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Abstract. – In a paper appeared in 2021, a mathematical model was developed for tumor
invasion with vessel cooption, including a fine analysis of angiogenesis driven by chemotaxis.
Numerical solutions in spherical symmetry revealed that a traveling wave sets in. Results were in
agreement with experimental data. In the present paper, we introduce some nontrivial changes in
the model and we further analyze the structure of the solutions as well as their dependence on
some critical biological parameters, emphasizing for instance which are the most active zones
where angiogenesis takes place. Moreover, we propose an alternative model characterized by
the presence of a free boundary (playing the role of the invasion front), showing that the new
formulation (which is advantageous from the computational point of view) matches the results of
the previous model for some biologically significant range of the parameters.
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1. Introduction

At its initial stage, a tumor is small enough to be fed by nearby blood vessels via the
efficient mechanism of diffusion. Capillaries may provide oxygen and nutrients to
surrounding cells up to a distance of about 100–200�m (this explains why billions of
them are needed in the human body). A tumor that has grown to a size of, say, 1 mm
diameter finds itself in critical conditions, since cells in its innermost core become
hypoxic. Hypoxic cells react emitting molecules (tumor angiogenesis factors (TAFs))
which diffuse to the blood vessels next to the tumor, stimulating the branching of new
vessels. The new vessels eventually reach the tumor creating a network providing all
the tumor needs for further growth. Such a phenomenon is called angiogenesis [1].
Since the discovery of angiogenesis, an extensive literature has been produced, also
in the field of mathematical modeling of tumor-induced angiogenesis (e.g. [4, 5, 11]).
Here we confine to mentioning a few examples in different classes of models:

(i) continuous models [3, 12, 19, 20];
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(ii) discrete deterministic models [2, 18];

(iii) discrete stochastic models [2, 16, 19, 21].

The mechanism that drives the forming vessels towards the tumor is chemotaxis, since
the epithelial cells forming the new vessels follow the trail set by TAF, approaching the
zone of its maximal concentration, i.e., the tumor. The standard model for chemotaxis,
as laid in the seminal papers [14, 17], attributes to cells a velocity proportional to the
gradient of the chemotactic agent concentration. However, such an approach is not
suitable when dealing with angiogenesis because of various reasons. First of all, in
such a simple setting the corresponding chemotactic velocity can reach arbitrarily
large values, which is not our case since the new vessels progress thanks to cells
which proliferate but are not free to move around, being adherent to the new growing
structure. Moreover, it is not true that cells orienting themselves in the field of the TAF
concentration align exactly along the gradient direction, because, on the contrary, they
tend to change their orientation according to a stochastic mechanism. Thus, besides
the various phenomena concurring in the angiogenesis process, the chemotactic aspect
needs particular attention. The extensive study recently performed in [9] was based on a
fine analysis of chemotaxis accounting both for the existence of an intrinsic physiological
bound to cells velocity, and for the disturbance created by the spontaneous random
change of direction exhibited by migrating cells. The model in [9] will be referred to
as G-2021.

Numerical simulations performed in spherical symmetry provided results that match
reasonably well available experimental data of microvasculature density. Moreover,
they strongly suggest that the tumor invades the host tissue proceeding as a traveling
wave (TW).

The first tumor growth model yielding a TW solution (in plane symmetry) was the
one by Gatenby and Gawlinski [10], further analyzed from the mathematical point of
view in [6], and very recently considered in a reduced form to prove existence and
non-existence of invasive fronts [8]. The model in [10] (in the sequel referred to as the
GG model) was not concerned with angiogenesis, but included the tumor aggression
to the host tissue through the acidic environment created by the tumor cell metabolism.
In the following, we will emphasize similarities and differences between the GG model
and the G-2021 model.

We start by summarizing the G-2021 model, at the same time introducing some
changes to make it closer to reality. While in the original G-2021 model only tumor
cells were allowed to diffuse, now we assume that, after tumor aggression, healthy cells
too start diffusing in the advancing front region and that dead cells are also subject
to diffusion. The consequence is a non-negligible acceleration of the tumor invasion.
Such an updated model will be referred to as G-2022 model.
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Two main goals will be pursued in this paper.

