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Abstract. – We study two non-local variational problems that are characterized by the presence
of a Riesz-like repulsive term that competes with an attractive term. The first functional is defined
on the subsets of the Euclidean space and has the fractional perimeter as an attractive term. The
second functional instead is defined on non-negative integrable and uniformly bounded densities
and contains an attractive term of positive-power type. For both of the functionals, we prove
that balls are the unique minimizers in the appropriate volume constraint range, generalizing the
results already present in the literature for more specific energies.
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1. Introduction

In this note, we deal with two constrained minimization problems, each of them written
as sum of an attractive term and a repulsive term. The functionals that we want to
minimize are F W B.RN /! Œ0;C1� and G WK ! Œ0;C1�, and are defined as

F .E/ WD Ps.E/C 

Z
E

Z
E

g.x � y/dxdy 8E 2 B.RN /;

G .h/ WD

Z
RN

Z
RN

�
jx � yj˛ C g.x � y/

�
h.x/h.y/dxdy 8h 2K;

where K WD L1.RN I Œ0; 1�/ and B.RN / is the Borel �-algebra on RN . In those
definitions, Ps.E/ denotes the fractional s-perimeter for some fixed s 2 .0; 1/, ˛ > 0
is a constant,  > 0 is the coupling parameter between the attractive and the repulsive
terms, and g W RN n ¹0º ! Œ0;C1/ is an interaction kernel whose properties will be
specified later.

Of course, the minimization of those functionals is trivial if we do not put any
constraint, so we rewrite the minimization problems, respectively, as

min
®
F .E/ W E 2 B.RN /; jEj D !N

¯
;(F )

min
®
G .h/ W h 2K; khk1 D m

¯
;(G)
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where  > 0 andm> 0 are two parameters. Our final aim is to study the behavior of the
minimizers of those problems when  � 1 and m� 1. One notices that, even though
the parameters m and  play a similar role in those problems, they are technically
different if g is non-homogeneous (that is the case we are interested in). In the first
problem, we vary the coupling parameter, and not the total mass, because our arguments
do not apply well to this second case. This is a technical issue, and probably it can be
solved imposing some mild growth condition on g. Of course, these two approaches
are completely equivalent if g is homogeneous, since the volume constraint can be
fixed to be !N up to rescaling the sets.

The general aim of this note is to prove some results similar to those already present
in the literature for more specific functionals. What connects these two problems is a
common technique: the competing terms enjoy some quantitative stability inequalities,
and we combine them to obtain the rigidity results for the minimizers in some parameters
ranges.

The first section introduces the notation and some preliminary results that ease
some computations. We gather here those quantities that play a significant role in both
of the problems (with minor differences), while the more specific ones are presented in
the successive sections.

In the second section, we focus on the “perimeter problem”, that is already studied
in [3, 9, 13, 14] with the standard perimeter in place of Ps and a negative power as
function g. The problem with the fractional perimeter was studied in [8], where the
negative power varies in the largest possible range. We make use of many tools developed
in this last article to handle the term involving Ps . The two more recent papers [4, 18]
instead treat the problem (F ) without assuming g to be homogeneous. In this paper, we
apply some results contained in [4], combined with a strong version of the quantitative
isoperimetric inequality present in [8], to prove the following theorem.

Theorem A. Let s2.0; 1/ and let g WRN n ¹0º!Œ0;C1/ be a function satisfying (H).
There exists 0.s; g/ > 0 such that, if  < 0, then any minimizerE of F with volume
!N coincides with a ball of radius 1.

We point out that other generalizations are being studied, and they concern both
of the terms of F . For example, in [1] the authors establish some existence and
regularity result for the minimizers of a functional containing a weighted perimeter
(but a repulsive term of negative-power type). Moreover, if the weight is a monomial
function, they also recover that the balls are the unique minimizers in the reasonable
volume regime (i.e., where the attractive term should heuristically be stronger than
the repulsive one). Another example is Pegon’s article [19], where the author treats
the problem with the standard perimeter and a radial and globally integrable repulsive
kernel. The global integrability assumption allows Pegon to rewrite the minimization
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problem as the difference between the perimeter and a generalized non-local perimeter.
A similar problem is considered also in [17], where it is proved the minimality of the
ball assuming some additional hypotheses on the kernel when the mass constraint is
large enough.

The third section is devoted to the problem (G), where we show how the proofs
present in [10] can be modified to work with a quite generic function g. Here we need to
impose an additional assumption on g, which is very close to the setting in which Frank
and Lieb assert that their theorems could be generalized. Indeed, they also include a
non-homogeneous attractive term in their generalization, but we preferred to deal only
with the other one because it is more similar to the problem (F ). In the end, we are able
to prove the following theorem, that is analogous to Theorem A, where we show that
the attractive term completely overwhelms the repulsive one if the volume constraint is
big enough.

Theorem B. Let ˛ > 0 and let g W RN n ¹0º ! Œ0;C1/ be a function satisfying (I).
There exists a threshold m0 D m0.˛; g;N / > 0 such that the only minimizers for G

with “volume” constraint m > m0 are the characteristic function of balls.

We point out that this kind of problems can be posed also in the measure setting
(instead of L1.RN I Œ0; 1�/) and one can impose a generic mass constraint (i.e., not
necessarily large), and in this more general situation many different phenomena can
appear. They are studied for example in [2, 5], where even local minimizers are con-
sidered (with respect to a certain Wasserstein distance). Many numerical experiments
have been performed, which give an idea of the complex situation that arises from
this relatively simple functional. We also highlight that in [5] the restrictions on the
interaction kernel allow the authors to answer some regularity questions by means of
the obstacle problem theory, while we work essentially by hands, and this permits us
to consider a quite generic function g.

2. Notation and preliminary results

We will denote, respectively, byB ,B.x; r/, andBŒm��RN the unitary ball centered in
the origin, the ball of radius r centered in x, and the ball centered in 0with jBŒm�j Dm.
Also, if l > 0 and x 2 Rd , we denote the d -dimensional cube centered in x with sides
of length 2l as

Qd .x; l/ WD
®
y 2 Rd W jxi � yi j � l 8i D 1; : : : ; d

¯
:

Given any function f W RN ! R and a parameter t > 0, we define the dilated function
f Œt �.x/ WD f .x=t/, so that

R
f Œt �.x/dx D tN

R
f .x/dx.
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Hypotheses on g

Here we gather the hypotheses that our setting requires. The first one contains the most
general assumptions, which will be almost always supposed to hold, while the second
one will be used only in Section 4. We suppose to have

g W RN n ¹0º ! Œ0;C1/

such that

(H) g 2 L1loc.R
N /, g.tx/ � g.x/ for every t � 1 and for every x ¤ 0, and moreover

there exists Rg > 0 such that g.x/ is bounded in ¹jxj > Rgº,

(I) the function g satisfies the condition (H) and moreover it is radial and the function
x 7! jxjg.x/ is of class L1loc.R

N /.

It is not hard to see that the local integrability is necessary in order to ensure that F

(respectively, G ) is finite on B.x; r/ for every r > 0 (respectively, on the characteristic
function ofB.x; r/). Therefore, the hypotheses in (H) are very mild, while those defined
in (I) are there primarily have some good regularity property for the potential that is
defined in (1).

