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ABSTRACT. — We show the existence of a rational surface automorphism of positive entropy with a
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maps on the projective plane fixing irreducible cubic curves, we find out an automorphism of
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1. INTRODUCTION

A Siegel disk for a holomorphic map on a complex manifold is a domain of the manifold
preserved by the map such that the restriction to the domain is analytically conjugate
to an irrational rotation (see Section 2). Siegel disks are interesting objects and have
been constructed by many authors especially for automorphisms on rational manifolds
with positive entropy. For example, McMullen [8] and Bedford—Kim [2, 3] constructed
rational surfaces, namely, rational manifolds of dimension 2, admitting automorphisms
of positive entropy with Siegel disks by considering a certain class of birational maps
on the projective plane. Moreover, Oguiso—Perroni [9] constructed rational manifolds
of dimension > 4 admitting automorphisms of positive entropy with an arbitrarily high
number of Siegel disks by using the product construction made of automorphisms on
McMullen’s rational surfaces and toric manifolds.

The automorphisms we considered in this paper not only have positive entropy
but also preserve meromorphic volume forms. In this case, the interesting feature of
each automorphism F is that it is obtained from birational map on P? by blowing up
finitely many points on the smooth locus of a cubic curve in P2 and that it falls into
the category described by Bedford [1]. Moreover, every F-invariant Fatou component
with finite volume turns out to be a rotation domain, and a Siegel disk corresponds to
a rotation domain of rank 2 containing a fixed point of F (see [3]). In particular, the
Fatou set of F' is nonempty.

This paper presents two families of automorphisms of rational surfaces with Siegel
disks. The first one preserves meromorphic volume forms whose pole divisors consist
of three rational curves meeting at a single point. One of the main theorems is to
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show the existence of a rational surface automorphism of positive entropy with a given
number of Siegel disks.

THEOREM 1.1. Foranyk € Z >, there exists a rational surface X and an automorphism
F : X — X such that F has positive entropy hy,(F) > 0 and F has exactly k fixed
points at which Siegel disks are centered.

The automorphism F mentioned in Theorem 1.1 is obtained from a birational map
f : P2 — P2 of degree max{2, k — 1} by blowing up points on the smooth locus of a
cubic curve C in P2. When k > 3, the curve C we considered is the union of three
lines meeting at a single point.

Next, we consider the case where automorphisms are obtained from quadratic
birational maps on P2 that fix a cubic curve C. Let f : P? — P2 be a birational map
with its inverse ! : P2 — P2 and its indeterminacy set I( /), namely, the set of
points on which f is not defined. We say that f properly fixes C if the indeterminacy
sets I(f*1) of f*! are both contained in the smooth locus C* of C, and

f(C) = f(C\I(f)) =C.

It is known that a certain class of quadratic birational maps properly fixing C is lifted
to automorphisms with positive entropy by blowing up finitely many points on C*
(see [2,3,5,8,11,12]). Let QF (C) be the set of automorphisms F : X — X on
rational surfaces X with positive entropy and with the property that there is a quadratic
birational map f : P2 — P2 that properly fixes C and a blowup 7 : X — P2 of points
on C* such that the diagram

F
X — X

x| |

p2 L p2

commutes. Then, F preserves a meromorphic volume form whose pole divisor is the
strict transform of C. In the case where C is non-reduced, Bedford—Kim [3] constructed
F € Q% (C) with multiple Siegel disks, when C is a single line with multiplicity 3.
On the other hand, McMullen [8] and Bedford—Kim [2] constructed F' € @ F (C) with
a single Siegel disk, when C is reduced but non-irreducible. In this article, we focus
our attention on the case of irreducible cubic curves and obtain the following theorem.

TueoreM 1.2. For a reduced irreducible cubic curve C on P2, if there is an automor-
phism F € Q¥ (C) having a Siegel disk, then C is a cuspidal cubic curve. Moreover,
if C is a cuspidal cubic curve, then F € Q¥ (C) admits at most two fixed points at
which Siegel disks are centered, and there is an automorphism F € QF (C) having
exactly two fixed points at which Siegel disks are centered.
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The existence of a Siegel disk for an automorphism F centered at x implies that the
derivative DF(x) of F at x has multiplicatively independent eigenvalues (i, v) with
|| = |v]| = 1 (see Section 2). Conversely, results from transcendence theory guarantee
that F has a Siegel disk centered at x under the assumption that the multiplicatively
independent eigenvalues (u, v) with || = |v| = 1 are algebraic. Moreover, if algebraic
eigenvalues (i, v) with |u| = |v] = 1 have Galois conjugates (ix«, V) satisfying
|ixvs| = 1, but |p«/v«| # 1, then (u, v) are multiplicatively independent (see also
[8]). Our task is thus to construct automorphisms whose derivatives have such a pair
(u, v) of eigenvalues. Note that in our construction, the automorphisms are obtained
from birational maps, and the birational maps considered here have explicit forms with
parameters.

After preliminary studies in Section 2, Sections 3 and 4 are devoted to constructing
automorphisms with Siegel disks in order to prove Theorems 1.2 and 1.1, respectively,
and Sections 5 and 6 are devoted to proving two propositions needed in our discussion.

2. PRELIMINARY

In this section, we briefly review some well-known facts about Siegel disks on complex
surfaces, automorphisms on rational surfaces, and cubic curves on the projective plane
used later. We refer to [5, 8, 11, 12], in which many of the results are proved.

First, we recall the definition of a Siegel disk on a complex surface (see [8]). For a unit
disk A% :={(x,y) € C?||x| <1, |y| < 1},alinear automorphism L : A?> — A? given
by L(x,y) = (ux,vy) is called an irrational rotation if || = |v| = 1 and (u, v) are
multiplicatively independent; that is, they satisfy X v’ # 1 for any (k,1) # (0,0) € Z2.

DeriniTION 2.1. Let X be a complex surface and F an automorphism on X. A domain
U C X is called a Siegel disk for F centeredat p e Uif F(U)=U and F : (p,U) —
(p, U) is analytically conjugate to an irrational rotation L : (0, A%) — (0, A?).

It is obvious that the derivative DF(p) of F at p is an irrational rotation when F
has a Siegel disk centered at p. Conversely, results from the transcendence theory say
that if DF (p) is an irrational rotation with algebraic eigenvalues, then F has a Siegel
disk centered at p (see [8]).

Next, we consider rational surfaces. Here, we assume that a rational surface X
admits a birational morphism 7 : X — P2 (see [5,8, 11, 12]). Then, it is known that 7
is expressed as a composition

TiX =X, 5 X, 2 x I X = X,
where 7; : X; — X;_1 is the blowup of a point p; € X;_; with the exceptional
curve &; := x; '({p;}), which is isomorphic to P'. Since 7; induces an isomor-
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phism 7; |x,\g,; : Xi \ & — Xi—1 \ {pi}, we will identify each point x € X; \ &; with
i (x) € X;—1 \ {pi} in this article. Moreover, if p is a point on an exceptional curve,
we sometimes say that p is an infinitely near point on P2, or a point on P2 for short.
On the other hand, a point is said to be proper if it is not an infinitely near point. The
total transform E; := 75 o--- 0w | (&;) is called the exceptional divisor over p;.

P
Then,  gives an expression of the cohomology group:

H*(X;Z) = Pic(X) = Z[H] ® Z[E,]| ® - - ® Z[E,),

where H is the total transform 77 *(L) of a line L in IP2. The intersection form on the
cohomology group H?(X;Z) is given by

((H].[H]) =1
([El]v[EJ]) = _81',,]' (l’] = 17’p)
(IH].[Ei]) =0 i=1,...,p).

Let F : X — X be an automorphism on X. Then, F induces the action F* :
H?(X:;Z) — H?(X;Z) on the cohomology group. By the theorems of Gromov and
Yomdin, the topological entropy of F is given by hip(F) = log A(F*) > 0, where
A(F™*) is the spectral radius of F*. Moreover, since F* preserves the Kéhler cone and
the intersection form with signature (1, p), it is seen that the characteristic polynomial
of F' is expressed as

Rr (1) (A(F*) =1)
Rr(0SF(1)  (A(F*) > 1),

where R (¢) is a product of cyclotomic polynomials and SF () is a Salem polynomial,

det(t] — F*) = {

namely, the minimal polynomial of a Salem number. Here, a Salem number is an
algebraic unit § > 1 such that its conjugates include § ! < 1 and the conjugates other
than §*! lie on the unit circle. Hence, if A(F*) > 1, then it is a root of Sg (¢) = 0.

