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1. Introduction

A Siegel disk for a holomorphic map on a complex manifold is a domain of the manifold
preserved by the map such that the restriction to the domain is analytically conjugate
to an irrational rotation (see Section 2). Siegel disks are interesting objects and have
been constructed by many authors especially for automorphisms on rational manifolds
with positive entropy. For example, McMullen [8] and Bedford–Kim [2,3] constructed
rational surfaces, namely, rational manifolds of dimension 2, admitting automorphisms
of positive entropy with Siegel disks by considering a certain class of birational maps
on the projective plane. Moreover, Oguiso–Perroni [9] constructed rational manifolds
of dimension� 4 admitting automorphisms of positive entropy with an arbitrarily high
number of Siegel disks by using the product construction made of automorphisms on
McMullen’s rational surfaces and toric manifolds.

The automorphisms we considered in this paper not only have positive entropy
but also preserve meromorphic volume forms. In this case, the interesting feature of
each automorphism F is that it is obtained from birational map on P2 by blowing up
finitely many points on the smooth locus of a cubic curve in P2 and that it falls into
the category described by Bedford [1]. Moreover, every F -invariant Fatou component
with finite volume turns out to be a rotation domain, and a Siegel disk corresponds to
a rotation domain of rank 2 containing a fixed point of F (see [3]). In particular, the
Fatou set of F is nonempty.

This paper presents two families of automorphisms of rational surfaces with Siegel
disks. The first one preserves meromorphic volume forms whose pole divisors consist
of three rational curves meeting at a single point. One of the main theorems is to
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show the existence of a rational surface automorphism of positive entropy with a given
number of Siegel disks.

Theorem 1.1. For any k 2Z�0, there exists a rational surfaceX and an automorphism
F W X ! X such that F has positive entropy htop.F / > 0 and F has exactly k fixed
points at which Siegel disks are centered.

The automorphism F mentioned in Theorem 1.1 is obtained from a birational map
f W P2 ! P2 of degree max¹2; k � 1º by blowing up points on the smooth locus of a
cubic curve C in P2. When k � 3, the curve C we considered is the union of three
lines meeting at a single point.

Next, we consider the case where automorphisms are obtained from quadratic
birational maps on P2 that fix a cubic curve C . Let f W P2 ! P2 be a birational map
with its inverse f �1 W P2 ! P2 and its indeterminacy set I.f /, namely, the set of
points on which f is not defined. We say that f properly fixes C if the indeterminacy
sets I.f ˙1/ of f ˙1 are both contained in the smooth locus C � of C , and

f .C / WD f
�
C n I.f /

�
D C:

It is known that a certain class of quadratic birational maps properly fixing C is lifted
to automorphisms with positive entropy by blowing up finitely many points on C �

(see [2, 3, 5, 8, 11, 12]). Let QF .C / be the set of automorphisms F W X ! X on
rational surfaces X with positive entropy and with the property that there is a quadratic
birational map f W P2! P2 that properly fixes C and a blowup � W X ! P2 of points
on C � such that the diagram

X
F

����! X

�

??y ??y�
P2

f
����! P2

commutes. Then, F preserves a meromorphic volume form whose pole divisor is the
strict transform ofC . In the case whereC is non-reduced, Bedford–Kim [3] constructed
F 2 QF .C / with multiple Siegel disks, when C is a single line with multiplicity 3.
On the other hand, McMullen [8] and Bedford–Kim [2] constructed F 2 QF .C / with
a single Siegel disk, when C is reduced but non-irreducible. In this article, we focus
our attention on the case of irreducible cubic curves and obtain the following theorem.

Theorem 1.2. For a reduced irreducible cubic curve C on P2, if there is an automor-
phism F 2 QF .C / having a Siegel disk, then C is a cuspidal cubic curve. Moreover,
if C is a cuspidal cubic curve, then F 2 QF .C / admits at most two fixed points at
which Siegel disks are centered, and there is an automorphism F 2 QF .C / having
exactly two fixed points at which Siegel disks are centered.
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The existence of a Siegel disk for an automorphism F centered at x implies that the
derivative DF.x/ of F at x has multiplicatively independent eigenvalues .�; �/ with
j�j D j�j D 1 (see Section 2). Conversely, results from transcendence theory guarantee
that F has a Siegel disk centered at x under the assumption that the multiplicatively
independent eigenvalues .�; �/with j�j D j�j D 1 are algebraic. Moreover, if algebraic
eigenvalues .�; �/ with j�j D j�j D 1 have Galois conjugates .��; ��/ satisfying
j����j D 1, but j��=��j ¤ 1, then .�; �/ are multiplicatively independent (see also
[8]). Our task is thus to construct automorphisms whose derivatives have such a pair
.�; �/ of eigenvalues. Note that in our construction, the automorphisms are obtained
from birational maps, and the birational maps considered here have explicit forms with
parameters.

After preliminary studies in Section 2, Sections 3 and 4 are devoted to constructing
automorphisms with Siegel disks in order to prove Theorems 1.2 and 1.1, respectively,
and Sections 5 and 6 are devoted to proving two propositions needed in our discussion.

2. Preliminary

In this section, we briefly review some well-known facts about Siegel disks on complex
surfaces, automorphisms on rational surfaces, and cubic curves on the projective plane
used later. We refer to [5, 8, 11, 12], in which many of the results are proved.

First, we recall the definition of a Siegel disk on a complex surface (see [8]). For a unit
disk�2 WD ¹.x;y/ 2C2 j jxj � 1; jyj � 1º, a linear automorphismL W�2!�2 given
by L.x; y/ D .�x; �y/ is called an irrational rotation if j�j D j�j D 1 and .�; �/ are
multiplicatively independent; that is, they satisfy�k�l ¤ 1 for any .k; l/¤ .0; 0/ 2 Z2.

Definition 2.1. LetX be a complex surface and F an automorphism onX . A domain
U � X is called a Siegel disk for F centered at p 2 U if F.U /D U and F W .p;U /!
.p; U / is analytically conjugate to an irrational rotation L W .0;�2/! .0;�2/.

It is obvious that the derivative DF.p/ of F at p is an irrational rotation when F
has a Siegel disk centered at p. Conversely, results from the transcendence theory say
that if DF.p/ is an irrational rotation with algebraic eigenvalues, then F has a Siegel
disk centered at p (see [8]).

Next, we consider rational surfaces. Here, we assume that a rational surface X
admits a birational morphism � W X ! P2 (see [5,8,11,12]). Then, it is known that �
is expressed as a composition

� W X D X�
��
�! X��1

���1
���! � � �

�2
�! X1

�1
�! X0 D X;

where �i W Xi ! Xi�1 is the blowup of a point pi 2 Xi�1 with the exceptional
curve Ei WD ��1i .¹piº/, which is isomorphic to P1. Since �i induces an isomor-
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phism �i jXinEi W Xi n Ei ! Xi�1 n ¹piº, we will identify each point x 2 Xi n Ei with
�i .x/ 2 Xi�1 n ¹piº in this article. Moreover, if p is a point on an exceptional curve,
we sometimes say that p is an infinitely near point on P2, or a point on P2 for short.
On the other hand, a point is said to be proper if it is not an infinitely near point. The
total transform Ei WD �

�
� ı � � � ı �

�
iC1.Ei / is called the exceptional divisor over pi .

Then, � gives an expression of the cohomology group:

H 2.X IZ/ Š Pic.X/ D ZŒH �˚ ZŒE1�˚ � � � ˚ ZŒE��;

where H is the total transform ��.L/ of a line L in P2. The intersection form on the
cohomology group H 2.X IZ/ is given by8̂̂<̂

:̂
�
ŒH �; ŒH �

�
D 1�

ŒEi �; ŒEj �
�
D �ıi;j .i; j D 1; : : : ; �/�

ŒH �; ŒEi �
�
D 0 .i D 1; : : : ; �/:

Let F W X ! X be an automorphism on X . Then, F induces the action F � W
H 2.X IZ/! H 2.X IZ/ on the cohomology group. By the theorems of Gromov and
Yomdin, the topological entropy of F is given by htop.F / D log �.F �/ � 0, where
�.F �/ is the spectral radius of F �. Moreover, since F � preserves the Kähler cone and
the intersection form with signature .1; �/, it is seen that the characteristic polynomial
of F is expressed as

det.tI � F �/ D

´
RF .t/

�
�.F �/ D 1

�
RF .t/SF .t/

�
�.F �/ > 1

�
;

whereRF .t/ is a product of cyclotomic polynomials and SF .t/ is a Salem polynomial,
namely, the minimal polynomial of a Salem number. Here, a Salem number is an
algebraic unit ı > 1 such that its conjugates include ı�1 < 1 and the conjugates other
than ı˙1 lie on the unit circle. Hence, if �.F �/ > 1, then it is a root of SF .t/ D 0.

