

Hence, equality (7.6) implies that the set of the A[K, ¢] such that (K, ¢) € B is
bounded in C ,? B (X) and thus proof of the statement is complete. ]

A. GENERALIZED HOLDER SPACES

Let w be a function from [0, +o0][ to itself such that
w(0) =0, ow(r)>0 Vre]l0,+oo|,
w 1is increasing, lim w(r) =0,

(A.1) r—0+
w(at)

and sup < +o00.

(@.1)€[1,+00[x]0,+ oo 4@ (1)
If f is a function from a subset D of M to C, then we denote by | f : D], the
(-)-Holder constant of f, which is delivered by the formula

/()= fO)] .
W.x,yeﬂ),x#y}.

If | f : D]y < oo, we say that f is w(-)-Holder continuous. Sometimes, we sim-
ply write | f|,() instead of | f : D|4(). The subset of C°(D) whose functions are
w(-)-Holder continuous is denoted by C%*O(D) and | f : D () i a semi-norm on
C%*0O)(D). Then we consider the space

| f i D|we) = sup{

cP*OD) = c**O(D) N B(D)
with the norm

£ legeorm) = sup IF ) + [ floey VS € cO ).
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REMARK A.2. Let w be as in (A.1). Let D be a subset of M. Let f be a bounded
function from D to C, a € ]0, +o0[. Then,

fo-sol 2
x,y€D,d(x,y)>a w(d(x7y)) B '

w(a) p

In the case in which w(-) is the function r* for some fixed @ € ]0, 1], a so-called
Holder exponent, we simply write |- : D|, instead of |- : D|,«, C%*(D) instead of
co (D), C l? “*(D) instead of C l? e (D), and we say that f is a-Holder continuous
provided that | f : D|q < o0.

We also mention the following immediate consequence of the extension theorem of
McShane [18] (see Bjork [1, Prop. 1], Kufner, John, and Fucik [15, Thm. 1.8.3]).

THEOREM A.3. Let (M, d) be a metric space, Y C M. Leta €10,1]. If ¢ € Cl?’a(Y),
then there exists § € C l? “*(M) such that

sup ol = sup ol 1@ Mla =1¢: Ve, @l cowpgy = l@lcowy:
Proor. Ifp € Cz? “*(Y), then ¢ is uniformly continuous and admits a unique extension
goﬂ to the closure Y . Then one can readily show that
sup |¢F| = suplol, |oF: Vo=l Y]a
¥ Y
Since Y is closed, the above-mentioned extension theorem of McShane implies that
there exists ¢ € CI?’“ (M) such that g7 = o¥ and

sup |§] = sup|p®, |§: M|y = |¢*: V]q.
M Y

Accordingly, ¢|y = ¢ and the equalities of the statement follow. |

One could exploit the extension theorem of McShane to define an isometric extension
operator from C 1? *(Y)toC l? **(M). However, such extension operator is not necessarily
linear.
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