Now, we consider a cubic curve C C P2, that is, a reduced (possibly non-irreducible
or singular) curve of degree three, with its smooth locus C* (see [5, 8]). Denote by
Pic®(C) C Pic(C) the subgroup consisting of divisor classes whose restrictions to each
irreducible component of C have degree zero. Then, it is known that Pic®(C) = C/T,
where I' C C is a lattice with rank given by either

(1) rank I" = 2 if C is smooth, or

(2) rank I" = 1 if C is a nodal cubic, or a conic with a transverse line, or three lines
meeting in three points, or

(3) rank I" = 0if C is a cuspidal cubic, or a conic with a tangent line, or three lines
through a single point.
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Let V1, ..., V; be the irreducible components of C. Note that 1 < r < 3 as C is a cubic
curve. Moreover, fix points 0; € V; N C* so that Y _;_, deg V; - [0;] = 0; namely, the
divisor Z:zl deg V; - 0; is the restriction of aline L C P2 to C*, wheredeg V; € Z~ is
the degree of the component V; in P2. Foreach 1 < j <r,letx : V; N C* — Pic’(C)
be the map defined by «(p) = [p] — [0;]. Then, « is a bijection, which gives the
group structure on ¥; N C* isomorphic to Pic’(C) = C/T, with the property that
three points ¢1, g2, g3 € C* satisfy Z?Zl [¢:] = 0if and only if Z?zl k(g;) = 0 and
#i|qgi €V} =degVjforany 1 < j <r (see[5]).

Let f : P2 — IP2 be a birational map on P2. In general, f admits the indeterminacy
set 1(f), namely, the finite set on which f cannot be defined (see [11, 12]). Note that
I(f) is a cluster; that is, if p € I(f) is infinitely near to a point ¢, then ¢ € I(f). All
birational maps considered in this article are assumed to belong to the set B(C) of
birational maps f properly fixing C; namely, I( f*1) C C* and f(C) = C. Here, if
I(f*') contain an infinitely near point p, then p € C* means that p belongs to the
strict transform 7~ (C*), where 7 : X — P2 is a birational morphism such that p is
proper on X. When f € B(C), there is §( /) € C*, called the determinant of f, such
that *n = §(f)n, where 7 is a nowhere vanishing meromorphic 2-form on P2 having
simple poles along C. The determinant (/) satisfies §( f) = Det Df(p) for any fixed
point p € P2\ C of f. Moreover, it should be noted that f preserves the smooth locus
C* under our assumption. Thus, f induces the actions fx : Pic(C) — Pic(C) and
fx : Pic®(C) — Pic®(C). Through the Poincaré residue map, it turns out that the action
fx on Pic®(C) = C/T is given by fx(t) = 8(f)t fort € C/T (see [8]). Note that
ifrank I" > 1, then §( /) must be a root of unity as §( f)[" = I, while if rank ' = 0,
then §( /) may be an arbitrary nonzero complex number.

One of our interests is to construct automorphisms on rational surfaces. From
birational maps on P2 satisfying a certain assumption, we obtain rational surface
automorphisms.

ProposITION 2.2. Assume that C C P? is a reduced cubic curve.

(1) For a birational map f : P? — P? in B(C), assume that any indeterminacy
point p € 1(f7Y) satisfies f™(p) € 1(f) for some m = m(p) > 0. Then, there
is a blowup 7 : X — P2 of points on C* such that  lifts f : P? — P2 to an
automorphism F : X — X.

(2) Assume that a birational map f : P? — P2 in 8(C) is lifted to an automorphism
F : X — X byablowup w : X — P2 of points on C*. Then, any indeterminacy

point p € I(f~1) satisfies f*(p) ¢ I(f) with0 < k < myp and [ (p) € I(f)
for some m, > 0. Moreover, & admits an expression

7 =mgov:X — P2
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where 1o : Xo — P2 is the blowup of the points { f*(p) | pe I(f "), 0 <k <m,}
on C*, and v : X — Xy is a birational morphism. Furthermore, the blowup
o : Xo — P2 lifts f to an automorphism Fy : Xo — Xo.

Proor. (1) (see [12]). Let (p,q) € I(f~') x I(f) be a pair of proper points so
that f"(p) = g withn = min{m € N | f"(p') = ¢’ for (p'.q") € I(f~") x I(f)}.
Under our assumption, such a pair (p, ¢) exists, and from the minimality of n, the
orbit { ¥ (p)}?_, consists of distinct proper points on the smooth locus C*. Now, let
Xo — P2 be the blowup of { /7 (p)}7_,- This blowup lifts / : P? — P2 to a birational
map fo : Xo — Xo, which satisfies

I(fe ) =10/"D\p)  1(fo) = 1(f)\{q}-

Note that #1(f~') = #I(f). Hence, as long as #I(f; ') = #1(fo) > 0, one can repeat
the argument by replacing f : P2 — P2 with fy : X9 — Xp. In the end, a resulting
map becomes an automorphism. See [12] for a more detailed discussion.

(2) (see [11]). We notice that if pe I( f ") satisfies f%(p)¢I(f)for0<k <m—1,
then f™(p) is a well-defined point in /( f ™). As = lifts f™ to the automorphism
F™, the point f™(p) must be blown up by 7. Since the number of points blown
up by r is finite, there is m, > 0 such that f*(p) ¢ I(f) for0 <k < m, — 1 and
f™r(p) € I(f). Moreover, 7 blows up the points { f¥(p) | pe I(f™), 0<k < Mp},
and hence 7 admits the expression 7 = mg o v : X — P2. The blowup 7y lifts f to
an automorphism Fy from a similar argument in the proof of (1). See [11] for a more
detailed discussion. ]

DeriniTioN 2.3. For a birational map f € B(C) satisfying the assumption in Propo-
sition 2.2 (1), the blowup 7y given in Proposition 2.2 (2) is called the proper blowup
for f.

REMARK 2.4. Let f : P2 — P2 be a birational map lifted to an automorphism F :
X — X by ablowup 7 : X — P2. With the identification of a point p € X with
7(p) € P? under the assumption that (p) ¢ I(7w~1), the dynamical behavior of F
around p is the same as that of f around the corresponding point. In particular, F has
a Siegel disk centered at p if and only if so does f.

The next lemma is used to calculate the cohomological actions of automorphisms.

Lemma 2.5. Let i be the proper blowup for f, which lifts f to an automorphism F,
and let py, ..., pp be the points blown up by 7 and E| the exceptional divisor over p;.
If a point p; satisfies p; ¢ I(f '), then the action F* of F sends E; to E; for some
J#i
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Proor. Under the notations given in the proof of Proposition 2.2 (1), we may assume
that p; = fk(p) ¢ I(f~") for some k > 1, as the other cases can be treated in a
similar manner. Note that f™(p) ¢ I(f~!) for any 0 < m < k in this case. As is
mentioned in the proof of Proposition 2.2 (1), the blowup X¢ — P2 of { f( P
lifts f to fo : Xo — Xo, and then fy sends &%~ to &%, where &' is the exceptional
curve over f!(p). As the indeterminacy set is a cluster, any point on &¥ is not an
indeterminacy point of f~!. Moreover, since 7 is a proper blowup for f, there is a
point p’ € &% blown up by 7 if and only if there is a point p” € &¥~1 blown up by
7 such that fo(p”") = p’, which shows that F sends the irreducible components of
the exceptional divisor over f¥~1(p) to those over f¥(p). Therefore, F* sends the
exceptional divisor over f%(p) to that over f5~1(p). [

ExaMPLE 2.6. We consider a quadratic birational map on P2. It is known that the
inverse of any quadratic birational map is also quadratic, and the indeterminacy set of
a quadratic birational map consists of exactly three non-collinear (possibly infinitely
near) points. Let f : P2 — P2 be a quadratic birational map in 8(C), and put

I(fEY = {pf. p3. pF) c C*.