(1) Investigating the TW structure of the solutions to G-2022 and their dependence on
some critical parameters. It will be seen that in the limit case of fast decay of dead
cells, such TWs are characterized by a rather sharp propagating front and some
of their properties can be predicted analytically and tested numerically. The TW
propagation velocity will be shown to increase if the tumor is supposed to be more
aggressive to the host tissue.

(2) The study of the TW behavior of the solutions suggests that the limit case of the
G-2022 model is actually a free boundary (FB) model, which will be formulated
and numerically investigated. In this FB model, the healthy cells die instantly when
reached by tumor cells, so that the tumor and the healthy tissues are neatly separated
by the tumor propagation front (the FB). This is of course an extrapolation but does
have a physical meaning if we consider that “instantly” actually means “in a time
which is very short compared to the natural timescale of the tumor progression”. It
will turn out that the FB formulation has some advantage from the computational
point of view.

2. Summary of the model

We report the model equations directly in the spherical symmetry. The tumor expands
from an initially avascular sphere (radius 0.02–0.03 cm), hosted by a healthy tissue.
The domain considered is a sphere of radius R � 1 cm that in any case we suppose
sufficiently larger than the tumor outer boundary. The model includes many quantities,
grouped as follows:

(I) cell densities of the main populations: n (tumor), h (host), m (dead cells);

(II) cell densities of the vascular system: vh, va (host tissue vasculature); v, w, z
(tumor vasculature);

(III) chemical concentrations: � (oxygen), P (TAF interstitial concentration).

We add some clarification. To each cell density (cells number p.u. volume) we may
associate a corresponding volume fraction multiplying it by the cell volume Vc . For
simplicity, all cells are assumed to have the same volume. Volume fractions will be
denoted by the symbols �i and the total cells volume fraction � is not allowed to exceed
a value �? < 1 (taking into account the space occupied by the extracellular matrix).
All terms expressing cells mobility and proliferation will contain the limiting factor

B.�/ D

�
1 �

�

��

�p
; p � 1;

expressing a crowding effect.
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The host tissue microvasculature includes two variable components: capillaries
and venules (total density vh). The arteriolar component va is taken constant in the
present model in view of its negligible dynamics [15]. Healthy cells, including the
ones of the venous vasculature, are attacked by the tumor. The tumor vasculature is
made by three types of cells: the ones forming mature vessels (v), the final stage of two
temporary populations consisting of the sprout stalk (z) and the sprout tip (w) cells. The
interplay between these classes is not simple and in the model under consideration it
was assumed for simplicity that tip cells are generated as the result of the TAF stimulus
on the existing vasculature and that in turn they generate one tip and one stalk cells.
Tip cells are the ones sensing TAF and selecting the growth direction of the forming
vessel.

It must also be stressed that there are several different kinds of TAFs (a fact clearly
complicating anti-angiogenic therapies). The model includes just one as a representative
of the whole class. The TAF action enters the model through the fraction  of TAF
engaged endothelial cell receptors, which is related to P by the formula

 D
P

Kd C P
:

Indexed symbols likeKi (and similarlyAi ,�i , ıi , �i ) will denote positive experimental
constants. Note that r is parallel to rP .

That said, let us review and comment on the model differential system.

Tumor cell balance

(2.1)
@n

@t
D

1

r2
@

@r

�
r2DnB.�/

@n

@r

�
C B.�/�.�/n � �n.�/n;

where diffusivity Dn and proliferation rate � are limited by the crowding factor B . In
addition, both proliferation � and death rate �n are dependent on the oxygen concen-
tration:

�.�/ D A�
�

K� C �
;

�n.�/ D

´
x�ncos

2
�
�
2
�
x�n

�
C �0; � 2 Œ0; x�n�;

�0; � 2 .x�n;C1/;

where x�n is a critical oxygen concentration below which death rate is larger.

Healthy cells balance

(2.2)
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�
� ıhnh � �h.�/h;
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where the diffusive term (absent in model G2021) accounts for cell mobility; moreover,
healthy cells die as a consequence of tumor aggression, whose intensity is specified by
the coefficient ın, or by hypoxia, according to the following death rate:

�h.�/ D

´
x�hcos

2
�
�
2
�
x�h

�
; � 2 Œ0; x�h�;

0; � 2 .x�h;C1/;

with x�h > x�n because tumor cells can switch to anaerobic metabolism (of which lactic
acid is a byproduct, lowering the local pH).