Since we will frequently integrate g onto sets, we define the repulsive potential
generated by a generic set E � RN and its own repulsive energy, respectively, by

(1) vE .x/ WD

Z
E

g.x � y/dy; R.E/ WD

Z
E

Z
E

g.x � y/dxdy:

If instead we consider a function h 2L1 \L1, we denote by vh and R.h/, respectively,
the potential generated by h and its own interaction energy, and they are defined with
formulas analogous to (1). When we consider the problem (G), we also denote the
attractive part of G .h/ by 	˛.h/, where ˛ > 0 is a fixed parameter. Sometimes we will
also compute the interaction between different sets or functions, which we denote by

R.E1; E2/ D

Z
E1

Z
E2

g.x � y/dxdy;

R.h1; h2/ D

“
g.x � y/h1.x/h2.y/dxdy;

	˛.h1; h2/ D

“
jx � yj˛h1.x/h2.y/dxdy;

where E1; E2 � RN are sets with finite volume and h1; h2 2 L1 \ L1 are functions
with bounded support (but we do not suppose that they are non-negative). Similarly,
G .h1; h2/ denotes the full interaction energy between h1 and h2. Moreover, it will
be useful to express in a compact way the repulsive potential of a ball computed at a



a note on some non-local variational problems 269

certain distance from the origin (in the case of g radial). To this end, we define the
function

(2)  .R; r/ WD

Z
B.0;R/

g.re1 � y/dy:

For the second problem, it is also useful to give a name to the functions representing
the attractive potential of a unitary ball and the full potential that is produced by a ball
of volume m. Namely, given m > 0, we define the functions

(3)
'.r/ WD

Z
B

jre1 � yj
˛dy;

ˆm.r/ WD

Z
BŒm�

�
jre1 � yj

˛
C g.re1 � z/

�
dy

for all r � 0.
In isoperimetric problems, it is very important to deal with the asymmetry of a set

E that we denote by A.E/ and that is defined as

A.E/ WD inf
x2RN

ˇ̌
E�

�
x C BŒm�

�ˇ̌
m

where m D jEj:

One can easily see that the inf is attained using a compactness argument. There exists
also an analogous quantity defined for functions h 2K:

A.h/ WD
inf
®
kh � �xCBŒm�kL1 W x 2 RN

¯
m

where m D khk1;

and again the inf is attained. Of course, this quantity makes sense also for h 2 L1, but
it is significant only for h positive and bounded.

Many times during our computations we will not track down the precise constants
appearing, and we will often denote with the same letter or expression a constant that
changes from a line to the other. This is done in order to keep the formulas shorter, and
it is also justified by the fact that many of those constants are probably not sharp, as it
is also pointed out in [10, Remark 1.2].

Lemma 2.1. Let g W RN n ¹0º ! Œ0;C1/ be a function satisfying (H). If h1; h2 2K

are two functions with max¹kh1k1; kh2k1º � Qm < C1, thenˇ̌
R.h1/ �R.h2/

ˇ̌
� C.g; Qm/kh1 � h2k1:

Moreover, if khk1 � !N , then vh � C.g/khk1 everywhere.

Proof. It is very easy to see that the function x 7!
R
g.x � y/h.y/dy is bounded,

and more precisely there exists a constant C1.g; khk1/ < C1 that controls its L1
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norm:

vh.x/ D

Z
g.x � y/h.y/dy

D

Z
B.x;Rg/

g.x � y/h.y/dy C
Z

RN nB.x;Rg/
g.x � y/h.y/dy

�

Z
B.x;Rg/

g.x � y/dy C
Z

RN nB.x;Rg/
g.x � y/h.y/dy

�

Z
B.0;Rg/

g.y/dy C khk1 sup
®
g.x/ W jxj > Rg

¯
DW C1

�
g; khk1

�
;

(4)

where we used that g is locally integrable and it is bounded outside B.0;Rg/. Notice
also that C1.g;m/ is increasing as a function of m.

Then the statement follows immediately from the “linearity” of R.h1; h2/ in both
of the arguments, separating the contributions of .h1 � h2/ _ 0, .h2 � h1/ _ 0, and
h1 ^ h2:ˇ̌

R.h1/ �R.h2/
ˇ̌
D
ˇ̌
R
�
.h1 � h2/ _ 0

�
C 2R

�
.h1 � h2/ _ 0; h1 ^ h2

�
CR.h1 ^ h2/ �R

�
.h2 � h1/ _ 0

�
� 2R

�
.h2 � h1/ _ 0; h1 ^ h2

�
�R.h1 ^ h2/

ˇ̌
�
ˇ̌
R
�
.h1 � h2/ _ 0

�
C 2R

�
.h1 � h2/ _ 0; h1 ^ h2

�ˇ̌
C
ˇ̌
R
�
.h2 � h1/ _ 0

�
C 2R

�
.h2 � h1/ _ 0; h1 ^ h2

�ˇ̌
:

(5)

We bound only the first term in the last expression, since the second one is analogous:

R
�
.h1 � h2/ _ 0

�
C 2R

�
.h1 � h2/ _ 0; h1 ^ h2

�
D

“
g.x � y/

��
h1.y/ � h2.y/

�
_ 0

���
h1.x/ � h2.x/

�
_ 0

�
dydx

C 2

“
g.x � y/

��
h1.y/ � h2.y/

�
_ 0

��
h1.y/ ^ h2.y/

�
dydx

�

Z
3vh1.x/

��
h1.x/ � h2.x/

�
_ 0

�
dx

� 3C1.g; Qm/kh1 � h2k1:

With this we proved the first bound, and now we easily obtain the second one dividing
the integral as we did in (4) and using the local integrability of g:

vh.x/ D

Z
g.x � y/h.y/dy

D

Z
B.x;Rg/

g.x � y/h.y/dy C
Z

RN nB.x;Rg/
g.x � y/h.y/dy
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�

Z
B.0;Rg/

g.y/dy C khk1 sup
®
g.x/ W jxj > Rg

¯
� C.g/

khk1

!N
C khk1 sup

®
g.x/ W jxj > Rg

¯
D C.g/khk1:

Remark 2.2. One can specialize the previous statement to h2D �BŒm� withmDkh1k1
to obtain on the right-hand side the asymmetry (since the left-hand side is translation
invariant).

3. Fractional perimeter as an attractive term

We firstly recall the definitions of fractional perimeter and fractional Sobolev norm,
together with some other important classes of sets that we will make use of. Successively,
we present the results that we are going to use and that have been already developed
in [4, 8].

Definition 3.1. The fractional perimeter of order s 2 .0; 1/ is denoted by Ps and is
defined as

Ps.E/ WD

Z
E

Z
Ec

1

jx � yjNCs
dxdy

for every measurable set E � RN (of course, it could possibly beC1).

Definition 3.2. Given an open set � � RN and u W �! R, its fractional Sobolev
seminorm of order s (and exponent 2) is defined as

Œu�s WD

�Z
�

Z
�

ˇ̌
u.x/ � u.y/

ˇ̌2
jx � yjNC2s

dxdy
�1=2

:

Thus, we can also define the fractional Sobolev norm as kuk2
W s;2 WD kuk

2
L2.�/

C Œu�2s .
Moreover, we will use an analogous definition if Mm � RN is a compact m-

submanifold embedded in RN : given a function u WM ! R, we define its fractional
Sobolev seminorm as

Œu�s WD

�Z
M

Z
M

ˇ̌
u.x/ � u.y/

ˇ̌2
jx � yjmC2s

dHm.x/dHm.y/

�1=2
;

where jx � yj is the Euclidean distance between x and y measured in RN . As before,
we define kuk2

W s;2 WD kuk
2
L2.M IHm/

C Œu�2s . In order to simplify the notation, we will
often omit the set where we compute the various norms/seminorms when it coincides
with the domain of the function u.

Remark 3.3. From the definitions, it is clear that 2Ps.E/ D Œ�E �2s=2 with � D RN

in Definition 3.2.
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The next definition appears in [6, 11], and it is important in our study since we will
use an inequality that is closely related to the so-called Fuglede inequality for nearly
spherical sets. The W 1;1 bound in our definition is different from the one present in
the aforementioned papers because Theorem 3.6 already contains the suitable bound
for the Sobolev norm.

Definition 3.4. An open set E � RN is nearly spherical if jEj D !N , its barycenter
is 0, and there exists a Lipschitz function u W @B ! .�1; 1/ such that

@E D
®�
1C u.x/

�
x W x 2 @B

¯
;

with kuk1 C kruk1 � 1.