Then, f lifts to an automorphism if and only if f*( p;) € 1(f) for0 <k <n;
and f"(p;) = p:(l.) for any i € {1, 2, 3}, where ny, n,,n3 > 0 are integers and
o :{1,2,3} = {1,2,3}is a permutation. Let 77y be the proper blowup for f, which lifts
f to an automorphism Fy : Xo — Xo. With a suitable matching of the indices between
forward and backward indeterminacies, the action Fj : H 2(X0;Z) — H*(X:Z) is
expressed as

[H] = 2[H] - [Ey'] = [E3?] = [E5°],

nj

[E,O]'_’ [H]_[Eo'(j)]_[EZ]((k)] ({i,j,k} :{17273})’
[E]"] = [E"] (le{1,2,3L, m=1),

where EJ" is the exceptional divisor over f™(p;") (see [5,12]).

As is mentioned in Proposition 2.2, we assume that the points (py, ..., p,) blown
up by 7 : X — P2 lie on the smooth locus C* of the cubic curve C, and we also
assume that 7 lifts a birational map f : P? — P2 in 8(C) to an automorphism
F : X — X. Since f preserves C, the automorphism F also preserves the strict
transform Y of C, which is the closure of 77 1(C \ {p1.,..., pp}). Moreover, as the
points p; lie on C*, the curve Y is isomorphic to C and anticanonical on X'; namely,
[Y] = —Kx, where Ky := —-3[H] + Zf=1[Ei]. Under the above notation, we have
the following proposition.
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PRrOPOSITION 2.7. Assume that Pic®(C) = C, and also assume that

() #1 <i <p| pi € V;} > degV; for any irreducible component V; of C,

(2) k(pi) # 0 for some 1 <i < p, where k : V; N C* — Pic®(C) = C is given by
<(p) = [p) [0/

Then, the determinant §( ) is an eigenvalue of F* : H*(X:7) — H?*(X: 7).

Proor. Letr € {l1,2, 3} be the number of irreducible components of C. From assump-

tion (1), we may assume that #{1 <i <3| p; € V;} =degV, for 1 < j < r, after

reordering (p;) if necessary, and also choose o : {1,...,p} — {1,...,r} so that

pi € V(i) for 1 <i < p. Letus consider the restriction map u : H*(X;Z) = Pic(X) —

Pic(Y) = Pic(C), explicitly given by

u[H] = degV;-[0;]. ulEi]=[p] (i=1.....p).

Then, the following diagram commutes:
HA(X:7) -2 H2%(X:7)
. Sx .
Pic(C) ——— Pic(C).

For simplicity, we denote by the same notation V; the strict transform of V;. Since

* preserves the intersection form and permutes the curves {V1, ..., V;}, it pre-
serves the orthogonal complement #y := {[V1],....[V,]}* € H?(X;Z), generated
by (Bo, Br+1...., By) with

By := [H] — [E1] ~ [E2] — [Esl.  Bi = [E]~[Eoy] G =r+1.....p).

We notice that the image of u restricted to #y is contained in Pic®(C).
Now, let us fix a vector § € H?(X;C) = H*(X;Z) ® C satisfying

k(pi) = —(&.[H]/3 — [Ei]) € Pic®(C) = C.

Note that under assumption (2), the vector £ is nonzero and unique in H2(X;C)/C[Kx].
Then, we have

r 3
u%h{)mam—Zm > {066y = [pil}

i=1

W

—ZMM—Ejﬂmm—mD=@%l

i=1
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In a similar manner, it follows that u(B;) = (§, B;) and thus u(D) = (§, D) for any
D € Jx. Note that the action f, on Pic®(C) = C is given by fi(t) = §(f)t fort € C.
Therefore, for any D € Hyx, we have

u(FyD) = (§, FxD) = (F*¢, D) = fiu(D) = 8(f)(&, D) = (8(f)§, D),

which yields F*§ = §(f)& + > ;_; ¢i[Vi] for some ¢; € C. Since F* preserves
{[V1],...,[V+]}, 8(f) is an eigenvalue of F*. The proposition is established. ]

Now, in addition to the assumptions in Proposition 2.7, we also assume that C is a
cuspidal cubic curve and the determinant §( /') is not a root of unity. Then, §( f) is a
root of the Salem polynomial S (¢) = 0 by Proposition 2.7, and the entropy of F is
positive: hop(F) = log A(F*) > 0. In this case, the birational morphism v : X — X
mentioned in Proposition 2.2 is expressed as follows. Let ¢ € Y * be a fixed point on the
smooth locus Y * = C of the anticanonical curve Y, which uniquely exists as F' has the
determinant §( f) # 1. A result in [11] says that if v is not an isomorphism, then there
is a unique (—1)-curve passing through ¢, which is contracted by v and is preserved
by F. Through the contraction of the (—1)-curve, F' descends to an automorphism.
Repeating this argument, we can consider the decomposition
(1 VX = X 2 X 25 2 x5 X,
where v; : X; — X;_; is the contraction of a (—1)-curve through p; to p;—; with
Pm = q. Then, F descends to an automorphism Fy : X¢g — Xj.

Let V; C X be the strict transform of the exceptional curve of v; under v; 4 0--- o
Vm. As N; is isomorphic to P! and is preserved by F, we inductively let ¢; be the
unique fixed point on N; \ {g;+1} of F with ¢,,,4+1 := ¢. In particular, (¢1,...,¢m.q)
are all of the fixed points lying on the exceptional divisors of v. Moreover, let p € C
be the singular point of C, which is also a fixed point of F.

Prorosition 2.8 ([11]). Under the above assumptions, we have the following.

(1) The eigenvalues of DF at p are 1/8(f)? and 1/8( f)3.

(2) The eigenvalues of DF at q are 8(f) and 1/8(f)N~*, where N = rank Pic(X).
(3) The eigenvalues of DF atq; for1 <i <mare§(f)N " =4 and 1/§(f)N—m+i=3
In particular, F has no Siegel disk centered at any fixed point on the anticanonical
curve Y and the exceptional divisors of v.

Next, we give an estimate of the number of isolated fixed points of an automorphism.

ProrosiTiON 2.9. Assume that an automorphism F : X — X on a rational surface X
has positive entropy, and the derivative DF (x) of F on any fixed point x has an eigen-
value different from 1. Then, F has at most Tr(F*|y2(x.z)) + 2 isolated fixed points.
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We postpone its proof to Section 5. The following two propositions are applications
of Proposition 2.9.

ProposITION 2.10. Let C C P2 be a reduced cubic curve with Pic®(C) = C, and let
F : X — X be an automorphism with positive entropy such that F is obtained from a
birational map f € B(C) by the blowup 7 : X — P? of points on C*. Assume that
8(f) is not a root of unity. Then, F has at most Tr(F*|y2(x.z)) + 2 isolated fixed
points.

Proor. First, we notice that our assumption says that for any fixed point x on the strict
transform Y of C, which is an anticanonical curve on X, the derivative DF (x) of F
on x has an eigenvalue different from 1. Indeed, if x lies on the smooth locus Y *, then
DF(x) has §(f) as an eigenvalue. On the other hand, if x is a singular point of Y, then
DF (x) has eigenvalues of the form €§( f)™™, where € is a root of unity and m € Z~
is a positive integer (see [8, Section 9]).

This remains true for any fixed point x outside Y since Det DF (x) =68( f) # 1 from
the existence of a nowhere vanishing meromorphic 2-form nxy = 7 *non X with (ny) =
—Y and F*ny = 6(f)nx. Hence, the proposition follows from Proposition 2.9. =

ProposiTiON 2.11. For a cuspidal cubic curve C, let f € B(C) be a quadratic bira-
tional map with §( f') being not a root of unity such that f is lifted to an automorphism
F : X — X by the blowup w : X — P? of points on C*. Then, F has at most two
fixed points at which Siegel disks are centered.

