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Abstract. – In this paper, we provide a counterexample about the existence of an increasing
monotonicity behavior of a function introduced by Ferrari and Forcillo (2020), companion of the
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1. Introduction

In this paper, we continue the research about the existence of a monotonicity formula
in the Heisenberg group started in [12]; see also [13,14]. More precisely, we prove that
there exists a function u such that, denoting uC WD sup¹u; 0º and u� WD sup¹�u; 0º,
defined in a neighborhood of 0 2 H1, if �H1u

˙ � 0 and 0 2 F .u/, then

(1.1) JH1
u .r/ WD

1

r4

Z
BH1
r .0/

ˇ̌
rH1u

C.�/
ˇ̌2

j�j2
H1

d�

Z
BH1
r .0/

ˇ̌
rH1u

�.�/
ˇ̌2

j�j2
H1

d�;

� D .x; y; t/ 2 H1, is not monotone increasing in a possibly small right neighborhood
of 0, where H1 is the first Heisenberg group.

In order to better understand the profile of this result, we recall that in [1, 7]
the celebrated monotonicity formula, in the Euclidean setting, was applied to prove
regularity results about viscosity solutions of two-phase problems like

(1.2)

8̂̂<̂
:̂
�u D 0 in AC.u/ WD

®
x 2 A W u.x/ > 0

¯
;

�u D 0 in A�.u/ WD Int
�®
x 2 A W u.x/ � 0

¯�
;

jruCj2 � jru�j2 D 1 on F .u/ WD @AC.u/ \ A;

where A � Rn is an open set and u 2 C.A/ is a viscosity solution; see [6] or [5] for
such a definition.

https://creativecommons.org/licenses/by/4.0/
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In particular, in [1] the authors proved that for every solution u 2 H 1.A/ of (1.2)
and for every P0 2 F .u/, the function

(1.3) Ju.r/ WD
1

r4

Z
Br .P0/

ˇ̌
ruC.P /

ˇ̌2
jP � P0jn�2

dP

Z
Br .P0/

ˇ̌
ru�.P /

ˇ̌2
jP � P0jn�2

dP

is monotone increasing in a right neighborhood of 0. Such a tool has been widely
employed to prove regularity results for the solutions of (1.2). About this, we recall
[11] for an overview concerning recent results on two-phase problems in the Euclidean
framework; see also [5].

We worked on

(1.4) JH1

ˇ;u.r/ WD
1

rˇ

Z
BH1
r .0/

ˇ̌
rH1u

C.�/
ˇ̌2

j�j2
H1

d�

Z
BH1
r .0/

ˇ̌
rH1u

�.�/
ˇ̌2

j�j2
H1

d�

only.
On the other hand, since the function u.x; y; t/ D ˛1xC � ˛2x�, for some fixed

numbers ˛i � 0, i D 1; 2, satisfies �H1u D 0 in ¹u > 0º, as well as �H1u D 0

in ¹u < 0º, we checked that if ˇ D 4, then JH1
u .r/ WD JH1

4;u .r/ is constant. Hence,
supposing that ˇ is constant and assuming that JH1

u is monotone increasing as well,
then necessarily ˇ � 4.

We did not manage to conclude that JH1
u is monotone increasing for all the admis-

sible functions, apparently since following the strategy described in [5], we would need
some sharper results in geometric measure theory that, in the Heisenberg group, are
not known yet; see [12] for the details.

As a consequence, in order to deepen that research, we decided to follow another
strategy already available in the Euclidean case Rn. More precisely, to select the right
exponent ˇ, and possibly to deduce the increasing monotone behavior of Ju in Rn as
well, it is useful to study straightforwardly the behavior of the function

	u.r/ WD
1

r2

Z
Br .0/

ˇ̌
ru.P /

ˇ̌2
jP jn�2

dP

when u is harmonic; see [18].
Nevertheless, on the contrary to what we supposed, we discover that there exists at

least a function u such that �H1u D 0 and

(1.5) 	H1
u .r/ WD

1

r2

Z
BH1
r .0/

ˇ̌
rH1u.�/

ˇ̌2
j�j2

H1

d�

is strictly monotone decreasing in a small right neighborhood of 0, differently from
what happens in the Euclidean case.
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Hence, starting from this result, we obtain that JH1
u is strictly monotone decreasing

for a careful choice of u. More precisely, there exists a function u such that JH1
u is not

monotone increasing. In particular, if u D x, we have that JH1
u is constant, while if

u D x � 3yt � 2x3;

which satisfies �H1u D 0, then JH1
u is strictly monotone decreasing. This last fact

depends on the lack of orthogonality of the intrinsic harmonic polynomials in the
Heisenberg group; see e.g. [16].