The following are two different versions of the quantitative isoperimetric inequality
for the fractional perimeter that have been developed in [8] (respectively, labeled as
Theorem 1.1 and Theorem 2.1 in that paper) and we report them here for convenience.
The first is the fractional counterpart of the general isoperimetric inequality, and it is
remarkable that the asymmetry appears at the power 2 just like in the standard one (see
[12, Theorem 1.1]), while the analog of Theorem 3.6 for the standard perimeter can be
found in [6, Theorem 4.1].

Theorem 3.5. Let N � 2 and s 2 .0; 1/. There exists a constant C.N; s/ > 0 such
that, for every E � RN with finite measure, it holds that

Ps.E/ � Ps
�
BŒm�

�
C C.N; s/m.N�s/=NA.E/2;

where m D jEj.

Theorem 3.6. There exists ı0 < 1=2 and C0 > 0 that depend only on N with the
following property: if E � RN is a nearly spherical set with kukW 1;1.@B/ < ı0, then

Ps.E/ �Ps.B/ � C0
�
Œu�21Cs

2

C sPs.B/kuk
2
L2.@B/

�
8s 2 .0; 1/:

Finally, we rewrite here for convenience the statement of [8, Lemma 4.5], which is
useful to cut a set with a good control on the fractional perimeter of the new set.

Lemma 3.7. LetN � 2 and s 2 .0; 1/. Given a setE �RN such that jE nBj � � < 1,
there exists a radius 1 � r.E/ � 1C C.N; s/�1=N such that

Ps
�
E \ B

�
0; r.E/

��
� Ps.E/ � C.N; s/

ˇ̌
E n B

�
0; r.E/

�ˇ̌
�s=N

:

Remark 3.8. We observe that this minimization problem is monotone with respect
to the mass constraint: given E � RN with mass mC h, we can always cut it with a
hyperplane in such a way that the new setG satisfies jGj Dm. But then F .G/�F .E/
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since the repulsive term is clearly reduced (the interaction kernel is non-negative) and
also the fractional perimeter is decreased thanks to [8, Lemma B.1].

We state now the basic existence theorem, that uses Theorem 3.5 and Lemma 3.7
to deal with the perimeter term and combines them with Lemma 2.1 which provides
a good control on the repulsive term. Our proof of Theorem 3.9 takes some ideas
from the proof of [8, Lemma 5.1], but it is simpler since we do not track precisely the
dependence of the various constants that appear.

Theorem 3.9. Given s 2 .0; 1/ and a function g W RN n ¹0º ! Œ0;C1/ satisfying
(H), there exists 0.N; s; g/ > 0 such that, if  < 0, then F admits a minimizer with
volume constraint !N .

Proof. We will prove that, if  is small enough, then we find some candidates for
the problem (F ) that are bounded sets. Then we will apply a compactness result to
conclude via the standard method of calculus of variations.

We prove the boundedness of some candidates for (F ), and to this aim we can
suppose that the asymmetry of a given candidate is non-zero (otherwise this step is not
necessary) and it can be taken as small as we want. In fact, let E be a competitor for
the minimization problem with volume !N and parameter  , then we can suppose that
F .E/ � F .B/, and thus using Theorem 3.5 and Remark 2.2 we have that

(6) C.N; s/A.E/2 � Ps.E/ �Ps.B/ � 
�
R.B/ �R.E/

�
� C.g;N /A.E/:

Hence we can take 2!N 0 < C.N; s/=C.g;N / so that every set E chosen as before
satisfies jE nBj < 1=2, and thanks to the translation invariance of the problem we can
suppose that the optimal ball for the asymmetry is centered in the origin.

Now we can use Lemma 3.7 and see that there exists a radius r.E/, that satisfies
1 � r.E/ � 1C C.N; s/jE n Bj1=N , with the following property:

Ps
�
E \ B

�
0; r.E/

��
� Ps.E/ � C.N; s/

ˇ̌
E n B

�
0; r.E/

�ˇ̌
�s=N

with � D jE n Bj:

For the next computations, we define the set E 0 D E \ B.0; r.E// and the parameter
� D .jEj=jE 0j/1=N . Using the rescaling inequalities for the fractional perimeter and
the repulsive term (see [18]), we arrive to

(7) F .�E
0/ � �N�sPs.E

0/C �2NR.E 0/ � �2NF .E
0/:

We now define p D jE nE 0j=jEj, so �D 1=.1� p/1=N and, reducing 0 if necessary,
we can suppose that p � 1=2. Thus, using that the function p 7! .1� p/�2 is Lipschitz
in Œ0; 1=2�, we obtain the estimate �2N � 1CCp for a universal constantC > 0. Hence
we can plug it into (7) and use the monotonicity of R.E/ with respect to the inclusion
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(see Remark 3.8) to obtain

F .�E
0/ � .1C Cp/F .E

0/ � F .E/ � C.N; s/
jEjp

�s=N
C CpF .E

0/

� F .E/C p

�
CF .E/ � C.N; s/

!N

�s=N

�
:

We can suppose 0 < 1, so that F .E/ � F .B/ � F1.B/ DW C.s; g/, and we can
rewrite the previous inequality as

F .�E
0/ � F .E/C p

�
C.s; g/ �

C.N; s/

�s=N

�
:

Exploiting again (6) we see that, if 0 is small enough, then �s=N < C.N; s/=C.s; g/.
With this choice of 0 we see that F .�E

0/ < F .E/ since we supposed thatA.E/ > 0.
The new set �E 0 is contained in B.0; r.E// and r.E/ � 2C 2C.N; s/ thanks to the
bound on r.E/ provided by Lemma 3.7. This argument guarantees that, without loss
of generality, we can consider only competitors that are contained in a fixed ball.

Now we get the existence result. Let Ek be a minimizing sequence for F with
constrained mass!N such thatEk �B.0;2C 2C.N; s//. Then we can use the compact
embedding theorem for fractional Sobolev spaces (we refer to [7, Theorem 7.1]) to
apply the standard method of calculus of variations: the compact embedding theorem
provides a subsequence (not relabeled) that converges in L1loc topology, then both Ps

and R are lower semicontinuous with respect to the L1loc convergence thanks to Fatou’s
lemma, and finally the mass constraint is preserved by that convergence since the sets
Ek are uniformly bounded.

Definition 3.10. Given C > 0, we say that a Borel set E � RN is a C -minimizer of
the s-perimeter if for every bounded set F � RN it holds that

Ps.E/ � Ps.F /C C jE�F j:

We prove that minimizers of F1 are C -minimizers of the s-perimeter for some
C > 0, and this will be useful because of the good regularity properties held by those
sets. We refer to [16, Chapter 21] and [20] for the standard perimeter case, where the
classical regularity theory is also developed. Here we write the result that we will use,
which is a particular version of [8, Corollary 3.6].

Theorem 3.11. If N � 2, C � 0, s 2 .0; 1/, and Ek � RN is a C -minimizer of the
s-perimeter for every k 2 N and Ek ! B in L1, then there exists ˛ 2 .0; 1/ and a
sequence uk 2 C 1;˛.@B/ such that

(1) for k large enough @Ek D ¹.1C uk.x//x W x 2 @Bº,

(2) limk!1kukkC1;˛ D 0.
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Proposition 3.12. Let E � RN be a minimizer of F with measure !N . Then E is a
C -minimizer of the s-perimeter for some constant C D C.; g; s/ > 0.