Dead cells balance
@m

@t
D

1

r2
@

@r

�
r2DmB.�/

@m

@r

�
C �n.�/nC �h.�/hC �ww C �zz C �vv

C ıhnhC ıvhnvh � �mm;

(2.3)

This class collects all cells that die for various reasons. The first term again accounts for
diffusive mobility (absent in model G2021), whereas the last term expresses degradation.

Tumor attack to healthy vasculature

(2.4)
@vh

@t
D �ıvhn vh:

Oxygen diffusion-consumption

(2.5) 0DD�
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r2
@

@r

�
r2
@�
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�
C hvh.�

�
h � �/C vv.�

�
v � �/�Hn.�/n�Hh.�/h:

Equation (2.5) is in the quasi-steady form because the oxygen diffusivityD� is so large
that the time scale of this phenomenon is much shorter than the typical time scale of
all other processes involved. Moreover, oxygen diffuses throughout the medium and
this explains the absence of the limiting factor B in the first term. The source terms
represent oxygen supply by the vasculature and the consumption rates by tumor and
healthy cells are as follows:

Hi .�/ D AHi
�

KHi C �
; i D n; h:

TAF diffusion
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(2.6)
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We recall that P denotes the interstitial concentration, so P.��P � �/ is instead
the bulk TAF concentration, where .��P � �/ is the volume fraction available to TAF
(clearly larger than the one available to cells). Note that the diffusion term has the
form typical of diffusion through porous media, since only rP is responsible for TAF
diffusion through interstices, while r� has no influence on it. The last term expresses
natural decay; the production term has the coefficient �P .�/n, where

�P .�/ D A�
K� � �

K� C �
;

and consumption by cells sensors is regulated by the coefficient

CP .P / D AC
P

Kd C P
:

Evolution of tumor vasculature

(a) Tip sprout cells.
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(2.7)

(b) Stalk sprout cells.

(2.8)
@z

@t
D ˇ. ; �/w � �an.va C vh C v/z � �zz:

(c) Mature vessels cells.

(2.9)
@v

@t
D �an.va C vh C v/.z C w/ � �vv:

Clearly, the system (2.7)–(2.9) is the core of the angiogenesis model and we are going
to summarize its main features, going backwards. Equation (2.9) describes how new
mature tumor vessels are created as an interaction between tip + stalk cells .z C w/
with all mature vasculature structures present at the same location. The last term is
natural death. Equation (2.8) shows that stalk cells are generated by tip cells at a rate

ˇ. ; �/ D Aˇ .1 �  /
�B.�/;

with � � 0. Actually tip cells are generated and pushed forward by proliferation of
adjacent stalk cells, but the present way of writing the equation offers some simplicity
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advantage (e.g. modeling haptotaxis is avoided) and has no impact on the final outcome.
Taking � > 0 introduces a limiting effect when many of the receptors are occupied. In
equation (2.7) the production term is characterized by the coefficient

˛. ; �/ D A˛ .1 �  /
�B.�/;

while the first two terms on the right-hand side model chemotaxis. They have a different
origin. The term including r resembles the classical convective chemotaxis transport
with two basic differences. The first is that, though r selects the direction of velocity,
the latter has an intrinsic physiological bound, since cells stick to the forming vessel,
so that their velocity cannot exceed

utip. ; �/ D ƒˇ. ; �/;

whereƒ is the average displacement of a tip cell at each cell duplication. Such a feature
is guaranteed by the presence of the factor

q.jr j/ D
jr j

Kq C jr j
:

The diffusion term in (2.7) represents the contribution of the random change of velocity
direction. Its derivation is long, complicated and requires several (reasonable) approxi-
mations. It is based on typical statistical mechanics arguments. The reader is referred
to [9]. The diffusivity Dw turns out to be

(2.10) Dw. ; �/ D
u2tip. ; �/

3
;

where  is the average frequency at which tip cells change their velocity direction. The
time 1= is the persistence time and a requirement of the model is that it is considerably
shorter than the observation time, i.e., the time needed to observe some structural
change in the tumor. The latter time is of the order of one month (720 h) and we may
assume that the permanence time is 10 h ( D 0:1 h�1). If the permanence time is
too small ( large), the changes are so frequent that they have no effect (Dw tends to
zero). If the persistence time is too large, then changes become unobservable and the
corresponding term must be dropped (the arguments leading to (2.10) do not apply
anymore).