Proor. Note that 7 satisfies the assumptions in Proposition 2.7. Indeed, assump-
tion (1) holds as it follows from Proposition 2.2 (2) that three indeterminacy points
{ pfr, p;r , p; } of f are blown up by 7. Moreover, assumption (2) also holds as the
points { pfr, p;r , p; } are not collinear. Hence, Proposition 2.2 (2) and the above argu-
ment show that the blowup 7 can be decomposed as 7 = g o v, where 7 : Xo — P2
is the proper blowup for f, which lifts f to an automorphism Fy : Xo — Xo, and
v : X — Xp is expressed as the decomposition (1). The cohomological action

Fy: H*(Xo;Z) — H*(Xo; Z)

is given in Example 2.6, which means that Tr(F| g2(x,:z)) < 2. Hence, Fy has at most
4 isolated fixed points by Proposition 2.10 since Aop(Fo) = hiop(F) > 0. Among the
fixed points, two fixed points lie on the anticanonical curve Yo = 7y 1(C) of Xy, at which
no Siegel disks are centered from Proposition 2.8. On the other hand, Proposition 2.8
also shows that at none of the fixed points of F on the exceptional divisors of v, a
Siegel disk is centered. Since each fixed point of F' either is identified with that of Fj
or lies on the exceptional divisors of v (see also Remark 2.4), F" has at most two fixed
points at which Siegel disks are centered. ]
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We conclude this section by stating a result for a class of birational maps with
algebraic coeflicients that we will treat in the following sections. To this end, for a
reduced cubic curve C C P2 and a birational map f : P? — P2 in B(C) with§ = §( f),
we assume that C is expressed as

Cz{xz[xl:x2:x3]€IP’2|g(x1:xz:X3):O},

where g is a homogeneous polynomial in Z[d][x1, X2, x3], and that f = f5 is also
expressed as

f) = fx) = [filxi:x2 i x3) 0 falxr w2 i x3) ¢ falxn i xz i x3)] € P2,

where f; are homogeneous polynomials in Z[5][x1, x2, x3] with deg,. fi = deg, f> =
deg, f3. Note that if § € C* is an algebraic number, then so is any fixed point w of f,
which enables us to consider the Galois conjugates of § and w, and also the eigenvalues
(u,v) of Df(w) are algebraic.

ProposiTION 2.12. Under the above assumptions, let 5 € C* be an algebraic number
with |§| = 1 that is not a root of unity, and let w € P2\ C be a fixed point of fs
outside C. Moreover, assume that there are Galois conjugates (8, W) of (8, w) with
|0«] = 1 and fs,(wx) = ws such that

{Tr Dfs (w)}?/ Det Dfs (w) € [0,4],
{Tr Dfs, (ws)}>/ Det Dfs, (wy) ¢ [0, 4].

Then, f = fs has a Siegel disk centered at w.

Proor (See [8]). Let («, v«) be the eigenvalues of Df;s, (w4), which are Galois con-
jugates of the eigenvalues (i, v) of Dfs(w). Note that 4 vsx = Det Dfs, (ws) = 6x,
as wx also lies outside C. Moreover, it should be noted that

+v)? v
Wt _p v,

{Tr Dfs(w)}’/ Det Dfs (w) = S ad
fLv VoK

and that a complex number z € C satisfies z + z~! + 2 € [0, 4] if and only if |z| = 1.
Hence, it follows from our assumption that | /v| = 1 and |« /v«| # 1. Since |uv| =
|8 = 1, we have (i, v) € (S')2. Now, assume that u¥v! = 1 for (k,!) € Z2. Since
(tex, v+) are Galois conjugates of (14, v), one has 1 =pX vl = (8,) *+D/2 (1, /v, ) *—D/2
and thus k = [ as |8+] = 1 and |4 /v«| # 1. Since 1 = pkvk = 6% and §, is not a
root of unity, we have k = 0; namely, (k,!) = (0, 0). Therefore, D f(w) is an irrational
rotation with the algebraic eigenvalues (i, v), which shows that f has a Siegel disk
centered at w. ]
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3. BIRATIONAL MAPS PRESERVING A CUSPIDAL CURVE

In this section, we consider a class of quadratic birational maps preserving a cuspidal
cubic curve. For a parameter § € C \ {0, 1}, let us consider a quadratic map f = fs :
P2 — P2, which is explicitly given by f[x : y : z] = [fx : fy : fz] in homogeneous
coordinates, where

felx:y:zl=68-(xy —2dyz +2d3xz — d*z?),
(2) flx iy 2] =8 (»* —3d?xy + 3d*x* — d®z?),
folx iy izl = yz —3dx? +3d*xz —d3z?

with d := (38)7'(1 — §). Then, f is a birational map preserving the cubic curve
C = {yz? = x3} C P? with a cusp located at [0 : 1 : 0] and also preserving its
smooth locus C* = C \ {[0 : 1 : 0]}. Indeed, with the parametrization p : C — C*
given by p(t) = [t : 3 : 1], the restriction of f to C* is expressed as f|c+ : C 3
§-(t +d) € C. The indeterminacy sets of f*! are givenby I(f*!) = {p{, p, p3i},
where p; := p(d) € C* and p] := p(=§-d) € C*. Moreover, fori = 1,2, the point
piﬂil is defined by the property {piiﬂ} = Cii N Sii, where COjE ;= C* and CijE
is inductively given by the strict transform (JTi:t)_l (Cii_l) under the blowup JTi:t of
pijE with exceptional curve Sl-i. In this case, we write pft < péﬁ < pgc. Hence, by
permitting infinitely near points, we conclude that 7( f ') are contained in C* and
that f is a quadratic birational map in B(C) with §( f) = § from the expression for
f|c*. Conversely, if a quadratic map f € B(C) with I(f) = {p{, p5, p; } satisfies
§(f) =8and pf = p(d) < pJ < p;L, then f = f5 is given by (2) (see [11, 12]).

There are exactly two fixed points {w1, w,} of f outside the curve C, and each
point is expressed as w; = [x; : rz(x;) : 1], where

T—2 (t —2)?
3+ 1) 21z +1)

re(x) 1=
with T := 6 + 1/8, and x; is a root of the quadratic equation
0.(x):=27x> -9t —-2)x+ (r —1)(t—2) = 0.
Moreover, we have

Tr Df (w;))
% = s(7,x;) 1= T—j_2{9(‘f — Dx; — (‘L’2 — 47 + 6)}2'

Now, in order to construct an automorphism on a rational surface, we consider the
case where the orbit plk = fk( p; ) of each backward indeterminacy point p;” reaches
the forward indeterminacy point pi+ ; namely, p!! = p;r for some n > 1. If such an
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n > 1 exists, then Proposition 2.2 shows that the proper blowup 7 : X — P2 for f
lifts f to an automorphism F : X — X.

From now on, we assume n = 8. As pX = p(=6k*1.d + (1 —§%)/3), it follows
from the relation p(—8° -d + (1 — 8%)/3) = p(d) that § is aroot of (§ + 1)S(8) = 0,
where

S(8) =8%—287 +68°—-28° +6*—28° +62-28+1

is a Salem polynomial. Conversely, for any root § of S(§) = 0, the birational map
f = fs satisfies p¥ = pi+ forany i € {l,2,3}, as p’f < p’2c < p’3c forany 0 < k <8,
and hence lifts to the automorphism F = Fs : X — X. The roots of S(§) = 0 on
the real line are § ~ 1.9940, 0.5015, and the other roots lie on the unit circle, given
by § &~ 0.6098 + 0.7925i, —0.1098 £ 0.9939i, —0.7478 £ 0.6640i, which yields
T &~ 1.2197, —0.2197, —1.4955. By virtue of Proposition 2.7 (see also the proof of
Proposition 2.11), A &~ 1.9940 is an eigenvalue of F* : H*(X;Z) — H?*(X;Z) and
thus the spectral radius of F*, which means that F has positive entropy

hiop(F) =1log A ~ 0.6901 > 0.
Now, we put

(80. 7o) ~ (0.6098 + 0.7925i,1.2197),
(84, Tx) ~ (—0.7478 + 0.6640i, —1.4955).

LemMmA 3.1. We have s(to, x;) € [0, 4] for any root x; of Q¢,(x) = 0 and s(t, xx) ¢
[0, 4] for some root xx of QO+, (x) = 0.