Proof. Suppose by contradiction that there exists a sequence of sets Fk � RN with
Ps.Fk/ � Ps.E/, jE�Fkj ¤ 0, and

Ck WD
Ps.E/ �Ps.Fk/

jE�Fkj
! C1:

Using the isoperimetric inequality for the fractional perimeter and that Ps.Fk/�Ps.E/,
we have that jFkj is bounded by a constant that depends on N , g, and s. Now we can
estimate F .Fk/ as

F .Fk/ D Ps.E/ � CkjE�Fkj C R.Fk/

D Ps.E/ � CkjE�Fkj C 
�
R.Fk/ �R.E/CR.E/

�
� F .E/ � CkjE�Fkj C C.g/jE�Fkj;

(8)

where we used Remark 2.2 in the last inequality. Since Ck ! C1, we notice that
(8) implies that jE�Fkj ! 0. Now let us take k so large that Ck > C.g/. Then
jFkj< jEj: the assumption onCk guarantees that F .Fk/ < F .E/, and if jFkj � jEj,
then we can cut Fk with a hyperplane to obtain a new set F 0

k
with jF 0

k
j D jEj. Then

F .F
0
k
/ � F .Fk/ < F .E/, but this is not possible since E is a minimizer of F .

Now that we are sure to have jFkj < jEj, we can rescale the sets Fk in order to have
the right measure. Notice that jFkj D jEj C jFk nEj � jE n Fkj, hence we can define

(9) �kD

�
jEj

jFkj

�1=N
D

�
jEj

jEjCjFk nEj� jE n Fkj

�1=N
�

�
1 �
jE�Fkj

jEj

��1=N
;

and we have already noticed in the proof of Theorem 3.9 that F .�kFk/� �
2N
k

F .Fk/.
If we combine this estimate with (8), we can take k large enough to have that Ck >
2C.g/ and Taylor expand the rightmost formula in (9) with jE�Fkj � 1 to get

F .�kFk/ <

�
1 �
jE�Fkj

jEj

��2�
F .E/ � CkjE�Fkj C C.g/jE�Fkj

�
�

�
1 �
jE�Fkj

jEj

��2�
F .E/ �

Ck

2
jE�Fkj

�
� F .E/ �

Ck

2
jE�Fkj C C.N/jE�FkjF .E/:

And from this last inequality, we arrive to a contradiction since Ck is going toC1 as
k !1, so F .�kFk/ < F .E/. In the end, notice that the threshold for Ck depends
only on  , g, and s.
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Remark 3.13. Looking at the proof, it is immediate to notice that if we consider a
minimizer E 0 for F 0 with jE 0j D !N and  0 �  , then E 0 is a C -minimizer of the
s-perimeter with a constant C D C.; g; s/.

Here we prove a simple growth property in 0 held by the function g.

Lemma 3.14. If g W RN n ¹0º ! Œ0;C1/ is a radial function satisfying (H), then
there exists a constant C.g/ > 0 such that

g.x/ �
C.g/

jxjN
8x 2 B n ¹0º:

More precisely, we must have that lim supx!0 g.x/jxjN D 0.

Proof. We argue by contradiction. Suppose that there exists a sequence rk ! 0C such
that lim supk g.rke1/rNk D limk g.rke1/r

N
k
> 0. Without loss of generality, we can

assume that rk < 1 and rkC1 < rk=2 for all k 2 N. And then the monotonicity of g
implies that Z

B

g.x/dx � !N
C1X
kD1

g.rke1/.r
N
k � r

N
kC1/

� !N

C1X
kD1

g.rke1/r
N
k

�
1 �

1

2N

�

D CN

C1X
kD1

g.rke1/r
N
k :

Since g 2 L1.B/, we have that the last series converges, so its terms have to be
infinitesimal, but this is not compatible with the fact that limk g.rke1/r

N
k
> 0.

We proved only the second part of the statement, but the first part can be proved
reasoning in an analogous way. Indeed, it is sufficient to take two sequences rk 2 .0; 1/
and Ck ! C1 with g.rke1/rNk > Ck . Then notice that rk must converge to 0C

(otherwise we would reach immediately a contradiction with the integrability of g), so
that the previous argument works again.

Proposition 3.15. Let E � RN be a nearly spherical set, with @E parametrized by
u W @B ! .�1; 1/ according to Definition 3.4. If kuk1 � 1=4 and g W RN n ¹0º !
Œ0;C1/ is a radial function satisfying (H), then

(10) R.B/ �R.E/ � C.g/kuk2
W r;2.@B/

8r 2 Œ1=2; 1/:
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Proof. This result can be proved following the procedure exploited in the proof of
[4, Theorem A]. There, the inequality (10) is proved with the standard W 1;2 norm in
place of the fractional one, but following that proof one notices that the L2 norm of
ru pops up only because of the following inequality:Z

@B

Z
@B

g.x � y/
ˇ̌
u.x/ � u.y/

ˇ̌2dxdy � C.g/kuk2
W 1;2.@B/

:

If we are able to write another inequality with the fractional Sobolev norm, then we
can follow exactly the proof of [4, Theorem A]. In fact, we can do that: thanks to
Lemma 3.14, for any r0 2 Œ0; 1/ we have thatZ

@B

Z
@B

g.x � y/
ˇ̌
u.x/ � u.y/

ˇ̌2dxdy � C.g/
Z
@B

Z
@B

ˇ̌
u.x/ � u.y/

ˇ̌2
jx � yjN

dxdy

� 2r0C.g/

Z
@B

Z
@B

ˇ̌
u.x/ � u.y/

ˇ̌2
jx � yjNCr0

dxdy

� 2C.g/Œu�21Cr0
2

;

where clearly the fractional Sobolev seminorm is relative to the hypersurface @B �RN .
This is the desired inequality since we can take r D .1C r0/=2.

Remark 3.16. Notice that the above inequality is stronger than the one used in [4]
because of [7, Proposition 2.2], that can be applied thanks to the compactness of @B .

Proof of Theorem A. We will determine later the value of 0 < 1, but for now let us
suppose to have fixed it. For any  < 0, letE � RN be a minimizer of F with mass
!N and barycenter in 0. From Proposition 3.12, we know that they are C -minimizers
of the s-perimeter for some C D C.!N ; g; s/ > 0. We can apply Theorem 3.5 and
Remark 2.2 to see that

C.N; s/A.E /
2
� Ps.E / �Ps.B/ � 

�
R.B/ �R.E /

�
� C.g/A.E /:

From this inequality, we deduce thatA.E /! 0 as ! 0, or equivalently thatE!B

in L1.
Now we can apply Theorem 3.11 to see that, for  small enough, the sets E

are nearly spherical (see Definition 3.4), with @E parametrized by u . Moreover,
the family of functions ¹uº2.0;1/ is bounded in C 1;˛.@B/ for some ˛ 2 .0; 1/ and
kukC1.@B/ ! 0.

Up to reducing again 0, we can suppose that the hypotheses of Theorem 3.6 are
fulfilled for E with  < 0, and thus the following chain of inequalities holds:

C0
�
Œu �

2
1Cs
2

C sPs.B/kuk
2
L2.@B/

�
� Ps.E / �Ps.B/ � 

�
R.B/ �R.E /

�
:
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Now we can take 0 so small that kuk1 � 1=4 and continue that chain of inequalities
applying Proposition 3.15 with r D .1C s/=2:

C.N; s/
�
Œu �

2
1Cs
2

C kuk
2
2

�
�  � 2C.g/

�
Œu �

2
1Cs
2

C kuk
2
2

�
:

If  < C.N; s/=.2C.g//, we have that the above inequality holds if and only if u D 0,
that is equivalent to have E D B . Hence it is sufficient to choose 0 small enough in
order to make all the previous arguments work to conclude the proof.

Remark 3.17. One notices that Theorem 3.11 holds for sequences of sets, while in our
proof we have a family of sets indexed by a continuous parameter. This is not an issue:
if the final result was not true, then we could find a sequence k ! 0 and a sequence of
sets Ek 2 argmin Fk with Ek ¤ B , but then we could follow the proof of Theorem A
for this sequence of sets and obtain a contradiction.