Now, we consider a cubic curveC � P2, that is, a reduced (possibly non-irreducible
or singular) curve of degree three, with its smooth locus C � (see [5, 8]). Denote by
Pic0.C /� Pic.C / the subgroup consisting of divisor classes whose restrictions to each
irreducible component of C have degree zero. Then, it is known that Pic0.C / Š C=� ,
where � � C is a lattice with rank given by either

(1) rank� D 2 if C is smooth, or

(2) rank� D 1 if C is a nodal cubic, or a conic with a transverse line, or three lines
meeting in three points, or

(3) rank� D 0 if C is a cuspidal cubic, or a conic with a tangent line, or three lines
through a single point.
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Let V1; : : : ; Vr be the irreducible components of C . Note that 1 � r � 3 as C is a cubic
curve. Moreover, fix points 0i 2 Vi \ C � so that

Pr
iD1 degVi � Œ0i � D 0; namely, the

divisor
Pr
iD1 degVi � 0i is the restriction of a lineL� P2 toC �, where degVi 2Z>0 is

the degree of the component Vi in P2. For each 1 � j � r , let � W Vj \C �! Pic0.C /
be the map defined by �.p/ D Œp� � Œ0j �. Then, � is a bĳection, which gives the
group structure on Vj \ C � isomorphic to Pic0.C / Š C=� , with the property that
three points q1; q2; q3 2 C � satisfy

P3
iD1Œqi � D 0 if and only if

P3
iD1 �.qi / D 0 and

#¹i j qi 2 Vj º D degVj for any 1 � j � r (see [5]).
Let f W P2! P2 be a birational map on P2. In general, f admits the indeterminacy

set I.f /, namely, the finite set on which f cannot be defined (see [11, 12]). Note that
I.f / is a cluster; that is, if p 2 I.f / is infinitely near to a point q, then q 2 I.f /. All
birational maps considered in this article are assumed to belong to the set B.C / of
birational maps f properly fixing C ; namely, I.f ˙1/ � C � and f .C / D C . Here, if
I.f ˙1/ contain an infinitely near point p, then p 2 C � means that p belongs to the
strict transform ��1.C �/, where � W X ! P2 is a birational morphism such that p is
proper on X . When f 2 B.C /, there is ı.f / 2 C�, called the determinant of f , such
that f ��D ı.f /�, where � is a nowhere vanishing meromorphic 2-form on P2 having
simple poles along C . The determinant ı.f / satisfies ı.f /D DetDf.p/ for any fixed
point p 2 P2 nC of f . Moreover, it should be noted that f preserves the smooth locus
C � under our assumption. Thus, f induces the actions f� W Pic.C /! Pic.C / and
f� W Pic0.C /! Pic0.C /. Through the Poincaré residue map, it turns out that the action
f� on Pic0.C / Š C=� is given by f�.t/ D ı.f /t for t 2 C=� (see [8]). Note that
if rank� � 1, then ı.f / must be a root of unity as ı.f /� D � , while if rank� D 0,
then ı.f / may be an arbitrary nonzero complex number.

One of our interests is to construct automorphisms on rational surfaces. From
birational maps on P2 satisfying a certain assumption, we obtain rational surface
automorphisms.

Proposition 2.2. Assume that C � P2 is a reduced cubic curve.

(1) For a birational map f W P2 ! P2 in B.C /, assume that any indeterminacy
point p 2 I.f �1/ satisfies f m.p/ 2 I.f / for some m D m.p/ � 0. Then, there
is a blowup � W X ! P2 of points on C � such that � lifts f W P2 ! P2 to an
automorphism F W X ! X .

(2) Assume that a birational map f W P2! P2 in B.C / is lifted to an automorphism
F W X ! X by a blowup � W X ! P2 of points on C �. Then, any indeterminacy
point p 2 I.f �1/ satisfies f k.p/ … I.f / with 0 � k < mp and f mp .p/ 2 I.f /
for some mp � 0. Moreover, � admits an expression

� D �0 ı � W X ! P2;
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where�0 WX0!P2 is the blowup of the points ¹f k.p/ jp 2 I.f �1/; 0� k�mpº
on C �, and � W X ! X0 is a birational morphism. Furthermore, the blowup
�0 W X0 ! P2 lifts f to an automorphism F0 W X0 ! X0.

Proof. (1) (see [12]). Let .p; q/ 2 I.f �1/ � I.f / be a pair of proper points so
that f n.p/ D q with n D min¹m 2 N j f m.p0/ D q0 for .p0; q0/ 2 I.f �1/ � I.f /º.
Under our assumption, such a pair .p; q/ exists, and from the minimality of n, the
orbit ¹f i .p/ºniD0 consists of distinct proper points on the smooth locus C �. Now, let
X0! P2 be the blowup of ¹f i .p/ºniD0. This blowup lifts f W P2! P2 to a birational
map f0 W X0 ! X0, which satisfies

I.f �10 / D I.f �1/ n ¹pº; I.f0/ D I.f / n ¹qº:

Note that #I.f �1/D #I.f /. Hence, as long as #I.f �10 /D #I.f0/ > 0, one can repeat
the argument by replacing f W P2 ! P2 with f0 W X0 ! X0. In the end, a resulting
map becomes an automorphism. See [12] for a more detailed discussion.

(2) (see [11]). We notice that ifp2I.f �1/ satisfiesf k.p/…I.f / for 0� k�m�1,
then f m.p/ is a well-defined point in I.f �m/. As � lifts f m to the automorphism
Fm, the point f m.p/ must be blown up by � . Since the number of points blown
up by � is finite, there is mp � 0 such that f k.p/ … I.f / for 0 � k � mp � 1 and
f mp .p/ 2 I.f /. Moreover,� blows up the points ¹f k.p/ j p 2 I.f �1/; 0� k �mpº,
and hence � admits the expression � D �0 ı � W X ! P2. The blowup �0 lifts f to
an automorphism F0 from a similar argument in the proof of (1). See [11] for a more
detailed discussion.

Definition 2.3. For a birational map f 2 B.C / satisfying the assumption in Propo-
sition 2.2 (1), the blowup �0 given in Proposition 2.2 (2) is called the proper blowup
for f .

Remark 2.4. Let f W P2 ! P2 be a birational map lifted to an automorphism F W

X ! X by a blowup � W X ! P2. With the identification of a point p 2 X with
�.p/ 2 P2 under the assumption that �.p/ … I.��1/, the dynamical behavior of F
around p is the same as that of f around the corresponding point. In particular, F has
a Siegel disk centered at p if and only if so does f .

The next lemma is used to calculate the cohomological actions of automorphisms.

Lemma 2.5. Let � be the proper blowup for f , which lifts f to an automorphism F ,
and let p1; : : : ; p� be the points blown up by � and El the exceptional divisor over pl .
If a point pi satisfies pi … I.f �1/, then the action F � of F sends Ei to Ej for some
j ¤ i .
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Proof. Under the notations given in the proof of Proposition 2.2 (1), we may assume
that pi D f k.p/ … I.f �1/ for some k � 1, as the other cases can be treated in a
similar manner. Note that f m.p/ … I.f �1/ for any 0 � m � k in this case. As is
mentioned in the proof of Proposition 2.2 (1), the blowup X0 ! P2 of ¹f i .p/ºniD0
lifts f to f0 W X0 ! X0, and then f0 sends Ek�1 to Ek , where E l is the exceptional
curve over f l.p/. As the indeterminacy set is a cluster, any point on Ek is not an
indeterminacy point of f �1. Moreover, since � is a proper blowup for f , there is a
point p0 2 Ek blown up by � if and only if there is a point p00 2 Ek�1 blown up by
� such that f0.p00/ D p0, which shows that F sends the irreducible components of
the exceptional divisor over f k�1.p/ to those over f k.p/. Therefore, F � sends the
exceptional divisor over f k.p/ to that over f k�1.p/.

Example 2.6. We consider a quadratic birational map on P2. It is known that the
inverse of any quadratic birational map is also quadratic, and the indeterminacy set of
a quadratic birational map consists of exactly three non-collinear (possibly infinitely
near) points. Let f W P2 ! P2 be a quadratic birational map in B.C /, and put

I.f ˙1/ D ¹p˙1 ; p
˙
2 ; p

˙
3 º � C

�:

Then, f lifts to an automorphism if and only if f k.p�i / … I.f / for 0 � k < ni

and f ni .p�i / D pC
�.i/

for any i 2 ¹1; 2; 3º, where n1; n2; n3 � 0 are integers and
� W ¹1; 2; 3º ! ¹1; 2; 3º is a permutation. Let �0 be the proper blowup for f , which lifts
f to an automorphism F0 W X0! X0. With a suitable matching of the indices between
forward and backward indeterminacies, the action F �0 W H

2.X0IZ/! H 2.X0IZ/ is
expressed as8̂̂<̂

:̂
ŒH � 7! 2ŒH� � ŒE

n1
1 � � ŒE

n2
2 � � ŒE

n3
3 �;

ŒE0i � 7! ŒH � � ŒE
nj
�.j /

� � ŒE
nk
�.k/

�
�
¹i; j; kº D ¹1; 2; 3º

�
;

ŒEm
l
� 7! ŒEm�1

l
�

�
l 2 ¹1; 2; 3º; m � 1

�
;

where Em
l

is the exceptional divisor over f m.p�
l
/ (see [5, 12]).

As is mentioned in Proposition 2.2, we assume that the points .p1; : : : ; p�/ blown
up by � W X ! P2 lie on the smooth locus C � of the cubic curve C , and we also
assume that � lifts a birational map f W P2 ! P2 in B.C / to an automorphism
F W X ! X . Since f preserves C , the automorphism F also preserves the strict
transform Y of C , which is the closure of ��1.C n ¹p1; : : : ; p�º/. Moreover, as the
points pi lie on C �, the curve Y is isomorphic to C and anticanonical on X ; namely,
ŒY � D �KX , where KX WD �3ŒH�C

P�
iD1ŒEi �. Under the above notation, we have

the following proposition.
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Proposition 2.7. Assume that Pic0.C / Š C, and also assume that

(1) #¹1 � i � � j pi 2 Vj º � degVj for any irreducible component Vj of C ,

(2) �.pi / ¤ 0 for some 1 � i � �, where � W Vj \ C � ! Pic0.C / Š C is given by
�.p/ D Œp� � Œ0j �.