Proor. Itshould be noted that to € Io:=[1.219,1.220] and 74« € [« :=[—1.496,—1.495].
Moreover, the roots x; of Q, (x) = 0 satisfy either x; € I; := [0.022, 0.023] or
x;i € I := [~0.283, —0.282] as 0;(0.022) < 0, 0(0.023) > 0, 0(—0.283) > 0,
0:(—0.282) < 0 for any 7 € Iy, and a root x4 of O, (x) = 0 satisfies xx € [yx 1=
[-0.711,—-0.710] as Q.(—0.711) > 0, Q(—0.710) < O for any 7 € I,. In particular,
we have s(tg, x;) > 0 and s(7«, x«) > 0. A little calculation shows that

s(t,x) <5(1.219,0.022) < 2.05 <4 forany (t,x) € Ip X I1,
s(t,x) <s(1.220,—0.283) < 3.12 < 4 forany (t,x) € Iy X I,
s(t,x) > 5(—1.495,—0.710) > 591 > 4 forany (7,x) € [« X lsx.

Hence, the lemma is established. [

Note that Q,(x) is irreducible over Q[zp], and thus both (8¢, w1) and (8o, w2)
are Galois conjugates of (., ws). Proposition 2.12 yields the following (see also
Remark 2.4).
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Ficure 1. Two Siegel disks for automorphism F.

ProrosiTioN 3.2. The automorphism F = Fg, € Q¥ (C) has Siegel disks centered
at wi, wi.

Proor oF THEOREM 1.2. As C is reduced irreducible, C is either smooth or a nodal
cubic or a cuspidal cubic. A result of Diller [5] says that there is no automorphism
F € @F (C) when C is a nodal cubic. On the other hand, when C is smooth, the
determinant §(F) of any automorphism F € @ (C) is a root of unity. Hence, for
the fixed point x, the derivative DF (x) has an eigenvalue §(F) if x € C and has the
determinant Det DF (x) = §(F) if x ¢ C. In either case, the eigenvalues of DF (x) are
not multiplicatively independent, which means that F has no Siegel disk. Therefore,
if C is irreducible and F € @F (C) has a Siegel disk, then C is a cuspidal cubic
curve. Moreover, if C is a cuspidal cubic, then F' admits at most two Siegel disks by
Proposition 2.11. Finally, Proposition 3.2 guarantees the existence of the automorphism
F € @¥F (C) admitting exactly two Siegel disks. ]

In Figure 1, we describe two Siegel disks for the automorphism F with the help of
Mathematica.

4. BIRATIONAL MAPS PRESERVING THREE LINES

In this section, we consider birational maps preserving three lines meeting at a single
point. To this end, for parameters § € C*,a = (a;)7L, € (C*)",b = (bj)i, € (C*m,
let /' = f5.4.p : C* — C? be a birational map given by

g1(»)(x + 8y) )
g2(y) — gl()’))f - 581()’)}

3 FEy) = (A ). Hx ) = (y, B

where g1(y) = []i=,(1 — y/a;) and g2(y) = ]—[;-;1(1 —y/bj). The map f preserves
the three lines
C=L1ULyULs,
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where L1 = {x =0}, L, = {x + 8y = 0}, L3 = {y = 0}, and sends these lines as

fle, 0, y) = (y,—g) €Ly, flL,(=8y,y) = (»,0) € L3,

e s
f|L3(X,O) = (O, m) € Ll.

Here and hereafter, we use the following notations:

1 "1
a:Za_i’ 'Bzzb’
i=1 j=1
5 m n
® Olo:l_[i., ﬂoiznbi,
i=1 " j=
c=B—«

Note that the map (3) is derived under a certain assumption as in the following lemma.

LemMmA 4.1. Assume that a birational map h : C* — C? of the form h(x,y) =
(¥, h2(x,y)) satisfies h(L;) = L4 fori =1,2,3 (mod 3). Then, we have h = fs 4 p
for some 8, a = (a;) and b = (b).

Proor. Since / is a birational map, for a generic (x¢, yo) € C2, the equation A (x, y) =
(y,ha2(x,y)) = (x0,¥0), 0or ha(x, x9) = yo has aunique root for x. Hence, h(x, y) is
arational function of degree 1 with respect to x. As hi,(—38y,y) =0, h2(0,y) = —y/6,

and 15 (x,0) # 0, i has the form A (x, y) = g1 (y)(x +8y)/(g3(y)x —8%g1(y)) with
£1(0) # 0. By multiplying the denominator and numerator by a common constant if nec-

essary, one can put g1(y) = [{Z; (1 — y/a;) and then g2(y) = g1(y) + yg3(»)/8 =
[17=1(1 = y/bj), which yields the lemma. n

From now on, we assume the following.
AssumpTioN |. m =n = N.

With the embedding C? 5 (x,y) < [x : y : 1] € P2, we will regard the birational
map f and the lines C as those on P2. Then, the indeterminacy sets of f*! are given

by I(f*") = {pa s, Uipp 1S, U{pg ), where
pai=1M0:a;:1], p;r’jz[—bjS:b,':l], pd =1[1:0:0]
Pai =lai:0:1], p,; =1[bj:=bj/s:1]. py =[0:1:0]

Since any indeterminacy point of f*! lies on the smooth locus C* of the three lines
C, we can conclude that f € B(C). Moreover, it follows from (4) that § = §(f) is
the determinant of f.
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REMARK 4.2. The birational map f contracts curves to indeterminacy points as follows:
L= {lr:a; 1] | x €P'} - pg;.
LY :=A{fx:bj: 1] |x € P} > p, .,
D= {lx:y: 1] (g200) — £10))x/y — 851 () = 0} = py.

The curves L¢ and L;’ are lines passing through { p:,l. , Py yand { p;j , P& ) respectively,
and D is a curve of degree N passing through /( /) with multiplicities

a.i

mult + D=mult + D=1 and mult + D =N — 1.
D Py, j Dy

A straightforward calculation shows that the blowup of pg lifts f to a birational map
whose restriction to D is an isomorphism to the exceptional curve of the blowup.
Similarly, if a; # ay for any k 7 i, then the blowup of p,; lifts f to a birational map
whose restriction to L¢ is an isomorphism to the exceptional curve, and also if b; # by
for any k 7 j, then the blowup of p; , lifts f to a birational map whose restriction to
Lj.’ is an isomorphism to the exceptional curve. Moreover, the pullback of a generic
line by f is a curve O of degree N + 1 passing through /( /) with multiplicities

mult + O =mult + O =1andmult + O = N.
Pq.i Py ; Po

Next, we determine the fixed points of f : P? — P2, The fixed points of f on C?
are given by the singular point (0, 0) of C, and (x;, x;) € C2, where x; are the roots
of the equation

N N
RT3 =T10-5)

i=1

Moreover, under Assumption 1, the birational map f : P? — P2 preserves the line
L ={[x:y:z]|z =0} atinfinity, and the restriction f|z is expressed as

(7 flx:y:0] = [8(Bo—o)x — 8oy : arg(x + 8y) : 0],

where o, B are given in (5). Hence, the fixed points of f : P? — P2 lying on L are
given by [x; : 1: 0], where x; are the roots of the equation

8) @ox; + 8200 — Bo)x; + ao8® = 0.
Consequently, we have the following proposition.

PROPOSITION 4.3. The fixed points of f : P? — P2 are givenby wg =[0:0:1] € C,
w; = [x;:x;:1] € C?forl € {1,..., N}, where xj are the roots of (6), and w; = [x; :
1:0] € Lforl e {N + 1, N + 2}, where x; are the roots of (8). Moreover, when | €
{1,..., N + 2}, the fixed point w; lies outside C and hence satisfies Det D f(w;) = 6.
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REMARK 4.4. It is straightforward to calculate that the eigenvalues of D f (wq) at the
singular point wq of C are given by (w8~!, w~18~1), where w is a primitive cube root
of unity. Therefore, a Siegel disk is never centered at wg, as (w8~!, w~1§~!) are not
multiplicatively independent.

Now, for R* := R \ {0}, we put

N 1
A= {c = (8.a.b) € " x R*)Y x (R*)Y | Zb—j—z—_ = 1},
j=1

im 4
where (]R*);’ :={a € R*)N dega; # a;(i # j)},and for cy = (89, a0, bo) € A and
&> 0, put
A(cose) 1= {(S,a,b) €A||6—2Co|l <&, |la—ao| <e, |b—bo| < e}.
Then, we have the following proposition, whose proof is given in Section 6.