4. Attractive term of positive-power type

This section can be considered as a short appendix to Frank and Lieb’s article [10],
where we explain how to modify the arguments present in their paper that are more
affected by the choice of a generic function g instead of a negative power. This also
shows some common features between the problems (F ) and (G):
• within some suitable constraint ranges, one sees that the minimizers are exactly balls,

and this happens because the attractive term is much stronger than the repulsive
one;

• the functional has a good structure that permits to combine a stability inequality for
the attractive term with one for the repulsive term in an effective way, providing the
expected result.

Frank and Lieb work with a functional defined on K D L1.RN I Œ0; 1�/, and we keep
this setting because the existence of minimizers is quite easy in that class of objects,
while it is not clear if we try to minimize G in the class of sets. In fact, Frank and Lieb
conjecture that in some cases (that are excluded by the hypotheses) the minimizers
cannot be characteristic functions, as they claim in [10, Remark 1.2]. Frank and Lieb
study the problem (G) when ˛ > 0 and g.x/ D jxj�� for 0 < � < N � 1, and they
prove that the minimizers are balls if the constraint is big enough. One could expect a
similar behavior because, if we take hŒt � instead of h for some factor t > 0, then we
see that the attractive and the repulsive terms scale, respectively, by a factor t2NC˛ and
t2N��, and the only minimizers of the attractive term are balls as a consequence of the
Riesz inequality (see [15, Theorem 3.7]). As anticipated, our generalization concerns
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the repulsive part of G , where we replace the negative power with a function

g W RN n ¹0º ! Œ0;C1/

that satisfies (I). Notice that the additional integrability condition expressed in (I)
guarantees that g 2 L1loc.R

N�1/ since g is assumed to be radial. In fact, we will use this
lower dimensional integrability property because many times we will use Fubini and
we will need to estimate an integral made on .N � 1/-dimensional slices. In the end,
we are able to use their proofs with minor changes also for this case, as they asserted
that it could be done. It is worth to point out that our estimates are necessarily less
precise since we ignore the exact behavior of g (being in fact unknown). Nonetheless,
they highlight only the necessary features that the model requires in order to retrieve
some important features.

As it is pointed out in [10], the key issue is that a regularity theory for the minimizers
of G is not yet developed, differently from the functional F that enjoys some good
property inherited by the C -minimizers of the s-perimeter. Hence the main effort
is concentrated in proving that the (translated and rescaled) minimizers converge in
Hausdorff distance to a ball when m!1. Once we have this result, we can proceed
with our program of using the stability results for the attractive term and the repulsive one
(respectively, Theorem 4.1 and Proposition 4.8) that allow us to prove that minimizers
are exactly balls if m is big enough.

The following inequality for the attractive term plays the role of the quantitative
isoperimetric inequality (see [10, Theorem 2.3]).

Theorem 4.1. Let ˛ > 0 be fixed. There exists a constant C D C.N; ˛/ > 0 such that
for every function h 2K with khk1 D m we have that

	˛.h/ � 	˛
�
BŒm�

�
C Cm2C˛=NA.h/2:

Remark 4.2. As a consequence, we have that, ifmk !C1 and hk minimizes G with
constrained volume mk , then A.hk/! 0. In fact, it is sufficient to apply a simplified
version of Lemma 2.1 to h1 D h and h2 D �BŒm� with m D khk1. In this case, we
define hC D h.1 � �BŒm�/ and h� D �BŒm�.1 � h/, so that h ^ �BŒm� D h�BŒm�, and
we can rewrite the first line in (5) as

R.h/ �R
�
BŒm�

�
D R.h�BŒm�/CR.hC/C 2R.h�BŒm�; h

C/ �R.h�BŒm�/

�R.h�/ � 2R.h�BŒm�; h
�/

D 2R.�BŒm�; h
C/ � 2R.�BŒm�; h

�/CR.hC/CR.h�/ � 2R.h�; hC/:

(11)

We notice that hC � h� D h � �BŒm�, and we can rewrite the last three terms as
R.hC; hC � h�/CR.h�; h� � hC/. Therefore, if mk � !N and if we translate hk
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in order to have that BŒmk� is the optimal ball in the definition of A.hk/, thenˇ̌
R.hk/ �R

�
BŒmk�

�ˇ̌
�

Z �
2vBŒmk �.x/CvhC

k

.x/Cvh�
k
.x/
�ˇ̌
hk.x/��BŒmk �.x/

ˇ̌
dx

�

Z
Cmk

ˇ̌
hk.x/ � �BŒmk �.x/

ˇ̌
dx � Cm2kA.hk/;

where we used the second part of Lemma 2.1 to pass from the first line to the second.
Then it is easy to conclude using the minimality of hk for G .

It is useful to have a good diameter bound for the support of any minimizer of
G with fixed mass, that is contained in the following lemma (that is our version of
[10, Lemma 3.7]). To abbreviate the notation, we will always call it diameter of h in
place of “diameter of the support of h”.

Lemma 4.3. Let ˛ > 0 be fixed and let g WRN n ¹0º! Œ0;C1/ be a function satisfying
(H). There exists a constant C D C.˛; g;N / > 0 such that, for any minimizer h 2K

of G with constrained volume khk1 D m � !N , we have that

(12) diam h � Cm1=N :

Proof. We proceed by contradiction. Let us suppose that there exists a sequence of
functions hk 2 K such that dk D diam hk > kkhkk

1=N
1 and hk minimizes G with

volume constraint mk D khkk1 � !N . For each k, we rotate the function hk in order
to have that dk D diam.�.supphk//, where � W RN ! R is the orthogonal projection
on the first axis. We further translate it in order to haveZ

¹hx;e1i<0º

hk.x/dx D mk=2:

If necessary, we substitute hk with the function Qhk defined as

Qhk
�
.x1; x

0/
�
WD hk

�
.�x1; x

0/
�

for all .x1; x0/ 2 R �RN�1;

in order to have
sup

®
hx; e1i W x 2 supp hk

¯
� dk=2:

Thus, we can choose a point tk 2 .0; dk=2/ such that 0 <
R
¹x1>tkº

hk.z/dz < mk=5.
Then we cut the functions with the hyperplane ¹hx; e1i D tkº and compare them
with the original ones: if uk D hk�¹x1<tkº, �k D

R
¹x1>tkº

hk.x/dx, and �k D .1 �
�k=mk/

�1=N , then

G .hk/ � G
�
ukŒ�k�

�
D 	˛

�
ukŒ�k�

�
CR

�
ukŒ�k�

�
� �2NC˛

k
	˛.uk/C �

2N
k R.uk/

� �2NC˛
k

	˛.hk/ � �
2NC˛
k

mk

2
�kt

˛
k C �

2N
k R.hk/:
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Rearranging that inequality, we obtain the following relation:

.�2NC˛
k

� 1/	˛.hk/C .�
2N
k � 1/R.hk/ � �

2NC˛
k

mk�kt
˛
k

2
�
m2
k
t˛
k

2

�k

mk
:

Using that �k=mk � 1=5 we can apply the (local) Lipschitz property of the factors in
the left-hand side to arrive to the following inequality, where we already simplified the
positive factor �k=mk:

m2kt
˛
k � C.N; ˛/	˛.hk/C C.N/R.hk/:

We assumed by contradiction that dk > km
1=N

k
, so using the previous inequality with

3tk > km
1=N

k
and comparing the energy of hk with G .BŒmk�/, we obtain

(13) k˛m
2C˛=N

k
� C.N; ˛/G .hk/ � C.N; ˛/G

�
BŒmk�

�
:

We can apply Lemma 2.1 since mk � !N and see that

G
�
BŒmk�

�
D 	˛

�
BŒmk�

�
CR

�
BŒmk�

�
�
�

diam
�
BŒmk�

��˛
m2k C C.g/m

2
k :

We can plug this inequality into (13) and obtain that

k˛m
2C˛=N

k
� C.˛; g;N /m

2C˛=N

k
;

that cannot hold if k is large enough. Therefore, we arrived to a contradiction, and then
the thesis holds with a constant C D C.˛; g;N / > 0.