Hence, our main result, whose proof is contained in Section 3, is the following one.

Theorem 1.1. Let u D x � 3yt � 2x3. Then�H1u D 0 and JH1
u .r/ is strictly mono-

tone decreasing in a right neighborhood of r D 0.

We point out that (1.4) is not the unique function that can be considered for proving
a monotonicity formula. For instance,

(1.6) J
H1;C
ˇ;u

.r/ WD
1

rˇ

Z
B

H1;C
r .0/

ˇ̌
rH1u

C.�/
ˇ̌2

dH1;C .�; 0/
2
d�

Z
B

H1;C
r .0/

ˇ̌
rH1u

�.�/
ˇ̌2

dH1;C .�; 0/
2
d�;

where dH1;C W H
1 �H1 ! Œ0;1/ denotes the Carnot–Charathéodory distance in the

Heisenberg group H1 and

BH1;C
r .P / D

®
Q 2 H1

W dH1;C .Q;P / < r
¯

is the metric ball centered at P 2 H1 with radius r , keeps the same scaling properties
of (1.4). In fact, dH1;C .�; 0/ and j�jH1 are equivalent; see e.g. [4, 9]. Nevertheless,
Theorem 1.1 cannot be applied to the function

JH1;C
u .r/ WD

1

r4

Z
B

H1;C
r .0/

ˇ̌
rH1u

C.�/
ˇ̌2

dH1;C .�; 0/
2
d�

Z
B

H1;C
r .0/

ˇ̌
rH1u

�.�/
ˇ̌2

dH1;C .�; 0/
2
d�;

obtained from (1.6) when ˇ D 4. As a consequence, Theorem 1.1 is a counterexample
to the increasing monotonicity behavior of (1.1) only.

We focus on (1.4) because j�j�2
H1

is, up to a constant, the fundamental solution,
computed at the pole 0, of the sub-Laplacian �H1 ; see e.g. [4, 9, 19]. Analogously,
in the Euclidean case (1.3), when n D 3, the companion fundamental solution of the
Laplacian in R3 with pole P0 D 0, up to a multiplicative constant, appears in the
formula. In particular, in the Euclidean proof of the Alt–Caffarelli–Friedman formula,
the fundamental solution plays a role; see [1, 5] and also [12].

Hence, following the main stream of those results concerning the mean value
properties of harmonic functions in the Heisenberg group and, more in general, the
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representation formulas of functions satisfying equations like �H1u D f , see [4, 10]
as well, it appears useful to deal with (1.4).

On the other hand, it is well known, from [2,3], that dH1;C .�; 0/ is not a�H1-gauge
norm, so that dH1;C .�; 0/

�2 cannot be harmonic in H1 n ¹0º.
The paper is organized as follows. In Section 2, we fix the notation. In Section 3,

we show the explicit computation of the fact that 	H1
u is strictly monotone decreasing,

obtaining the main tool useful to prove Theorem 1.1. In Section 4, we provide an
extension of our argument and an application exhibiting a genuine nontrivial example
of solution to a two-phase free boundary problem in the Heisenberg group.

2. The Heisenberg setting

In this section, we provide some basic notions about the Heisenberg group. For the sake
of simplicity, we restrict ourselves to the H1 case, nevertheless the argument holds in
Hn as well.

We recall here that Hn denotes the set R2nC1, n 2 N, n � 1, endowed with the
noncommutative inner law in such a way that, for every P � .x1; y1; t1/ 2 R2nC1,
M � .x2; y2; t2/ 2 R2nC1, xi 2 Rn, yi 2 Rn, i D 1; 2, it holds that

P ıM WD
�
x1 C x2; y1 C y2; t1 C t2 C 2

�
hx2; y1i � hx1; y2i

��
;

where h�; �i denotes the usual inner product in Rn.
Let Xi D .ei ; 0; 2yi / and Yi D .0; ei ;�2xi /, i D 1; : : : ; n, where ¹eiº1�i�n is the

canonical basis for Rn. The inverse of P WD .x; y; t/ 6D 0 is .�x;�y;�t / and it is
denoted by P�1.