Then, the determinant ı.f / is an eigenvalue of F � W H 2.X IZ/! H 2.X IZ/.

Proof. Let r 2 ¹1; 2; 3º be the number of irreducible components of C . From assump-
tion (1), we may assume that #¹1 � i � 3 j pi 2 Vj º D degVj for 1 � j � r , after
reordering .pi / if necessary, and also choose � W ¹1; : : : ; �º ! ¹1; : : : ; rº so that
pi 2 V�.i/ for 1� i � �. Let us consider the restriction map u WH 2.X IZ/Š Pic.X/!
Pic.Y / Š Pic.C /, explicitly given by

uŒH� D

rX
iD1

degVi � Œ0i �; uŒEi � D Œpi � .i D 1; : : : ; �/:

Then, the following diagram commutes:

H 2.X IZ/
F�
����! H 2.X IZ/

u

??y ??yu
Pic.C /

f�
����! Pic.C /:

For simplicity, we denote by the same notation Vi the strict transform of Vi . Since
F � preserves the intersection form and permutes the curves ¹V1; : : : ; Vrº, it pre-
serves the orthogonal complement HX WD ¹ŒV1�; : : : ; ŒVr �º

? � H 2.X IZ/, generated
by .B0; BrC1; : : : ; B�/ with

B0 WD ŒH � � ŒE1� � ŒE2� � ŒE3�; Bi WD ŒEi � � ŒE�.i/� .i D r C 1; : : : ; �/:

We notice that the image of u restricted to HX is contained in Pic0.C /.
Now, let us fix a vector � 2 H 2.X IC/ D H 2.X IZ/˝C satisfying

�.pi / D �
�
�; ŒH �=3 � ŒEi �

�
2 Pic0.C / Š C:

Note that under assumption (2), the vector � is nonzero and unique inH 2.X IC/=CŒKX �.
Then, we have

u.B0/ D

rX
iD1

degVi � Œ0i � �
3X
iD1

Œpi � D

3X
iD1

®
Œ0�.i/� � Œpi �

¯
D �

3X
iD1

�.pi / D

3X
iD1

�
�; ŒH �=3 � ŒEi �

�
D .�; B0/:
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In a similar manner, it follows that u.Bi / D .�; Bi / and thus u.D/ D .�;D/ for any
D 2HX . Note that the action f� on Pic0.C /Š C is given by f�.t/D ı.f /t for t 2 C.
Therefore, for any D 2 HX , we have

u.F�D/ D .�; F�D/ D .F
��;D/ D f�u.D/ D ı.f /.�;D/ D

�
ı.f /�;D

�
;

which yields F �� D ı.f /� C
Pr
iD1 ci ŒVi � for some ci 2 C. Since F � preserves

¹ŒV1�; : : : ; ŒVr �º, ı.f / is an eigenvalue of F �. The proposition is established.

Now, in addition to the assumptions in Proposition 2.7, we also assume that C is a
cuspidal cubic curve and the determinant ı.f / is not a root of unity. Then, ı.f / is a
root of the Salem polynomial SF .t/ D 0 by Proposition 2.7, and the entropy of F is
positive: htop.F / D log�.F �/ > 0. In this case, the birational morphism � W X ! X0

mentioned in Proposition 2.2 is expressed as follows. Let q 2 Y � be a fixed point on the
smooth locus Y � Š C of the anticanonical curve Y , which uniquely exists as F has the
determinant ı.f / ¤ 1. A result in [11] says that if � is not an isomorphism, then there
is a unique .�1/-curve passing through q, which is contracted by � and is preserved
by F . Through the contraction of the .�1/-curve, F descends to an automorphism.
Repeating this argument, we can consider the decomposition

(1) � W X D Xm
�m
��! Xm�1

�m�1
���! � � �

�2
�! X1

�1
�! X0;

where �i W Xi ! Xi�1 is the contraction of a .�1/-curve through pi to pi�1 with
pm WD q. Then, F descends to an automorphism F0 W X0 ! X0.

Let Ni � X be the strict transform of the exceptional curve of �i under �iC1 ı � � � ı
�m. As Ni is isomorphic to P1 and is preserved by F , we inductively let qi be the
unique fixed point on Ni n ¹qiC1º of F with qmC1 WD q. In particular, .q1; : : : ; qm; q/
are all of the fixed points lying on the exceptional divisors of �. Moreover, let p 2 C
be the singular point of C , which is also a fixed point of F .

Proposition 2.8 ([11]). Under the above assumptions, we have the following.

(1) The eigenvalues of DF at p are 1=ı.f /2 and 1=ı.f /3.

(2) The eigenvalues of DF at q are ı.f / and 1=ı.f /N�4, where N D rank Pic.X/.

(3) The eigenvalues ofDF at qi for 1� i �m are ı.f /N�mCi�4 and 1=ı.f /N�mCi�5.

In particular, F has no Siegel disk centered at any fixed point on the anticanonical
curve Y and the exceptional divisors of �.

Next, we give an estimate of the number of isolated fixed points of an automorphism.

Proposition 2.9. Assume that an automorphism F W X ! X on a rational surface X
has positive entropy, and the derivativeDF.x/ of F on any fixed point x has an eigen-
value different from 1. Then, F has at most Tr.F �jH2.X IZ//C 2 isolated fixed points.
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We postpone its proof to Section 5. The following two propositions are applications
of Proposition 2.9.

Proposition 2.10. Let C � P2 be a reduced cubic curve with Pic0.C / Š C, and let
F W X ! X be an automorphism with positive entropy such that F is obtained from a
birational map f 2 B.C / by the blowup � W X ! P2 of points on C �. Assume that
ı.f / is not a root of unity. Then, F has at most Tr.F �jH2.X IZ//C 2 isolated fixed
points.

Proof. First, we notice that our assumption says that for any fixed point x on the strict
transform Y of C , which is an anticanonical curve on X , the derivative DF.x/ of F
on x has an eigenvalue different from 1. Indeed, if x lies on the smooth locus Y �, then
DF.x/ has ı.f / as an eigenvalue. On the other hand, if x is a singular point of Y , then
DF.x/ has eigenvalues of the form �ı.f /�m, where � is a root of unity and m 2 Z>0
is a positive integer (see [8, Section 9]).

This remains true for any fixed point x outside Y since DetDF.x/Dı.f /¤1 from
the existence of a nowhere vanishing meromorphic 2-form �X D ��� onX with .�X /D
�Y and F ��X D ı.f /�X . Hence, the proposition follows from Proposition 2.9.

Proposition 2.11. For a cuspidal cubic curve C , let f 2 B.C / be a quadratic bira-
tional map with ı.f / being not a root of unity such that f is lifted to an automorphism
F W X ! X by the blowup � W X ! P2 of points on C �. Then, F has at most two
fixed points at which Siegel disks are centered.

Proof. Note that � satisfies the assumptions in Proposition 2.7. Indeed, assump-
tion (1) holds as it follows from Proposition 2.2 (2) that three indeterminacy points
¹pC1 ; p

C
2 ; p

C
3 º of f are blown up by � . Moreover, assumption (2) also holds as the

points ¹pC1 ; p
C
2 ; p

C
3 º are not collinear. Hence, Proposition 2.2 (2) and the above argu-

ment show that the blowup � can be decomposed as � D �0 ı �, where �0 W X0! P2

is the proper blowup for f , which lifts f to an automorphism F0 W X0 ! X0, and
� W X ! X0 is expressed as the decomposition (1). The cohomological action

F �0 W H
2.X0IZ/! H 2.X0IZ/

is given in Example 2.6, which means that Tr.F �0 jH2.X0IZ//� 2. Hence,F0 has at most
4 isolated fixed points by Proposition 2.10 since htop.F0/ D htop.F / > 0. Among the
fixed points, two fixed points lie on the anticanonical curveY0D��10 .C / ofX0, at which
no Siegel disks are centered from Proposition 2.8. On the other hand, Proposition 2.8
also shows that at none of the fixed points of F on the exceptional divisors of �, a
Siegel disk is centered. Since each fixed point of F either is identified with that of F0
or lies on the exceptional divisors of � (see also Remark 2.4), F has at most two fixed
points at which Siegel disks are centered.
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We conclude this section by stating a result for a class of birational maps with
algebraic coefficients that we will treat in the following sections. To this end, for a
reduced cubic curveC �P2 and a birational mapf WP2!P2 in B.C /with ıD ı.f /,
we assume that C is expressed as

C D
®
x D Œx1 W x2 W x3� 2 P2 j g.x1 W x2 W x3/ D 0

¯
;

where g is a homogeneous polynomial in ZŒı�Œx1; x2; x3�, and that f D fı is also
expressed as

f .x/ D fı.x/ D
�
f1.x1 W x2 W x3/ W f2.x1 W x2 W x3/ W f3.x1 W x2 W x3/

�
2 P2;

where fi are homogeneous polynomials in ZŒı�Œx1; x2; x3� with degx f1 D degx f2 D
degx f3. Note that if ı 2 C� is an algebraic number, then so is any fixed point w of f ,
which enables us to consider the Galois conjugates of ı andw, and also the eigenvalues
.�; �/ of Df.w/ are algebraic.