ProrosiTION 4.5. Under the above notations, there exists € > 0 and cqg, c« € A such
that

(1) DI ¢ (0.4] for ] € {1.....N + 2} if (5.a.b) € A(co:e),
@) (DI ¢ (0.4] for ] € {1.....N + 2} if (5.a.b) € A(cxi).
It should be noted that the indeterminacy point py € I(f ') satisfies
S2(po) = pd € 1(f)-
Furthermore, we assume the following.

AssumpTioN 2. For given parameters m = (mi)f.vzl, n= (n,-)jl.\’:1 e N¥ except for
(m,n) = ((1), (1)) € (N2, the map f : P? — P? satisfies

) =p; ((=1.....N),
f3nj(1’z:,j) = p;:j (j=1,....,N).
LemMA 4.6. Under Assumption 2, we have

1 (83 — 1) 1 82—

®

G B-DEm1 D b B _HEmi

where ¢ = 8 — « is given in (5). In particular, if ¢ # 0, then § satisfies the equation

N

10)  fma(®) =)

j=1

§2(837 — 1) N 5™ —1)
G -nEmrien ; B — D@1+ 1)
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Proor. It follows from (4) that
£20,9) = (0.1 (),  f2(x,—x/8) = (h1(x), —h1(x)/5)
and hence
S0, 9) = (0.h (), [, =x/8) = (i (x), —h(x)/9),

where : s
e T s A A
Since
f(@i,0) = (0,—a; {86 + can)} ),
assumption (9) is equivalent to /i, —1 (—a; {8(8 4+ ca;)}™') = a; and ha; (bj) = —b;$,
which yield the desired expressions for 1/a; and 1/b;. Finally, the relation (10) follows

from
N N
c=B—a=) 1/bj—> 1/a;. n
j=1 i=1

Conversely, for given m = (m;),n = (nj) € N¥ let§ € C* be any root of (10),
and leta = (a;), b = (b;) be parameters given by a; = am, (8), bj = by, (8), where

(83— 1831 4+1) b () (83 — )83+ 4+ 1)
5% —1) k(6) = 28k —1)

D ag@) = -

Then, the birational map f = fs 45 satisfies the condition (9). Proposition 2.2 shows
that there is a proper blowup 7 : X — P2 for £, and r lifts f : P? — P2 to an automor-
phism F;,; , : X — X. Note that the points blown up by 7 satisfy the assumptions in
Proposition 2.7. Thus, the root § of the equation (10), which is the determinant of f,isan
eigenvalue of F, , : H 2(X;Z) — H?(X:;Z).On the other hand, under Assumption 2,
there exists A > 1 so that y,; ,(1) = 1 since ymn(1) > 1 and lims_o0 Ym.n(8) = 0.
Hence, A = A := A(F,, ,) > 1is the spectral radius, which is a root of the Salem
polynomial Sy, ,,(¢) := SF,, , () =0. As Sy, » (¢) isirreducible, any root of Sy, ,(t) =0
is aroot of y,, ,(¢) = 1. Therefore, we have the following corollary.

CoroLLaRrY 4.7. Under the assumption that (m,n) # ((1), (1)), any root§ of Sm n(t) =
0 satisfies Ym.n(8) = 1. Moreover, the birational map f = fs (@, (5)).(6n; 8)) lifts to
the automorphism Fy, 5, having positive entropy hip(Finn) = 10g Ay n > 0 with the
spectral radius Am n = A(F,, ,) > 1.

Lemma 4.8. If§ € S' is given by § = exp(2miv) with an irrational real number v,
then {ay (8)}ren and {by (8)}ren are sequences of real numbers and dense in R.
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Proor. First we notice that

(53 _ 1)(53k—1 + 1) (53/2 _ 5_3/2)(8(3k_1)/2 + 5—(3k—1)/2)

5(53k _ 1) (53k/2 _ 5—3k/2)
sin(3mv) cos {(3k — l)nv}
sin(3kmv)
. cos(mv) .
=2 /7
Sm(3nv){tan(3knv) + s1n(7w)},
(83 _ 1)(83k+1 + 1) B (53/2 o 8_3/2)(5(3k+1)/2 + 5—(3k+1)/2)
§2(83k — 1) o (83k/2 — §=3k/2)
B 2sin(371v) cos {(3k + l)nv}
N sin(3kmv)
o cos(mv) )
=2 Sm(3nv){tan(3knv) s1n(7w)}

are real numbers. Since {3kmv}P2 | C (—n/2,7/2) (mod r) is dense from the irra-
tionality of v, so is {tan(3kwv)}?2; C R, which establishes the lemma as

sin(3zv) cos(mv) # 0. ]

ProposITION 4.9. The roots of Smn(t) = 0 other than kiln are equidistributed on
S as either m; — oo for some i or nj — oo for some j.

Proor. A result of Bilu (see [4, 8]) says that if {px }xen is a sequence of algebraic
units with limg _, o deg(px) = oo, then {3,, } weakly converges to the normalized Haar
measure on S!. Here, for an algebraic number p # 0, we put

with the Dirac measure 8, at p’. Since Ay, , satisfies A, , — A < 00 as m; — 0o
or n; — oo and A is not a Salem number, we have deg(A,, ,) — 00. As Ay, is an
algebraic unit, the proposition is established. ]

ProprosITION 4.10. Let & > 0 and ¢y, ¢« € A be given in Proposition 4.5, and let ay (),
by (8) be given in (11). Then, there exist m,n € N¥ and 8y, 8+ € S such that

(1) Sm,n(SO) = m,n(‘g*) =0,

(2) (80, (am; (80)), (bn; (80))) € A(co; ), (8, (am; (8x)), (bn; (8x))) € A(cx; ).

Proor. We put ¢y = (do. (a)), (b}))), cx = (dx, (@), (b7)), and without loss of gen-
erality, we may assume that dy and d, are multiplicatively independent. Then, from
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Lemma 4.8, one can fix (m; )N . and (n]) 150 thata ~ am; (do), a} ~ am,; (dx) for
ie{l,...,N— l}andbjo ~ by, (do), b ~ by;(dy) for j € {1,..., N}. By Propo-
sition 4.9, there exists my >> 1 such that roots 8o, 8« € S! of Sy, ,(¢) = 0 satisfy
80 ~ do, 8« ~ dy and hence a? ~ am, (80), a¥ ~ am, (8x) fori € {1,...,N — 1} and
bJQ ~ bn; (30), bl’.k ~ bp; (8x) for j € {1,...,N}. As

Z 5 Z = Ymn(80) = Imn(8s) =1

j=1 bj i—1 4

from Corollary 4.7, we have a?v N amy (80), Ay X amy (8+) so that condition (2)
holds. .

For the parameters given in Proposition 4.10, fix the birational maps

Jo = Jso.(@m; 60).(bn; o) AN S = S5 (am, (8:)).(bn; (5.))-

As fp and fi are Galois conjugate and each fixed point of fy outside C is a Galois
conjugate of a fixed point of f outside C, Propositions 2.12, 4.5, and 4.10 yield the
following corollary.

CoroLLARY 4.11. The map fo has N + 2 fixed points wy, ..., Wy 42 at which Siegel
disks are centered.

ProrosiTiON 4.12. Let F : X — X be the automorphism that is the lift of fo by the
properblowup 7w : X — P2 for fo. Then, F has positive entropy hiop(F) =10g A > 0
and has exactly N + 3 isolated fixed points wy, ..., WxN+2 (see also Remark 2.4).

Proor. Corollary 4.7 says that F' = Fy, ,, has positive entropy hiop (Fin,n) =108 Apmn > 0.
Now, note that the indeterminacy points 7( f*!) are blown up by 7. Remark 4.2 says
that F* sends curves as
N N
[H] — (N + D[H] = N[ES1- Y [EF]1- D [E),
i=1 j=1
N N
[Eg] N[H]— (N = D[E] =Y [ES]1- D [E
i=1 j=1
[Eq1 [H] - [Eq]—[E]].