Remark 4.4. Notice that the previous proof provides an explicit upper bound for
the diameter that could be expressed in terms of the other constants appearing in the
various inequalities.

Remark 4.5. With the previous computations we can see that, even if we do not have
a priori a minimizer, we know that the only possible candidates have the diameter
bound resulting from the lemma. In fact, the only energy comparison that we made
was G .h/ � G .BŒm�/. Thus, it is sufficient to consider a candidate h with that energy
inequality and cut it with the proper hyperplanes to find a better competitor that
satisfies (12).

Theorem 4.6. Letm > 0 and ˛ > 0 be assigned and let g W RN n ¹0º ! Œ0;C1/ be
a function satisfying (H). Then there exists a minimizer h 2K of G with constrained
volume khk1 D m.

Proof. Let us take a minimizing sequence hk 2K for G with khkk1 D m. Thanks
to Remark 4.5, we can suppose without loss of generality that supp hk 2 B.0; R/
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with R > 0 being a constant depending on m, N , g, and ˛. Since jhkj � 1, then up to
subsequenceshk

�
�*h inL1 for someh2L1. Moreover, alsoHk.x;y/D hk.x/hk.y/

weakly-� converge to H.x; y/ D h.x/h.y/ since we can approximate strongly in L1

any test function � 2 L1.RN �RN / with functions of the form
P
i2J �1;i .x/�2;i .y/

with J finite. This is sufficient to conclude using a standard lower semicontinuity
argument because the map .x; y/ 7! jx � yj˛ C g.x � y/ is of class L1loc.R

N �RN /

and suppHk � B.0;R/ � B.0;R/. Notice that the boundedness of the supports also
guarantees that the L1 constraint is satisfied by h.

Remark 4.7. One can notice that Remark 4.2, Lemma 4.3, and Theorem 4.6 hold
without the stronger integrability condition stated in (I). This ensures that, even if
g.x/ D jxj�� with N � 1 � � < N , we still have that the minimizers exist, they have
bounded diameter, and they converge in L1 to a ball as the volume constraint goes
toC1. Clearly, with this method we cannot expect to find a minimizer which is the
characteristic function of a set.

The next proposition is the analog of [10, Proposition 2.5]. Our result is weaker,
nevertheless it is sufficient to make the successive arguments work. Notice that our
proof is different and more robust since it uses much fewer properties of the repulsive
kernel. This result is in the same spirit of Proposition 3.15 since in both cases we
compare the energy of a competitor that is close to a ball in a suitable sense with the
energy of the ball itself.

Proposition 4.8. Let g W RN n ¹0º ! Œ0;C1/ be a function satisfying (I). There
exists C.g;N / > 0 such that, for every � 2 Œ0; 1=3� and for every function h 2K with

khk1 D m � !N and �.1��/BŒm� � h � �.1C�/BŒm�;

we have that R.h/ � R.BŒm�/ � C.g;N /m2�2.

Proof. We denote by R the radius of BŒm� (notice that R � 1 sincem � !N ) and we
rewrite the quantity R.h/ �R.BŒm�/ as in (11). This is useful because h and �BŒm�
are very close, and this produces many cancelations. For the sake of brevity, we denote
by �C and ��, respectively, the measures �C WD hCLN and �� WD h�LN , where hC

and h� are the functions appearing in (11). Then using the function  defined in (2),
we have that

R.h/ �R
�
BŒm�

�
� 2

Z
RN
 
�
R; jxj

�
d�C.x/ � 2

Z
RN
 
�
R; jxj

�
d��.x/ �R.hC C h�/

D 2

Z �
 
�
R; jxj

�
� .R;R/

�
d�C� 2

Z �
 
�
R; jxj

�
� .R;R/

�
d���R.hCCh�/;
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where we used that
R
hC.x/dxD

R
h�.x/dx. We concentrate ourselves on the last term:

if A D B.0; .1C �/R/ n B.0; .1 � �/R/, then R.hC C h�/ � R.A/ D
R
A
vA.x/dx.

By symmetry, we can estimate vA.x/ only for points of the form xD se1 2A. Moreover,
we clearly have that vA.x/ D vAnQ.x/C vA\Q.x/, where Q D QN .x; 1=2/. We can
easily bound the volume of A using that � 2 Œ0; 1=3�:

jAj D
ˇ̌
B
�
0; .1C �/R

�ˇ̌
�
ˇ̌
B
�
0; .1 � �/R

�ˇ̌
D !N

�
.1C �/N � .1 � �/N

�
RN � CN �R

N ;

(14)

and then we have that vAnQ.x/ � g.1=2/CN �RN . Moreover, it is immediate to see
that, if we denote any point x 2 RN by x D .x1; x0/ 2 R �RN�1, then the bound on
� implies that

H1
�
A \Q \ ¹x0 D y0º

�
� CN �R 8y0 2 RN�1:

Hence, defining d D CN �R to be the right-hand side of the previous inequality, we
can use the monotonicity of g to see that

vA\Q.x/ D

Z
A\Q

g.x � y/dy �
Z
QN�1.0;1=2/

Z d=2

�d=2

g
�
.s; y0/

�
dsdy0

� d

Z
QN�1.0;1=2/

g
�
.0; y0/

�
dy0 � C.g;N /�R;

where we used that g 2 L1loc.R
N�1/ in the last inequality. Combining it with (14) and

using that R � 1, we have that R.hC C h�/ � R.A/ � C.g;N /�2R2N .
With very similar computations, taking translations of balls instead of dilations,

one can see thatˇ̌
 
�
R; jxj

�
�  .R;R/

ˇ̌
� C.g;N /�R.1CRN�1/ 8x 2 A;

where one needs to use the .N � 1/-dimensional version of the L1 bound present in
Lemma 2.1. This bound holds because, as we observed at the beginning of this section,
g 2 L1loc.R

N�1/: for every E 0 � RN�1 � ¹0º with HN�1.E 0/ � !N�1, we have that

(15)
Z
E 0
g.x/dHN�1.x/ � C.g/HN�1.E 0/:

Putting together the inequalities for all of the terms, using that R � 1, and exploiting
again (14) together with the fact that .supp hC [ supp h�/ � A, we arrive to the
conclusion

R.h/ �R.BŒm�/ � �C.g;N /�2R2N D �C.g;N /�2m2:
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The following is a simple technical lemma concerning the function ˆm defined
in (3).

Lemma 4.9. Let ˛ > 0 be fixed and let g WRN n ¹0º! Œ0;C1/ be a function satisfying
(I). There exist two constants m0 D m0.˛; g;N / > 0 and C D C.˛; g;N / > 0 such
that for every m � m0 we have that

ˆm.r/ � ˆm.R/ if r � R and ˆm.r/ � ˆm.R/ if r � R;(16) ˇ̌
ˆm.r/ �ˆm.R/

ˇ̌
� CRNC˛�1 min

®
jr �Rj; R

¯
8r � 0;(17)

where R is the radius of BŒm�.