Proposition 2.12. Under the above assumptions, let ı 2 C� be an algebraic number
with jıj D 1 that is not a root of unity, and let w 2 P2 n C be a fixed point of fı
outside C . Moreover, assume that there are Galois conjugates .ı�; w�/ of .ı; w/ with
jı�j D 1 and fı�.w�/ D w� such that®

TrDfı.w/
¯2
=DetDfı.w/ 2 Œ0; 4�;®

TrDfı�.w�/
¯2
=DetDfı�.w�/ … Œ0; 4�:

Then, f D fı has a Siegel disk centered at w.

Proof (See [8]). Let .��; ��/ be the eigenvalues of Dfı�.w�/, which are Galois con-
jugates of the eigenvalues .�; �/ of Dfı.w/. Note that ���� D DetDfı�.w�/ D ı�,
as w� also lies outside C . Moreover, it should be noted that®

TrDfı.w/
¯2
=DetDfı.w/ D

.�C �/2

��
D
�

�
C
�

�
C 2

and that a complex number z 2 C satisfies z C z�1 C 2 2 Œ0; 4� if and only if jzj D 1.
Hence, it follows from our assumption that j�=�j D 1 and j��=��j ¤ 1. Since j��j D
jıj D 1, we have .�; �/ 2 .S1/2. Now, assume that �k�l D 1 for .k; l/ 2 Z2. Since
.��;��/ are Galois conjugates of .�;�/, one has 1D�k��l�D.ı�/.kCl/=2.��=��/.k�l/=2

and thus k D l as jı�j D 1 and j��=��j ¤ 1. Since 1 D �k��k� D ık� and ı� is not a
root of unity, we have k D 0; namely, .k; l/D .0; 0/. Therefore,Df.w/ is an irrational
rotation with the algebraic eigenvalues .�; �/, which shows that f has a Siegel disk
centered at w.
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3. Birational maps preserving a Cuspidal curve

In this section, we consider a class of quadratic birational maps preserving a cuspidal
cubic curve. For a parameter ı 2 C n ¹0; 1º, let us consider a quadratic map f D fı W
P2 ! P2, which is explicitly given by f Œx W y W z� D Œfx W fy W fz� in homogeneous
coordinates, where

(2)

8̂̂<̂
:̂
fxŒx W y W z� D ı � .xy � 2dyz C 2d

3xz � d4z2/;

fy Œx W y W z� D ı
3 � .y2 � 3d2xy C 3d4x2 � d6z2/;

fzŒx W y W z� D yz � 3dx
2 C 3d2xz � d3z2

with d WD .3ı/�1.1 � ı/. Then, f is a birational map preserving the cubic curve
C WD ¹yz2 D x3º � P2 with a cusp located at Œ0 W 1 W 0� and also preserving its
smooth locus C � D C n ¹Œ0 W 1 W 0�º. Indeed, with the parametrization p W C ! C �

given by p.t/ D Œt W t3 W 1�, the restriction of f to C � is expressed as f jC� W C 3 t 7!
ı � .t C d/ 2C. The indeterminacy sets of f ˙1 are given by I.f ˙1/D ¹p˙1 ; p

˙
2 ; p

˙
3 º,

where pC1 WD p.d/ 2 C
� and p�1 WD p.�ı � d/ 2 C

�. Moreover, for i D 1; 2, the point
p˙iC1 is defined by the property ¹p˙iC1º D C˙i \ E˙i , where C˙0 WD C � and C˙i
is inductively given by the strict transform .�˙i /

�1.C˙i�1/ under the blowup �˙i of
p˙i with exceptional curve E˙i . In this case, we write p˙1 < p˙2 < p˙3 . Hence, by
permitting infinitely near points, we conclude that I.f ˙1/ are contained in C � and
that f is a quadratic birational map in B.C / with ı.f / D ı from the expression for
f jC� . Conversely, if a quadratic map f 2 B.C / with I.f / D ¹pC1 ; p

C
2 ; p

C
3 º satisfies

ı.f / D ı and pC1 D p.d/ < p
C
2 < p

C
3 , then f D fı is given by (2) (see [11, 12]).

There are exactly two fixed points ¹w1; w2º of f outside the curve C , and each
point is expressed as wi D Œxi W r� .xi / W 1�, where

r� .x/ WD
� � 2

3.� C 1/
x �

.� � 2/2

27.� C 1/

with � WD ı C 1=ı, and xi is a root of the quadratic equation

Q� .x/ WD 27x
2
� 9.� � 2/x C .� � 1/.� � 2/ D 0:

Moreover, we have®
TrDf.wi /

¯2
DetDf.wi /

D s.�; xi / WD
1

� C 2

®
9.� � 1/xi � .�

2
� 4� C 6/

¯2
:

Now, in order to construct an automorphism on a rational surface, we consider the
case where the orbit pki WD f

k.p�i / of each backward indeterminacy point p�i reaches
the forward indeterminacy point pCi ; namely, pni D p

C

i for some n � 1. If such an
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n � 1 exists, then Proposition 2.2 shows that the proper blowup � W X ! P2 for f
lifts f to an automorphism F W X ! X .

From now on, we assume n D 8. As pk1 D p.�ı
kC1 � d C .1 � ık/=3/, it follows

from the relation p.�ı9 � d C .1� ı8/=3/D p.d/ that ı is a root of .ıC 1/S.ı/D 0,
where

S.ı/ D ı8 � 2ı7 C ı6 � 2ı5 C ı4 � 2ı3 C ı2 � 2ı C 1

is a Salem polynomial. Conversely, for any root ı of S.ı/ D 0, the birational map
f D fı satisfies p8i D p

C

i for any i 2 ¹1; 2; 3º, as pk1 < p
k
2 < p

k
3 for any 0 � k � 8,

and hence lifts to the automorphism F D Fı W X ! X . The roots of S.ı/ D 0 on
the real line are ı � 1:9940; 0:5015, and the other roots lie on the unit circle, given
by ı � 0:6098 ˙ 0:7925i , �0:1098 ˙ 0:9939i , �0:7478 ˙ 0:6640i , which yields
� � 1:2197, �0:2197, �1:4955. By virtue of Proposition 2.7 (see also the proof of
Proposition 2.11), � � 1:9940 is an eigenvalue of F � W H 2.X IZ/! H 2.X IZ/ and
thus the spectral radius of F �, which means that F has positive entropy

htop.F / D log� � 0:6901 > 0:

Now, we put

.ı0; �0/ � .0:6098C 0:7925i; 1:2197/;

.ı�; ��/ � .�0:7478C 0:6640i;�1:4955/:

Lemma 3.1. We have s.�0; xi / 2 Œ0; 4� for any root xi ofQ�0.x/ D 0 and s.��; x�/ …
Œ0; 4� for some root x� of Q��.x/ D 0.

Proof. It should be noted that �02I0 WDŒ1:219;1:220� and ��2I� WDŒ�1:496;�1:495�.
Moreover, the roots xi of Q�0.x/ D 0 satisfy either xi 2 I1 WD Œ0:022; 0:023� or
xi 2 I2 WD Œ�0:283;�0:282� as Q� .0:022/ < 0, Q� .0:023/ > 0, Q� .�0:283/ > 0,
Q� .�0:282/ < 0 for any � 2 I0, and a root x� of Q��.x/ D 0 satisfies x� 2 I�� WD
Œ�0:711;�0:710� as Q� .�0:711/ > 0, Q� .�0:710/ < 0 for any � 2 I�. In particular,
we have s.�0; xi / � 0 and s.��; x�/ � 0. A little calculation shows that

s.�; x/ � s.1:219; 0:022/ < 2:05 < 4 for any .�; x/ 2 I0 � I1;
s.�; x/ � s.1:220;�0:283/ < 3:12 < 4 for any .�; x/ 2 I0 � I2;
s.�; x/ � s.�1:495;�0:710/ > 5:91 > 4 for any .�; x/ 2 I� � I��:

Hence, the lemma is established.

Note that Q�0.x/ is irreducible over QŒ�0�, and thus both .ı0; w1/ and .ı0; w2/
are Galois conjugates of .ı�; w�/. Proposition 2.12 yields the following (see also
Remark 2.4).
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Figure 1. Two Siegel disks for automorphism F .

Proposition 3.2. The automorphism F D Fı0 2 QF .C / has Siegel disks centered
at w1, w2.

Proof of Theorem 1.2. As C is reduced irreducible, C is either smooth or a nodal
cubic or a cuspidal cubic. A result of Diller [5] says that there is no automorphism
F 2 QF .C / when C is a nodal cubic. On the other hand, when C is smooth, the
determinant ı.F / of any automorphism F 2 QF .C / is a root of unity. Hence, for
the fixed point x, the derivative DF.x/ has an eigenvalue ı.F / if x 2 C and has the
determinant DetDF.x/D ı.F / if x … C . In either case, the eigenvalues ofDF.x/ are
not multiplicatively independent, which means that F has no Siegel disk. Therefore,
if C is irreducible and F 2 QF .C / has a Siegel disk, then C is a cuspidal cubic
curve. Moreover, if C is a cuspidal cubic, then F admits at most two Siegel disks by
Proposition 2.11. Finally, Proposition 3.2 guarantees the existence of the automorphism
F 2 QF .C / admitting exactly two Siegel disks.

In Figure 1, we describe two Siegel disks for the automorphism F with the help of
Mathematica.