[Ey 1= [H] = [Eq]1—[Ey ],

where EjE E;tl,

follows from Lemma 2.5 that any exceptional divisor over the point outside /( f ')

Ep i . are the exceptional divisors over Po , pE 2 pb L , respectively. It

is sent to another exceptional one by F*. Hence, we have Tr(F*|g2(x.z)) < N + 1.
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Ficure 2. Siegel disks for an automorphism (N = 5).

Proposition 2.10 says that there are at most N + 3 isolated fixed points for F, and the
existence of the fixed points wy, ..., Wy +2 given in Proposition 4.3 says that there are
exactly N + 3 isolated fixed points for F'. |

Proor oF THEOREM 1.1. First, assume k > 3 and put N = k — 2. The automorphism
F mentioned in Proposition 4.12 has positive entropy and has exactly k + 1 fixed points
wo, - - . , Wg. Among the fixed points, no Siegel disk is centered at wo from Remark 4.4,
and Siegel disks are centered at wy, ..., wg from Corollary 4.11. Therefore, F' is a
desired automorphism satisfying the condition mentioned in Theorem 1.1.

When k = 0, 1, McMullen [8] and Bedford—Kim [2] showed the existence of an
automorphism F satisfying the condition. The automorphism F realizes the so-called
Coxeter element and is obtained from a birational map f : P? — P2 of degree 2 by
blowing up points on the smooth locus of a cubic curve C. Moreover, C is a cuspidal
cubic if k = 0, and C is either a conic with a tangent line or three lines through a point
if k = 1. Finally, when k = 2, the existence is shown in Theorem 1.2. The theorem is
established. |

With the help of Mathematica, we describe Siegel disks of an automorphism for
the parameters N = 5, m = (280, 104, 54,36,27), n = (205, 381,432,450, 459), and
8 ~ —0.5037 + 0.8639i in Figure 2.

5. Proor or ProrosiTiON 2.9

This section is devoted to the proof of Proposition 2.9. Since automorphisms may fix
a curve pointwise, we use S. Saito’s fixed point formula instead of a classical fixed
point one (see [7, 10]). Let X be a smooth projective surface and f : X — X an
automorphism different from the identity. Then, the idea of Saito is to divide the set
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X1(f) of irreducible curves fixed pointwise by f into the curves of type I and those
of type II:

X1(f) = X1 (f) L X7z (f),

and to contribute different types of curves to the formula in different ways. Namely,
the formula says that the Lefschetz number

L(f):=)Y (D' Te[f*: H(X:Z) > H'(X:Z)]

of the automorphism f is expressed as

L(fy= Y w(H+ D xcveH+ Y. tw-velf)

x€Xo(f) CeX;(f) CeXy(f)

where Xo(f) is the set of fixed points of f, yc¢ is the Euler characteristic of the
normalization of C € X;(f), and ¢ is the self-intersection number of C € X7 (f).
We shall omit the precise definitions of the indices vy ( f) and v (f). However, it is
known that v (f) is a positive integer, and v, (f) is a nonnegative integer, which
is positive if x € Xo(f) is an isolated fixed point. On the other hand, the types of
fixed curves are defined by using the action of f on the completion A, of the local
ring of X at x, which is isomorphic to the formal power series ring C|[zy, z2], as X
is assumed to be a smooth surface. Now, given a fixed curve C € X;(f), we take a
smooth point x of C and identify A, with C[z1, z2] in such a manner that C has the
local defining equation z; = 0 near x. Then, the induced automorphism f* : Ax — Ay
can be expressed as

1) {f;(zl) =z 42k £,

fi(z2) =22 + Z{ - f2
for some k, € N U {oo} and some f; € A, such that f; (0, z») is a nonzero element
of C[z2]. Here, we put z{® := 0 by convention. Then, it turns out (see [7, Lemma 6.1])
that vc(f) = min{k,/} and C € X;(f) if and only if k < [, which is independent
of the choice of the smooth point x on C and the coordinates z;, z5. Note that if the

derivative Df (x) has an eigenvalue different from 1, then the relation (12) yields k = 1
and f1(0,0) # 0. In particular, the fixed curve C must be of type /.

Proor of Prorosition 2.9. Now, if X is a rational surface, then the cohomology
group of X is expressed as

ZPt (i =2)
H' (X:2)=3Z  (i=04)
0 (#0224
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for some p > 0. Moreover, if F is an automorphism on X, then the action F* on
H! (X;7Z) is trivial for i = 0, 4, which shows that

L(F) = Tr(F*|H2(X;Z)) + 2.
On the other hand, the above argument says that any fixed curve is of type /. Further-
more, if F' has positive entropy, then it is known (see [6]) that any fixed curve C has

nonnegative Euler characteristic yc > 0. Hence, the fixed point formula says that F
has at most L(F) = Tr(F*|g2(x.z)) + 2 isolated fixed points. [

6. Proor or ProrosITION 4.5

In this section, we will prove Proposition 4.5. To this end, we need some auxiliary
lemmas. Let f be the birational map given by (3) withm =n = N.

LeEMMA 6.1. For any fixed point (x7,x;) € C? with x; satisfying (6), we have

N N

af2 1 !
R = — , - 8 - ’
Tr Df (x7.x7) % (xz,x1) = (6 + 1){1 ; 1—x/ai +;1_x,/bj}

Proor. First, it follows from (f1)x = 0 that Tr Df (x7, x;) = (f2)y(x7, x7). Moreover,
by the relation
g2(x1) = g1(x)(1 + 8)%/8.

one has

g1(x)(1 +8)% + x187 (x)(1 +8)* — x185(x)8
g1(x)(1 +6)

fz

(l,)

Therefore by combining the relations

N
x,gl(x,)_gl(x,)z xl/a’ :gl(x’){N_Z—1—)1c,/a-}’

i=1

1/b;
m&mm—&mmz /b—&mm+w{ }:me}

we obtain the desired form. n

LEMMA 6.2. Assume § € S*. For any fixed point w; = [x; : 1: 0] € L with x; satisfying
(8), we have

Bo

{1 D} 0.4 < = e0.4)

Det Df (w;)
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\al v bA ACLN
ag Y bvﬂz Y3 bs /CLN 1 YN b’\

Ficure 3. Two functions g(x) and go(x).

Q=

Proor. We use the fact that the eigenvalues of Df at w; =[x; : 1 : 0] for/ € {N +1,
N + 2} are given by (le_l , x7). It follows from the equation (8) that # := § 1 x; satisfies

Moreover, one has {Tr Df (w;)}?/ Det Df (w;) = 2 + 82 + (§t>)"1. As § € S, it
turns out that {Tr Df(w;)}?/ Det Df(w;) € [0, 4] if and only if t € S!, or in other
words, Bo/ao € [0, 4]. [

Now, we show the existence of the parameters c, ¢« € A mentioned in Proposition 4.5.
Note that any birational map fg,(ai),(bj) is conjugate to f5 (4, Je).(b; c) Tor any ¢ €
C* via the linear map [x : y : z] — [cx : ¢y : z]. Hence, it is enough to show the
existence of (8, (a;). (b;)) with "N 1/a; — Z,N=1 1/b; # Oinstead of YN 1/a; —
YN /by =1.

For given real numbers 0 = ag < a; < az <--- <ay and an N-tuple b = (b;) €
R*N with a;_; < b; < a;, put

g(x) = H( -7) go<x>=1ﬂ[(1—bii),

1=

where d = (1 + §)2/8§ € [0, 4] with § € S!. Moreover, we assume that 0 < d < 1.
Since g(x) and go(x) are polynomials of degree n satisfying the relations g(ag) = d <
1 = go(ao), g(ai) = 0 < (=1)'go(a;), and (=1)*g(b;) < 0 = go(b;) fori > 1, there
is a unique real number y; € (a;_1, b;) such that g(y;) = go(y;) fori € {1,..., N}
(see Figure 3). It is seen that y; = y;(b) is continuous as a function of b = (b;) €

N
[Tz (aiz1, ai).