The model is completed by the boundary and the initial conditions as follows. The
domain in which the above system has to be solved is a sphere whose radius is much
larger than the initial tumor radius. The boundary conditions are n D w D P D 0 and
� D �ff (ffD far field), the stationary oxygen concentration in a healthy tissue. Note that
only the diffusing quantities need such conditions. For the same species, the symmetry
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condition (null derivative with respect to radial coordinate) must be imposed for r D 0.
The initial conditions, which have to be consistent with the boundary conditions and
with the inequality � < ��, are as follows:

– m D w D z D v D 0 (i.e., the tumor is initially avascular),

– at time t D 0, n is a positive constant in a small core and rapidly decreases to zero
out of it, while h, vh have the complementary behavior, being zero in the small core
and rapidly increasing to the physiological values in the rest of the sphere.

Several a-priori results were obtained in [9], including the study of asymptotic solutions.
The said analysis is not influenced by the changes introduced in the G-2022 model.

3. Numerical results

Numerical simulations of the system of equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.6),
and (2.7)–(2.9) were performed using the parameters reported in Table 1 and imple-
menting a finite difference method (which is explicit, forward in time, and centered in
space) similar to the one of the paper [9].

The typical simulation outcome is summarized in Figures 1 and 2. The evolutions
of all local volume fractions are very similar to those presented in [9], with the only
visible difference in the (more rounded) spatial profiles of the cell volume fractions �n,
�h, and �m, owing to the newly introduced diffusive terms. For completeness, we report
the numerical values attained by the model quantities at the final time of the G-2022
model simulation, i.e., at T D 360 days: � D 21:1mmHg, P D 0:27 nM,  D 0:32,
�n D 0:64,K�v D 1:9 � 10�2,K�w D 9:1 � 10�4,K�z D 3:6 � 10�4, �m D 8:8 � 10�2,
� D 0:75.

Such results turn out to agree with experimental data of tumor microvasculature
density (MVD) in a quite satisfactory way, as in [9]. Defining the tumor MVD as the
number of vessels in a 1mm2 section of tissue, we can write MVD D K�vasc=�r

2
vasc,

where K�vasc and rvasc denote the vessel volume fraction and the mean vessel radius
(in mm), respectively. Values of MVD computed at the final time of our G-2022 model
simulation were MVD D 51:1mm�2 for the tumor and 97:2mm�2 for the normal
tissue, actually falling within the experimentally measured range [7, 13]. For more
simulations in critical cases, see [9].

Back to the time evolution of the model densities, the right panels of Figure 2, show-
ing the spatial distribution of the growing neovasculature, emphasize that angiogenesis
mostly develops in correspondence of the invading front. This is an important feature
that the model helps to understand.

A striking model feature that emerges is that the solution behaves as a TW eventually
replacing the no-tumor state with the state in which the tumor has invaded the whole
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General parameters
�� 0:85

p 1:1

Vc 2:145 � 10�9 cm3

ƒ 8:0 � 10�4 cm
r0 1:0 � 10�3 cm
ı 2 � 10�4 cm
K 3.27
K�va 4:0 � 10�3

�m 2:08 � 10�2 h�1

Oxygen

D� 7:2 � 10�2 cm2 � h�1

��
h

7:62 � 10�5 M (D 60mmHg)
��
v 4:45 � 10�5 M (D 35mmHg)
h, v 1:86 � 10�3 h�1 cm3

AHn, AHh 2:99 � 10�13 mol � h�1

KHn;KHh 4:64 � 10�6 M
Tumor and host tissue

Dn,Dh,Dm 3:6 � 10�7 cm2 � h�1

A� 2:88 � 10�2 h�1

K� 5:08 � 10�6 M (D 4mmHg)
x�n 2:54 � 10�6 M (D 2mmHg)
x�n 5 .ln2=24/ D 0:144 h�1