Proof. First of all, we change variable in the definition of ˆm:

ˆm.r/ D R
NC˛

Z
B

ˇ̌̌̌
r

R
e1 � x

ˇ̌̌̌˛
dx CRN

Z
B

g.re1 �Rx/dx:

Now we take m0 � !N (thus R � 1) and we see that the following inequalities hold
true:

ˆm.r/ �ˆm.R/

D RNC˛
�
'.r=R/ � '.1/

�
CRN

Z
B

h
g
�
R
� r
R
e1 � x

��
� g

�
R.e1 � x/

�i
dx

� RNC˛
�
'.r=R/ � '.1/

�
� C.g/RN

(18)

and in the same way

ˆm.R/ �ˆm.r/ � R
NC˛

�
'.1/ � '.r=R/

�
� C.g/RN :

Moreover, using the change of variables x D te1 � y, it is easy to see that

'0.t/ D ˛

Z
B

�
t � hy; e1i

�
jte1 � yj

˛�2dy D ˛
Z
te1�B

hx; e1ijxj
˛�2dx;

and therefore using the symmetry of B , we have that ' is of class C 1, with strictly
positive derivative at each point t > 0. We will denote by C.˛/ > 0 a constant such
that '0.t/ > C.˛/ for all t 2 Œ1=3; 4=3�. From the previous observations, it follows
immediately that both (16) and (17) are valid for jr � Rj � R=3 if we take m0 big
enough to have that

C.g/ �
1

2
R˛ min

®
'.4=3/ � '.1/; '.1/ � '.1=3/

¯
:
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O

θR

E

E + θRe1

R

R

Figure 1. The highlighted region corresponds to the setE, whileO is the origin of the coordinates
used in (19).

Now we concentrate ourselves on the case jr �Rj � R=3. We treat more carefully the
repulsive terms in (18) that coincide with

(19) D WD

Z
re1�BŒm�

g.x/dx �
Z
Re1�BŒm�

g.x/dx:

Let us define � D .r � R/=R, E D Re1 � BŒm� and let l D span¹e1º. Looking at
Figure 1 to better understand the situation, it is immediate to see that

H1
��
E�.�Re1 CE/

�
\ .x C l/

�
� 2j� jR 8x 2 RN :

Hence we use that g 2 L1loc.R
N�1/ to get

jDj � .2N � 2/!N�2j� jR

Z 1

�1

g.se1/s
N�2ds C g.e1/

ˇ̌
E�.�Re1 CE/

ˇ̌
� C.g;N /j� j.RCRN /;

where we used twice the cylindrical coordinates around the e1 axis. Hence we obtain
both (16) and (17) if we plug this inequality for jDj into the first line of (18) and use
that '0.t/ � C.˛/ > 0 for t 2 Œ1=3; 4=3�.

The key estimate, where the integrability property required in (I) is fully used, is
contained in the following lemma (which is labeled as Lemma 15 in Frank and Lieb’s
article). With this lemma, we gain control on vh out of a geometric constraint on the
support of h.

Lemma 4.10. Let g W RN n ¹0º ! Œ0;C1/ be a function satisfying (I). There exists a
positive constant C.g;N / such that, for any R � 1, any � 2 Œ0; 1�, and any function
h 2K that satisfies supp h � B.0; .1C �/R/ n B.0; .1 � �/R/, we have that

(20) kvhk1 D sup
x2RN

Z
g.x � y/h.y/dy � C.g;N /�RN :



d. carazzato 286

Remark 4.11. Our proof goes on quite like that of Frank and Lieb’s lemma, but we
provide a very rough estimate, where h does not appear explicitly in the right-hand
side. Besides, this inequality might seem very bad; notice that if we take

h D �B.0;.1C�/R/ � �B.0;.1��/R/;

then we see that the bound must be linear in � for � ! 0: the left-hand side of (20) is
larger than

R
g.y/h.y/dy, that is larger than CNg..1C �/R/�RN for some dimen-

sional constant CN > 0.

Proof. We define the annulus A WD B.0; .1 C �/R/ n B.0; .1 � �/R/, and since
jAj D !NR

N ..1C �/N � .1 � �/N /, we notice that there exists a constant CN > 0

such that C�1N jAj � �R
N � CN jAj. Without loss of generality, we can suppose that

jAj � "N for every fixed "N < !N : if the other case holds, then we denote by rN the
radius of BŒ"N � and we get

sup
x2RN

Z
g.x � y/h.y/dy �

Z
BŒjAj�

g.y/dy

D

Z
BŒ"N �

g.y/dy C
Z
BŒjAj�nBŒ"N �

g.y/dy

� C.g/C g.rN e1/jAj

D
C.g/

jAj
jAj C g.rN e1/jAj

�

�
C.g/

"N
C g.rN e1/

�
jAj;

that is the desired result since jAj � CN �RN . The value of "N will be fixed later, but
it is important to keep in mind that jAj can be taken arbitrarily small. Thus, we need to
prove (20) exploiting the particular shape of A. In the end, it is sufficient to estimate
the following quantity:

S WD

Z
Œ�R=2;R=2�N�1

Z
Œ�CN �R;CN �R�

g
�
.y0; t /

�
dy0dt;

where CN > 0 is a geometric constant. In fact, by compactness there exist a constant
KN > 0 and a family ¹q1; : : : ; qKN º of .N � 1/-dimensional cubes embedded in RN

such that
• the center cj of qj belongs to @B.0;R/ for all j ,
• their sides have length R=2,
• for every 1 � j � KN , we have that qj \ Int.B.0;R// D ;,
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cj

∂B(0, R)
πj

qj

∂A

R
R/2

CNθR

cj

x1 x2

x3x4

O

Figure 2. The image on the left represents the map �j with the red arrows, the cube qj that is
the horizontal segment, and one part of the boundary of the annulus A. In the figure on the right,
the cube qj is represented by the red vertical segment, while the points x1, x2, x3, x4 denote
the corners (since the figure is in 2D) of the outer part of what we call “curved slab”.

• if Dj D ¹tcj C y W t > �1; y 2 qj º and �?j is the orthogonal projection onto
span¹cj º?, then we define the map �j W Dj ! RN as

�j .x/ D �
?
j .x � cj /C cj

s
1 �

ˇ̌
�?.x � cj /

ˇ̌2
R2

;

so that
SKN
jD1 �j .qj / D @B.0;R/; namely they “cover” @B.0;R/. Notice that the

map �j is just pushing the points of Dj onto @B.0;R/ as shown in the left picture
in Figure 2.

Then, thanks to the positivity of g, we can replace the “curved slabs” A \Dj with
some flat slabs Fj (the smallest N -dimensional rectangle containing A \Dj with
sides parallel or orthogonal to qj ):Z

g.x � y/h.y/dy �
KNX
jD1

Z
Dj\A

g.x � y/h.y/dy

�

KNX
jD1

Z
Fj

g.x � y/dy

� KN

Z
Œ�R=2;R=2�N�1

Z
Œ�CN �R;CN �R�

g
�
.y0; t /

�
dy0dt;

(21)

where we used the monotonicity of g to pass from the second to the third line. We also
highlight that Fj has thickness smaller than CN �R for some constant CN (see Figure 2,
on the right). In fact, if � � 1=10, this is clearly true, and we know that � � CN jAj=RN .



d. carazzato 288

Since R � 1 and jAj � "N , we can choose "N so that � � 1=10. Then from (21) it is
clear that we need only to control the quantity S defined before. Since g is radial and
radially decreasing, we have that

S �

Z
Œ�R=2;R=2�N�1

Z
Œ�CN �R;CN �R�

g
�
.y0; 0/

�
dy0dt

D 2CN �R

Z
Œ�R=2;R=2�N�1

g
�
.y0; 0/

�
dy0:

Moreover, since g 2 L1loc.R
N�1/ and R � 1, we can apply again the strong L1 bound

(15) to conclude that

S � CN �R � C
0RN�1 D C 00�RN ;

where of course the constant C 00 depends only on g and the space dimension N .

We report for convenience the statement of [10, Lemma 3.5] that permits to modify
a function in order to make it closer to the characteristic function of a ball.