4. Birational maps preserving three lines

In this section, we consider birational maps preserving three lines meeting at a single
point. To this end, for parameters ı 2C�, aD .ai /miD1 2 .C

�/m, b D .bj /njD1 2 .C
�/n,

let f D fı;a;b W C2 ! C2 be a birational map given by

(3) f .x; y/ D
�
f1.x; y/; f2.x; y/

�
D

�
y;

g1.y/.x C ıy/

ı
®�
g2.y/ � g1.y/

�
x
y
� ıg1.y/

¯�;
where g1.y/D

Qm
iD1.1� y=ai / and g2.y/D

Qn
jD1.1� y=bj /. The map f preserves

the three lines
C D L1 [ L2 [ L3;
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where L1 D ¹x D 0º, L2 D ¹x C ıy D 0º, L3 D ¹y D 0º, and sends these lines as

(4)
f jL1.0; y/ D

�
y;�

y

ı

�
2 L2; f jL2.�ıy; y/ D .y; 0/ 2 L3;

f jL3.x; 0/ D
�
0;

�x

ı2 C ıcx

�
2 L1:

Here and hereafter, we use the following notations:

(5)

˛ D

mX
iD1

1

ai
; ˇ D

nX
jD1

1

bj
;

˛0 WD

mY
iD1

1

ai
; ˇ0 WD

nY
jD1

1

bj
;

c D ˇ � ˛:

Note that the map (3) is derived under a certain assumption as in the following lemma.

Lemma 4.1. Assume that a birational map h W C2 ! C2 of the form h.x; y/ D

.y; h2.x; y// satisfies h.Li /D LiC1 for i D 1; 2; 3 .mod 3/. Then, we have hD fı;a;b
for some ı, a D .ai / and b D .bj /.

Proof. Since h is a birational map, for a generic .x0; y0/ 2C2, the equation h.x;y/D
.y; h2.x; y//D .x0; y0/, or h2.x; x0/D y0 has a unique root for x. Hence, h2.x; y/ is
a rational function of degree 1with respect to x. As h2.�ıy;y/D 0, h2.0; y/D�y=ı,
andh2.x;0/¤ 0,h2 has the formh2.x;y/D g1.y/.xC ıy/=.g3.y/x � ı2g1.y//with
g1.0/¤ 0. By multiplying the denominator and numerator by a common constant if nec-
essary, one can put g1.y/D

Qm
iD1.1� y=ai / and then g2.y/D g1.y/C yg3.y/=ı DQn

jD1.1 � y=bj /, which yields the lemma.

From now on, we assume the following.

Assumption 1. m D n D N .

With the embedding C2 3 .x; y/ ,! Œx W y W 1� 2 P2, we will regard the birational
map f and the lines C as those on P2. Then, the indeterminacy sets of f ˙1 are given
by I.f ˙1/ D ¹p˙a;iº

N
iD1 [ ¹p

˙
b;j
ºNjD1 [ ¹p

˙
0 º, where

pCa;i D Œ0 W ai W 1�; pC
b;j
D Œ�bj ı W bj W 1�; pC0 D Œ1 W 0 W 0�;

p�a;i D Œai W 0 W 1�; p�b;j D Œbj W �bj =ı W 1�; p�0 D Œ0 W 1 W 0�:

Since any indeterminacy point of f ˙1 lies on the smooth locus C � of the three lines
C , we can conclude that f 2 B.C /. Moreover, it follows from (4) that ı D ı.f / is
the determinant of f .
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Remark 4.2. The birational map f contracts curves to indeterminacy points as follows:

Lai WD
®
Œx W ai W 1� j x 2 P1

¯
! p�a;i ;

Lbj WD
®
Œx W bj W 1� j x 2 P1

¯
! p�b;j ;

D WD
®
Œx W y W 1� j

�
g2.y/ � g1.y/

�
x=y � ıg1.y/ D 0

¯
! p�0 :

The curvesLai andLbj are lines passing through ¹pCa;i ;p
C
0 º and ¹pC

b;j
;pC0 º respectively,

and D is a curve of degree N passing through I.f / with multiplicities

mult
p
C

a;i

D D mult
p
C

b;j

D D 1 and mult
p
C

0

D D N � 1:

A straightforward calculation shows that the blowup of p�0 lifts f to a birational map
whose restriction to D is an isomorphism to the exceptional curve of the blowup.
Similarly, if ai ¤ ak for any k ¤ i , then the blowup of p�a;i lifts f to a birational map
whose restriction toLai is an isomorphism to the exceptional curve, and also if bj ¤ bk
for any k ¤ j , then the blowup of p�

b;j
lifts f to a birational map whose restriction to

Lbj is an isomorphism to the exceptional curve. Moreover, the pullback of a generic
line by f is a curve D of degree N C 1 passing through I.f / with multiplicities
mult

p
C

a;i

D D mult
p
C

b;j

D D 1 and mult
p
C

0

D D N .

Next, we determine the fixed points of f W P2 ! P2. The fixed points of f on C2

are given by the singular point .0; 0/ of C , and .xl ; xl/ 2 C2, where xl are the roots
of the equation

(6)
.1C ı/2

ı

NY
iD1

�
1 �

xl

ai

�
D

NY
jD1

�
1 �

xl

bj

�
:

Moreover, under Assumption 1, the birational map f W P2 ! P2 preserves the line
L D ¹Œx W y W z� j z D 0º at infinity, and the restriction f jL is expressed as

(7) f Œx W y W 0� D
�
ı.ˇ0 � ˛0/x � ı

2˛0y W ˛0.x C ıy/ W 0
�
;

where ˛0, ˇ0 are given in (5). Hence, the fixed points of f W P2 ! P2 lying on L are
given by Œxl W 1 W 0�, where xl are the roots of the equation

(8) ˛0x
2
l C ı.2˛0 � ˇ0/xl C ˛0ı

2
D 0:

Consequently, we have the following proposition.

Proposition 4.3. The fixed points of f W P2! P2 are given by w0 D Œ0 W 0 W 1� 2 C ,
wl D Œxl W xl W 1� 2C2 for l 2 ¹1; : : : ;N º, where xl are the roots of (6), andwl D Œxl W
1 W 0� 2 L for l 2 ¹N C 1;N C 2º, where xl are the roots of (8). Moreover, when l 2
¹1; : : : ; N C 2º, the fixed point wl lies outside C and hence satisfies DetDf.wl/ D ı.
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Remark 4.4. It is straightforward to calculate that the eigenvalues of Df.w0/ at the
singular point w0 of C are given by .!ı�1; !�1ı�1/, where ! is a primitive cube root
of unity. Therefore, a Siegel disk is never centered at w0, as .!ı�1; !�1ı�1/ are not
multiplicatively independent.

Now, for R� WD R n ¹0º, we put

A WD

´
c D .ı; a; b/ 2 S1 � .R�/N

¤
� .R�/N

¤
j

NX
jD1

1

bj
�

NX
iD1

1

ai
D 1

µ
;

where .R�/N
¤
WD ¹a 2 .R�/N degai ¤ aj .i ¤ j /º, and for c0 D .ı0; a0; b0/ 2 A and

" > 0, put

A.c0I "/ WD
®
.ı; a; b/ 2 A j jı � ı0j < "; ja � a0j < "; jb � b0j < "

¯
:

Then, we have the following proposition, whose proof is given in Section 6.

Proposition 4.5. Under the above notations, there exists " > 0 and c0; c� 2 A such
that

(1) ¹TrDf.wl /º2
DetDf.wl /

2 Œ0; 4� for l 2 ¹1; : : : ; N C 2º if .ı; a; b/ 2 A.c0I "/,

(2) ¹TrDf.wl /º2
DetDf.wl /

… Œ0; 4� for l 2 ¹1; : : : ; N C 2º if .ı; a; b/ 2 A.c�I "/.

It should be noted that the indeterminacy point p�0 2 I.f
�1/ satisfies

f 2.p�0 / D p
C
0 2 I.f /:

Furthermore, we assume the following.

Assumption 2. For given parameters m D .mi /NiD1, n D .nj /
N
jD1 2 NN except for

.m; n/ D ..1/; .1// 2 .N1/2, the map f W P2 ! P2 satisfies

(9)
f 3mi�2.p�a;i / D p

C

a;i .i D 1; : : : ; N /;

f 3nj .p�b;j / D p
C

b;j
.j D 1; : : : ; N /:

Lemma 4.6. Under Assumption 2, we have

1

ai
D �

ı.ı3mi � 1/

.ı3 � 1/.ı3mi�1 C 1/
c;

1

bj
D

ı2.ı3nj � 1/

.ı3 � 1/.ı3njC1 C 1/
c;

where c D ˇ � ˛ is given in (5). In particular, if c ¤ 0, then ı satisfies the equation

(10) �m;n.ı/ WD

NX
jD1

ı2.ı3nj � 1/

.ı3 � 1/.ı3njC1 C 1/
C

NX
iD1

ı.ı3mi � 1/

.ı3 � 1/.ı3mi�1 C 1/
D 1:
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Proof. It follows from (4) that

f 3.0; y/ D
�
0; h1.y/

�
; f 3.x;�x=ı/ D

�
h1.x/;�h1.x/=ı

�
and hence

f 3k.0; y/ D
�
0; hk.y/

�
; f 3k.x;�x=ı/ D

�
hk.x/;�hk.x/=ı

�
;

where
hk.x/ WD

1

ı3k. 1
x
� p/C p

; p WD
ıc

.ı3 � 1/
:

Since
f .ai ; 0/ D

�
0;�ai

®
ı.ı C cai /

¯�1�
;

assumption (9) is equivalent to hmi�1.�ai¹ı.ıC cai /º
�1/D ai and hnj .bj /D�bj ı,

which yield the desired expressions for 1=ai and 1=bj . Finally, the relation (10) follows
from

c D ˇ � ˛ D

NX
jD1

1=bj �

NX
iD1

1=ai :