We use the same symbols to denote the vector fields associated with the previous
vectors so that, for i D 1; : : : ; n, we have

Xi WD @xi C 2yi@t ; Yi WD @yi � 2xi@t :

The commutator between the vector fields is

ŒXi ; Yi � WD XiYi � YiX1 D �4@t ; i D 1; : : : ; n;

otherwise is 0. The intrinsic gradient of a real valued smooth function u in a point P is

rHnu.P / WD

nX
iD1

�
Xiu.P /Xi .P /C Yiu.P /Yi .P /

�
:

Now, there exists a unique metric on

HHn
P WD span

®
X1.P /; : : : ; Xn.P /; Y1.P /; : : : ; Yn.P /

¯
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which makes the set of vectors ¹X1; : : : ; Xn; Y1; : : : ; Ynº orthonormal. Thus, for every
P 2 Hn and for every U;W 2 HHn

P ,

U D

nX
jD1

�
˛1;jXj .P /C ˇ1;jYj .P /

�
;

V D

nX
jD1

�
˛2;jXj .P /C ˇ2;jYj .P /

�
;

it holds that

hU; V i D

nX
jD1

.˛1;j˛2;j C ˇ1;jˇ2;j /:

Since we mainly work on H1, that is the case in which n D 1, we simply introduce the
remaining notation in H1. In particular, we define a norm associated with the metric
on the space span¹X; Y º as follows:

jU j WD

vuut 1X
jD1

.˛21;j C ˇ
2
1;j / D

q
˛21;1 C ˇ

2
1;1:

For example, the norm of the intrinsic gradient of a smooth function u in P isˇ̌
rH1u.P /

ˇ̌
D

q�
Xu.P /

�2
C
�
Yu.P /

�2
:

Moreover, if rH1u.P / 6D 0, thenˇ̌̌̌
rH1u.P /ˇ̌
rH1u.P /

ˇ̌ ˇ̌̌̌ D 1:
If rH1u.P / D 0, instead, we say that the point P is characteristic for the smooth

surface ¹u D u.P /º. In particular, for every point M 2 ¹u D u.P /º, which is not
characteristic, the intrinsic normal to the surface ¹u D u.P /º is well defined, given by

�.M/ WD
rH1u.M/ˇ̌
rH1u.M/

ˇ̌ :
The Kohn–Laplace operator is

�H1 WD X
2
C Y 2;

where

�H1 D
@2

@x2
C

@2

@y2
C 4y

@2

@x@t
� 4x

@2

@y@t
C 4.x2 C y2/

@2

@t2
;
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so that�H1 is a degenerate elliptic operator, because the smallest eigenvalue associated
with the matrix 0B@ 1 0 2y

0 1 �2x

2y �2x 4.x2 C y2/

1CA
is always 0.

At this point, we introduce in the Heisenberg group H1 the Koranyi norm of
P � .x; y; t/ 2 H1 as ˇ̌

.x; y; t/
ˇ̌
H1
WD

4
p
.x2 C y2/2 C t2:

In particular, for every positive number r , the gauge ball of radius r centered at 0 is

BH1
r .0/ WD

®
P 2 H1

W jP jH1 < r
¯
:

It is worth to say that this structure is endowed by suitable properties, like the left
invariance with respect to the inner law. More precisely, for every point P 2 H1,

P ı BH1
r .0/ D BH1

r .P / D
®
S 2 H1

W jP�1 ı S jH1 < r
¯
;

which implies that

meas3
�
BH1
r .0/

�
D meas3

�
BH1
r .P /

�
;

where meas3 denotes the usual Lebesgue measure in R3.
Moreover, if u is a C 1 function in H1 and for every P 2 H1 we define v.S/ WD

u.P ı S/, then

Xv.S/ D Xu.P ı S/;

Y v.S/ D Yu.P ı S/;

�H1v.S/ D �H1u.P ı S/:

In addition, a dilation semigroup is defined as follows: for every r > 0 and for every
P � .x; y; t/ 2 H1, let

ır.P / WD .rx; ry; r
2t /:

As a consequence, denoting ur.S/ WD u.ır.S//, it holds that

Xur.S/ D r.Xu/
�
ır.S/

�
;