Lemma 4.12. Let h 2K be a function with khk1 D m and let � 2 Œ0; 1�. Then there
exists h0 2K with the following properties:

kh0k1 D khk1;(22)

�.1��/BŒm� � h
0
� �.1C�/BŒm�;(23)

h0.x/ � h.x/ for x 62 BŒm�; h0.x/ � h.x/ for x 2 BŒm�;(24) Z
jh0 � �BŒm�jdx �

Z
jh � �BŒm�jdx;(25) Z

jh � h0jdx � 2
Z
E

jh � h0jdx

where E D .1 � �/BŒm� [
�
RN n .1C �/BŒm�

�
:

(26)

The following proposition contains the most delicate estimates, and it provides a
bound on the Hausdorff distance between supp jh � �BŒm�j and @BŒm� depending only
on kh� �BŒm�k1 and onm. This kind of bound is clearly something special, that holds
for minimizers but not for a generic function h. The proof that we are going to write is
a simple adaptation of the one present in [10], where we make some minor changes due
to our different estimates. We also point out that Frank and Lieb’s proof relies on the
fact that R.f / � 0 for any f 2 L1 \L1 with bounded support and

R
f dx D 0. This

is true if g.x/ D jxj�� for � 2 .0;N /, but not in general. We do not use this property,
and thus we are able to prove the theorem in wider generality.
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Proposition 4.13. Let ˛ > 0 be fixed and let g W RN n ¹0º ! Œ0;C1/ be a function
satisfying (I). There exist two constantsC0DC0.˛;g;N /> 0 andm0Dm0.˛;g;N />
0 such that, for every minimizer h 2K of G with constrained “mass” khk1 Dm > m0,
we have that

�.1�C0A.h//BŒm� � h � �.1CC0A.h//BŒm�:

Proof. The strategy is to build a sequence of competitors out of a given minimizer
and estimate precisely the difference in energy between them and the minimizer.

We will determine later the value of the constants C0 and m0, for now let us fix a
minimizer h0 with kh0k1 D m > m0 (that is also the first element of the sequence) and
let us properly translate it in order to have that the optimal asymmetry ball is centered
in 0. The following elements of the sequence are defined applying Lemma 4.12: if
hk has already been built, then hkC1 is produced applying that lemma to h D hk and
� D 2�k . Now we can study the energy difference between two consecutive functions
in the sequence, where the idea is to isolate the terms involving hkC1 � hk and to make
appear the asymmetry of hk and hkC1 in order to use the previous inequalities:

G .hkC1/ � G .hk/

D G .hkC1 � hk; hkC1/C G .hk; hkC1/C G .hkC1 � hk; hk/ � G .hkC1; hk/

D G .hkC1 � hk; hkC1 � �BŒm�/C G .hkC1 � hk; hk � �BŒm�/

C 2G .hkC1 � hk; �BŒm�/:

We treat the last term exploiting the comparison estimate of Lemma 4.9 and the
properties (22), (24), and (26). Let us take m0 bigger than the mass constant in that
lemma, then, denoting by R the radius of BŒm�, we obtain that

G .hkC1 � hk; �BŒm�/

D

Z
.hkC1 � hk/ˆmdx D

Z
.hkC1 � hk/

�
ˆm �ˆm.R/

�
dx

D �

Z
jhkC1 � hkj

ˇ̌
ˆm �ˆm.R/

ˇ̌
dx

� �

Z
¹jjxj�Rj�2�kRº

jhkC1 � hkj
ˇ̌
ˆm �ˆm.R/

ˇ̌
dx

� �C.˛; g;N /RNC˛2�kkhkC1 � hkk1:

Now we concentrate ourselves on the first term of the sum (and the second can be
treated using analogous inequalities). In order to write more concise formulas, it is
convenient to define the quantity

ak WD 2
kR�N khk � �BŒm�k1 8k 2 N;
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that up to a multiplicative constant is an approximation of the average of jhk � �BŒm�j
on the annulus of thickness 2�k . We separately estimate the attractive and repulsive
terms: for the attractive one we can use the diameter bound shown in Lemma 4.3 (that
we can apply if m0 � !N ) and the condition (25) to see that

	˛.hkC1 � hk; hkC1 � �BŒm�/

� C.˛; g;N /R˛khkC1 � hkk1 � 2
�k�1RNakC1

� C.˛; g;N /RNC˛2�kakkhkC1 � hkk1:

Of course, the attractive part of the second term can be treated in the same way since
we directly obtain that

	˛.hkC1 � hk; hk � �BŒm�/ � C.˛; g;N /R
NC˛2�kakkhkC1 � hkk1:

For the repulsive term, we make use of the property (23) that implies that we can
apply Lemma 4.10 to the function h D jhkC1 � �BŒm�j with � D 2�k (we instead use
� D 2�kC1 for the term including hk � �BŒm�). In fact, we arrive to

R.hkC1 � hk; hkC1 � �BŒm�/

� khkC1 � hkk1

�
sup
x

Z
g.x � y/

ˇ̌
hkC1.y/ � �BŒm�.y/

ˇ̌
dy
�

� C.g;N /2�kRN khkC1 � hkk1:

Then we can combine the previous inequalities to obtain

(27) G .hkC1/ � G .hk/ � �R
NC˛2�kkhkC1 � hkk1.C � C

0ak � C
00R�˛/;

where C , C 0, and C 00 are positive constants that depend only on ˛, g, and N . Clearly,
we can take m0 large enough so that R�˛ < C=.4C 00/, but thanks to Remark 4.2 we
can also takem0 big enough in order to make a0 < C=.4C 0/. Now we are left with two
possibilities: either there exists k0 > 0, such that ak0 � C=.4C

0/, or ak < C=.4C 0/
for every k 2 N. If the first eventuality occurs, then we can take the smallest k0 such
that ak0 � C=.4C

0/, and thanks to (27) we see that

G .hk0/ � G .h0/ D

k0�1X
kD0

G .hkC1/ � G .hk/

� �RNC˛
k0�1X
kD0

2�kkhkC1 � hkk1.C � C
0ak � C

00R�˛/

� 0:

(28)
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Since h0 is a minimizer of G with constrained volume m, and khkk1 D m for every
k 2 N, then we necessarily have that G .hk0/ � G .h0/ � 0, which is compatible with
the previous conditions only if hk D h0 for every k � k0. Therefore, using the property
(23), we have that

�.1�2�k0C1/BŒm� � h0 � �.1C2�k0C1/BŒm�;

and so we need only to estimate 2�k0 in order to prove the result. In this case, we have
that ak0 � C=.4C

0/, therefore using (25) we arrive to

2�k0 �
4C 0

C
R�N khk0 � �BŒm�k1 �

4C 0

C
R�N kh0 � �BŒm�k1 �

4C 0!N

C
A.h0/

that is the desired result.
If instead ak < C=.4C 0/ for every k 2 N, then we apply (28) to a generic index

k0 2 N. If hkC1 ¤ hk for some k < k0, then the last inequality is strict, but this
is impossible since h0 minimizes G . Therefore, hk D h0 for every k 2 N, and by
construction

�.1�2�kC1/BŒm� � hk � �.1C2�kC1/BŒm� 8k 2 N:

As a consequence h0 D �BŒm�, that clearly satisfies the inequality in the statement. In
the end, we can choose m0 big enough in order to make the previous arguments work
and the constant in the statement is C0 D 8C 0!N =C .

Proof of Theorem B. We take m0 to be the maximum mass threshold appearing in
Lemma 4.3, Proposition 4.8, Lemma 4.9, and Proposition 4.13. Given m > m0, we
take any minimizer h of G with khk1 D m and optimal asymmetry ball centered in the
origin. Using Theorem 4.1, we obtain that

Cm2C˛=NA.h/2 � 	˛.h/ � 	˛
�
BŒm�

�
� R

�
BŒm�

�
�R.h/

for some constant C D C.N; g; ˛/. Thanks to Remark 4.2, we can takem0 big enough
in order to have A.h/ as small as we want. Then combining Proposition 4.13 and
Proposition 4.8 (that we can apply because of the small asymmetry), we have that
R.BŒm�/�R.h/�C 0m2A.h/2, and therefore we have thatCm˛=NA.h/2�C 0A.h/2.
Enlarging m0 if necessary, we see that the last inequality can hold only if A.h/ D 0,
that is precisely the thesis.
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