�0 ln2=.10�24/ D 2:88 � 10�3 h�1

ıh, ıvh 4 � 10�9 h�1 � cm3

x�h 3:81 � 10�6 M (D 3mmHg)
x�h 5 .ln2=24/ D 0:144 h�1

Angiogenesis and TAF
��
P 0:90

Kd 5:75 � 10�10 M
A˛ 2:88 � 10�2 h�1

Aˇ 1:15 � 10�1 h�1

� 1
DP 1:8 � 10�3 cm2 � h�1

A� 5:96 � 10�19 mol � h�1 (per cell)
K� 4:45 � 10�5 M (D 35mmHg)
AC 3:86 � 10�19 mol � h�1 (per cell)
�P 0.65 h�1

Vasculature

 0.1 h�1

Kq 5 � 104 cm�1

�an 4 � 10�9 cm3 � cell�1 � h�1

�v 1:0 � 10�3 h�1

�w , �z 5 � 10�4 h�1

Table 1. Parameter values used for the G-2022 model simulation (parameter sources specified
in the reference paper [9]).
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Figure 1. G-2022 model simulation of the chemical concentrations in a spherical domain with
radius R D 1 cm after 4, 8, and 12 months. Left panel: oxygen (mmHg); right panel: TAF (nM).
Parameters as in Table 1.
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available space. So, as illustrated by Figures 1 and 2, the model provides information on
the mean velocity of tumor invasion, which represents an important global parameter
predictive of tumor aggressiveness. As pointed out in [9], the mean velocity of the
advancing tumor is mainly related to the average cell diameter and proliferation rate.
As a consequence of the increased diffusive mobility of cells, in the present simulation
we get a velocity Nc D 21:8�m/d, increased by about 10% with respect to the G-2021
model (19.8�m/d). We also note that the maximal slope of �n, which occurs near the
wave front, is �29:9 cm�1 (�32:8 cm�1 for model G-2021).

We believe that the TW behavior of the G-2022 model emerging from the previous
analysis deserves a closer attention.

4. The TW structure

The first thing we have to notice is that, though the solution exhibits the structure of a
TW, strictly speaking the model is not compatible with a TW solution. Let us try to
replace the dependence on .r; t/ by the dependence on the single variable � D r � ct .
If we do that in equation (2.1) multiplied by the cell volume Vc and we use the simpler
notations y D �n D nVc , D D Dn dropping the arguments of the functions B , �, �,
we obtain

(4.1) �

�
c C

2

r
DB

�
y0 D .DBy0/0 C B�y � �y;

where the prime denotes differentiation with respect to �. The term 2DB=r gives rise to
an inconsistency which is obviously severe near the center. However, since the computed
solution eventually develops almost rigorously into a TW moving with the speed
c D 21:8�m/d D 9:1 � 10�5 cm h�1, the requirement c � 2DB=r in (4.1) is fulfilled
provided that r� 2D=cD .7:2 � 10�7/=.9:1 � 10�5/ cm, i.e., r� 8:0 � 10�3 cm. Hence
this condition is satisfied already for r > 0:1 cm.

Of course such an argument could not work for the oxygen diffusion-consumption
equation because of the large oxygen diffusivity, but we notice that, owing to its quasi-
steady structure, the profile of � is dragged along by vh, v, n, h all possessing the TW
structure dictated by y. A similar argument can be repeated for the other diffusing
chemical quantity, namely P .

It is natural at this point to compare this result with the TWs obtained in the paper
GG. The context of the latter paper was different for several important reasons: the
geometry was 1-D; the tumor aggression to the host tissue was not direct but occurred
through the rapidly diffusing HC ions entering the model with their own equation;
death and proliferation rates were constant since the role of oxygen was disregarded;
finally, angiogenesis was not considered. Thus we expect that some similarity may be
present, but that of course there are also differences.
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The first difference that one can notice is that the TW front in GG could or could not
allow the simultaneous presence of tumor and healthy cells. Whether one or the other
circumstance occurs depends on the relative size of various parameters, as pointed
out in [6]. In the context of the present model instead, since the tumor aggression is
expressed in (2.2) by the direct interaction term �ıhnh, the front can proceed only if
both n and h are strictly positive, though it is not the aggression coefficient �ıh which
determines the TW propagation speed c.