Y ur.S/ D r.Y u/
�
ır.S/

�
;

�H1ur.S/ D r
2.�H1u/

�
ır.S/

�
:

The details of all previous properties can be found in [19] or in other handbooks like
[9] or [4]. See also [8, 15, 17] for further developments.
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3. Nonexistence of an Alt–Caffarelli–Friedman-type monotonicity
formula in H1

In this section, we exhibit a function u such that (1.1) is strictly monotone decreasing.
Indeed, we explicitly check that fixing the polynomial

u D x � 3yt � 2x3;

	H1
u is monotone decreasing in a right neighborhood of r D 0.

Lemma 3.1. Let uD x � 3yt � 2x3. Then�H1uD 0 and 	H1
u .r/ is strictly monotone

decreasing in a right neighborhood of r D 0.

Proof. We immediately check that if uD x � 3yt � 2x3, then�H1uD 0. By straight-
forward computation, we get

(3.1) Xu D 1 � 6x2 � 6y2; Y u D 3.�t C 2xy/;

which implies that
�H1u D �12x C 12x D 0:

Now, we focus on the behavior of 	H1
u . Substituting (3.1) in (1.5), it holds that

	H1
u .r/ D

1

r2

Z
BH1
r .0/

�
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

j�j2
H1

d�:

Next, we have

	H1
u .r/ D

1

r2

�Z r

0

�

�Z
@BH1
1

.0/

�
1 � 6�2.�2x C �

2
y /
�2q

�2x C �
2
y

d�H1

�
d�

C

Z r

0

�

�Z
@BH1
1

.0/

9�4.��t C 2�x�y/
2q

�2x C �
2
y

d�H1

�
d�

�

D
1

r2

�Z r

0

�

�Z
@BH1
1

.0/

1q
�2x C �

2
y

d�H1

�
d�

�

Z r

0

12�3
�Z

@BH1
1

.0/

q
�2x C �

2
y d�H1

�
d�

C

Z r

0

�5
�Z

@BH1
1

.0/

�
36.�2x C �

2
y /
3=2
C
9.��t C 2�x�y/

2q
�2x C �

2
y

�
d�H1

�
d�

�
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D
1

r2

�
r2

2

Z
@BH1
1

.0/

1q
�2x C �

2
y

d�H1 � 3r
4

Z
@BH1
1

.0/

q
�2x C �

2
y d�H1

C
r6

6

Z
@BH1
1

.0/

�
36.�2x C �

2
y /
3=2
C
9.��t C 2�x�y/

2q
�2x C �

2
y

�
d�H1

�
;

which yields

(3.2) 	H1
u .r/ D aH1

1 � 2a
H1
3;1r

2
C aH1

3 r4;

with

aH1
1 D

1

2

Z
@BH1
1

.0/

1q
�2x C �

2
y

d�H1 ;

2aH1
3;1 D 3

Z
@BH1
1

.0/

q
�2x C �

2
y d�H1 ;

aH1
3 D

Z
@BH1
1

.0/

�
36.�2x C �

2
y /
3=2
C
9.��t C 2�x�y/

2q
�2x C �

2
y

�
d�H1 :

Explicitly calculating the derivative of 	H1
u as in (3.2) and letting r ! 0, we reach the

thesis since aH1
3;1 is positive by definition.

Proof of Theorem 1.1. We first note that

(3.3) JH1
u .r/ D 	H1

uC
.r/	H1

u� .r/:

So, since 	H1

uC
and 	H1

u� are nonnegative, we reach the desired result if we prove that
they are both monotone decreasing.

We claim that 	H1

uC
.r/ D 	H1

u� .r/. Before proving it, we show that it immediately
implies the monotone decreasing behavior of 	H1

uC
.r/ and 	H1

u� .r/.
Indeed, since 	H1

u .r/D 	H1

uC
.r/C	H1

u� .r/, we deduce that 	H1
u .r/D 2	H1

uC
.r/D

2	H1
u� .r/, which immediately gives the decreasing monotonicity of 	H1

uC
and 	H1

u� from
Lemma 3.1.