Conversely, for given m D .mi /, n D .nj / 2 NN , let ı 2 C� be any root of (10),
and let a D .ai /, b D .bj / be parameters given by ai D ami .ı/, bj D bnj .ı/, where

(11) ak.ı/ WD �
.ı3 � 1/.ı3k�1 C 1/

ı.ı3k � 1/
; bk.ı/ WD

.ı3 � 1/.ı3kC1 C 1/

ı2.ı3k � 1/
:

Then, the birational map f D fı;a;b satisfies the condition (9). Proposition 2.2 shows
that there is a proper blowup � WX! P2 for f , and� lifts f W P2! P2 to an automor-
phism Fm;n W X ! X . Note that the points blown up by � satisfy the assumptions in
Proposition 2.7. Thus, the root ı of the equation (10), which is the determinant off , is an
eigenvalue of F �m;n WH 2.X IZ/!H 2.X IZ/. On the other hand, under Assumption 2,
there exists � > 1 so that �m;n.�/ D 1 since �m;n.1/ > 1 and limı!1 �m;n.ı/ D 0.
Hence, � D �m;n WD �.F �m;n/ > 1 is the spectral radius, which is a root of the Salem
polynomialSm;n.t/ WDSFm;n.t/D 0. AsSm;n.t/ is irreducible, any root ofSm;n.t/D 0
is a root of �m;n.t/ D 1. Therefore, we have the following corollary.

Corollary 4.7. Under the assumption that .m;n/¤ ..1/; .1//, any root ı ofSm;n.t/D
0 satisfies �m;n.ı/ D 1. Moreover, the birational map f D fı;.ami .ı//;.bnj .ı// lifts to
the automorphism Fm;n, having positive entropy htop.Fm;n/ D log�m;n > 0 with the
spectral radius �m;n D �.F �m;n/ > 1.

Lemma 4.8. If ı 2 S1 is given by ı D exp.2�i�/ with an irrational real number �,
then ¹ak.ı/ºk2N and ¹bk.ı/ºk2N are sequences of real numbers and dense in R.
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Proof. First we notice that

�
.ı3 � 1/.ı3k�1 C 1/

ı.ı3k � 1/
D �

.ı3=2 � ı�3=2/.ı.3k�1/=2 C ı�.3k�1/=2/

.ı3k=2 � ı�3k=2/

D �2
sin.3��/ cos

®
.3k � 1/��

¯
sin.3k��/

D �2 sin.3��/
²

cos.��/
tan.3k��/

C sin.��/
³
;

.ı3 � 1/.ı3kC1 C 1/

ı2.ı3k � 1/
D
.ı3=2 � ı�3=2/.ı.3kC1/=2 C ı�.3kC1/=2/

.ı3k=2 � ı�3k=2/

D 2
sin.3��/ cos

®
.3k C 1/��

¯
sin.3k��/

D 2 sin.3��/
²

cos.��/
tan.3k��/

� sin.��/
³

are real numbers. Since ¹3k��º1
kD1
� .��=2; �=2/ .mod �/ is dense from the irra-

tionality of �, so is ¹tan.3k��/º1
kD1
� R, which establishes the lemma as

sin.3��/ cos.��/ ¤ 0:

Proposition 4.9. The roots of Sm;n.t/ D 0 other than �˙1m;n are equidistributed on
S1 as either mi !1 for some i or nj !1 for some j .

Proof. A result of Bilu (see [4, 8]) says that if ¹�kºk2N is a sequence of algebraic
units with limk!1 deg.�k/D1, then ¹xı�k ºweakly converges to the normalized Haar
measure on S1. Here, for an algebraic number � ¤ 0, we put

xı� WD
1

deg.�/

X
�0 �

conj:
�

ı�0

with the Dirac measure ı�0 at �0. Since �m;n satisfies �m;n ! � <1 as mi !1
or nj !1 and � is not a Salem number, we have deg.�m;n/!1. As �m;n is an
algebraic unit, the proposition is established.

Proposition 4.10. Let " > 0 and c0; c� 2 A be given in Proposition 4.5, and let ak.ı/,
bk.ı/ be given in (11). Then, there exist m; n 2 NN and ı0; ı� 2 S1 such that

(1) Sm;n.ı0/ D Sm;n.ı�/ D 0,

(2) .ı0; .ami .ı0//; .bnj .ı0/// 2 A.c0I "/, .ı�; .ami .ı�//; .bnj .ı�/// 2 A.c�I "/.

Proof. We put c0 D .d0; .a0i /; .b
0
j //, c� D .d�; .a

�
i /; .b

�
j //, and without loss of gen-

erality, we may assume that d0 and d� are multiplicatively independent. Then, from
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Lemma 4.8, one can fix .mi /N�1iD1 and .nj /NjD1 so that a0i � ami .d0/, a
�
i � ami .d�/ for

i 2 ¹1; : : : ; N � 1º and b0j � bnj .d0/, b
�
j � bnj .d�/ for j 2 ¹1; : : : ; N º. By Propo-

sition 4.9, there exists mN � 1 such that roots ı0; ı� 2 S1 of Sm;n.t/ D 0 satisfy
ı0 � d0, ı� � d� and hence a0i � ami .ı0/, a

�
i � ami .ı�/ for i 2 ¹1; : : : ;N � 1º and

b0j � bnj .ı0/, b
�
j � bnj .ı�/ for j 2 ¹1; : : : ; N º. As

NX
jD1

1

bj
�

NX
iD1

1

ai
D �m;n.ı0/ D �m;n.ı�/ D 1

from Corollary 4.7, we have a0N � amN .ı0/, a�N � amN .ı�/ so that condition (2)
holds.

For the parameters given in Proposition 4.10, fix the birational maps

f0 D fı0;.ami .ı0//;.bnj .ı0// and f� D fı�;.ami .ı�//;.bnj .ı�//:

As f0 and f� are Galois conjugate and each fixed point of f0 outside C is a Galois
conjugate of a fixed point of f� outside C , Propositions 2.12, 4.5, and 4.10 yield the
following corollary.

Corollary 4.11. The map f0 has N C 2 fixed points w1; : : : ; wNC2 at which Siegel
disks are centered.

Proposition 4.12. Let F W X ! X be the automorphism that is the lift of f0 by the
proper blowup� WX!P2 forf0. Then,F has positive entropyhtop.F /D log�m;n>0
and has exactly N C 3 isolated fixed points w0; : : : ; wNC2 (see also Remark 2.4).

Proof. Corollary 4.7 says thatFDFm;n has positive entropyhtop.Fm;n/D log�m;n>0.
Now, note that the indeterminacy points I.f ˙1/ are blown up by � . Remark 4.2 says
that F � sends curves as

ŒH � 7! .N C 1/ŒH� �NŒEC0 � �

NX
iD1

ŒECa;i � �

NX
jD1

ŒEC
b;j
�;

ŒE�0 � 7! NŒH� � .N � 1/ŒEC0 � �

NX
iD1

ŒECa;i � �

NX
jD1

ŒEC
b;j
�;

ŒE�a;i � 7! ŒH � � ŒEC0 � � ŒE
C

a;i �;

ŒE�b;j � 7! ŒH � � ŒEC0 � � ŒE
C

b;j
�;

where E˙0 , E˙a;i , E
˙
b;j

are the exceptional divisors over p˙0 , p˙a;i , p
˙
b;j

, respectively. It
follows from Lemma 2.5 that any exceptional divisor over the point outside I.f �1/
is sent to another exceptional one by F �. Hence, we have Tr.F �jH2.X IZ// � N C 1.
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Figure 2. Siegel disks for an automorphism (N D 5).

Proposition 2.10 says that there are at most N C 3 isolated fixed points for F , and the
existence of the fixed points w0; : : : ; wNC2 given in Proposition 4.3 says that there are
exactly N C 3 isolated fixed points for F .

Proof of Theorem 1.1. First, assume k � 3 and put N D k � 2. The automorphism
F mentioned in Proposition 4.12 has positive entropy and has exactly kC 1 fixed points
w0; : : : ;wk . Among the fixed points, no Siegel disk is centered atw0 from Remark 4.4,
and Siegel disks are centered at w1; : : : ; wk from Corollary 4.11. Therefore, F is a
desired automorphism satisfying the condition mentioned in Theorem 1.1.

When k D 0; 1, McMullen [8] and Bedford–Kim [2] showed the existence of an
automorphism F satisfying the condition. The automorphism F realizes the so-called
Coxeter element and is obtained from a birational map f W P2 ! P2 of degree 2 by
blowing up points on the smooth locus of a cubic curve C . Moreover, C is a cuspidal
cubic if k D 0, and C is either a conic with a tangent line or three lines through a point
if k D 1. Finally, when k D 2, the existence is shown in Theorem 1.2. The theorem is
established.

With the help of Mathematica, we describe Siegel disks of an automorphism for
the parametersN D 5,mD .280; 104; 54; 36; 27/, nD .205; 381; 432; 450; 459/, and
ı � �0:5037C 0:8639i in Figure 2.