Concerning the latter quantity, we may look instead for some similarity, since the
underlying propagation mechanism both in our model and in the GG model is based
on tumor cells diffusion and proliferation. A remarkable feature of the TWs in GG is
that their propagation velocity has the following explicit expression:

cGG D 2 sqrt.�0Dn/;

where �0 is the tumor cell proliferation rate, which is constant in GG, and Dn is the
tumor diffusion coefficient. We simulated the G-2022 model using different values
of Dn, actually replicating very well the square root behavior. The value �0 D 4:8 �
10�3 h�1 [10] is to be compared with some value on the front of the proliferation
rate in our solution, that is B.�/�.�/. Looking at the values of � and of � on the
TW front (Figures 1 and 2) we may say that �.�/ is only slightly less than A�, thus,
say, 2:5 � 10�2 h�1 while B.�/ takes values as low as 0.2 yielding that the product
B.�/�.�/ can actually approach a value similar to the one of �0. Discrepancies are
attributable to the accumulation of dead cells on the front, which take a time of the
order 1=�m to disappear. This is another reason for which our model and the GG model
differ considerably (B.�/ varies a lot on the front while in the GG model the presence
of dead cells was completely disregarded). Of course, increasing the parameter �m has
the effect of making the TW solutions in the two models more similar. The result of
repeated simulations as Dn or A� change is depicted in Figure 3 (left or right panel,
respectively). Symbols with an overbar denote the baseline parameters of Table 1 and Nc
the corresponding front velocity. Concerning the dependence of c on A� (see Figure 3,
right panel), we note that the square root relationship is reproduced rather well by the
model for lower proliferation rates, i.e., for A�= xA� smaller than 1. On the contrary,
when A� becomes greater than xA�, an increased production of tumor cells occurs, thus
depressing the parameters B and �more consistently, with the consequence of slowing
down the TW.

Going deeper into the TW structure of the solutions is exceedingly complicated
because the model contains too many coupled equations. However, we can make some
more considerations, starting from the front profile of the host tissue cells h. If in
equation (2.2) we neglect the death by hypoxia, then in the TW framework the same
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Figure 3. Dependence of the TW front speed c on Dn and on A�. Plot of the ratio between c
and its baseline value Nc as a function of the normalized diffusion coefficient Dn= xDn (left panel)
and of the normalized proliferation rate constant A�= xA� (right panel). The baseline values used
for normalization ( xDn, xA�) are those of Table 1. Dots: computed values of c= Nc, dotted line:
square root of Dn= xDn (left) and A�= xA� (right).

equation takes the form

�c�0h D �
ıh

Vc
�hy;

which leads to conclude that, for � within the front, it is

(4.2) �h.�/ D �h1 exp
�
�
ıh

cVc

Z 1
�

y.�/d�

�
:

This equation shows that �h rapidly vanishes soon after the onset of �n D y. Indeed,
in the simulation we had ıh=cVc ' 2:5 � 104 cm�1 and therefore a small average value
of y (say 0.1) over a small portion of the wave front (say 10�3 cm) is enough to reduce
the exponential in (4.2) below 0.1.

Based on this, we can say that �h can be neglected on the TW front. If in addition
we also neglect all other cells volume fraction except �n, thus identifying � with y in
(23), where we drop the “foreign” term 2DB=r , we find

(4.3) �cy0 D .DBy0/0 C B�y � �y;

where � and � are taken constant and B D 1 � y=��. Since the volume fractions �w ,
�z , �v are relatively small on the front, such a simplification makes sense if �m � 1,
i.e., if �m in equation (2.3) is large enough. This is actually the circumstance in which
the profile of y on the TW front can be described by equation (4.3). For instance, we
may look for the wave maximum slope Y D inf y0, setting y00 D 0:

DY 2 � cY �ˆ D 0;
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where ˆ D B�y � �y is evaluated at the maximum slope point. Thus,

(4.4) Y D c�?
1 �

p
1C 4Dˆ=c2

2D
:

As we said, the smaller the fraction �m the better the above approximation is, which can
be obtained increasing �m to a few times its current baseline value (2:08 � 10�2 h�1,
[9]). Indeed, for �m four times as large as that value, the computed maximal slope of
�n is �29:8 cm�1, while Y D �26:3 cm�1 with a �12% relative discrepancy.

It is easily seen that dY=dc > 0, i.e., the slower the wave, the steeper the front is.
The same is true for the �h profile, which, according to (4.2), is regulated by the ratio
ıh=.cVc/.