LeEMMA 6.3. Assume that 0 < d < 1. Then, there exists b = (b;) € ]_[fvzl(ai_l,a,-)
such that y;(b) = x; foranyi € {1,..., N}, where x; = (aj—1 + a;)/2. Moreover,
each component b; satisfies limg 1 b; = a;.
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Proor. Fori € {1,..., N}, we put

s =a[1(0-2) s =10-5)
Jj=1 ' |

j=1

where ¢; is inductively determined by the relation s; (x;) = #; (x;) (see also the follow-
ing). We claim that e; > 0 and &; \( O as d ' 1. Indeed, if i = 1, then the relation
s1(x1) =t1(xy) yieldse; = a1 (1 —d)(ay —x1)/{a1 —d(a1 —x1)} > 0,and g1 \( O
as d /' 1. Note that dy := s1(x2)/t1(x3) satisfies 0 < dp < 1 since x, > a;, and
dy /" lasd /' 1.Moreover, fori > 2, assume that d; := s;_1(x;)/t;—1(x;) satisfies
0<d; <l,andd; /" 1asd /' 1. The relation

di(l B z_j> B t,s_ll()(c;:) N tztifj(c;)z) N (1 B ai)igi>

yieldse; = a; (1 —d;)(a; — x;)/{a; —di(a; —x;)} > 0,and g; \(Oasd ' 1.Similarly,
diy1 = 5i(xi+1)/ti (xi41) satisfies0 < d;j 11 < l,and dj+1 /" lasd /' 1. Our claim

is proved.

Assume 0 d <1 sothat&; <a; —x;.Regarding y; = y; (b) as a function of b = (b;),
we claim that y; (by,...,bi—1,a; — &;,bi+1,...,by) < x; foranyi € {1,..., N} and
(b1,....bi—1.bit1,...,by) with (aj_1 <x; <)a; —¢&; < b; <a;.Indeed, by putting

X X
gi:=(1-—)[1(1-%).
a; — &/ © bj
JF#i
one has

(_l)i_lgi (xl

and (—1)""1g;(ai_1) > 0 = (=1)""'g(a;_1), which yield the claim.

Finally, we prove the existence of b with y; (b) = x;. To this end, note that there
is aroot z; of g(x) = go(x) such that z; /" a; asb; /" a;. Fori = N, the root zy
must satisfy zy = yn since y; < ay—q for j < N — 1. The above claim says that
yn(by,....bN—1,any —eN) < Xy, which means that there exists

by =bn(b1,....bn—1) € (ay —en,an),
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depending continuously on (b; ;V;ll, such that

yN(bl,---,bN—l,bN(bl,---,bN—l)) = XN.

Put y;(b1.....bn—1) = yj(b1,....bn-1,bN(]1,...,DbN—1)), which is continuous
with respect to (bj)jN:_ll. Moreover, fori < N — 1, we assume that y; = y; (b1,...,b;)
satisfies y; = x; for j > i + 1. Similarly, z; must satisfy z; = y; since y; > x; 41 for
J =i+ 1landy; <a;_qforj <i— 1. The above claim says that

yibi,....bi—1,a; —&;) < xi,

which means that there is a continuous function b; = b; (b1, ...,b;—1) € (a; — &, a;)
with y; (b1,...,bi—1,bi(by,...,bi—1)) = x;i. Defining a continuous function

yi(bi,....bi—1) = yj(b1,....bi—1,bi(b1,...,bi—1)),

we can continue the induction.
Hence, there is b = (b;) € ]_[fvzl(a,- — &;,a;) such that y;(b) = x; for any i €
{I,...,N}.Since g; \(Oasd 1, we establish the lemma. [

LemMma 6.4. There exists co € A such that the birational map [ determined by cg
satisfies

{Tr Df (wy)}?/ Det Df (wy) € (0,4) foranyl € {1,...,N +2}.

Proor. Under the notations mentioned in Lemma 6.3, we can choose 0 < d < 1 and
0<by <a; <by <---< by <ap sothat

1 1 (ai —b,-)xl
_ = <— (le{l,...,N
l—x;/bi  1—x;/a; (ai —x)(bi —x;)| N (e 2
and 1 < a;/b; <2Y/N foranyi € {1,..., N}. Then, from Lemma 6.1 and the fact

that Det D f(w;) = §, we have

{Ter(w,)}z_d1 N 1 1 2 0.4
Det Df(w;) +;(1—Xz/bi_1—m/ai) <9

forany/€{l1,...,N}.Choose §€ S sothatd = (1 + §)2/§. It follows from Lemma 6.2
and the fact that 1 < B¢/ = ]_[,N=1 a;/b; <2that{Tr Df(w;)}?/Det Df (w;) € [0, 4]
and then {Tr Df(w;)}?/ Det Df(w;) € (0,4) for [ € {N + 1, N + 2} by slightly
modifying the parameters if necessary. Thus, we have the desired parameters co =

(8. (ai), (bi)). n
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Next, we consider the case 0 < by :=b; =---=by <ag:=a1 =---=dap.
Then, the fixed points w; = [x; : x; : 1] for/ € {1,..., N} are given by the roots of
d(1 —x;/ag)N = (1 —x;/bo)"N with d = (1 + 8)2/8 € [0, 4], which yields

aobo(1 — Anely)

ap — bo)LNegv

X] =

’

where Ay := d'/N¥ > 0 and ey := cos(27/N) + i sin(2z/N) is a primitive N-th
root of unity. Thus, it follows from Lemma 6.1 and the fact that Det D f(w;) = § that

(e of@ny {1_
Det Df(w;)

2
(13) (ao + bo —aorytey’ — bOANefv)} =dA?

a()—b()

for/ € {l,..., N}, where

bo + 1 Atao/bo + A 2rl

A= 1—Na0/0+ + N N do/bo + Ncosi

aop/bo — 1 aog/bo — 1 N
)Lﬁlao/bo—k]v . 27'[[
- gin—.
ao/bo—l N

Moreover, from Lemma 6.2, one has

{Tr Df (wp)}

ao N
Det DF o) ¢[o,4]<:>(a) ¢ [0, 4]

for/ e {N +1,N +2}.

LEMMA 6.5. There exists cx € A such that the birational map f determined by c«
satisfies {Tr Df (w;)}?/ Det Df (wy) ¢ [0,4] foranyl € {1,...,N +2}.

Proor. First, we assume that d = 1/42 and ag/by = 4'/V in the above notations. If
I €{1,..., N}, then the only possibilities for {Tr Df(w;)}?/ Det Df(w;) to become
a nonnegative real number occur when (cos 27/ /N, sin27x!/N) = (%1, 0) in (13).
On the other hand, in the case (cos 27w!/N, sin2xl/N) = (£1, 0), it is seen that
{Tr Df (w;)}?/ Det Df (w;) > 4. Indeed, when (cos 27/ /N,sin 27l /N) = (1,0), one
has

2 /N IN 4 4=2/N\?2 2
{Te Df ()}~ 1(1_ 4U/N 41 43N 4 472 ) =(2+%g(N))

== +
Det Df (w;) 42 41/N _ 1 41/N _

with g(N) := (42/N —472/Ny 1 (4V/N _4=VY/N) _7/N . The function g (N ) satisfies
g(N)>O0forany N > 1, as g(N) is monotone decreasing in N and limy .o g(N) =0.
Thus, we have {Tr Df(w;)}?/ Det Df (w;) > 4. The case (cos 2l /N,sin2nl/N) =
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(—1,0) can be treated in a similar manner. Thus, the condition

{Tr Df (w)}?/ Det Df (wy) ¢ [0,4]

holds forany / € {1,..., N}.

Now, since {Tr Df (w;)}?/ Det Df (w;) continuously depends on the parameters
(8,a,b) € A, with the above condition, we slightly modify the parameters so that 0 <
by <---<by <by<ag<a; <---<ap,which means that 8o/ > (ao/bo)N =4
and thus yields {Tr Df (w;)}?/ Det Df (w;) ¢ [0,4] forany [ € {1,..., N + 2}. By
fixing § € S! with d = (1 + §)2/8, we show the existence of cx = (§,a,b) € A. =

ProoF oF ProposiTion 4.5. Note that {Tr Df (w;)}?/ Det Df (w;) continuously de-
pends on the parameters (8, a, b) € A. Hence, the proposition is the consequence of
Lemmas 6.4 and 6.5. ]
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