5. Proof of Proposition 2.9

This section is devoted to the proof of Proposition 2.9. Since automorphisms may fix
a curve pointwise, we use S. Saito’s fixed point formula instead of a classical fixed
point one (see [7, 10]). Let X be a smooth projective surface and f W X ! X an
automorphism different from the identity. Then, the idea of Saito is to divide the set
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X1.f / of irreducible curves fixed pointwise by f into the curves of type I and those
of type II:

X1.f / D XI .f /qXII .f /;

and to contribute different types of curves to the formula in different ways. Namely,
the formula says that the Lefschetz number

L.f / WD
X
i

.�1/i Tr
�
f � W H i .X IZ/! H i .X IZ/

�
of the automorphism f is expressed as

L.f / D
X

x2X0.f /

�x.f /C
X

C2XI .f /

�C � �C .f /C
X

C2XII .f /

�C � �C .f /;

where X0.f / is the set of fixed points of f , �C is the Euler characteristic of the
normalization of C 2 XI .f /, and �C is the self-intersection number of C 2 XII .f /.
We shall omit the precise definitions of the indices �x.f / and �C .f /. However, it is
known that �C .f / is a positive integer, and �x.f / is a nonnegative integer, which
is positive if x 2 X0.f / is an isolated fixed point. On the other hand, the types of
fixed curves are defined by using the action of f on the completion Ax of the local
ring of X at x, which is isomorphic to the formal power series ring CŒŒz1; z2��, as X
is assumed to be a smooth surface. Now, given a fixed curve C 2 X1.f /, we take a
smooth point x of C and identify Ax with CŒŒz1; z2�� in such a manner that C has the
local defining equation z1 D 0 near x. Then, the induced automorphism f �x W Ax! Ax

can be expressed as

(12)

´
f �x .z1/ D z1 C z

k
1 � f1;

f �x .z2/ D z2 C z
l
1 � f2

for some k, l 2 N [ ¹1º and some fi 2 Ax such that fi .0; z2/ is a nonzero element
of CŒŒz2��. Here, we put z11 WD 0 by convention. Then, it turns out (see [7, Lemma 6.1])
that �C .f / D min¹k; lº and C 2 XI .f / if and only if k � l , which is independent
of the choice of the smooth point x on C and the coordinates z1, z2. Note that if the
derivativeDf.x/ has an eigenvalue different from 1, then the relation (12) yields k D 1
and f1.0; 0/ ¤ 0. In particular, the fixed curve C must be of type I .

Proof of Proposition 2.9. Now, if X is a rational surface, then the cohomology
group of X is expressed as

H i .X IZ/ Š

8̂̂<̂
:̂

Z�C1 .i D 2/

Z .i D 0; 4/

0 .i ¤ 0; 2; 4/
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for some � � 0. Moreover, if F is an automorphism on X , then the action F � on
H i .X IZ/ is trivial for i D 0; 4, which shows that

L.F / D Tr.F �jH2.X IZ//C 2:

On the other hand, the above argument says that any fixed curve is of type I . Further-
more, if F has positive entropy, then it is known (see [6]) that any fixed curve C has
nonnegative Euler characteristic �C � 0. Hence, the fixed point formula says that F
has at most L.F / D Tr.F �jH2.X IZ//C 2 isolated fixed points.

6. Proof of Proposition 4.5

In this section, we will prove Proposition 4.5. To this end, we need some auxiliary
lemmas. Let f be the birational map given by (3) with m D n D N .

Lemma 6.1. For any fixed point .xl ; xl/ 2 C2 with xl satisfying (6), we have

TrDf.xl ; xl/ D
@f2

@y
.xl ; xl/ D .ı C 1/

´
1 �

NX
iD1

1

1 � xl=ai
C

NX
jD1

1

1 � xl=bj

µ
:

Proof. First, it follows from .f1/x D 0 that TrDf.xl ; xl/D .f2/y.xl ; xl/. Moreover,
by the relation

g2.xl/ D g1.xl/.1C ı/
2=ı;

one has

@f2

@y
.xl ; xl/ D

g1.xl/.1C ı/
2 C xlg

0
1.xl/.1C ı/

2 � xlg
0
2.xl/ı

g1.xl/.1C ı/
:

Therefore by combining the relations

xlg
0
1.xl/ D g1.xl/

NX
iD1

�xl=ai

1 � xl=ai
D g1.xl/

´
N �

NX
iD1

1

1 � xl=ai

µ
;

xlg
0
2.xl/ı D g2.xl/ı

NX
jD1

�xl=bj

1 � xl=bj
D g1.xl/.1C ı/

2

´
N �

NX
jD1

1

1 � xl=bj

µ
;

we obtain the desired form.

Lemma 6.2. Assume ı 2 S1. For any fixed pointwl D Œxl W 1 W 0� 2Lwith xl satisfying
(8), we have ®

TrDf.wl/
¯2

DetDf.wl/
2 Œ0; 4�”

ˇ0

˛0
2 Œ0; 4�:
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d
1

a1

a2

a3

aN−1

aN

b3b1

b2

bN

bN−1

y1

y2

y3 yN−1 yNa0

g(x)g0(x)

Figure 3: Two functions g(x) and g0(x)

the relations g(a0) = d < 1 = g0(a0), g(ai) = 0 < (−1)ig0(ai) and

(−1)ig(bi) < 0 = g0(bi) for i ≥ 1, there is a unique real number

yi ∈ (ai−1, bi) such that g(yi) = g0(yi) for i ∈ {1, . . . , N} (see Figure

3). It is seen that yi = yi(b) is continuous as a function of b = (bi) ∈∏N
i=1(ai−1, ai).

Lemma 6.3 Assume that 0 << d < 1. Then there exists b = (bi) ∈∏N
i=1(ai−1, ai) such that yi(b) = xi for any i ∈ {1, . . . , N}, where xi =

(ai−1 + ai)/2. Moreover, each component bi satisfies limd↗1 bi = ai.

Proof. For i ∈ {1, . . . , N} we put

si(x) = d
i∏

j=1

(
1 − x

aj

)
, ti(x) =

i∏

j=1

(
1 − x

aj − εj

)
,

where εi is inductively determined by the relation si(xi) = ti(xi) (see

also the following). We claim that εi > 0 and εi ↘ 0 as d ↗ 1.

Indeed, if i = 1, then the relation s1(x1) = t1(x1) yields ε1 = a1(1 −
d)(a1 − x1)/{a1 − d(a1 − x1)} > 0, and ε1 ↘ 0 as d ↗ 1. Note that

d2 := s1(x2)/t1(x2) satisfies 0 < d2 < 1 since x2 > a1, and d2 ↗ 1

as d ↗ 1. Moreover for i ≥ 2, assume that di := si−1(xi)/ti−1(xi)

satisfies 0 < di < 1, and di ↗ 1 as d ↗ 1. The relation

di

(
1 − xi

ai

)
=

si(xi)

ti−1(xi)
=

ti(xi)

ti−1(xi)
=

(
1 − xi

ai − εi

)

31

Figure 3. Two functions g.x/ and g0.x/.

Proof. We use the fact that the eigenvalues of Df at wlD Œxl W 1 W 0� for l 2¹NC1;
N C 2º are given by .ıx�1

l
; xl/. It follows from the equation (8) that t WD ı�1xl satisfies

t D
1

2

²
ˇ0

˛0
� 2˙

s
ˇ0

˛0

�
ˇ0

˛0
� 4

�³
:

Moreover, one has ¹TrDf.wl/º2=DetDf.wl/ D 2C ıt2 C .ıt2/�1. As ı 2 S1, it
turns out that ¹TrDf.wl/º2=DetDf.wl/ 2 Œ0; 4� if and only if t 2 S1, or in other
words, ˇ0=˛0 2 Œ0; 4�.

Now, we show the existence of the parameters c; c�2Amentioned in Proposition 4.5.
Note that any birational map fı;.ai /;.bj / is conjugate to fı;.ai=c/;.bj =c/ for any c 2
C� via the linear map Œx W y W z� 7! Œcx W cy W z�. Hence, it is enough to show the
existence of .ı; .ai /; .bj //with

PN
iD1 1=ai �

PN
jD1 1=bj ¤ 0 instead of

PN
iD1 1=ai �PN

jD1 1=bj D 1.
For given real numbers 0 D a0 < a1 < a2 < � � � < aN and an N -tuple b D .bi / 2

.R�/N with ai�1 < bi < ai , put

g.x/ D d

NY
iD1

�
1 �

x

ai

�
; g0.x/ D

NY
iD1

�
1 �

x

bi

�
;

where d D .1C ı/2=ı 2 Œ0; 4� with ı 2 S1. Moreover, we assume that 0 < d < 1.
Since g.x/ and g0.x/ are polynomials of degree n satisfying the relations g.a0/D d <
1 D g0.a0/, g.ai / D 0 < .�1/ig0.ai /, and .�1/ig.bi / < 0 D g0.bi / for i � 1, there
is a unique real number yi 2 .ai�1; bi / such that g.yi / D g0.yi / for i 2 ¹1; : : : ; N º
(see Figure 3). It is seen that yi D yi .b/ is continuous as a function of b D .bi / 2QN
iD1.ai�1; ai /.