5. An FB scheme replacing the TW model

We consider now the limit case in which the healthy cells die instantly when reached
by the tumor cells. In that situation, the tumor invasion front r D �.t/ separates the
tumor region 0 < r < �.t/, in which n > 0 and h � 0, from the healthy tissue (n � 0,
h � h0, and m � 0, since � is above the death threshold).

Thus, we no longer have to deal with the equation for h. All the equations governing
the other quantities remain the same including the one for vh (we cannot put vh D 0 in
the tumor region because part of the original vasculature has to survive for some time
in order to boost angiogenesis).

Consistently with the assumption made on the death of healthy cells, we assume
that

(5.1) m
�
�.t/; t

�
D h0:

Concerning the population n, we say that on the front the corresponding incoming cell
flux equals the cell density current created by the front displacement

(5.2) �DnB.�/
@n

@r
D n P�; r D �.t/;

and that the front speed is proportional to the tumor volume fraction �n

(5.3) P� D ‚�n; r D �.t/;

for some positive constant ‚.
The target is to choose ‚ so that P� turns out to be comparable with the known TW

front speed.
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To sum up, in the FB model the equations for n and m keep the same form of
equations (2.1) and (2.3), which now hold for 0 < r < �.t/. Concerning the related
boundary conditions, in addition to the usual zero flux condition at r D 0, we prescribe
at r D �.t/ the conditions (5.2) and (5.1) for n and m, respectively. The healthy tissue
dynamic is described by the pair of conditions (i) h � 0, for 0 < r < �.t/ and (ii)
h� h0, for �.t/ � r < R. The evolution of the vasculature (either normal and tumoral)
is still described by (2.4) and (2.7)–(2.9) to be complemented with the same boundary
conditions of the G-2022 model for r 2 .0;R/ and t 2 .0; T /. The initial distributions
are assigned similarly to the paper [9].

Remark. As before, the chemical species � and P , along with the cellular species
triggering chemotaxis and angiogenesis, are allowed to diffuse in the whole domain.

The FB model equations were solved numerically in a spherical domain with
assigned radiusR and over a time interval of length T , by means of a routine implement-
ing a finite difference scheme similar to that developed for the TW model. Concerning
the parabolic PDEs of the model, the routine exploited an explicit, forward in time,
centered in space method that proved to be numerically stable and capable of reproduc-
ing the G-2022 model behavior for reasonably wide ranges of the parameter values.
Figure 4 reports the numerical solutions of the FB model computed assuming for the
common parameters the values previously used for the TW model (see Table 1) with
the exception of �m, which was increased by four times with respect to the baseline
value to favor the removal of dead cells. As for the new parameter ‚, which has the
dimension of a velocity, we set ‚ D 2:0 � 10�4 cm/h. With this choice, and supposing
an initial tumor volume fraction x�n equal to 0.6, in view of (5.3), we expect to get
a front velocity actually about 25% greater than the reference one obtained by the
G-2022 model ( Nc D 9:1 � 10�5 cm/h). Setting the mentioned value of ‚ is motivated
by a following quantitative comparison between the FB model and the G-2022 (see the
end of the present section). In fact, the FB model can be considered as a limit case of a
G-2022 model characterized by higher ıh and �m, i.e., increased tumor aggression rate
and decay of dead cells, with respect to the baseline parameter setting. So, the velocity
increment consequent to the choice of‚ is consistent with the FB scheme assumptions
and, in particular, it should reflect a parallel acceleration of the tumor invasion in the
TW model.

The FB model local volume fractions of cells and vessels are shown in Figure 4. From
a computational point of view, we observe that the FB model offers some advantage
with respect to the TW model, in terms of computation time. This is actually due to the
fact that we need not solve the diffusion equation for h, while the equations for n andm
can be solved over a portion of the whole domain, i.e., for r 2 .0; �/. Another favorable
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Figure 4. FB model simulation. Evolution of the local volume fractions of cells and of vessels in
a sphere of radius R D 1:5 cm after 4, 8, and 12 months, with‚ D 2:0 � 10�4 cm/h. Left panels:
host and tumor cells; right panels: host vessels, tumor vessels (mature, tip, and stalk).

aspect of the FB model is that using equation (5.3) allows to estimate P�.t/ and then to
predict the evolution of the outer growing tumor radius �.t/ (or tumor volume).