As a byproduct of this remark, we prove that JH1
u .r/ is monotone decreasing,

because it is the product of two positive monotone decreasing functions; see (3.3).
It remains to show that the claim holds. To this end, we write

	H1

uC
.r/ D

1

r2

Z
BH1
r .0/\¹u>0º

�
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

j�j2
H1

d�

D
1

r2

Z
BH1
r .0/\¹x�3yt�2x3>0º

�
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

j�j2
H1

d�;
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and we apply the change of variables

(3.4) � D .x; y; t/ D T .�/ D T .w; z; s/ WD .�w;�z; s/;

which yields

	H1

uC
.r/

D
1

r2

Z
BH1
r .0/\¹�w�3.�z/s�2.�w/3>0º

�
1 � 6.w2 C z2/

�2
C 9.�s C 2wz/2

j�j2
H1

d�

D
1

r2

Z
BH1
r .0/\¹w�3zs�2w3<0º

�
1 � 6.w2 C z2/

�2
C 9.�s C 2wz/2

j�j2
H1

d� D JH1
u� .r/;

and thus the claim follows.

4. A further generalization with application

Let us consider now the following two-phase continuous function:

u˛1;˛2 D ˛1u
C
� ˛2u

�

in H1, where, as usual, u.x; y; t/ D x � 3yt � 2x3.
We conclude the paper by proving the following result, where a nontrivial solution

of a two-phase free boundary problem in the Heisenberg group is given.

Corollary 4.1. Let ˛1; ˛2 > 0 be given. Then 	H1
u˛1;˛2

, 	H1
˛2u�

, 	H1

˛1uC
are monotone

decreasing functions in a right neighborhood of r D 0.
Moreover, if ˛21 � ˛

2
2 > 0, then u˛1;˛2 is a solution of the following two-phase

problem in the Heisenberg group:8̂̂<̂
:̂
�H1u D 0 in �C.u/ WD

®
x 2 � W u.x/ > 0

¯
;

�H1u D 0 in ��.u/ WD Int
�®
x 2 � W u.x/ � 0

¯�
;

jrH1u
Cj2 � jrH1u

�j2 D g˛1;˛2 on F .u/ WD @�C.u/ \�;

where

g˛1;˛2.x; y; t/ D .˛
2
1 � ˛

2
2/
��
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

�
:

Proof. We first note that

(4.1) JH1
u˛1;˛2

.r/ D 	H1

˛1uC
.r/	H1

˛2u�
.r/:
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Since the zero-level set of u˛1;˛2 coincides with the zero-level set of u, we remark that

	H1

˛1uC
.r/

D
˛21
r2

Z
BH1
r .0/\¹x�3yt�2x3>0º

�
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

j�j2
H1

d�;

as well as

	H1
˛2u�

.r/

D
˛22
r2

Z
BH1
r .0/\¹x�3yt�2x3<0º

�
1 � 6.x2 C y2/

�2
C 9.�t C 2xy/2

j�j2
H1

d�:

Hence, performing the same change of variables introduced in (3.4), we obtain

(4.2) 	H1

˛1uC
.r/ D

˛21
˛22

	H1
˛2u�

.r/:

On the other hand, in this case, keeping in mind (4.2) it follows that

	H1
u˛1;˛2

.r/ D 	H1

˛1uC
.r/C 	H1

˛2u�
.r/ D

�
˛21
˛22
C 1

�
	H1
˛2u�

.r/

D .˛21 C ˛
2
2/	

H1
u� .r/ D

˛21 C ˛
2
2

2
	H1
u .r/:

(4.3)

As a consequence of Lemma 3.1, (4.3) implies that

	H1
u˛1;˛2

; 	H1
˛2u�

; 	H1

˛1uC

are monotone decreasing in a right neighborhood of r D 0. Thus, we conclude from
(4.1) that JH1

u˛1;˛2
is monotone decreasing, because it is the product of the two positive

monotone decreasing functions 	H1
˛2u�

and 	H1

˛1uC
.

In addition, under our hypotheses, u˛1;˛2 is a solution of the following two-phase
free boundary problem in the Heisenberg group H1:8̂̂<̂
:̂
�H1u D 0 in �C.u/ WD

®
x 2 � W u.x/ > 0

¯
;

�H1u D 0 in ��.u/ WD Int
�®
x 2 � W u.x/ � 0

¯�
;

jrH1u
Cj2 � jrH1u

�j2 D g˛1;˛2 on F .u/ WD @�C.u/ \�:
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