Lemma 6.3. Assume that 0� d < 1. Then, there exists b D .bi / 2
QN
iD1.ai�1; ai /

such that yi .b/ D xi for any i 2 ¹1; : : : ; N º, where xi D .ai�1 C ai /=2. Moreover,
each component bi satisfies limd%1 bi D ai .
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Proof. For i 2 ¹1; : : : ; N º, we put

si .x/ D d

iY
jD1

�
1 �

x

aj

�
; ti .x/ D

iY
jD1

�
1 �

x

aj � "j

�
;

where "i is inductively determined by the relation si .xi / D ti .xi / (see also the follow-
ing). We claim that "i > 0 and "i & 0 as d % 1. Indeed, if i D 1, then the relation
s1.x1/D t1.x1/ yields "1 D a1.1� d/.a1 � x1/=¹a1 � d.a1 � x1/º > 0, and "1& 0

as d % 1. Note that d2 WD s1.x2/=t1.x2/ satisfies 0 < d2 < 1 since x2 > a1, and
d2 % 1 as d % 1. Moreover, for i � 2, assume that di WD si�1.xi /=ti�1.xi / satisfies
0 < di < 1, and di % 1 as d % 1. The relation

di

�
1 �

xi

ai

�
D

si .xi /

ti�1.xi /
D

ti .xi /

ti�1.xi /
D

�
1 �

xi

ai � "i

�
yields "i D ai .1� di /.ai � xi /=¹ai � di .ai � xi /º>0, and "i& 0 asd% 1. Similarly,
diC1 D si .xiC1/=ti .xiC1/ satisfies 0 < diC1 < 1, and diC1% 1 as d % 1. Our claim
is proved.

Assume 0�d<1 so that "i<ai�xi . RegardingyiDyi .b/ as a function of bD.bi /,
we claim that yi .b1; : : : ; bi�1; ai � "i ; biC1; : : : ; bN / < xi for any i 2 ¹1; : : : ;N º and
.b1; : : : ; bi�1; biC1; : : : ; bN /with .aj�1 < xj </aj � "j < bj < aj . Indeed, by putting

gi .x/ WD
�
1 �

x

ai � "i

�Y
j¤i

�
1 �

x

bj

�
;

one has

.�1/i�1gi .xi / D
�
1 �

xi

ai � "i

�Y
j<i

�xi
bj
� 1

�Y
j>i

�
1 �

xi

bj

�
<
�
1 �

xi

ai � "i

�Y
j<i

� xi

aj � "j
� 1

�Y
j>i

�
1 �

xi

aj

�
D d

�
1 �

xi

ai

�Y
j<i

�xi
aj
� 1

�Y
j>i

�
1 �

xi

aj

�
D .�1/i�1g.xi /

and .�1/i�1gi .ai�1/ > 0 D .�1/i�1g.ai�1/, which yield the claim.
Finally, we prove the existence of b with yi .b/ D xi . To this end, note that there

is a root zi of g.x/ D g0.x/ such that zi % ai as bi % ai . For i D N , the root zN
must satisfy zN D yN since yj � aN�1 for j � N � 1. The above claim says that
yN .b1; : : : ; bN�1; aN � "N / < xN , which means that there exists

bN D bN .b1; : : : ; bN�1/ 2 .aN � "N ; aN /;
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depending continuously on .bj /N�1jD1 , such that

yN
�
b1; : : : ; bN�1; bN .b1; : : : ; bN�1/

�
D xN :

Put yj .b1; : : : ; bN�1/ D yj .b1; : : : ; bN�1; bN .b1; : : : ; bN�1//, which is continuous
with respect to .bj /N�1jD1 . Moreover, for i �N � 1, we assume that yj D yj .b1; : : : ; bi /
satisfies yj D xj for j � i C 1. Similarly, zi must satisfy zi D yi since yj � xiC1 for
j � i C 1 and yj � ai�1 for j � i � 1. The above claim says that

yi .b1; : : : ; bi�1; ai � "i / < xi ;

which means that there is a continuous function bi D bi .b1; : : : ; bi�1/ 2 .ai � "i ; ai /
with yi .b1; : : : ; bi�1; bi .b1; : : : ; bi�1// D xi . Defining a continuous function

yj .b1; : : : ; bi�1/ D yj
�
b1; : : : ; bi�1; bi .b1; : : : ; bi�1/

�
;

we can continue the induction.
Hence, there is b D .bi / 2

QN
iD1.ai � "i ; ai / such that yi .b/ D xi for any i 2

¹1; : : : ; N º. Since "i & 0 as d % 1, we establish the lemma.

Lemma 6.4. There exists c0 2 A such that the birational map f determined by c0
satisfies ®

TrDf.wl/
¯2
=DetDf.wl/ 2 .0; 4/ for any l 2 ¹1; : : : ; N C 2º:

Proof. Under the notations mentioned in Lemma 6.3, we can choose 0� d < 1 and
0 < b1 < a1 < b2 < � � � < bN < aN so thatˇ̌̌̌

1

1 � xl=bi
�

1

1 � xl=ai

ˇ̌̌̌
D

ˇ̌̌̌
.ai � bi /xl

.ai � xl/.bi � xl/

ˇ̌̌̌
<
1

N

�
l 2 ¹1; : : : ; N º

�
and 1 < ai=bi < 21=N for any i 2 ¹1; : : : ; N º. Then, from Lemma 6.1 and the fact
that DetDf.wl/ D ı, we have®

TrDf.wl/
¯2

DetDf.wl/
D d

´
1C

NX
iD1

�
1

1 � xl=bi
�

1

1 � xl=ai

�µ2
2 .0; 4/

for any l2¹1; : : : ;N º. Choose ı2S1 so that dD.1C ı/2=ı. It follows from Lemma 6.2
and the fact that 1 < ˇ0=˛0D

QN
iD1 ai=bi < 2 that ¹TrDf.wl/º2=DetDf.wl/ 2 Œ0; 4�

and then ¹TrDf.wl/º2=DetDf.wl/ 2 .0; 4/ for l 2 ¹N C 1; N C 2º by slightly
modifying the parameters if necessary. Thus, we have the desired parameters c0 D
.ı; .ai /; .bi //.
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Next, we consider the case 0 < b0 WD b1 D � � � D bN < a0 WD a1 D � � � D aN .
Then, the fixed points wl D Œxl W xl W 1� for l 2 ¹1; : : : ; N º are given by the roots of
d.1 � xl=a0/

N D .1 � xl=b0/
N with d D .1C ı/2=ı 2 Œ0; 4�, which yields

xl D
a0b0.1 � �N �

l
N /

a0 � b0�N �
l
N

;

where �N WD d1=N � 0 and �N WD cos.2�=N/C i sin.2�=N/ is a primitive N -th
root of unity. Thus, it follows from Lemma 6.1 and the fact that DetDf.wl/ D ı that

(13)
®
TrDf.wl/

¯2
DetDf.wl/

D d

²
1�

N

a0 � b0
.a0C b0 � a0�

�1
N �
�l
N � b0�N �

l
N /

³2
D d�2l

for l 2 ¹1; : : : ; N º, where

�l D

�
1 �N

a0=b0 C 1

a0=b0 � 1
CN

��1N a0=b0 C �N

a0=b0 � 1
cos

2�l

N

�
� iN

��1N a0=b0 � �N

a0=b0 � 1
sin

2�l

N
:

Moreover, from Lemma 6.2, one has®
TrDf.wl/

¯2
DetDf.wl/

… Œ0; 4�”
�a0
b0

�N
… Œ0; 4�

for l 2 ¹N C 1;N C 2º.

Lemma 6.5. There exists c� 2 A such that the birational map f determined by c�
satisfies ¹TrDf.wl/º2=DetDf.wl/ … Œ0; 4� for any l 2 ¹1; : : : ; N C 2º.

Proof. First, we assume that d D 1=42 and a0=b0 D 41=N in the above notations. If
l 2 ¹1; : : : ; N º, then the only possibilities for ¹TrDf.wl/º2=DetDf.wl/ to become
a nonnegative real number occur when .cos 2�l=N; sin 2�l=N / D .˙1; 0/ in (13).
On the other hand, in the case .cos 2�l=N; sin 2�l=N / D .˙1; 0/, it is seen that
¹TrDf.wl/º2=DetDf.wl/ > 4. Indeed, when .cos2�l=N; sin2�l=N /D .1; 0/, one
has®

TrDf.wl/
¯2

DetDf.wl/
D

1

42

�
1 �N

41=N C 1

41=N � 1
CN

43=N C 4�2=N

41=N � 1

�2
D

�
2C

N

4
g.N /

�2
with g.N / WD .42=N � 4�2=N /C .41=N � 4�1=N /� 7=N . The function g.N / satisfies
g.N /> 0 for anyN � 1, asg.N / is monotone decreasing inN and limN!1g.N /D 0.
Thus, we have ¹TrDf.wl/º2=DetDf.wl/ > 4. The case .cos 2�l=N; sin 2�l=N / D
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.�1; 0/ can be treated in a similar manner. Thus, the condition®
TrDf.wl/

¯2
=DetDf.wl/ … Œ0; 4�

holds for any l 2 ¹1; : : : ; N º.
Now, since ¹TrDf.wl/º2=DetDf.wl/ continuously depends on the parameters

.ı; a; b/ 2 A, with the above condition, we slightly modify the parameters so that 0 <
b1 < � � �< bN < b0 < a0 < a1 < � � �< aN , which means that ˇ0=˛0 > .a0=b0/N D 4
and thus yields ¹TrDf.wl/º2=DetDf.wl/ … Œ0; 4� for any l 2 ¹1; : : : ; N C 2º. By
fixing ı 2 S1 with d D .1C ı/2=ı, we show the existence of c� D .ı; a; b/ 2 A.

Proof of Proposition 4.5. Note that ¹TrDf.wl/º2=DetDf.wl/ continuously de-
pends on the parameters .ı; a; b/ 2 A. Hence, the proposition is the consequence of
Lemmas 6.4 and 6.5.
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