For a punctual comparison of the two models, we performed one more simulation
of the TW model, in which a higher tumor aggression rate ıh and a higher dead cell
degradation rate �m were assumed to match the profiles obtained by the FB model and,
at the same time, to verify the effectiveness of the FB approximation. So, the next figure
(Figure 5), to be compared with Figure 4, gives an example with ıhD 1:0 � 10�8 h�1 cm3

and �m D 8:32 � 10�2 h�1 (fourfold the baseline value). Concerning the TW model,
we incidentally observe that, as expected, the velocity of the TW propagating front
increases up to 28:7�m/d, whereas the front slope decreases becoming �27:5 cm�1,
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Figure 5. TW model simulation. Evolution of the local volume fractions of cells and of vessels
in a sphere of radiusR D 1:5 cm after 4, 8, and 12months. Parameter values as in Table 1, except
ıh D 1:0 � 10

�8 h�1 � cm3 and �m D 8:32 � 10�2 h�1. Left panels: host and tumor cells; right
panels: host vessels, tumor vessels (mature, tip, and stalk).

mainly because of the increase of ıh. It can be also noted that, owing to the increase of
�m, the fraction of dead cell is about halved with respect to the reference simulation of
Figure 2.

It can be observed that although the volume fraction profiles generated by the FB
model are not identical to the TW ones, the main features of all quantities appear to be
conserved. In particular, for both models the formation of tumor vessels occurs mainly
right behind the invasion front, even though in the FB model the angiogenic activity
appears to be concentrated near the front and followed by a stabilizing “tail” that tends
to the asymptotic value.



a. fasano and c. sinisgalli 192

Quantity FB (Figure 4) TW (Figure 5)
� (cm) 1:03 1:05

Nc (�m/d) 28:6 28:7

�n 0:70 0:70

� 0:75 0:75

�m 2:43 � 10�2 2:42 � 10�2

K�v 2:03 � 10�2 2:03 � 10�2

K�w 9:86 � 10�4 9:85 � 10�4

K�z 3:83 � 10�4 3:82 � 10�4

Table 2. Quantitative comparison of the FB vs. TW model by means of the comparison of
relevant quantities computed at t D 360 days.

Moreover, completing the quantitative comparison between the FB and the TW
model, Table 2 reports the values of corresponding quantities computed by the two
models for t D 360 days, indicating an excellent agreement of the numerical values of
the respective asymptotic states.

Let us conclude this section by envisaging a slight extension of the FB model that
would make it possible to account for incorporating the variability of the cell diffusion
coefficient. Indeed, as noted in Section 4 with regard to the TW model, an interesting
property of the TW front speed c is its dependence on the square root of the parameter
Dn. This suggests to modify the expression (5.3) of P�.t/ as follows. We start from the
observation that the product cn must coincide with the flux of n at the front and that
the flux can be approximated by DB.�/Y , taking for Y the expression (4.4), which
has been seen to provide a sufficiently accurate approximation of @�n=@r for suitable
parameter ranges. Now, c has been shown to be proportional to D1=2

n and we have n
proportional to YDn=c. Then, recalling that Y is proportional to c=Dn, the behavior of
d�=dt , with respect to the diffusion coefficient, is the same of‚. Hence, the suggested
extension consists in taking ‚ D x‚ sqrt.Dn= xDn/, so as to obtain automatically for P�
the same dependence of c on Dn itself.

6. Concluding remarks

• Some model refinement was incorporated in the original G-2021 model, still con-
serving the essential structure and properties. Precisely, all cell types (healthy, tumor,
and dead) of the present model are endowed with diffusive mobility.

• A further analysis of the solution behavior as a TW, and of its dependence on some
critical biological parameters was performed.

• An alternative model was formulated to represent the tumor invasion by means of an
FB representing the outer boundary of a growing tumor mass. The new formulation



traveling waves and free boundaries arising in tumor angiogenesis 193

matches the results of the previous model in a biologically significant range of the
parameters.

• The proposed FB model provides an expression representing the evolution of the
tumor radius, or equivalently tumor volume, at least in a first, initial phase of tumor
vasculature development. Therefore, in the same initial phase, the FB model could
be used to include the effect of antiangiogenic therapies, following the framework
of the seminal model in [11] and studies like e.g. [4, 5].
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